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ABSTRACT

Accurate prediction of the future given the past based on time series data is of
paramount importance, since it opens the door for decision making and risk man-
agement ahead of time. In practice, the challenge is to build a flexible but parsi-
monious model that can capture a wide range of temporal dependencies. In this
paper, we propose Pyraformer by exploring the multi-resolution representation of
the time series. Specifically, we introduce the pyramidal attention module (PAM)
in which the inter-scale tree structure summarizes features at different resolutions
and the intra-scale neighboring connections model the temporal dependencies of
different ranges. Under mild conditions, the maximum length of the signal travers-
ing path in Pyraformer is a constant (i.e., O(1)) with regard to the sequence length
L, while its time and space complexity scale linearly with L. Extensive experi-
mental results show that Pyraformer typically achieves the highest prediction ac-
curacy in both single-step and long-range multi-step forecasting tasks with the
least amount of time and memory consumption, especially when the sequence is
long1.

1 INTRODUCTION

Time series forecasting is the cornerstone for downstream tasks such as decision making and risk
management. As an example, reliable prediction of the online traffic for micro-services can yield
early warnings of the potential risk in cloud systems. Furthermore, it also provides guidance for
dynamic resource allocation, in order to minimize the cost without degrading the performance. In
addition to online traffic, time series forecasting has also found vast applications in other fields,
including disease propagation, energy management, and economics and finance.

The major challenge of time series forecasting lies in constructing a powerful but parsimonious
model that can compactly capture temporal dependencies of different ranges. Time series often
exhibit both short-term and long-term repeating patterns (Lai et al., 2018), and taking them into
account is the key to accurate prediction. Of particular note is the more difficult task of handling
long-range dependencies, which is characterized by the length of the longest signal traversing path
(see Proposition 2 for the definition) between any two positions in the time series (Vaswani et al.,
2017). The shorter the path, the better the dependencies are captured. Additionally, to allow the
models to learn these long-term patterns, the historical input to the models should also be long. To
this end, low time and space complexity is a priority.

Unfortunately, the present state-of-the-art methods fail to accomplish these two objectives simul-
taneously. On one end, RNN (Salinas et al., 2020) and CNN (Munir et al., 2018) achieve a low
time complexity that is linear in terms of the time series length L, yet their maximum length of the
signal traversing path is O(L), thus rendering them difficult to learn dependencies between distant
positions. On the other extreme, Transformer dramatically shortens the maximum path to be O(1)
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Figure 1: Graphs of commonly used neural network models for sequence data.

Table 1: Comparison of the complexity and the maximum signal traveling path for different models,
where G is the number of global tokens in ETC. In practice, the G increases with L, and so the
complexity of ETC is super-linear.

Method Complexity per layer Maximum path length
CNN (Munir et al., 2018) O(L) O(L)

RNN (Salinas et al., 2020) O(L) O(L)

Full-Attention (Vaswani et al., 2017) O(L2) O(1)

ETC (Ainslie et al., 2020) O(GL) O(1)

Longformer (Beltagy et al., 2020) O(L) O(L)

LogTrans (Li et al., 2019) O(L logL) O(logL)

Pyraformer O(L) O(1)

at the sacrifice of increasing the time complexity to O(L2). As a consequence, it cannot tackle
very long sequences. To find a compromise between the model capacity and complexity, variants
of Transformer are proposed, such as Longformer (Beltagy et al., 2020), Reformer (Kitaev et al.,
2019), and Informer (Zhou et al., 2021). However, few of them can achieve a maximum path length
less than O(L) while greatly reducing the time and space complexity.

In this paper, we propose a novel pyramidal attention based Transformer (Pyraformer) to bridge
the gap between capturing the long-range dependencies and achieving a low time and space com-
plexity. Specifically, we develop the pyramidal attention mechanism by passing messages based on
attention in the pyramidal graph as shown in Figure 1(d). The edges in this graph can be divided
into two groups: the inter-scale and the intra-scale connections. The inter-scale connections build
a multiresolution representation of the original sequence: nodes at the finest scale correspond to
the time points in the original time series (e.g., hourly observations), while nodes in the coarser
scales represent features with lower resolutions (e.g., daily, weekly, and monthly patterns). Such
latent coarser-scale nodes are initially introduced via a coarser-scale construction module. On the
other hand, the intra-scale edges capture the temporal dependencies at each resolution by connecting
neighboring nodes together. As a result, this model provides a compact representation for long-range
temporal dependencies among far-apart positions by capturing such behavior at coarser resolutions,
leading to a smaller length of the signal traversing path. Moreover, modeling temporal dependencies
of different ranges at different scales with sparse neighboring intra-scale connections significantly
reduces the computational cost. In short, our key contributions comprise:

• We propose Pyraformer to simultaneously capture temporal dependencies of different
ranges in a compact multi-resolution fashion. To distinguish Pyraformer from the state-
of-the-art methods, we summarize all models from the perspective of graphs in Figure 1.

• Theoretically, we prove that by choosing parameters appropriately, the maximum path
length of O(1) and the time and space complexity of O(L) can be reached concurrently. To
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highlight the appeal of the proposed model, we further compare different models in terms
of the maximum path and the complexity in Table 1.

• Experimentally, we show that the proposed Pyraformer yields more accurate predictions
than the original Transformer and its variants on various real-world datasets under the sce-
nario of both single-step and long-range multi-step forecasting, but with lower time and
memory cost.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING

Time series forecasting methods can be roughly divided into statistical methods and neural network
based methods. The first group involves ARIMA (Box & Jenkins, 1968) and Prophet (Taylor &
Letham, 2018). However, both of them need to fit each time series separately, and their performance
pales when it comes to long-range forecasting.

More recently, the development of deep learning has spawned a tremendous increase in neural net-
work based time series forecasting methods, including CNN (Munir et al., 2018), RNN (Salinas
et al., 2020) and Transformer (Li et al., 2019). As mentioned in the previous section, CNN and RNN
enjoy a low time and space complexity (i.e., O(L)), but entail a path of O(L) to describe long-range
dependence. We refer the readers to Appendix A for a more detailed review on related RNN-based
models. By contrast, Transformer (Vaswani et al., 2017) can effectively capture the long-range de-
pendence with a path of O(1) steps, whereas the complexity increases vastly from O(L) to O(L2).
To alleviate this computational burden, LogTrans (Li et al., 2019) and Informer (Zhou et al., 2021)
are proposed: the former constrains that each point in the sequence can only attend to the point that
is 2n steps before it, where n = 1, 2, · · · , and the latter utilizes the sparsity of the attention score,
resulting in substantial decrease in the complexity (i.e., O(L logL) at the expense of introducing a
longer maximum path length.

2.2 SPARSE TRANSFORMERS

In addition to the literature on time series forecasting, a plethora of methods have been proposed for
enhancing the efficiency of Transformer in the field of natural language processing (NLP). Similar
to CNN, Longformer (Beltagy et al., 2020) computes attention within a local sliding window or a
dilated sliding window. Although the complexity is reduced to O(AL), where A is the local window
size, the limited window size makes it difficult to exchange information globally. The consequent
maximum path length is O(L/A). As an alternative, Reformer (Kitaev et al., 2019) exploits locality
sensitive hashing (LSH) to divide the sequence into several buckets, and then performs attention
within each bucket. It also employs reversible Transformer to further reduce memory consumption,
and so an extremely long sequence can be processed. Its maximum path length is proportional
to the number of buckets though, and worse still, a large bucket number is required to reduce the
complexity. On the other hand, ETC (Ainslie et al., 2020) introduces an extra set of global tokens
for the sake of global information exchange, leading to an O(GL) time and space complexity and an
O(1) maximum path length, where G is the number of global tokens. However, G typically increases
with L, and the consequent complexity is still super-linear. Akin to ETC, the proposed Pyraformer
also introduces global tokens, but in a multiscale manner, successfully reducing the complexity to
O(L) without increasing the order of the maximum path length as in the original Transformer.

2.3 HIERARCHICAL TRANSFORMERS

Finally, we provide a brief review on methods that improve Transformer’s ability to capture the
hierarchical structure of natural language, although they have never been used for time series fore-
casting. HIBERT (Miculicich et al., 2018) first uses a Sent Encoder to extract the features of a
sentence, and then forms the EOS tokens of sentences in the document as a new sequence and input
it into the Doc Encoder. However, it is specialized for natural language and cannot be generalized
to other sequence data. Multi-scale Transformer (Subramanian et al., 2020) learns the multi-scale
representations of sequence data using both the top-down and bottom-up network structures. Such
multi-scale representations help reduce the time and memory cost of the original Transformer, but
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Figure 2: The architecture of Pyraformer: The CSCM summarizes the embedded sequence at differ-
ent scales and builds a multi-resolution tree structure. Then the PAM is used to exchange information
between nodes efficiently.

it still suffers from the pitfall of the quadratic complexity. Alternatively, BP-Transformer (Ye et al.,
2019) recursively partitions the entire input sequence into two until a partition only contains a single
token. The partitioned sequences then form a binary tree. In the attention layer, each upper-scale
node can attend to its own children, while the nodes at the bottom scale can attend to the adjacent A
nodes at the same scale and all coarser-scale nodes. Note that BP-Transformer initializes the nodes
at coarser scale with zeros, whereas Pyraformer introduces the coarser-scale nodes using a construc-
tion module in a more flexible manner. Moreover, BP-Transformer is associated with a denser graph
than Pyraformer, thus giving rise to a higher complexity of O(L logL).

3 METHOD

The time series forecasting problem can be formulated as predicting the future M steps zt+1:t+M

given the previous L steps of observations zt−L+1:t and the associated covariates xt−L+1:t+M

(e.g., hour-of-the-day). To move forward to this goal, we propose Pyraformer in this paper, whose
overall architecture is summarized in Figure 2. As shown in the figure, we first embed the observed
data, the covariates, and the positions separately and then add them together, in the same vein with
Informer (Zhou et al., 2021). Next, we construct a multi-resolution C-ary tree using the coarser-
scale construction module (CSCM), where nodes at a coarser scale summarize the information of
C nodes at the corresponding finer scale. To further capture the temporal dependencies of different
ranges, we introduce the pyramidal attention module (PAM) by passing messages using the attention
mechanism in the pyramidal graph. Finally, depending on the downstream task, we employ different
network structures to output the final predictions. In the sequel, we elaborate on each part of the
proposed model. For ease of exposition, all notations in this paper are summarized in Table 4.

3.1 PYRAMIDAL ATTENTION MODULE (PAM)

We begin with the introduction of the PAM, since it lies at the heart of Pyraformer. As demonstrated
in Figure 1(d), we leverage a pyramidal graph to describe the temporal dependencies of the observed
time series in a multiresolution fashion. Such a multiresolution structure has proved itself an effec-
tive and efficient tool for long-range interaction modeling in the field of computer vision (Sun et al.,
2019; Wang et al., 2021) and statistical signal processing (Choi et al., 2008; Yu et al., 2019). We
can decompose the pyramidal graph into two parts: the inter-scale and the intra-scale connections.
The inter-scale connections form a C-ary tree, in which each parent has C children. For example,
if we associate the finest scale of the pyramidal graph with hourly observations of the original time
series, the nodes at coarser scales can be regarded as the daily, weekly, and even monthly features of
the time series. As a consequence, the pyramidal graph offers a multi-resolution representation of
the original time series. Furthermore, it is easier to capture long-range dependencies (e.g., monthly
dependence) in the coarser scales by simply connecting the neighboring nodes via the intra-scale
connections. In other words, the coarser scales are instrumental in describing long-range correla-
tions in a manner that is graphically far more parsimonious than could be solely captured with a sin-
gle, finest scale model. Indeed, the original single-scale Transformer (see Figure 1(a)) adopts a full
graph that connects every two nodes at the finest scale so as to model the long-range dependencies,
leading to a computationally burdensome model with O(L2) time and space complexity (Vaswani
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et al., 2017). In stark contrast, as illustrated below, the pyramidal graph in the proposed Pyraformer
reduces the computational cost to O(L) without increasing the order of the maximum length of the
signal traversing path.

Before delving into the PAM, we first introduce the original attention mechanism. Let X and Y
denote the input and output of a single attention head respectively. Note that multiple heads can
be introduced to describe the temporal pattern from different perspectives. X is first linearly trans-
formed into three distinct matrices, namely, the query Q = XWQ, the key K = XWK , and the
value V = XWV , where WQ, WK , WV ∈ RL×DK . For the i-th row qi in Q, it can attend to any
rows (i.e., keys) in K. In other words, the corresponding output yi can be expressed as:

yi =

L∑
ℓ=1

exp(qik
T
ℓ /

√
DK)vℓ∑L

ℓ=1 exp(qik
T
ℓ /

√
DK)

, (1)

where kT
ℓ denotes the transpose of row ℓ in K. We emphasize that the number of query-key dot

products (Q-K pairs) that need to be calculated and stored dictates the time and space complexity of
the attention mechanism. Viewed another way, this number is proportional to the number of edges
in the graph (see Figure 1(a)). Since all Q-K pairs are computed and stored in the full attention
mechanism (1), the resulting time and space complexity is O(L2).

As opposed to the above full attention mechanism, every node only pays attention to a limited set of
keys in the PAM, corresponding to the pyramidal graph in Figure 1d. Concretely, suppose that n(s)

ℓ
denotes the ℓ-th node at scale s, where s = 1, · · · , S represents the bottom scale to the top scale
sequentially. In general, each node in the graph can attend to a set of neighboring nodes N(s)

ℓ at
three scales: the adjacent A nodes at the same scale including the node itself (denoted as A(s)

ℓ ), the
C children it has in the C-ary tree (denoted as C(s)

ℓ ), and the parent of it in the C-ary tree (denoted
P(s)
ℓ ), that is, 

N(s)
ℓ = A(s)

ℓ ∪ C(s)
ℓ ∪ P(s)

l

A(s)
ℓ = {n(s)

j : |j − ℓ| ≤ A−1
2 , 1 ≤ j ≤ L

Cs−1 }
C(s)

ℓ = {n(s−1)
j : (ℓ− 1)C < j ≤ ℓC} if s ≥ 2 else ∅

P(s)
ℓ = {n(s+1)

j : j = ⌈ ℓ
C ⌉} if s ≤ S − 1 else ∅

. (2)

It follows that the attention at node n
(s)
ℓ can be simplified as:

yi =
∑

ℓ∈N(s)
ℓ

exp(qik
T
ℓ /

√
dK)vℓ∑

ℓ∈N(s)
l

exp(qikT
ℓ /

√
dK)

, (3)

We further denote the number of attention layers as N . Without loss of generality, we assume that
L is divisible by CS−1. We can then have the following lemma (cf. Appendix B for the proof and
Table 4 for the meanings of the notations).
Lemma 1. Given A, C, L, N , and S that satisfy Equation (4), after N stacked attention layers,
nodes at the coarsest scale can obtain a global receptive field.

L

CS−1
− 1 ≤ (A− 1)N

2
. (4)

In addition, when the number of scales S is fixed, the following two propositions summarize the
time and space complexity and the order of the maximum path length for the proposed pyramidal
attention mechanism. We refer the readers to Appendix C and D for proof.
Proposition 1. The time and space complexity for the pyramidal attention mechanism is O(AL) for
given A and L and amounts to O(L) when A is a constant w.r.t. L.
Proposition 2. Let the signal traversing path between two nodes in a graph denote the shortest path
connecting them. Then the maximum length of signal traversing path between two arbitrary nodes
in the pyramidal graph is O(S + L/CS−1/A) for given A, C, L, and S. Suppose that A and S are
fixed and C satisfies Equation (5), the maximum path length is O(1) for time series with length L.

S−1
√
L ≥ C ≥ S−1

√
L

(A− 1)N/2 + 1
. (5)
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Figure 3: Coarser-scale construction module: B is the batch size and D is the dimension of a node.

In our experiments, we fix S and N , and A can only take 3 or 5, regardless of the sequence length
L. Therefore, the proposed PAM achieves the complexity of O(L) with the maximum path length
of O(1). Note that in the PAM, a node can attend to at most A + C + 1 nodes. Unfortunately,
such a sparse attention mechanism is not supported in the existing deep learning libraries, such as
Pytorch and TensorFlow. A naive implementation of the PAM that can fully exploit the tensor
operation framework is to first compute the product between all Q-K pairs, i.e., qikT

ℓ for ℓ =

1, · · · , L, and then mask out ℓ ̸∈ N(s)
ℓ . However, the resulting time and space complexity of this

implementation is still O(L2). Instead, we build a customized CUDA kernel specialized for the
PAM using TVM (Chen et al., 2018), practically reducing the computational time and memory cost
and making the proposed model amenable to long time series. Longer historical input is typically
helpful for improving the prediction accuracy, as more information is provided, especially when
long-range dependencies are considered.

3.2 COARSER-SCALE CONSTRUCTION MODULE (CSCM)

CSCM targets at initializing the nodes at the coarser scales of the pyramidal graph, so as to facilitate
the subsequent PAM to exchange information between these nodes. Specifically, the coarse-scale
nodes are introduced scale by scale from bottom to top by performing convolutions on the corre-
sponding children nodes C(s)

ℓ . As demonstrated in Figure 3, several convolution layers with kernel
size C and stride C are sequentially applied to the embedded sequence in the dimension of time,
yielding a sequence with length L/Cs at scale s. The resulting sequences at different scales form
a C-ary tree. We concatenate these fine-to-coarse sequences before inputting them to the PAM. In
order to reduce the amount of parameters and calculations, we reduce the dimension of each node by
a fully connected layer before inputting the sequence into the stacked convolution layers and restore
it after all convolutions. Such a bottleneck structure significantly reduces the number of parameters
in the module and can guard against over-fitting.

3.3 PREDICTION MODULE

For single-step forecasting, we add an end token (by setting zt+1 = 0) to the end of the historical
sequence zt−L+1:t before inputting it into the embedding layer. After the sequence is encoded by the
PAM, we gather the features given by the last nodes at all scales in the pyramidal graph, concatenate
and then input them into a fully connected layer for prediction.

For multi-step forecasting, we propose two prediction modules. The first one is the same with the
single-step forecasting module, but maps the last nodes at all scales to all M future time steps in
a batch. The second one, on the other hand, resorts to a decoder with two full attention layers.
Specifically, similar to the original Transformer (Vaswani et al., 2017), we replace the observations
at the future M time steps with 0, embed them in the same manner with the historical observations,
and refer to the summation of the observation, covariate, and positional embedding as the “prediction
token” Fp. The first attention layer then takes the prediction tokens Fp as the query and the output
of the encoder Fe (i.e., all nodes in the PAM) as the key and the value, and yields Fd1. The second
layer takes Fd1 as the query, but takes the concatenated Fd1 and Fe as the key and the value. The
historical information Fe is fed directly into both attention layers, since such information is vital
for accurate long-range forecasting. The final prediction is then obtained through a fully connected
layer across the dimension of channels. Again, we output all future predictions together to avoid the
problem of error accumulation in the autoregressive decoder of Transformer.
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Table 2: Single-step forecasting results on three datasets. “Q-K pairs” refer to the number of query-
key dot products performed by all attention layers in the network, which encodes the time and space
complexity. We write the number of attention layers by N , the number of attention heads by H , the
number of scales by S, the dimension of a node by D, the dimension of a key by DK , the maximum
dimension of feed-forward layer by DF , and the convolution stride by C.

Methods Parameters Datasets NRMSE ND Q-K pairs

Full-attention O(N(HDDK+DDF ))

Electricity 0.328 0.041 456976

Wind 0.175 0.082 589824

App Flow 0.407 0.080 589824

LogTrans O(N(HDDK+DDF ))

Electricity 0.333 0.041 50138

Wind 0.173 0.081 58272

App Flow 0.387 0.073 58272

Reformer O(N(HDDK+DDF ))

Electricity 0.359 0.047 677376

Wind 0.183 0.086 884736

App Flow 0.463 0.095 884736

ETC O(N(HDDK+DDF ))

Electricity 0.324 0.041 79536

Wind 0.167 0.074 102144

App Flow 0.397 0.069 102144

Longformer O(N(HDDK+DDF ))

Electricity 0.330 0.041 41360

Wind 0.166 0.075 52608

App Flow 0.377 0.07 52608

Pyraformer
O(N(HDDK +DDF )
+(S − 1)CD2

K)

Electricity 0.324 0.041 17648
Wind 0.161 0.072 20176

App Flow 0.366 0.067 20176

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETUP

We demonstrated the advantages of the proposed Pyraformer on the four real-world datasets, in-
cluding Wind, App Flow, Electricity, and ETT. The first three datasets were used for single-step
forecasting, while the last two for long-range multi-step forecasting. We refer the readers to Ap-
pendix E and F for more details regarding the data description and the experiment setup.

4.2 RESULTS AND ANALYSIS

4.2.1 SINGLE-STEP FORECASTING

We conducted single-step prediction experiments on three datasets: Electricity, Wind and App Flow.
The historical length is 169, 192 and 192, respectively, including the end token. We benchmarked
Pyraformer against 5 other attention mechanisms, including the original full-attention (Vaswani
et al., 2017), the log-sparse attention (i.e., LogTrans) (Li et al., 2019), the LSH attention (i.e., Re-
former) (Kitaev et al., 2019), the sliding window attention with global nodes (i.e., ETC) (Ainslie
et al., 2020), and the dilated sliding window attention (i.e., Longformer) (Beltagy et al., 2020). In
particular for ETC, some nodes with equal intervals at the finest scale were selected as the global
nodes. A global node can attend to all nodes across the sequence and all nodes can attend to it
in turn(see Figure 1(e)). The training and testing schemes were the same for all models. We fur-
ther investigated the usefulness of the pretraining strategy (see Appendix G), the weighted sampler,
and the hard sample mining on all methods, and the best results were presented. We adopted the
NRMSE (Normalized RMSE) and the ND (Normalized Deviation) as the evaluation indicators (see
Appendix H for the definitions). The results are summarized in Table 2. For a fair comparison,
except for full-attention, the overall dot product number of all attention mechanisms was controlled
to the same order of magnitude.

Our experimental results show that Pyraformer outperforms Transformer and its variants in terms
of NRMSE and ND, with the least number of query-key dot products (a.k.a. Q-K pairs). Con-
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Table 3: Long-range multi-step forecasting results.

Methods Metrics
ETTh1 ETTm1 Electricity

168 336 720 96 288 672 168 336 720

Informer
MSE 1.075 1.329 1.384 0.556 0.841 0.921 0.745 1.579 4.365

MAE 0.801 0.911 0.950 0.537 0.705 0.753 0.266 0.323 0.371

Q-K pairs 188040 188040 423360 276480 560640 560640 188040 188040 423360

LogTrans
MSE 0.983 1.100 1.411 0.554 0.786 1.169 0.791 1.584 4.362

MAE 0.766 0.839 0.991 0.499 0.676 0.868 0.340 0.336 0.366

Q-K pairs 74664 74664 216744 254760 648768 648768 74664 74664 216744

Longformer
MSE 0.860 0.975 1.091 0.526 0.767 1.021 0.766 1.591 4.361

MAE 0.710 0.769 0.832 0.507 0.663 0.788 0.311 0.343 0.368

Q-K pairs 63648 63648 249120 329760 1007136 1007136 63648 63648 249120

Reformer
MSE 0.958 1.044 1.458 0.543 0.924 0.981 0.783 1.584 4.374

MAE 0.741 0.787 0.987 0.528 0.722 0.778 0.332 0.334 0.374

Q-K pairs 1016064 1016064 2709504 5308416 14450688 14450688 1016064 1016064 2709504

ETC
MSE 1.025 1.084 1.137 0.762 1.227 1.272 0.777 1.586 4.361

MAE 0.771 0.811 0.866 0.653 0.880 0.908 0.326 0.340 0.368

Q-K pairs 125280 125280 288720 331344 836952 836952 125280 125280 288720

Pyraformer
MSE 0.808 0.945 1.022 0.480 0.754 0.857 0.719 1.533 4.312
MAE 0.683 0.766 0.806 0.486 0.659 0.707 0.256 0.291 0.346

Q-K pairs 26472 26472 74280 57264 96384 96384 26472 26472 74280

cretely, there are three major trends that can be gleaned from Table 2: (1) The proposed Pyraformer
yields the most accurate prediction results, suggesting that the pyramidal graph can better explain
the temporal interactions in the time series by considering dependencies of different ranges. Inter-
estingly, for the Wind dataset, sparse attention mechanisms, namely, LogTrans, ETC, Longformer
and Pyraformer, outperform the original full attention Transformer, probably because the data con-
tains a large number of zeros and the promotion of adequate sparsity can help avoid over-fitting.
(2) The number of Q-K pairs in Pyraformer is the smallest. Recall that this number character-
izes the time and space complexity. Remarkably enough, it is 65.4% fewer than that of LogTrans
and 96.6% than that of the full attention. It is worth emphasizing that this computational gain
will continue to increase for longer time series. (3) The number of parameters for Pyraformer is
slightly larger than that of the other models, resulting from the CSCM. However, this module is very
lightweight, which incurs merely 5% overhead in terms of model size compared to other models.
Moreover, in practice, we can fix the hyper-parameters A, S and N , and ensure that C satisfies
C > S−1

√
L/((A− 1)N/2 + 1). Consequently, the extra number of parameters introduced by the

CSCM is only O((S − 1)CD2
K) ≈ O( S−1

√
L).

4.2.2 LONG-RANGE MULTI-STEP FORECASTING

We evaluated the performance of Pyraformer for long-range forecasting on three datasets, that is,
Electricity, ETTh1, and ETTm1. In particular for ETTh1 and ETTm1, we predicted the future oil
temperature and the 6 power load features at the same time, which is a multivariate time series
forecasting problem. Both prediction modules introduced in Section 3.3 were tested for all models
and the better results are listed in Table 3.

It is evident that Pyraformer still achieves the best performance with the least number of Q-K
pairs for all datasets regardless of the prediction length. More precisely, in comparison with In-
former (Zhou et al., 2021), the MSE given by Pyraformer for ETTh1 is decreased by 24.8%, 28.9%,
26.2% respectively when the prediction length is 168, 336, and 720. Once again, this bolsters our
belief that it is more beneficial to employ the pyramidal graph when describing the temporal depen-
dencies. Interestingly, we notice that for Pyraformer, the results given by the first prediction module
are better than those by the second one. One possible explanation is that the second prediction mod-
ule based on the full attention layers cannot differentiate features with different resolutions, while
the first module based on a single fully connected layer can take full advantages of such features
in an automated fashion. To better elucidate the modeling capacity of Pyraformer for long-range
forecasting, we refer the readers to Appendix I for a detailed example on synthetic data.
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Figure 4: Comparison of the time and memory consumption between the full, the prob-sparse, and
the TVM implementation of the pyramidal attention: (a) computation time; (b) memory occupation.

4.2.3 SPEED AND MEMORY CONSUMPTION

To check the efficiency of the customized CUDA kernel implemented based on TVM, we depicted
the empirical computation time and memory cost as a function of the sequence length L in Fig-
ure 4. Here we only compared Pyraformer with the full attention and the prob-sparse attention in
Informer (Zhou et al., 2021). All the computations were performed on a 12 GB Titan Xp GPU
with Ubuntu 16.04, CUDA 11.0, and TVM 0.8.0. Figure 4 shows that the time and memory cost
of the proposed Pyraformer based on TVM is approximately a linear function of L, as expected.
Furthermore, the time and memory consumption of the TVM implementation can be several or-
ders of magnitude smaller than that of the full attention and the prob-sparse attention, especially for
relatively long time series. Indeed, for a 12GB Titan Xp GPU, when the sequence length reaches
5800, full attention encounters the out-of-memory (OOM) problem, yet the TVM implementation
of Pyraformer only occupies 1GB of memory. When it comes to a sequence with 20000 time points,
even Informer incurs the OOM problem, whereas the memory cost of Pyraformer is only 1.91GB
and the computation time per batch is only 0.082s.

4.3 ABLATION STUDY

We also performed ablation studies to measure the impact of A and C, the CSCM architecture, the
history length, and the PAM on the prediction accuracy of Pyraformer. The results are displayed in
Tables 7-10. Detailed Discussions on the results can be found in Appendix J. Here, we only provide
an overview of the major findings: (1) it is better to increase C with L but fix A to a small constant for
the sake of reducing the prediction error; (2) convolution with bottleneck strikes a balance between
the prediction accuracy and the number of parameters, and hence, we use it as the CSCM; (3) more
history helps increase the accuracy of forecasting; (4) the PAM is essential for accurate prediction.

5 CONCLUSION AND OUTLOOK

In this paper, we propose Pyraformer, a novel model based on pyramidal attention that can effec-
tively describe both short and long temporal dependencies with low time and space complexity.
Concretely, we first exploit the CSCM to construct a C-ary tree, and then design the PAM to pass
messages in both the inter-scale and the intra-scale fashion. By adjusting C and fixing other parame-
ters when the sequence length L increases, Pyraformer can achieve the theoretical O(L) complexity
and O(1) maximum signal traversing path length. Experimental results show that the proposed
model outperforms the state-of-the-art models for both single-step and long-range multi-step pre-
diction tasks, but with less computational time and memory cost. So far we only concentrate on the
scenario where A and S are fixed and C increases with L when constructing the pyramidal graph. On
the other hand, we have shown in Appendix I that other configurations of the hyper-parameters may
further improve the performance of Pyraformer. In the future work, we would like to explore how
to adaptively learn the hyper-parameters from the data. Also, it is interesting to extend Pyraformer
to other fields, including natural language processing and computer vision.
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Table 4: Meanings of notations.

Notation Size Meaning

L Constant The length of historical sequence.

G Constant The number of global tokens in ETC.

M Constant The length of future sequence to be predicted.

B Constant Batch size.

D Constant The dimension of each node.

DK Constant The dimension of a key.

X B × L×D Input of a single attention head.

Y B × L×D Output of a single attention head.

Q B × L×DK The query.

K B × L×DK The key.

V B × L×DK The value.

WQ D ×DK The weight matrix of the query.

WK D ×DK The weight matrix of the key.

WV D ×DK The weight matrix of the value.

S Constant Number of scales.

A Constant Number of adjacent nodes at the same scale that a node can attend to.

C Constant Number of finer scale nodes that a coarser scale node can summarize.

N Constant Number of attention layers.

n
(s)
l D The ℓ-th node at scale s.

N(s)
ℓ len(N(s)

ℓ )×D The set of neighboring nodes of node n
(s)
l .

A(s)
ℓ len(A(s)

ℓ )×D The adjacent A nodes at the same scale with n
(s)
l .

C(s)
ℓ len(C(s)

ℓ )×D The children nodes of n(s)
l .

P(s)
ℓ len(P(s)

ℓ )×D The parent node of n(s)
l .

Fp B ×M ×D The prediction tokens.

Fe B × Ltot ×D The output of the encoder. Ltot represents the output length of the encoder.

Fd1 B ×M ×D The output of the first attention-based decoder layer.

H Constant The number of attention heads.

DF Constant The maximum dimension of the feed-forward layer.

A A BRIEF REVIEW ON RELATED RNN-BASED MODELS

In this section, we provide a brief review on the related RNN-based models. Multiscale tempo-
ral dependencies are successfully captured in HRNN (Costa-jussà & Fonollosa, 2016) and HM-
RNN (Chung et al., 2019). The former requires expert knowledge to partition the sequence into
different resolutions, while the latter learns the partition automatically from the data. Note that the
theoretical maximum length of the signal traversing path in both models is still O(L). Another line
of works aim to shorten the signal traversing path by adding residual connections (Kim et al., 2017)
or dilated connections to LSTMs (Chang et al., 2017). However, they do not consider the multires-
olution temporal dependencies explicitly. Furthermore, all aforementioned RNNs only propagate
information in one direction from the past to the future. An appealing approach that allows bidirec-
tional information exchange is Bi-LSTM (Schuster, 1996). The forward and backward propagation
is realized through two different LSTMs though, and so still incurs a long signal traversing path.
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As opposed to the abovementioned RNN-based models, the proposed Pyraformer enables bidirec-
tional information exchange that can better describe the temporal dependencies, while providing a
multiresolution representation of the observed sequence at the same time. We also notice that due
to the unidirectional property of RNNs, it is difficult the realize the pyramidal graph in Figure 1d
based on RNNs.

B PROOF OF LEMMA 1

Proof. Let S denote the number of scales in the pyramidal graph, C the number of children nodes
in the finer scale s − 1 that a node in the the coarser scale s can summarize for s = 2, · · · , S, A
the number of adjacent nodes that a node can attend to within each scale, N the number of attention
layers, and L the length of the input time series. We define the term “receptive field” of an arbitrary
node na in a graph as the set of nodes that na can receive messages from. We further define the
distance between two arbitrary nodes in a graph as the length of the shortest path between them
(i.e., the number of steps to travel from one node to another). Note that in each attention layer, the
messages can only travel by one step in the graph.

Without sacrificing generality, we assume that L is divisible by CS−1, and then the number of
nodes at the coarsest scale S is L/CS−1. Since every node is connected to A closest nodes at
the same scale, the distance between the leftmost and the rightmost node at the coarsest scale is
2(L/CS−1 − 1)/(A − 1). Hence, the leftmost and the rightmost node in the coarsest scale are in
the receptive field of each other after the stack of N ≥ 2(L/CS−1 − 1)/(A − 1) layers of the
pyramidal attention. In addition, owing to the CSCM, nodes at the coarsest scale can be regarded as
the summary of the nodes in the finer scales. As a result, when Equation (4) is satisfied, all nodes at
the coarsest scale have a global receptive field, which closes the proof.

C PROOF OF PROPOSITION 1

Proof. Suppose that L(s) denotes the number of nodes at scale s, that is,

L(s) =
L

Cs−1
, 1 ≤ s ≤ S. (6)

For a node n
(s)
ℓ in the pyramidal graph, the number of dot products P (s)

ℓ it acts as the query can be
decomposed into two parts:

P
(s)
ℓ = P

(s)
ℓ inter + P

(s)
ℓ intra, (7)

where P
(s)
ℓ intra and P

(s)
ℓ inter denotes the intra-scale and the inter-scale part respectively. According

to the structure of the pyramidal graph, we can have the following inequalities:

P
(s)
ℓ intra ≤ A, (8)

P
(s)
ℓ inter ≤ C + 1. (9)

The first inequality (8) holds since a node typically attends to A most adjacent nodes at the same
scale but for the leftmost and the rightmost node, the number of in-scale nodes it can attend to is
smaller than A. On the other hand, the second inequality (9) holds because a node typically has
C children and 1 parent in the pyramidal graph but nodes at the top and the bottom scale can only
attend to fewer than C + 1 nodes at adjacent scales.

In summary, the number of dot products that need to be calculated for scale s is:

P (s) =

L(s)∑
ℓ=1

(
P

(s)
ℓ intra + P

(s)
ℓ inter

)
≤ L(s)(A+ C + 1). (10)

Note that P (1) ≤ L(A + 1) for the finest scale (i.e., s = 1) since nodes at this scale do not have
any children. It follows that the number of dot products that need to be calculated for the entire
pyramidal attention layer is:

P =

S∑
s=1

P (s)
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≤ L(A+ 1) + L(2)(A+ C + 1) + ...+ L(S)(A+ C + 1)

= L(

S∑
s=1

C−(s−1)A+

S∑
s=2

C−(s−1) +

S−1∑
s=1

C−(s−1) + 1)

< L((A+ 2)

S∑
s=1

C−(s−1) + 1). (11)

In order to guarantee that the nodes at the coarsest scale have a global receptive field, we choose C
such that C ∝ S−1

√
L. Consequently, the complexity of the proposed pyramidal attention is:

O(P ) ≤ O(L((A+ 2)

S∑
s=1

C−(s−1) + 1))

= O(L(A+ 2)

S∑
s=1

C−(s−1))

= O(
(A+ 2)L

S
S−1 − 1

L
1

S−1 − 1
)

= O(
AL

S
S−1 − 1

L
1

S−1 − 1
). (12)

When L approaches infinity, the above expression amounts to O(AL). Since A can be fixed when
L changes, the complexity can be further reduced to O(L).

D PROOF OF PROPOSITION 2

Proof. Let n(s)
ℓ represent the ℓ-th node of the s-th scale. It is evident that the distance between n

(1)
1

and n
(1)
L is the largest among all pairs of nodes in the pyramidal graph. The shortest path to travel

from n
(1)
1 to n

(s)
L is:

n
(1)
1 → n

(2)
1 → · · · → n

(S)
1 → · · · → n

(S)

L(S) → n
(S−1)

L(S−1) → · · · → n
(1)
L . (13)

Correspondingly, the length of the maximum path between two arbitrary nodes in the graph is:

Lmax = 2(S − 1) +
2(L(S) − 1)

A− 1
. (14)

When C satisfies Equation (5), that is, L(S) − 1 ≤ (A− 1)N/2, we can obtain:

O(Lmax) = O
(
2(S − 1) +

2(L(S) − 1)

A− 1

)
= O

(
2(S − 1) +

2( L
CS−1 − 1)

A− 1

)
= O(2(S − 1) +N)

= O(S +N). (15)

Since A, S and N are invariant with L, the order of the maximum path length Lmax can be further
simplified as O(1).

E DATASETS

We demonstrated the advantages of the proposed Pyraformer on the following four datasets. The
first three datasets were used for single-step forecasting, while the last two for long-range multi-step
forecasting.
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Wind2: This dataset contains hourly estimation of the energy potential in 28 countries between
1986 and 2015 as a percentage of a power plant’s maximum output. Compared with the remaining
datasets, it is more sparse and periodically exhibits a large number of zeros. Due to the large size of
this dataset, the ratio between training and testing set was roughly 32:1.

App Flow: This dataset was collected at Ant Group3. It consists of hourly maximum traffic flow for
128 systems deployed on 16 logic data centers, resulting in 1083 different time series in total. The
length of each series is more than 4 months. Each time series was divided into two segments for
training and testing respectively, with a ratio of 32:1.

Electricity4 (Yu et al., 2016): This dataset contains time series of electricity consumption recorded
every 15 minutes from 370 users. Following DeepAR (Salinas et al., 2020), we aggregated every
4 records to get the hourly observations. This dataset was employed for both single-step and long-
range forecasting. We trained with data from 2011-01-01 to 2014-09-01 for single-step forecasting,
and from 2011-04-01 to 2014-04-01 for long-range forecasting.

ETT5 (Zhou et al., 2021): This dataset comprises 2 years of 2 electricity transformers collected
from 2 stations, including the oil temperature and 6 power load features. Observations every hour
(i.e., ETTh1) and every 15 minutes (i.e., ETTm1) are provided. This dataset is typically exploited
for model assessment on long-range forecasting. Here, we followed Informer (Zhou et al., 2021)
and partitioned the data into 12 and 4 months for training and testing respectively.

F EXPERIMENT SETUP

We set S = 4 and N = 4 for Pyraformer in all experiments. When the historical length L is not
divisible by C, we only introduced ⌊L/C⌋ nodes in the upper scale, where ⌊·⌋ denotes the round
down operation. The last L − (⌊L/C⌋ − 1)C nodes at the bottom scale were all connected to the
last node at the upper scale. For single-step forecasting, we set C = 4, A = 3, and H = 4 in
all experiments. Both training and testing used a fixed-size historical sequence to predict the mean
and variance of the Gaussian distribution of a single future value. We chose the MSE loss and the
log-likelihood (Zuo et al., 2020) as our loss functions. The ratio between them was set to 100. For
optimization, we used Adam with the learning rate starting from 10−5 and halving in every epoch.
We trained Pyraformer with 10 epochs. Weighted sampler based on each window’s average value
and hard sample mining were used to improve the generalization ability of the network. On the
other hand, for long-range forecasting, we tested four combinations of A and C in each experiment,
and the best results were presented. Specifically, when the prediction length is smaller than 600, we
tested A = 3, 5 and C = 4, 5. When the prediction length is larger than 600, we tested A = 3, 5
and C = 5, 6. The resulting choice of hyper-parameters for each experiment is listed in Table 5.
In addition, the loss function was the MSE loss only. We still used Adam as our optimizer, but the
learning rate started from 10−4 and was reduced to one-tenth every epoch. We set the number of
epochs to be 5.

G PRETRAINING

For single-step forecasting, the value to be predicted is usually close to the last value of history.
Since we only use the last nodes of all scales to predict, the network tends to focus only on short-
term dependencies. To force the network to capture long-range dependencies, we add additional
supervision in the first few epochs of training. Specifically, in the first epoch, we form our network
as an auto-encoder, as shown in Figure 5. Apart from predicting future values, the PAM is also

2Wind dataset can be downloaded at https://www.kaggle.com/sohier/30-years-of-european-wind-generation
3The App Flow dataset does not contain any Personal Identifiable Information and is desensi-

tized and encrypted. Adequate data protection was carried out during the experiment to prevent the
risk of data copy leakage, and the dataset was destroyed after the experiment. It is only used
for academic research, it does not represent any real business situation. The download link is
https://github.com/alipay/Pyraformer/tree/master/data/app zone rpc hour encrypted.csv

4Electricity dataset can be downloaded at https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20
112014

5ETT dataset can be downloaded at https:// github.com/zhouhaoyi/ETDataset
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Table 5: Hyper-parameter settings of long-range experiments.
Dataset prediction length N S H A C historical length

ETTh1
168 4 4 6 3 4 168

336 4 4 6 3 4 168

720 4 4 6 5 4 336

ETTm1
96 4 4 6 3 5 384

288 4 4 6 5 5 672

672 4 4 6 3 6 672

Elect
168 4 4 6 3 4 168

336 4 4 6 3 4 168

720 4 4 6 3 5 336

......

Figure 5: The pretraining strategy for one-step prediction. Features of nodes surrounded by the
dashed ellipses are concatenated to recover the corresponding input value.

trained to recover the input values. Note that we test all methods with and without this pretraining
strategy and the better results are displayed in Table 2.

H METRICS

Denote the target value as zj,t and the predicted value as ẑj,t, where j is the sample index and t is
the time index. Then NRMSE and ND are calculated as follows:

NRMSE =

√
1

NT

∑N
j=1

∑T
t=1(zj,t − ẑj,t)2

1
NT

∑N
j=1

∑T
t=1 |zj,t|

, (16)

ND =

∑N
j=1

∑T
t=1 |zj,t − ẑj,t|∑N

j=1

∑T
t=1 |zj,t|

. (17)

I EXPERIMENTS ON SYNTHETIC DATA

To further evaluate Pyraformer’s ability to capture different ranges of temporal dependencies, we
synthesized an hourly dataset with multi-range dependencies and carried out experiments on it.
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Specifically, each time series in the synthetic dataset is a linear combination of three sine functions
of different periods: 24, 168 and 720, that is,

f(t) = β0 + β1 sin(
2π

24
t) + β2 sin(

2π

168
t) + β3 sin(

2π

720
t). (18)

In the above equation, the coefficients of the three sine functions β1, β2, and β3 for each time
series are uniformly sampled from [5, 10]. β0 is a Gaussian process with a covariance function
Σt1,t2 = |t1 − t2|−1 and Σt1 = Σt2 = 1, where t1 and t2 denote two arbitrary time stamps. Such
polynomially decaying covariance functions are known to have long-range dependence, as oppose to
the exponentially decaying covariance functions (Yu et al., 2019). The start time of each time series
t0 is uniformly sampled from [0, 719]. We first generate 60 time series of length 14400, and then
split each time series into sliding windows of width 1440 with a stride of 24. In our experiments, we
use the historical 720 time points to predict the future 720 points. Since both the deterministic and
stochastic parts of the synthetic time series have long-range correlations, such dependencies should
be well captured in the model in order to yield accurate predictions of the next 720 points. The
results are summarized in Table 6. Here, we consider two different configurations of Pyraformer: 1)
C = 6 for all scales in the pyramidal graph (denoted as Pyraformer6,6,6); 2) C = 12, 7, and 4 for
the three layers sequentially from bottom to top (denoted as Pyraformer12,7,4).

Table 6: Long-range forecasting results on the synthetic dataset.
Method MSE MAE

Full attention 3.550 1.477

LogTrans 3.007 1.366

ETC 4.742 5.509

Informer 7.546 2.092

Longformer 2.032 1.116

Reformer 1.538 3.069

Pyraformer6,6,6 1.258 0.877

Pyraformer12,7,4 1.176 0.849

It can be observed that Pyraformer6,6,6 with the same C for all scales already outperforms the
benchmark methods by a large margin. In particular, the MSE given by Pyraformer is decreased by
18.2% compared with Reformer, which produces the smallest MSE among the existing variants of
Transformer. On the other hand, by exploiting the information of the known period, Pyraformer12,7,4
performs even better than Pyraformer6,6,6. Note that in Pyraformer12,7,4, nodes at scale 2, 3, and 4
characterizes coarser temporal resolutions respectively corresponding to half a day, half a week, and
half a month. We also tested Pyraformer24,7,4, but setting C = 24 in the second scale degrades the
performance, probably because the convolution layer with a kernel size of 24 is difficult to train.

We further visualized the forecasting results produced by Pyraformer12,7,4 in Figure 6. The blue
solid curve and red dashed curve denote the true and predicted time series respectively. By capturing
the temporal dependencies with different ranges, the prediction resulting from Pyraformer closely
follows the ground truth.

On the other hand, to check whether Pyraformer can extract features with different temporal resolu-
tions, we depicted the extracted features in a randomly selected channel across time at each scale in
the pyramidal graph in Figure 7. It is apparent that the features at the coarser scales can be regarded
as a lower resolution version of the features at the finer scales.

J ABLATION STUDY

J.1 IMPACT OF A AND C

We studied the impact of A and C on the performance of Pyraformer for long-range time series
forecasting, and showed the results in Table 7. Here, we focus on the dataset ETTh1. The history
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Figure 6: Visualization of prediction results on the synthetic dataset.
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Figure 7: Visualization of the extracted features across time in second channel at different scales:
(a) scale 1; (b) scale 2; (c) scale 3.

length is 336 and the prediction length is 720. From Table 7, we can conclude that the receptive fields
of the nodes at the coarsest scale in the PAM play an indispensable role in reducing the prediction
error of Pyraformer. For instance, there are 42 nodes at the coarsest scale when C = 2. Without the
intra-scale connections, each node can only receive messages from 16 nodes at the finest scale. As
the number of adjacent connections A in each scale increases, the receptive fields of the coarsest-
scale nodes also extend, and therefore, the prediction error decreases accordingly. However, as long
as the nodes at the top scale have a global receptive field, further increasing A will not bring large
gains. For C = 5, the performance does not improve even though A increases. Such observations
indicate that it is better to set A to be small once the uppermost nodes in the PAM have a global
receptive field. In practice, we only increase C with the increase of L, but keep A small.

J.2 IMPACT OF THE CSCM ARCHITECTURE

In addition to convolution, there exist other mechanisms for constructing the C-ary tree, such as
max pooling and average pooling. We studied the impact of different CSCM architectures on the
performance for long-range forecasting on dataset ETTh1. The history and the prediction length
are both 168 and C = 4 for all mechanisms. The results are listed in Table 8. From Table 8, we
can tell that: (1) Using pooling layers instead of convolution typically degrades the performance.
However, the performance of Pyraformer based on max pooling is still superior to that of Informer,
demonstrating the advantages of the PAM over the prob-sparse attention in Informer. (2) The MSE
of convolution with the bottleneck is only 1.51% larger than that without bottleneck, but the number
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Table 7: Impact of A and C on long-range forecasting. The history length is 336.
A = 3 A = 9 A = 13

MSE MAE Q-K pairs MSE MAE Q-K pairs MSE MAE Q-K pairs

C = 2 1.035 0.811 73512 1.029 0.815 162648 1.003 0.807 221112

C = 3 1.029 0.817 58992 1.009 0.798 128976 1.056 0.805 174672

C = 4 1.001 0.802 53208 1.028 0.806 115848 1.027 0.804 156696

C = 5 0.999 0.796 49992 1.005 0.796 108744 1.017 0.797 147192

Table 8: Impact of the CSCM architecture on long-range
forecasting. Parameters introduced by the normalization
layers are relatively few, and thus, are ignored.

CSCM MSE MAE Parameters
Max-pooling 0.842 0.700 0

Average-pooling 0.833 0.693 0

Conv. 0.796 0.679 3147264

Conv. w/bottleneck 0.808 0.683 328704

Table 9: Impact of history length.
The prediction length is 1344.

History Length MSE MAE
84 1.234 0.856

168 1.226 0.868

336 1.108 0.835

672 1.057 0.806

1344 1.062 0.806

Table 10: Impact of the PAM.

Method Metrics 96 288 672

CSCM Only
MSE 0.576 0.782 0.883

MAE 0.544 0.683 0.752

Pyraformer
MSE 0.480 0.754 0.857
MAE 0.486 0.659 0.707

of parameters is reduced by almost 90%. Thus, we adopt the more compact module of convolution
with bottleneck as our CSCM.

J.3 IMPACT OF THE HISTORY LENGTH

We also checked the influence of the history length on the prediction accuracy. The dataset is
ETTm1, since its granularity is minute and contains more long-range dependencies. We fixed the
prediction length to 1344 and changed the history length from 84 to 1344 in Table 9. As expected,
a longer history typically improves prediction accuracy. On the other hand, this performance gain
starts to level off when introducing more history stops providing new information. As shown in
Figure 8, the time series with length 672 contains almost all periodicity information that is essential
for prediction, while length 1344 introduces more noise.

J.4 IMPACT OF THE PAM

Finally, we investigated the importance of the PAM. We compared the performance of Pyraformer
with and without the PAM on the dataset ETTm1. For a fair comparison, the number of parameters
of the two methods were controlled to be within the same order of magnitude. More precisely, we
increased the bottleneck dimension of ”Conv. w/bottleneck” for the model only with the CSCM.
The results are shown in Table 10. Obviously, the PAM is vital to yield accurate predictions.

K DISCUSSION ON THE SELECTION OF HYPER-PARAMETERS

We recommend to first determine the number of attention layers N based on the available computing
resources, as this number is directly related to the model size. Next, the number of scales S can be
determined by the granularity of the time series. For example, for hourly observations, we typically
assume that it may also have daily, weekly and monthly periods. Therefore, we can set S to be 4.
We then focus on the selection of A and C. According to the ablation study, we typically prefer a
small A, such as 3 and 5. Lastly, in order to ensure the network has a receptive field of L, we can
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Figure 8: Time series with different lengths in the ETTm1 dataset. The sequence length in (a) and
(b) is 672, and that in (c) and (d) is 1344. The time series in (a) and (b) corresponds to the latter half
of those in (c) and (d) respectively.

select a C that satisfies Equation (5). In practice, we can use a validation set to choose C from its
candidates that satisfies (5). It is also worthwhile to check whether choosing different C for different
scales based on the granularity of the time series can further improve the performance as we did in
Appendix I.

20


	Introduction
	Related Works
	Time Series Forecasting
	Sparse Transformers
	Hierarchical Transformers

	Method
	Pyramidal Attention Module (PAM)
	Coarser-scale Construction Module (CSCM)
	Prediction Module

	Experiments
	Datasets and Experiment Setup
	Results and Analysis
	Single-step Forecasting
	Long-range Multi-step Forecasting
	Speed and Memory Consumption

	Ablation Study

	Conclusion and Outlook
	A Brief Review on Related RNN-based Models
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Datasets
	Experiment Setup
	Pretraining
	Metrics
	Experiments on Synthetic Data
	Ablation Study
	Impact of A and C
	Impact of the CSCM architecture
	Impact of the history length
	Impact of the PAM

	Discussion on the selection of hyper-parameters

