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ABSTRACT

Text-prompted foundation models for medical image segmentation offer an intu-
itive way to delineate anatomical structures from natural language queries, but
their predictions often lack spatial precision and degrade under domain shift.
In contrast, visual-prompted models achieve strong segmentation performance
across diverse modalities by leveraging spatial cues of precise bounding-box
(bbox) prompts to guide the segmentation of target lesions. However, it is costly
and challenging to obtain the precise visual prompts in clinical practice. We pro-
pose PPBoost (Progressive Prompt-Boosting), a framework that bridges these lim-
itations by transforming weak text-derived signals into strong, spatially grounded
visual prompts, operating under a strict zero-shot regime with no image- or pixel-
level segmentation labels. PPBoost first uses a vision-language model to produce
initial pseudo-bboxes conditioned on the textual object descriptions and applies
an uncertainty-aware criterion to filter unreliable predictions. The retained image-
bboxes pairs are then leveraged to train a pseudo-labeled detector, producing the
high-quality bboxes for the query images. During inference, PPBoost further
refines the generated bboxes by appropriately expanding them to tightly cover
the target anatomical structures. The enhanced spatially-grounding bbox prompts
guide existing segmentation models to generate final dense masks, effectively am-
plifying weak text cues into strong spatial guidance. Across three datasets span-
ning diverse modalities and anatomies, PPBoost consistently improves Dice and
Normalized Surface Distance over text- and visual-prompted baselines and, no-
tably, surpasses few-shot segmentation models without using labeled data. PP-
Boost can generalize to multiple typical visual segmentation model backbones.
The anonymous code implementation is in: https://anonymous.4open.
science/r/submission-code-E2BB/.

1 INTRODUCTION

Medical image segmentation assigns a semantic label to every pixel, yielding a dense mask that
delineates anatomical structures and underpins diagnostic assessment Azad et al. (2024). Although
supervised deep learning accompanied with image–mask pairs attains state-of-the-art accuracy, ob-
taining precise pixel-level annotations is costly and labor-intensive, especially in clinical settings
that require expert knowledge Wang et al. (2022a). Weakly supervised segmentation Shen et al.
(2023); Chen et al. (2022) has been explored to relax the need for dense mask annotations, which
learns from coarse supervision such as image-level labels that can be collected at scale without
pixel-wise tracing. Typically, these methods train an image-level classifier with global labels and
apply class activation mapping (CAM) to derive class-specific saliency maps, which are then refined
into pseudo masks for segmentation training. Despite their progress, this image-level supervision
paradigm often captures only the most discriminative regions rather than the full anatomical struc-
tures. In addition, it is engineered for a single task or dataset, limiting their applicability across
diverse medical imaging modalities.

Recent advances in large-scale foundation models (FMs) Kirillov et al. (2023); Lee et al. (2024);
Zhao et al. (2025) offer a principled path to address these limitations by enabling promptable, gen-
eralizable, zero- or few-shot segmentation. Emerging FMs in medical image segmentation gener-
ally follow one of two prompting paradigms. Visual-prompted models rely on spatial cues (e.g.,
points, boxes) to generate the dense mask and have shown strong open-set generalization; no-
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tably, MedSAM Ma et al. (2024) adapts Segment Anything Model (SAM) Kirillov et al. (2023)
to medical imaging and deliver delivers powerful zero-shot segmentation performance with broad
cross-scenarios robustness. Text-prompted models aim to segment directly from natural-language
descriptions, providing a more intuitive and annotation-efficient interface. CLIP-based models
such as BiomedCLIP Zhang et al. (2023b) and MedCLIP Wang et al. (2022b) have established vi-
sion–language priors and proven effective in biomedical retrieval, classification, and visual question
answering. Extending this line, BiomedParse Zhao et al. (2025) enables text-conditioned segmen-
tation by generating dense spatial confidence maps directly from prompts without relying on CAM
and provides a natural bridge between text supervision and spatial delineation.

However, vanilla visual- or text-only prompting methods remains inadequate for the reliable medical
image segmentation. First, visual-prompted models typically assume a precise spatial hint such as
a bounding box (bbox) or a set of points tightly enclosing the target. While obtaining such prompts
per case is costly, the small misplacements can cascade into large boundary errors. Second, the
text-prompted approaches inherit CLIP’s focus on global image–text alignment rather than dense
localization. As illustrated in Fig. 2, such global alignment lead to weak spatial grounding, yield-
ing coarse confidence maps (e.g., undersize, oversize, or even irrelevant segmentation results) for
small or low-contrast lesions. These limitations are amplified under domain shift among different
scanners, producing noisy masks and degraded performance in out-of-distribution (OOD) settings.
These observations motivate us to propose following research question:

How can we bridge the gap between spatially precise but costly visual prompts and intuitive yet
weakly localized text prompts to achieve reliable, clinically intuitive medical image segmentation?

To address these challenges, we introduce PPBoost, a Progressive Prompt-Boosting framework that
converts weak text-derived signals into strong, spatially grounded visual prompts, enabling reliable
medical image segmentation. Specifically, PPBoost converts textual object descriptions into robust
bbox prompts through two successive stages. At training phase, as illustrated in Fig. 1, we exploit
a vision–language model (VLM) to derive initial pseudo-bbox conditioned on the textual prompt
of each training image. To improve reliability, we filter uncertain cases accompanied with high-
variance pseudo-bbox predictions and then leverage the retained image-bbox data pairs to train an
object detector, producing high-quality bbox-level supervision at scale. At inference stage, we adopt
the trained detector to obtain pseudo-bboxes and propose bbox expansion procedure to further refine
the spatial prompts, which are forwarded into a visual-prompted segmenter to generate the final
dense masks. PPBoost yields reliable, use-intuitive segmentation from text-only supervision that
can be readily provided by healthcare professionals. The main contributions are summarized below.

• We propose PPBoost, a weak-to-strong prompt transformation framework that converts coarse
textual cues into precise, spatial visual prompts to guide medical image segmentation. PPBoost
operates in a strict yet practical zero-shot regime: neither image-level nor pixel-level annotations
are used to train the prompt generator or the segmentation model.

• We introduce a class of weak-to-strong prompt transformations that bridge textual cues to bbox-
level prompts, including uncertainty-aware pseudo-bbox predictions with VLM, a detector trained
on high-confidence image–bbox pairs for reliable supervision, and inference-time bbox refinement
to ensure tight yet complete coverage of regions of interest.

• We validate our method on three challenging medical datasets spanning different imaging modal-
ities and anatomical structures. Compared with the state-of-the-art of text- and visual-prompted
segmentation counterparts, PPBoost consistently achieves superior performance, delivering aver-
age improvements of 6.69% and 7.32% in terms of mean Dice Similarity Coefficient and Normal-
ized Surface Distance, respectively. Notably, PPBoost without reliance on labeled data outper-
forms the few-shot segmentation models. In addition, the visual prompts refined from PPBoost
generalize well over typical medical segmentation models to accurately localize the target objects.

2 PPBOOST: TEXT-DRIVEN MEDICAL IMAGE SEGMENTATION

We start by introducing a restricted target-aware text-driven medical image segmentation task de-
signed to reflect real clinical scenarios. To address this task, we propose PPBoost, a weak-to-strong
segmentation pipeline to convert the textual descriptions of target anatomical structures to visual
bounding boxes and finally to dense segmentation masks.
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2.1 PRELIMINARIES OF SEGMENTATION AND FOUNDATION MODELS

Task definition. Given a medical image dataset with target anatomical structures (e.g.,tumor or
organ) I = {I1, I2, . . . , IN}, we consider a challenging but clinically relevant problem of zero-shot
segmentation. In this setting, only a simple cue—such as a text description of an organ or a coarse
spatial prompt—is provided to generate dense mask predictions. Among these cues, text queries
are the most accessible in practice, but directly converting global text descriptions into dense masks
remains extremely difficult and often results in weak spatial grounding.

Text-prompted vision-language models. Text-prompted VLMs aim to align medical images with
natural language queries, enabling semantic concepts in text to be localized in image regions. A
typical architecture consists of an image encoder, a text encoder, and a joint embedding space where
the modalities are aligned via contrastive learning or cross-modal attention. Once trained, such
models can localize regions of interest from simple text prompts. We build upon BiomedParse Zhao
et al. (2025) to generate spatial confidence maps from text queries and retrieve the interested regions.

Visual-prompted segmentation models. An alternative paradigm is to guide segmentation with
spatial prompts, such as points, bounding boxes, or regions of interest. Without loss of generaliza-
tion, we leverage MedSAM Ma et al. (2024) as backbone model comprising an image encoder for
dense features, a prompt encoder for spatial cues, and a mask decoder to fuse the two. The designed
prompt boosting pipeline can adapt to other segmentation models as validated in Table 5.

Motivation for PPBoost. Taken together, text-prompted methods are easily accessible but weak in
spatial grounding, whereas visual-prompted methods achieve strong segmentation but rely on costly
annotations of precise bboxes. Their complementary strengths motivate our framework PPBoost,
which consists of two successive stages: (i) a training pipeline that transforms textual inputs into
pseudo-bboxes, and (ii) an inference pipeline that refines these bboxes informed by textual cues into
high-quality spatial prompts for visual-prompted segmenters, yielding reliable dense masks.

2.2 TRAINING: PPBOOST FOR TEXT-DRIVEN PSEUDO-BBOX INDUCTION

As shown in Fig. 1, PPBoost first builds up a training pipeline to learn and strengthen correlations
between text-informed medical images and pseudo-bboxes of target organs or lesions. This pipeline
leverages a VLM to generate initial confidence maps used to extract pseudo-bboxes for each training
image. Then, the uncertainty-aware filtering mechanism is proposed to aggregate confidence map
predictions across model temperatures and filter out highly variant samples for fine-grained quality
control. The retained samples are used to extract pseudo-bboxes of the target lesion, which serve as
the upgraded labels to derive a lightweight detector, transforming global text prompts into bbox-level
supervision. The implementation details are described below.

Confidence map extraction for text-image consistency. Considering a segmenting target (e.g.,
tumor, liver) of image dataset I = {I1, . . . , IN}, Ii ∈ RH×W×d, we use a high-performing
commercial LLM (e.g., GPT–4 Achiam et al. (2023)) to generate K sentence-level prompts
T = {T1, . . . , TK} describing images that contain the target segmented objects. We randomly
assign prompts to images to form pairs D = {(Ii, Ti)}Ni=1. For each pair (Ii, Ti), we evenly split
Ii into an PH × PW grid of non-overlapping patches and let Ω = {1, . . . , PH × PW } index these
patches (so j ∈ Ω denotes a patch index). The VLM with encoders Φimg and Φtxt yields patch fea-
tures Fi = Φimg(Ii) ∈ RPH×PW×d and a text embedding ti = Φtxt(Ti) ∈ Rd. Let fi,j ∈ Rd denote
feature embedding of patch j, i.e., the j-th patch vector from Fi. We compute cosine-similarity
logit between the text embedding and each patch feature as: si,j = ⟨fi,j , ti⟩/(∥fi,j∥2∥ti∥2), j =
1, · · · , PH × PW . We then apply a spatial softmax over patches with temperature τ > 0:
S̃i(j) = exp

(
si,j/τ

)/∑
j′ exp

(
si,j′/τ

)
, where a smaller τ yields sharper maps. The normalized

cosine-similarity logits are organized into a spatial confidence map Si ∈ RPH×PW for subsequent
bbox extraction, where each element indicates the possibility of a patch corresponding to the target
segmentation lesion described in textual prompt.

Uncertainty-aware confidence map filtering to select pseudo-bbox. In practice, we observe that
the frozen VLM yields confidence maps of varying quality: “easy” cases are sharp and well local-
ized, whereas harder cases can be noisy or diffuse. Using all maps to extract pseudo-bboxes and
train following bbox detector thus injects noise. We apply temperature scaling Lakshminarayanan
et al. (2017); Minderer et al. (2021) to the cosine-similarity logits si,j and form two spatial softmax
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Figure 1: The pipeline of PPBoost. During training, we use VLM to obtain confidence maps and
initial bboxes of text-prompted medical images and design filtering module to discard high-variance
samples. The preserved images and bboxes are used to train a detector, producing reliable bboxes.
During inference, we adopt the detector to regularize bboxes of text-prompted images and selectively
expand them to obtain visual prompts, guiding segmentation model to predict masks.

maps over all patches j′ ∈ Ω:

S̃i,low(j) =
exp

(
si,j/τlow

)∑
j′∈Ω exp

(
si,j′/τlow

) , S̃i,high(j) =
exp

(
si,j/τhigh

)∑
j′∈Ω exp

(
si,j′/τhigh

) ,
with τlow < 1 (sharper, high contrast) and τhigh ≥ 1 (smoother, lower contrast). A prediction is
deemed reliable if it remains stable under this perturbation.

In practice, we retain cases with high agreement between Si,low and Si,high and discard the
rest. Their discrepancy can be quantified by the KL divergence: DKL(Si,low∥Si,high) =∑

j∈Ω S̃i,low(j) log
(
S̃i,low(j)/S̃i,high(j)

)
. Intuitively, a small value indicates stable, trustworthy

predictions; a large value indicates instability. To implement hard filtering, we select a empirical
threshold τKL and keep samples with DKL ≤ τKL, filtering out the rest. For the retained samples,
we use the smoother map S̃i,high to extract the pseudo-bboxs. Specifically, each S̃i,high ∈ RPH×PW

is firstly upsampled to the original image resolution (H×W ), then binarized into a foreground mask
by applying a fixed threshold σ (e.g. σ=0.5). From this binary mask, we extract the minimum en-
closing rectangle that covers all activated foreground pixels as the pseudo-bbox B̄i. Consequently, a
partially pseudo-labeled dataset is formed: D̄ = {(Ī1, B̄1), . . . , (ĪM , B̄M ), ĪM+1, . . . , ĪN}, where
{(Īi, B̄i)}Mi=1 are the reliable image–box pairs and {ĪM+1, . . . , ĪN} are unlabeled images.

Bbox detector training in a teacher-student framework. Since the derived dataset D̄ is only
partially labeled, we adopt a classic semi-supervised learning paradigm, teacher–student frame-
work Yang et al. (2022), to make full use of the supervision from both labeled and unlabeled sam-
ples, thereby deriving a stronger bbox detector. The bbox detector ingests the text-prompted images,
regularizing the VLM-derived localizations and producing reliable bboxes for subsequent segmen-
tation inference. In this framework, we first optimize the student parameters θs on the labeled subset
under full supervision to initialize a stable teacher. During semi-supervised training, the student is
optimized on (i) labeled data with a standard detection loss Lsup (classification + bbox regression),
and (ii) unlabeled data via consistency to teacher pseudo-labels. Concretely, the teacher predicts
bboxes on weak augmentations and we retain only high-confidence predictions as pseudo-labels;
the student then predicts on the corresponding strong augmentations and is trained to match these
pseudo-labels, yielding Lunsup. The student is updated by backpropagation on Lsup + λLunsup,
while the teacher is updated solely by exponential moving average (EMA) Haynes et al. (2012): at
iteration k, the parameters of the teacher model are calculated as θ

(k)
t = α θ

(k−1)
t + (1 − α) θ

(k)
s

with decay factor α ∈ (0, 1).

2.3 INFERENCE: PPBOOST FOR BBOX REFINEMENT AND MASK GENERATION

After training the bbox detector, PPBoost uses it to infer the pseudo-bboxes for text-prompted med-
ical images (Fig. 1). To further enhance prompt quality, we apply a simple yet effective refinement
step that selectively expands the predicted boxes to ensure tight yet complete coverage of the target
region. The refined boxes are then used as visual prompts for a segmentation model, which produces
the final dense masks.
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Selective expansion of bboxes. Since the detector is trained on pseudo-bboxes generated by a text-
driven model rather than ground-truth annotations, it inevitably learns from noisy supervision and,
as a result, produces noisy bboxes at inference. According to their relative position with respect to
the ground-truth boxes, we categorize these pseudo-bboxes into four types, as illustrated in Fig. 2:
(1) high-quality boxes that tightly cover most of the target region; (2) undersized boxes that miss
part of the target and suffer from discriminative region issues; (3) oversized boxes that include the
target with a large surrounding margin; and (4) irrelevant boxes that are far from the target.

(a) High-Quality (b) Undersized (c) Oversized (d) Irrelevant

Figure 2: Visualizations of different types of pseudo-bboxes on the BraTS 2021 dataset.

Empirically, undersized boxes dominate the detector’s outputs owing to our uncertainty-aware fil-
tering and selective retention of high-confidence pseudo-bboxes that favors precision over recall.
This observation suggests a simple refinement strategy: expanding undersized pseudo-bboxes so
they cover more of the target region, while leaving other bboxes unchanged. The challenge lies in
the fact that we cannot directly identify whether a predicted bbox is undersized or other types with-
out comparing against ground-truth labels. This motivates the following question: “If we expand
both undersized bboxes and others by a small factor, would the benefit from correcting undersized
boxes outweigh the potential degradation from perturbing high-quality ones?” To investigate this,
we conduct controlled experiments where the undersized boxes are simulated by shrinking the se-
lected high-quality bboxes by 10%, 15%, and 20%. Similarly, we simulate the oversized boxes by
expanding them by the same ratios in independent trials. Results, shown in the Appendix A, reveal
that expanding the undersized boxes significantly improves segmentation accuracy, while expand-
ing other types of bboxes causes little to no degradation in visual-prompted segmentation models.
This is because the expansion size is modest and visual-prompted segmenters tolerate slight over-
coverage, expanding non-undersized boxes has negligible adverse effect.

Based on these findings, we design a selective expansion strategy. For a test image Ii with detector
output B̂i = (xi, yi, wi, hi, si), where (xi, yi) denote the top-left corner, (wi, hi) the width and
height, and si the confidence score, we selectively refine the predicted bboxes. While bboxes with
higher detection confidence scores (si > φ) are more likely to be high-quality and are therefore kept
unchanged, boxes with lower confidence scores are expanded outward by a fixed ratio r. Formally:

(x′
i, y

′
i, w

′
i, h

′
i) =

{
(xi, yi, wi, hi), si > φ,

(xi − r
2wi, yi − r

2hi, (1 + r)wi, (1 + r)hi), si ≤ φ.

Visually prompted image-to-mask. Building on the expanded prompt, we adopt a general visually
prompted segmentation model with an image encoder Eimg, a prompt encoder Eprm, and a mask de-
coder Dmask. Given Ii and B̂′

i, we compute image features zi = Eimg(Ii) and a prompt embedding
pi = Eprm(B̂

′
i). The decoder outputs mask logits ℓi = Dmask(zi, pi) ∈ RH×W . Conditioned on the

mask logits, we obtain the probability map P̂i = σ(ℓi) ∈ [0, 1]H×W and then binarize at a standard
segmentation threshold τseg = 0.5 to produce the final mask prediction Mi = 1{σ(ℓi) > τseg},
thereby completing the image-to-mask generation pipeline.

3 EXPERIMENTS

Datasets. We conduct a comprehensive evaluation of the proposed PPBoost pipeline on three bench-
mark medical image datasets, including the BraTS 2021 Baid et al. (2021), LiTS 2017 Bilic et al.
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Table 1: Performance comparison on medical image segmentation. Our method, PPBoost, is com-
pared against baselines across several text-driven and visual-driven methods. We report mDSC and
mNSD in percentages (%). The best performance in each column is highlighted in bold.

Setting Methods BraTS21 LiTS17 KidneySeg Average

mDSC mNSD mDSC mNSD mDSC mNSD mDSC mNSD

Visual-driven

UniverSeg (5 shots) 30.62 37.67 60.66 63.90 78.93 83.40 56.74 61.66
FFSP-SAM (5 shots) 16.04 19.20 53.60 55.41 59.99 64.75 43.21 46.45
UniverSeg (10 shots) 45.22 54.03 63.84 66.87 85.65 89.59 64.90 70.16
FFSP-SAM (10 shots) 15.30 18.43 57.67 59.65 64.79 70.04 45.92 49.37
SAMAug 18.48 21.42 24.26 25.15 31.88 33.56 24.87 26.71

Text-driven
SaLiP 20.43 23.85 39.82 41.15 13.81 15.13 24.69 26.71
nnU-Net 59.60 68.52 60.67 62.58 84.60 87.89 68.29 72.30
MedCLIPSAMv2 35.90 41.13 15.92 17.16 6.15 7.41 19.32 21.9

Text-to-visual PPBoost 60.71 69.31 74.10 76.32 90.14 93.24 74.98 79.62

(2023), and CT2USforKidneySeg Song et al. (2022). For brevity, we refer to them as BraTS21,
LiTS17, and KidneySeg in the following. The dataset details are listed in Appendix A.1.

Implementation details. 1) training stage: We employ a recently released radiology-specialized
model, Biomedparse, as the text-prompted model backbone to generate pseudo-bboxes in our
pipeline. We then use GPT-4 to generate a prompt pool containing 20 text phrases about the tar-
get anatomical structure for each dataset, where each image is paired with a randomly selected text
prompt. In the confidence map filtering, two temperatures are adopted: τlow = 0.1, and τhigh = 1.
We set the filtering threshold to retain the bottom 30% of samples ranked by KL-divergence and use
a standard threshold 0.5 to convert those reliable confidence maps into pseudo-bbox labels. In the
detector training, we adopt the unbiased teacher framework based on the Faster R-CNN backbone
and randomly select 10% of the extracted pseudo-bboxes as labels to avoid overfitting. The detec-
tor training is performed with size of 32 labeled and 32 unlabeled images per batch, using a base
learning rate of 0.004 and a maximum of 10000 iterations. The EMA decay rate for teacher up-
dates is set to 0.9996. We use a burn-in phase of 800 iterations before unsupervised learning begins,
and weight the unsupervised consistency loss by 1.5. Non-maximum suppression (NMS) is applied
with an IoU threshold of 0.7 to remove duplicate detections. The mean Average Precision (mAP),
mAP50 and mAP75 are used for evaluating the detection performance. 2) inference stage: We set
the bbox score threshold in selective expansion to the median confidence across the inference set.
For the downstream segmentation stage, we use the MedSAM as the visual-prompted segmentor in
our pipeline. The mean Dice Similarity Coefficient (mDSC) and mean Normalized Surface Dice
(mNSD) are used as metrics to provide a comprehensive comparison with other baseline methods.
All experiments are conducted on NVIDIA L40s GPUs.

3.1 COMPARISON WITH THE BASELINES

We compare our proposed PPBoost with its segmentation counterparts in different settings, in-
cluding visual-driven and text-driven segmentation methods. The visual-driven counterparts in-
clude ground-truth point prompt method of SAMAug Dai et al. (2023), few-shot ground-truth mask
prompt methods of UniverSeg Butoi et al. (2023), and Few-shot Self-Prompt SAM (FFSP-SAM)
Wu et al. (2023). For text-driven counterparts, we present the CLIP-based text to bbox prompt
generation methods: SaLIP Aleem et al. (2024) and MedCLIP-SAMv2 Koleilat et al. (2025). In
addition, we construct a nnU-Net Isensee et al. (2021) baseline by training the nnU-Net segmenter
in a fully supervised manner on the raw mask outputs produced by the BiomedParse.

Observation (Obs.) 1: As shown in Table 1, our proposed PPBoost consistently outperforms
both visual-driven and text-driven methods. Compared to the best visual-driven baseline, Uni-
verSeg trained with 10 shots of ground-truth masks, PPBoost achieves average gains of +10.08%
mDSC and +9.46% mNSD across the three datasets, while requiring no spatial annotations or in-
puts. For text-driven methods, the previous state-of-the-art MedCLIP-SAMv2 generalizes poorly on
all the datasets, whereas PPBoost demonstrates robust performance. Notably, nnU-Net segmenter
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Figure 3: Visualization of the segmentation results on BraTS21, LiTS17 and KidneySeg datasets.

is trained directly on pseudo masks. In contrast, PPBoost learns solely from filtered pseudo-bboxes
to train the detector and uses the visual prompt to inform fixed MedSAM generating masks at infer-
ence. Despite this weaker supervision, PPBoost surpasses nnU-Net on all the datasets—by +1.11%
mDSC / +0.79% mNSD on BraTS21, +13.43% / +13.74% on LiTS17, and +5.54% / +5.35% on
KidneySeg—highlighting the effectiveness of our progressive prompt design in converting noisy
textual cues into reliable visual bboxes while reducing training cost. Fig. 3 shows visual examples
of segmentation results produced by different methods on the three datasets.

Table 2: Bbox detection accuracy performance
of PPBoost in percentage.

Dataset mAP AP50 AP75

BraTS21 32.84 66.30 28.56
LiTS17 55.63 75.42 64.86
KidneySeg 52.70 91.49 50.89

We further investigate the relationship between
detection quality and segmentation performance
of PPBoost. The bbox detection performance
is listed in Table 2, reporting mAP, AP50, and
AP75 scores. In particular, KidneySeg achieves
the highest AP50 and thus the strongest relative
segmentation performance, whereas BraTS21 ex-
hibits the lowest AP50 and the weakest relative
segmentation. Obs.2: These results demon-
strate that segmentation performance in PPBoost is tightly coupled with detection quality.
Specifically, AP50 serves as the most reliable indicator of downstream performance compared to
stricter metrics such as mAP and AP75. This is because reliable coarse localization quality is more
critical for MedSAM prompting than fine-grained bounding box tightness.

3.2 GENERALIZATION AND ROBUSTNESS OVER DIFFERENT CONFIGURATIONS

To evaluate the proposed pipeline’s generalization and robustness capabilities, we test PPBoost with
diverse detector backbones, visual-prompted foundation models, and model hyperparameters.

Table 3: Segmentation performance (mDSC, %) of different
SSOD backbones within the PPBoost pipeline.

Backbone BraTS21 LiTS17 KidneySeg Avg.

Unbiased Teacher 60.71 74.10 90.14 74.98
Semi-DETR 58.45 72.89 90.05 73.80
Soft Teacher 61.13 78.73 90.63 76.83

Semi-supervised detector back-
bones. We employ Unbiased Teacher
as the default bbox detector, as it
provides a strong and stable Semi
Supervised Object Detector (SSOD)
baseline while maintaining training
efficiency. To evaluate the robustness
of our framework with respect to this
choice, we incorporate two alternative
SSOD methods: Soft Teacher Xu et al. (2021) and Semi-DETR Zhang et al. (2023a). Table 4 reports
the detection accuracy of the three backbones. From the detection perspective, their detection
performance varies under different metrics. Semi-DETR achieves the highest overall mAP on
LiTS17 and KidneySeg, while Soft Teacher produces the strongest AP50 values on all the datasets.
From the segmentation perspective, as shown in Table 3, Soft Teacher delivers the best Dice
performance across all datasets. This aligns with our earlier observation that segmentation quality
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Table 4: Comparison of different SSOD backbones within the PPBoost pipeline across three
datasets. We report detection performance in terms of mAP, AP50, and AP75 (%).

Backbone BraTS21 LiTS17 KidneySeg

mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

Unbiased Teacher 32.8 66.3 28.6 55.6 75.4 64.9 52.7 91.5 50.9
Soft Teacher 36.2 66.3 35.6 58.5 79.2 66.5 58.0 94.6 67.1
Semi-DETR 31.6 59.0 29.9 63.6 76.0 67.7 58.7 89.5 60.9

Table 5: Segmentation result (mDSC%) across various visual prompt models. ”Direct” refers to
using the pseudo-bboxes to directly prompt segmentation models without detector training.

Segmentor BraTS21 LiTS17 KidneySeg

Direct PPBoost Direct PPBoost Direct PPBoost

SAM 50.92 57.15 58.70 73.25 74.24 81.88
SAM-Med2D 39.22 44.76 49.22 61.09 68.47 73.92
MedSAM 48.05 60.71 60.78 74.10 82.93 90.14

correlates most consistently with AP50. Obs.3: Overall, these results demonstrate that PPBoost
is detector-agnostic, as it maintains strong performance across different SSOD backbones.

Visual-prompted foundation models. While MedSAM is adopted as the default visual-prompted
segmentation models, we also replace it with SAM Kirillov et al. (2023) and SAM-Med2D Cheng
et al. (2023b). For each model, we evaluate the final segmentation results in two different settings:
(i) directly using the pseudo-bboxes produced by BiomedParse as prompts, and (ii) using the refined
bbox prompts generated by the PPBoost pipeline. Obs.4: As illustrated in Table 5, across all three
visual-prompted models, the PPBoost-generated bbox prompts consistently yield significantly
better segmentation results than directly using raw pseudo-bboxes. This phenomenon indicates
that our framework does not rely on a specific visual-prompted segmentation model. Instead, the
refined bbox prompts produced by PPBoost provide a general advantage, serving as a stronger and
more reliable input to different foundation models.

KL divergence threshold in confidence map filtering. We further examine the robust-
ness of PPBoost with respect to the KL-divergence filtering threshold. The pseudo-bboxes
used to train detector are extracted from a filtered subset of confidence maps, which can
be obtained retaining samples at different thresholds. We use the bottom 15%, 30% (de-
fault), or 50% of samples ranked by KL-divergence to test robustness of PPBoost. Ta-
ble 6 reports the segmentation performance across BraTS, KidneySeg, and LiTS datasets.

Table 6: Segmentation results (mDSC, %) under
different KL-divergence filtering thresholds.

Threshold BraTS Kidney LiTS Avg.

50% 59.14 87.32 76.68 74.38
15% 58.88 89.00 67.72 71.87
30% (default) 60.71 90.14 74.10 74.98

Obs.5: The results reveal that a moderate
threshold is crucial. Overly strict filtering
(e.g., 15%) yields higher-quality pseudo-labels
but sacrifices diversity, which hurts generaliza-
tion. Conversely, looser filtering (e.g., 50%) re-
tains more diverse samples but introduces noise,
leading to degraded performance in some cases.
Notably, sensitivity differs across datasets: LiTS
achieves its best performance at 50%, indicating
that diversity outweighs strict quality, while BraTS and KidneySeg perform best at 30%, suggesting
that balancing sample diversity and label quality is most beneficial.

Ablation study. We conduct detailed ablation experiments on key components of the proposed
PPBoost and present the results in Table 7, which leads to Observation 6: First, adding the de-
tector (i.e., the PPBoost training stage) markedly improves segmentation, yielding an average gain
of +11.06% mDSC over directly prompting with the pseudo-bboxes derived from Biomedparse.
Second, removing the self-ensemble filtering module reduces performance by an average of 3.85%
mDSC (up to 8.03% on BraTS21), underscoring its role in mitigating pseudo-label noise. Finally,
selective expansion provides an additional +0.89% average mDSC improvement, consistent with
Sec. 2.3: enlarging high-quality boxes has little effect, whereas expanding undersized boxes offers
substantial benefits.
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Table 7: Left columns indicate included modules: Teacher-student Detector, Self-ensemble Fil-
tering, Selective Expansion. A checkmark ✓ indicates that the corresponding module is enabled,
whereas a blank cell denotes that the module is ablated. Numbers are mDSC (%); Avg. is the mean
over datasets. Best in bold, second-best underlined.

Detector Filtering Expansion BraTS21 LiTS17 KidneySeg Avg.

48.05 60.78 82.93 63.92
✓ ✓ 52.68 72.06 88.65 71.13
✓ ✓ 58.78 73.62 89.88 74.09

✓ ✓ ✓ 60.71 74.10 90.14 74.98

4 RELATED WORK

Visual-Prompted Foundation Model in Medical Image Domain. As a generic visual prompt-
based foundation model, Segment Anything Model (SAM) Kirillov et al. (2023) is designed with a
robust image encoder, a prompt encoder, and a lightweight mask decoder. Trained on over 1 billion
masks from 11 million natural images, SAM shows strong zero-shot segmentation when given point
or bounding box prompts. Building on this, numerous methods Cheng et al. (2023a); Ma et al.
(2024); Shaharabany et al. (2023); Huang et al. (2023) have been developed to adapt SAM for
universal medical image segmentation. MedSAM Ma et al. (2024) fine-tunes only the lightweight
mask decoder with a large-scale medical data and bounding box inputs. while SAM-Med2D Cheng
et al. (2023a) introduces learnable adapters to the image encoder for domain-specific transfer without
discarding pretrained features.

Text-Prompted Foundation Model in Medical Image Domain. Text-prompted foundation models
have gained increasing attention in medical image analysis due to their ability to incorporate clin-
ical language. Given CLIP Radford et al. (2021)’s strong generalization and zero-shot adaptation
in text-image alignment, several medical variants have been developed. PubMedCLIP Eslami et al.
(2023), fine-tuned on PubMed image–text pairs; MedCLIP Wang et al. (2022b), which decouples
image–text training to handle unpaired data; and BiomedCLIP Zhang et al. (2023b), pre-trained on
large-scale PubMed Central corpora and achieving state-of-the-art classification and retrieval perfor-
mance. However, these CLIP-based adaptations show limited generalization in object localization.
To address this, BiomedParse Zhao et al. (2025) was recently introduced as a foundation model
capable of directly grounding diverse medical images from text queries.

Semi-supervised Object Detection. Semi-supervised object detection reduces annotation costs by
leveraging a small labeled set with a large pool of unlabeled data. A dominant paradigm is the
teacher–student framework Tang et al. (2021); Liu et al. (2021); Xu et al. (2021); Li et al. (2022);
Zhang et al. (2023a); Xu et al. (2023), where the student is trained on labeled data and a teacher, up-
dated via Exponential Moving Average (EMA), generates pseudo-labels for unlabeled samples under
consistency constraints. Performance depends critically on pseudo-label quality and training robust-
ness. Representative advances include loss reweighting for noisy or imbalanced labels (Unbiased
Teacher Liu et al. (2021)), localization refinement strategies (Soft Teacher Xu et al. (2021), PseCo Li
et al. (2022)), and architectural extensions such as Semi-DETR Zhang et al. (2023a), which adapts
transformer-based detectors to the semi-supervised setting and achieves state-of-the-art results.

5 CONCLUSION

In this paper, we propose PPBoost, a progressive prompt boosting paradigm that bridges the gap be-
tween text-driven VLM and visual-prompted segmentation models for medical image segmentation.
PPBoost progressively amplifies weak text-prompted signals into robust visual prompts by (i) train-
ing a teacher–student detector on VLM-derived pseudo-bboxes that are filtered by an uncertainty
criterion and (ii) introducing a selective bbox expansion strategy to refine visual prompts at infer-
ence. PPBoost consistently outperforms other text- and visual-driven segmentation baselines across
three diverse medical datasets, and even surpasses few-shot segmentation models without requir-
ing any spatial annotations. Our experiments confirm that PPBoost is a generalizable framework,
showing consistent effectiveness across different SSOD backbones and segmentation architectures.
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ETHICS STATEMENT

This study develops a text-to-visual prompted medical image segmentation method using only pub-
licly available, de-identified medical image datasets and publicly released foundation models, in
accordance with the ICLR Code of Ethics. We did not collect new data, involve human subjects, or
access protected health information.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by documenting implementation of training and inference procedures in
Experiment section, including backbone models, hyperparameters, optimization, evaluation metrics,
and hardware specifications. Dataset descriptions and splitting are detailed in Appendix . An anony-
mous GitHub repository link provides code, configs, and scripts to reproduce segmentation results.
We fix random seeds and report mean performance.
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A APPENDIX

A.1 DATASET DETAILS

BraTS21 is a large-scale MR glioma segmentation dataset, comprising 1251 3D volumetric cases
across four different imaging modalities: T1, T1Gd, T2, and T2-FLAIR. Our experiments focus on
the T2 modality, utilizing 6101 training, 760 validation, and 786 test images sliced from different
volume cases. LiTS17 is a CT benchmark for liver and liver tumor segmentation. In this experiment,
we evaluate our pipeline in the liver segmentation task, using 7,529 training, 1,140 validation, and
913 test images extracted from 130 volume CT scans. KidneySeg is a synthesized ultrasound dataset
for the kidney segmentation task, including 3668 training images, and partitioned into 459 validation
and 459 test images in our experiment.

A.2 EMPIRICAL ANALYSIS OF BOUNDING-BOX EXPANSION EFFECT

In this section, we provide empirical evidence to support our refinement strategy of expanding
pseudo-bounding boxes. As discussed in Section 2.3, detector-predicted bboxes are often under-
sized due to noisy supervision from text-driven models. To examine whether uniformly expand-
ing pseudo-bboxes can improve the overall segmentation performance, we conducted a controlled
experiment using the widely adopted visual-prompted foundation model MedSAM. To ensure fair-
ness and demonstrate the generalization ability of this analysis beyond our main pipeline, we select
six publicly available datasets that cover diverse imaging modalities and anatomical targets: Brain
Tumor (MRI) Cheng (2017), CHAOS (CT) Kavur et al. (2021), BUSI (Ultrasound) Al-Dhabyani
et al. (2020), Chest X-ray (X-ray) Ninja (2025), ISIC (Dermoscopic) Codella et al. (2019), and
EndoCV2021 (Endoscopic) Ali et al. (2021). These datasets are distinct from those used in our PP-
Boost experiments, ensuring that the findings reflect the robustness of bbox expansion as a general
property of visual-prompted segmentation models rather than a dataset-specific effect.

From each dataset, we sampled 300 image–mask pairs and extracted ground-truth (GT) bounding
boxes. We then simulated two types of imperfect pseudo-bboxes through systematic perturbation:
undersized boxes, created by shrinking the GT box side lengths by 10%, 15%, and 20%, and over-
sized boxes, created by expanding them by the same ratios. Both perturbed and original GT boxes
were used as prompts for MedSAM, and segmentation performance was evaluated using the mDSC.

The results, summarized in Fig. 4, show that expanding undersized boxes substantially improves
segmentation accuracy, recovering much of the lost structure that was omitted in the shrunken
prompts. Conversely, expanding already high-quality (or GT) boxes slightly produces little to no
degradation, as the added margins contribute minimal noise to MedSAM’s segmentation. Fig. 5
provides visual case studies across datasets, illustrating how expansion corrects discriminative re-
gion errors in undersized boxes while leaving high-quality predictions largely intact.

These findings confirm that expansion is a robust refinement strategy: even without knowing whether
a predicted box is undersized or high-quality, uniformly enlarging pseudo-bboxes with a small ratio
yields a net performance gain by compensating for the prevalent undersized cases.

A.3 USAGE OF LLMS

In this work, large language models (LLMs) are primarily employed as auxiliary tools to enhance
the writing. Specifically, we leverage LLMs for two main purposes: (i) refining and polishing
the textual presentation to ensure clarity and readability; and (ii) assisting in the development of
data visualization code, thereby streamlining the process of transforming experimental results into
interpretable figures.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Brain Tumor (MRI) (b) CHAOS (CT) (c) BUSI (Ultrasound)

(d) Chest X-ray (X-ray) (e) ISIC (Dermoscopic) (f) EndoCV2021 (Endoscopic)

Figure 4: Sensitivity of MedSAM segmentation to bounding-box perturbations. Bars show GT
bbox at center with negative (left) and positive (right) perturbations. All plots share a 0–100% y-
axis; dotted line marks the GT bbox prompted baseline.

Input Image GT Mask Shrink 20% Shrink 15% Shrink 10% GT (bbox pred) Expand 10% Expand 15% Expand 20%

Figure 5: Visualization of the segmentation results on different perturbation levels of bboxes across
six datasets
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