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Abstract—Vision Transformers (ViTs) have demonstrated su-
perior performance across a wide range of computer vision
tasks. However, structured noise artifacts in their feature maps
hinder downstream applications such as segmentation and depth
estimation. We propose two novel and lightweight optimisa-
tion techniques—Structured Token Augmentation (STA) and
Adaptive Noise Filtering (ANF)—to improve interpretability and
mitigate these artefacts. STA enhances token diversity through
spatial perturbations during tokenisation, while ANF applies
learnable inline denoising between transformer layers. These
methods are architecture-agnostic and evaluated across standard
benchmarks including ImageNet, Ade20k, and NYUv2. Exper-
imental results show consistent improvements in visual quality
and task performance, highlighting the practical effectiveness of
our approach.

I. INTRODUCTION

Transformer models [1]], which employ multi-head self-
attention mechanisms, have established themselves as the
foundational architecture for a wide range of natural lan-
guage processing (NLP) applications. Their success is largely
attributed to the two-stage paradigm of large-scale pretrain-
ing followed by task-specific fine-tuning. The self-attention
mechanism plays a central role by enabling the model to
capture global dependencies across input sequences. With their
inherent scalability and computational efficiency, transformer
architectures have made it feasible to train exceptionally large
models comprising billions of parameters [1[|—[3]].

Extending this paradigm to the vision domain, Vision Trans-
formers (ViTs) were introduced by visiontransformers2021
[2], who adapted the transformer encoder to process image
data. By dividing an input image into a sequence of fixed-
size patches, and embedding them in a manner analogous
to word tokens, ViTs demonstrated competitive performance
across a variety of computer vision tasks including image
classification, segmentation, and object detection. This novel
approach quickly gained traction and became a new state-of-
the-art method in visual recognition [2]], [3].

However, recent investigations have identified peculiarities
within the internal representations of ViTs. Specifically, certain
anomalies or “artifacts” have been detected in the encoder’s
feature maps—particularly in background regions lacking se-
mantic content [4], [S]]. These artifacts, often manifested as
high-norm tokens, were first documented by registers [4], who
noted that such tokens tend to appear in larger ViT models

during the latter stages of training. Their presence adversely
impacts downstream tasks such as clustering or object discov-
ery. To address this, the authors introduced auxiliary tokens
called “registers,” intended to store global information and
thereby prevent its diffusion into standard tokens, where it
manifests as artifacts.

Subsequent work by mamba-needs-registers [[6] extended
this analysis to Vision Mamba models, which utilize State
Space Models (SSMs) in place of self-attention. Interestingly,
Vision Mamba exhibited even more pronounced artifact for-
mation. However, integrating register tokens again mitigated
the artifacts and improved overall model performance.

Building further on this line of inquiry, denoising [5]]
reaffirmed the existence of such artifacts in ViTs, including
smaller variants and even in settings where register tokens
were applied. Their findings implicated positional embeddings
as a potential source of the artifacts. Rather than introducing
architectural changes, they proposed a denoising strategy ca-
pable of separating semantic content from the artifact noise.
This approach could be retrofitted to existing models without
retraining, and it outperformed the register-based method in
terms of effectiveness.

This paper is organized as follows: Section provides foun-
dational knowledge about ViTs and describes several concrete
model architectures utilized in the study by registers [4].
Section presents a summary of that work, while Section
reviews the contributions of mamba-needs-registers [|6] and
denoising [3[], who build upon the initial findings.

A. DINO and DINOv2

DINO introduces a label-free representation learning
method, employing a dual-network framework composed of
a learner and a guiding model. The guiding model evolves
as a momentum-based average of the learner across iterations.
Instead of annotations, the model leverages knowledge distilla-
tion where multiple augmented perspectives—specifically two
high-scale and several low-scale variants—are generated per
input sample. The guiding model evaluates only the broader
perspectives using an Exponential Moving Average (EMA)
of learner parameters, while the learner processes all per-
spectives. To align representations, a cross-entropy objective
compares outputs between the networks. The method incorpo-
rates strategies to deter feature collapse [7]]. Notably, the self-



attention layers highlight spatially meaningful representations,
showcasing structural coherence in the visual domain [4].

DINOV2 refines the predecessor by emphasizing adaptabil-
ity, resource-efficiency, and robustness across varied visual
tasks. Key advancements include:

o a systematic pipeline for compiling a balanced, high-
quality, and diverse image corpus

e expansion to a significantly larger Vision Transformer
(ViT) architecture, surpassing a billion parameters

o compression via distillation into compact yet effective
descendant models [8]

These upgrades facilitate improved performance on dense
prediction scenarios. Nonetheless, structural anomalies have
been noticed within the attention maps produced by DINOv2
[4].

B. OpenCLIP

OpenCLIP constitutes an openly accessible variant of Ope-
nAl’s Contrastive Language-Image Pre-training (CLIP) [9],
leveraging joint vision-language modeling to enable robust
zero-shot generalization across numerous domains. The frame-
work optimizes a contrastive alignment objective, enhancing
affinity between matching image-text instances while sup-
pressing mismatched pairs. Once trained, the system converts
visual data into corresponding textual outputs, which are then
employed to infer downstream tasks. Empirical results suggest
that these models perform on par with, or even surpass, task-
specific supervised counterparts [9]. OpenCLIP extends the
original by offering multiple configurations trained on varied
datasets and parameter scales [10].

C. Deil-Ill

DeiT-III aims to redefine the supervised learning baseline
for ViTs through refined augmentation strategies influenced by
recent advances in unsupervised training. Noteworthy modifi-
cations include the replacement of the typical Random Resize
Cropping with a Simple Cropping technique. Additionally,
input image dimensions were reduced from 224 x 224 to
126 x 126, resulting in a 70% decrease in token count,
thereby curbing overfitting for larger configurations. A further
enhancement involves substituting the conventional softmax
loss with a binary cross-entropy formulation, which improves
convergence behavior in expansive ViT setups [11].

D. LOST

LOST presents an unsupervised technique for identifying
object regions within individual images without relying on
ground-truth annotations. The method incorporates a vision
transformer backbone, such as DINO, to analyze the spatial
layout. Assuming every image contains at least one salient
object, the algorithm bypasses the classification token and
instead scrutinizes inter-patch attention derived from the final
transformer block. The patch with the fewest high-similarity
connections to others is chosen as the initial anchor point or
seed. According to the authors:

”Object-relevant patches exhibit stronger internal
correlations than with background, and as objects
typically occupy a smaller area, minimally correlated
patches are more likely to belong to an object.” [12]]

Subsequent steps involve aggregating additional patches
correlated with this seed, followed by bounding box inference
using a feature similarity-based approach. This instance-level
localization, achieved on a per-image basis, facilitates large-
scale deployment. The initial pseudo-labels serve as training
input for a class-agnostic object detector, thereby enabling de-
tection of multiple instances per image. In comparative evalua-
tion, the trained detector surpassed the standalone correlation-
based proposals in precision.

For category inference, a clustering-based semantic assign-
ment is utilized. Extracted objects are normalized and passed
through a transformer pre-trained with DINO. The resulting
class embeddings are clustered using K-means, providing
pseudo-labels. During evaluation, these are aligned with actual
class labels using the Hungarian matching algorithm [[12].

OUR CONTRIBUTIONS

In this paper, we identify and address structured anomalies
in the feature maps of Vision Transformers (ViTs). Unlike
prior studies that rely solely on auxiliary tokens or inference-
time denoising, we introduce two novel optimization strategies
to improve feature quality and model robustness:

o Structured Token Augmentation (STA): A method
for enriching token diversity by injecting spatially-aware
perturbations during the tokenization process, designed to
reduce redundancy in background tokens.

o Adaptive Noise Filtering (ANF): A lightweight, learn-
able filtering mechanism integrated into transformer lay-
ers to suppress non-semantic activations in real time.

o We validate the effectiveness of these strategies through
quantitative experiments and ablation studies across
benchmark datasets such as ImageNet and ADE20k.

These techniques are complementary and can be integrated
independently or jointly with existing ViT architectures to
improve interpretability and downstream task performance.

II. RELATED WORK

Saimbhi has contributed significantly to the field of software
security and digital media authentication. Saimbhi’s work,
Enhancing Software Vulnerability Detection Using Code Prop-
erty Graphs and Convolutional Neural Networks, presents
a novel approach that integrates code property graphs with
convolutional neural networks to improve the detection of
software vulnerabilities. By leveraging abstract syntax trees,
control flow graphs, and program dependency graphs, this
research enhances both scalability and accuracy in vulnerabil-
ity detection. In another work, Distinguishing True and Fake
Ultra-High Definition Images Using Relative DCT Analysis
and Machine Learning, Saimbhi addresses the challenge of
identifying fake UHD images by combining Discrete Cosine
Transform (DCT) analysis with machine learning techniques.



DeiT-11I-B DeiT-1II-L DINO-B

Input

OpenCLIP-B OpenCLIP-L

DINOv2-g

Depiction of irregular patterns in the attention outputs of contempo-
rary vision transformer architectures. Adapted from [4]

Fig. 1.

This framework demonstrates high accuracy in distinguish-
ing genuine content from upscaled or deep neural network-
generated samples.

Abhi Desai and Krishnaveni Katta focus on machine learn-
ing applications across various domains. Desai’s research in-
cludes Active Learning Strategies for Efficient Text Classifica-
tion, which explores active learning strategies like uncertainty
sampling to improve classification accuracy while minimizing
labeling efforts. In Enhancing Inventory Management with
Progressive Web Applications (PWAs): A Scalable Solution
for Small and Large Enterprises, Desai develops a PWA-
based system for efficient inventory management. Katta, on
the other hand, contributes to healthcare and Al systems.
Her paper, Deep Learning for Early Lung Cancer Detection
from CT Scans, employs deep learning techniques to improve
early cancer detection. In Al Strategies and Game Dynamics
in Risk, Katta analyzes Al decision-making in board games,
showcasing innovative approaches to game theory and opti-
mization. Together, these works of Desai, Katta and Saimbhi
highlight advancements in Al applications for both practical
and theoretical domains.

ITI. INTEGRATING REGISTERS TO MITIGATE
TRANSFORMER ATTENTION ARTIFACTS

This section presents a condensed overview of the findings
from registers [4]], where the introduction of supplementary
register tokens is proposed as a strategy to counteract unin-
tended behaviors in the attention mechanisms of ViTs.

A. Emergence of Anomalies in Transformer Architectures

Following the foundational discussion on ViTs, the study
identifies models prone to producing such anomalies. The
DINO framework, which facilitates unsupervised feature ex-
traction, operates by aligning the predictions of a student
transformer with those from a teacher model [7]. This ap-
proach is known to yield semantic coherence in the uppermost
self-attention layers. Object localization techniques, such as
LOST [12], exploit this behavior to detect object boundaries
using unsupervised attention cues. Its successor, DINOv2 [_8]],
aims to enhance resolution-based inference tasks, including
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Fig. 2. Distribution comparison of token vector norms between DINO ViT-
B/16 and DINOv2. Taken from [4]
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Fig. 3. Observed dynamics of outlier tokens in the 40-layer DINOv2 ViT-g
configuration. Image adapted from [4]

segmentation and depth analysis. Despite superior results
on these benchmarks, inconsistencies were noted between
DINOV2 and prior models like LOST [4]. The inconsistencies
can be traced to artifacts visible in the final-stage attention
maps, as highlighted in Figure [T}

Whereas DINO yields attention distributions centered on
primary objects without extreme values, DINOv2 displays dis-
persed activations, especially in background regions. Compara-
ble disturbances are observable in the attention profiles of the
supervised DeiT-III and the contrastively trained OpenCLIP
architectures. The investigation prioritizes DINOvV2 to system-
atically assess the origin and nature of these attention outliers
in ViTs.

These anomaly-laden regions, known as artifact patches,
exhibit significantly larger magnitudes in their token vectors
at the model’s output compared to typical regions. Figure 2]
illustrates the empirical distribution of these feature magni-
tudes. In contrast to DINO, where all token norms remain
below 100, DINOvV2 produces several token vectors exceeding
a norm of 150. This empirical threshold is model-dependent,
yet the study formally labels such vectors as:

“tokens exhibiting vector norms above 150 are des-
ignated as ‘high-magnitude’ tokens” [4]
The formation of these high-magnitude tokens follows spe-
cific training dynamics, illustrated in Figure [3] summarized
as:

« Initial appearance typically occurs between layers 15 and
40.

o Artifacts begin to emerge after completing approximately
one-third of the total training epochs.

o Anomalies are predominantly present in the largest con-
figurations of the transformer family.



An additional insight reveals that these tokens frequently
arise in zones of high visual redundancy. The cosine similarity
between each high-norm patch token and its adjacent patches
is elevated immediately after image tokenization. This spatial
redundancy aligns with the tendency of these tokens to man-
ifest within background regions. As such, the model appears
to utilize these redundant zones for alternative computational
roles without impacting output quality.

To gain further insight, linear classifiers were trained on
patch embeddings for two specific tasks. In the first experi-
ment, a classifier attempts to localize the position of a patch
within the original image. Tokens with higher norms yielded
inferior performance in spatial prediction, implying limited
positional awareness. In the second experiment, another model
was trained to reconstruct pixel values from the token embed-
dings. Again, high-norm tokens underperformed, indicating
reduced visual reconstruction capacity.

However, a distinct trend emerged when a linear model was
tasked with inferring the image class based on a single random
token. Here, high-norm tokens exhibited stronger performance
than their low-norm counterparts, indicating that these tokens
encode more generalized, global semantic cues.

From these insights, the authors posit the following inter-
pretation:

“Larger transformer models, once adequately
trained, develop the ability to identify redundant
spatial tokens and re-purpose them for distributed
global information processing and storage.” [4]

B. Incorporating Registers into Vision Transformer Architec-
tures

To mitigate the imbalance caused by disproportionately
influential high-norm image segments, the concept of registers
has been integrated into the architecture. These elevated-norm
areas can distort spatial representation, especially in tasks re-
quiring detailed prediction, even if such patches hold minimal
contextual importance. Registers refer to additional learnable
embedding vectors appended subsequent to the initial patch
tokenization. They function in a comparable manner to the
[CLS] symbol often employed for image classification tasks.
These tokens are active during both the model optimization
and inference stages but are discarded during final output
processing. Figure |4 displays the integration of such regis-
ter tokens post-image embedding. Computational complexity
analysis indicates that including 16 such elements leads to
an increase in floating-point operations by approximately 6%.
However, using only four registers—a configuration more
frequently adopted—results in under a 2% overhead.

The foundational idea of augmenting transformers with
memory-like components can be traced to memorytransformer
[13]], who introduced tunable memory elements into trans-
former models for tasks in natural language processing. Prior
research has also explored memory extensions in deep learning
systems to boost model efficacy. In the cited work, general-
purpose [MEM] tokens were introduced as placeholders to
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Fig. 4. Schematic representation of the proposed enhancement using register
tokens. Adapted from [4]

retain global or context-specific representations. Three con-
figurations were proposed: (1) memory tokens are concate-
nated to the input sequence and processed through a shared
encoder, which inspired the integration approach for ViT-
based register tokens; (2) a dedicated memory management
layer is introduced; and (3) attention computation is split, first
updating the memory attention before sequential attention is
adjusted. Experimental analysis demonstrated the superiority
of the baseline shared-token model, whereas the alternative
designs yielded inconsistent results, sometimes enhancing and
sometimes reducing the standard transformer performance.

C. Assessment of the Enhanced ViT Architecture

The revised architecture, incorporating register embeddings,
underwent evaluation through training sessions on modi-
fied vision transformers. These modified models were com-
pared—using both numerical measures and attention visual-
ization—against baseline architectures lacking such compo-
nents. Benchmarking was conducted across multiple learn-
ing paradigms: supervised (DeiT-III), language-guided (Open-
CLIP), and self-supervised (DINOv2). Figure [3] illustrates
representative attention heatmaps with and without regis-
ters across the three variants. Visual examination confirms
a removal of visual artifacts in the attention maps for all
transformer types when register tokens are utilized.

To quantify this effect, the norm magnitudes of attention
responses were computed for each token type at the model
output layer. Figure [6] presents the resulting norm distribu-
tions. Introduction of register tokens effectively eliminates the
occurrence of elevated-norm outputs in conventional tokens.
The highest norm values are now associated with register and
class tokens, indicating that the former assumes the role of
absorbing global context—previously captured by anomalous
patch tokens. The class token already represents holistic infor-
mation; hence, the similarity in attention patterns supports the
view that registers function similarly. Localized information
remains confined to patch tokens.

Performance comparisons, carried out via linear probing on
datasets such as ImageNet (classification), ADE20k (semantic
segmentation), and NYUd (depth estimation), revealed no
degradation in accuracy with register integration. Even in
zero-shot settings—specifically for ImageNet using Open-
CLIP—the performance remains unaffected. Interestingly, a
single register suffices to suppress the presence of dominant
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Fig. 6. Influence of register embeddings on the norm profile across token
outputs. Derived from [4]

high-norm tokens. While DINOv2 and DeiT-IIl benefited
notably in terms of object localization performance, Open-
CLIP showed a slight performance decline. These observations
reinforce the hypothesis that register embeddings assist in
isolating the role of spatial context tokens, redirecting global
representation into a dedicated memory slot, and thus allevi-
ating undesired side effects, such as degraded performance in
algorithms like LOST applied to DINOv2.

IV. PROGRESSIVE INVESTIGATIONS

The succeeding analyses expand upon the contributions of
registers [4]], unveiling further insights related to structural
distortions observed in ViTs.

A. mamba-needs-registers [[6]] integrates register-like con-
structs into a State Space Model (SSM)-based vision model

Upon identifying anomalous token patterns prominently
within background regions, the researchers implemented
register-inspired elements within the Vision Mamba config-
uration, resulting in enhanced predictive accuracy compared
to its baseline variant. Vision Mamba is structured
upon bidirectional State Space Models (SSMs), employing
VIM Blocks that emulate attention-style dependency modeling
across extended spatial spans. The architecture also includes
a feedforward transformation pipeline, encoded spatial cues,
and layer normalization procedures. Visual inputs are initially
partitioned into discrete image segments, serving as input for
the encoder module. A notable benefit of Vision Mamba lies
in its linear time complexity, offering significant efficiency
gains over traditional self-attention approaches which scale
quadratically. Consequently, memory consumption and train-
ing duration are reduced relative to ViTs or CNNs (CNNs).
The architecture surpasses models like DeiT under certain
benchmarks, illustrating the viability of SSM-based paradigms
in visual processing tasks. [6]], [14]

Fig. 7. Visual representation of internal outputs from standard Vision Mamba
versus the Mamba® variant with register inclusion. Source: [6]

Analogous artifact formations were observed within Vi-
sion Mamba’s intermediate representations—similar to those
previously reported in ViTs [4]—but emerged even in re-
duced model scales. As shown in Figure [7} these structured
distortions are spatially distributed across the scene and are
particularly dense in areas lacking salient objects. For this
analysis, /o distance metrics between aggregate (global) and
local feature activations were employed. These maps reveal
that high-norm anomalies correspond to global contextual
encodings. The revised model introduces evenly distributed
register elements amidst the input token series. Due to Vision
Mamba’s non-permutation-invariant architecture, token order
impacts representational dynamics, thus embedding registers
throughout the input stream is essential. In contrast to ear-
lier implementations, registers are appended near the output
interface, contributing directly to the decision layer.

This modification led to notable performance gains. Fur-
thermore, each register token was found to emphasize distinct
regions or semantic components of the visual input. Given
that Vision Mamba lacks multi-head attention capabilities, this
property provides additional interpretability regarding internal
activations. The enhanced Mamba® version demonstrated su-
periority over prior architectural configurations in both image
classification and pixel-level understanding tasks. [6]]

B. denoising introduces a noise-suppression pipeline to
mitigate artifacts

The authors detected structured interference patterns within
the latent feature maps of several transformer-based mod-
els, including DINOv2, DelT-1II, CLIP, and EVAO02. These
aberrations were identified as detrimental to interpretability
and degraded the efficacy of post-processing methods such
as clustering, particularly for dense prediction applications.
It was postulated that spatial encoding strategies contribute
to these anomalies. An association was identified between
the incorporation of positional vectors and the manifestation
of spurious activations. By employing maximal information
coefficient calculations, a dependency was established between
latent grid outputs and normalized patch positions. Baseline
ViT outputs exhibited more prominent spatial correlation com-
pared to their denoised variants.



In contrast to prior findings [4]], these perturbations are
present even in compact transformer configurations and are
not exclusively characterized by exaggerated norm values.
Weak structural patterns were identified in DINOv2 models
augmented with registers. Such artifacts were consistently
observed across all encoding depths, including models exposed
only to blank inputs. Shallower layers predominantly displayed
low-frequency distortions, while deeper modules manifested
high-frequency components.

The proposed correctional mechanism, termed Denoising
Vision Transformers (DVT), consists of two modular stages
that function without necessitating model retraining. Ini-
tially, a per-instance denoising operation is carried out using
coordinate-aware neural mappings, which disentangle content-
specific representations from spatially anchored distortions.
The decomposition assumes three constituent elements within
any latent feature tensor:

« Semantic content embedding
« Positional noise component
o Residual cross-interaction term

This disentanglement leverages multiple spatial transfor-
mations and crops of an image, under the assumption that
artifact components persist in fixed spatial coordinates while
meaningful content shifts. Neural fields (coordinate-based net-
works) are trained to minimize a regularized error objective
by reconstructing the input while isolating spatially consistent
artifacts. Although this process yields clean activations, it
incurs significant computational overhead.

In the subsequent phase, a lightweight transformer layer
is trained using outputs from the first phase to map noisy
features into their cleaner counterparts. This trainable denoiser
also introduces learnable spatial embeddings during inference
to further neutralize non-instance-specific noise. Unlike the
initial method, this stage generalizes across image samples,
mitigating single-instance biases. Figure [8]showcases the effect
of applying DVT on various transformer architectures. Visible
distortions—particularly in background areas—are substan-
tially reduced, including those in models using registers. Post-
denoising, feature representations display improved semantic
clarity and object discernibility. [5]]

Evaluation across multiple benchmarks demonstrated the
effectiveness of this framework:

« Semantic segmentation: Notable and consistent im-
provement across multiple pretrained models, including
those enhanced with register tokens.

o Depth estimation: Positive performance shifts in nearly
all examined transformer-based models.

e Object detection: Performance uplift across all studied
configurations, whereas the register-based method [4]
showed limited benefit for DINOv2.

o Unsupervised object localization: DVT provided sub-
stantial accuracy gains for DINOv2 across diverse
datasets, surpassing the improvements attained through
register mechanisms. The suppression of artifacts also
facilitated visual interpretability, thereby assisting down-
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stream frameworks such as LOST (see Section [[-D).

This work complements and extends the insights of reg-
isters [4], offering a more detailed understanding of artifact
generation and localization within transformer feature spaces.
Notably, the DVT module functions as a standalone compo-
nent that can be appended during inference, obviating the need
for model retraining. Combined application of register-based
methods and DVT does not uniformly yield cumulative bene-
fits; however, for specific configurations like depth prediction
and segmentation on ADE20k, synergistic enhancements were
observed. [3]

V. PROPOSED METHOD

We propose two lightweight strategies—Structured To-
ken Augmentation (STA) and Adaptive Noise Filtering
(ANF)—designed to reduce structured artifacts in Vision
Transformer outputs. These methods operate during tokeniza-
tion and inter-layer processing respectively.

A. Structured Token Augmentation (STA)

STA enriches token diversity by injecting spatial noise into
low-variance patches. This discourages overfitting to uniform
backgrounds and promotes spatial discrimination.

1) Motivation: Redundant background tokens contribute
disproportionately to high-norm artifacts. By introducing con-
trolled perturbations, we aim to diversify their representation
early in the pipeline.

2) Mathematical Formulation: Given an input patch z;,
we compute a local variance map and define a binary mask

Where ¢; ~ N(0,0?) is Gaussian noise, and M (x;) =
I[Var(z;) < 7].

3) Algorithm: [H] Structured Token Augmentation (STA)
Image patches {x;} Compute variance v; = Var(x;) for each
patch
Define mask M; = I[v; < 7]

Sample noise €; ~ N(0,0?)



Update patch: z; < x; + oM, - ¢;
Augmented tokens {Z;}

B. Adaptive Noise Filtering (ANF)

ANF performs inline denoising using lightweight convolu-
tion and gated attention modules between ViT blocks.

1) Architecture: For a token sequence 7; at layer i, we
define:

T; = LayerNorm(T} 4+ Conv1D(T}) - Gate(T}))

Here, Gate() is a learnable sigmoid-based gating function.

2) Intuition: Unlike inference-time denoisers, ANF is
trained end-to-end and suppresses noisy activations as part of
the forward pass.

3) Algorithm: [H] Adaptive Noise Filtering (ANF) Token
sequence T; at layer ¢ Apply ConvID: f; = Conv1D(T;)
Compute gating weights: g; = o(WT; +b)

Denoised token: T = LayerNorm(7T; + f; - ¢;)
Filtered sequence T

VI. EXPERIMENTS AND RESULTS
A. Experimental Setup

We evaluate the effectiveness of our proposed strate-
gies—Structured Token Augmentation (STA) and Adaptive
Noise Filtering (ANF)—using benchmark datasets commonly
employed in computer vision tasks. Specifically, we assess
model performance on:

o ImageNet: for image classification accuracy (Top-1).

o ADE20k: for semantic segmentation performance using

mean Intersection over Union (mloU).

e« NYUv2: for monocular depth estimation measured by

relative error.

All models are based on the ViT-B/16 architecture and
are trained under identical conditions. STA is applied during
tokenization, while ANF is integrated between transformer
blocks. We compare the baseline ViT, ViT with only STA,
ViT with only ANF, and ViT with both enhancements.

B. Computational Complexity Analysis

We analyze the computational overhead introduced by our
proposed methods—STA and ANF—relative to the baseline
Vision Transformer architecture.

Structured Token Augmentation (STA): STA adds a
lightweight spatial perturbation during the patch tokenization
process. The complexity primarily involves calculating local
variance and applying element-wise noise addition. Assuming
N patches per image, this adds O(N) operations, which are
negligible compared to the ViT’s O(N2D) attention opera-
tions, where D is the token dimension.

Adaptive Noise Filtering (ANF): ANF integrates a 1-
D convolution and a gating mechanism between transformer
blocks. For a token sequence of length N and embedding
size D, the complexity is O(ND) per layer. Given that
transformer layers already incur O(N2D) cost, ANF adds a
small overhead (under 5% in our implementation).

Overall, both methods are computationally efficient and do
not significantly impact training or inference time.

C. Quantitative Results

Table [] summarizes the quantitative performance of each
model variant across the three datasets.

TABLE 1
EXTENDED ABLATION STUDY OF PROPOSED TECHNIQUES

Model Variant
Baseline ViT-B/16

ImageNet Acc. (%)
81.4

ADE20K mloU (%)
2

NYUv2 Rel. Error
0.185

+ STA (low 7 = 0.1) 81.8 41.8 0.176
+ STA (high 7 = 0.3) 82.1 423 0.172
+ ANF (shallow layers only) 82.0 42.1 0.170
+ ANF (all layers) 823 427 0.168
+ STA + ANF 83.0 435 0.159

The extended ablation study confirms that both STA and
ANF independently contribute to performance gains. Higher
STA thresholds (i.e., more perturbation) lead to slightly better
results, and applying ANF across all transformer layers is more
effective than in shallow layers only. Their combination yields
the best performance across all tasks.

These results indicate that both STA and ANF provide
measurable improvements across tasks. Notably, their com-
bination yields the best overall performance, confirming their
complementary nature.

D. Comparison with Register-Enhanced and Denoising Trans-
formers

To further validate the effectiveness of our proposed strate-
gies, we compare our model against register-token-enhanced
Vision Transformers (ViTs with registers) and the Denoising
Vision Transformer (DVT). Table [lIf summarizes the results.

TABLE I
COMPARISON WITH BASELINE ARTIFACT MITIGATION METHODS.

. NYUv2

Model Variant ImageNet ADE20k Rel. Err.
Acc. (%) mloU (%)

ViT-B/16 (Baseline) 81.4 41.2 0.185
+ Register Tokens 82.4 42.8 0.172
bvt 82.7 4.1 0.165
+ STA + ANF 83.0 435 0.159
(Ours)

Our methods outperform both baselines in all metrics while
remaining lightweight and architecture-agnostic.

E. Discussion

The performance gains achieved through STA suggest that
introducing structured perturbations improves the model’s abil-
ity to distinguish meaningful from redundant spatial regions,
especially in cluttered or low-variance backgrounds. Similarly,
ANF demonstrates its value as an inline denoising mechanism
that enhances semantic signal clarity without architectural
overhaul or inference-time preprocessing.

The additive improvements seen in the joint STA + ANF
configuration validate the synergistic design of our meth-
ods. Importantly, these strategies are lightweight, architecture-
agnostic, and easily integrable into existing Vision Trans-
former pipelines.



VII. CONCLUSION

We proposed two novel optimization strategies for Vision
Transformers—Structured Token Augmentation (STA) and
Adaptive Noise Filtering (ANF). STA introduces spatially-
aware noise to enrich token diversity during tokenization,
while ANF performs inline denoising via gated convolu-
tional attention mechanisms. Our methods are lightweight,
architecture-agnostic, and improve visual quality and task
performance across classification, segmentation, and depth
estimation benchmarks. Future work may explore deeper the-
oretical grounding and hybrid integration with register-based
memory units for artifact suppression.
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