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Abstract

Classifier-Free Guidance (CFG) significantly enhances controllability in generative
models by interpolating conditional and unconditional predictions. However,
standard CFG often employs a static unconditional input, which can be suboptimal
for iterative generation processes where model uncertainty varies dynamically.
We introduce Adaptive Classifier-Free Guidance (A-CFG), a novel method that
tailors the unconditional input by leveraging the model’s instantaneous predictive
confidence. At each step of an iterative (masked) diffusion language model, A-CFG
identifies tokens in the currently generated sequence for which the model exhibits
low confidence. These tokens are temporarily re-masked to create a dynamic,
localized unconditional input. This focuses CFG’s corrective influence precisely on
areas of ambiguity, leading to more effective guidance. We integrate A-CFG into
a state-of-the-art masked diffusion language model and demonstrate its efficacy.
Experiments on diverse language generation benchmarks show that A-CFG yields
substantial improvements over standard CFG, achieving, for instance, a 3.9 point
gain on GPQA. Our work highlights the benefit of dynamically adapting guidance
mechanisms to model uncertainty in iterative generation. Code is available at
https://github.com/pixeli99/A-CFG.

1 Introduction

Diffusion models [33, 14] have recently revolutionized generative modeling, demonstrating remark-
able capabilities in synthesizing high-fidelity data in continuous domains such as image and audio
[9, 29]. This success has ignited a surge of interest in extending their power to discrete data, with
natural language generation standing as a particularly compelling frontier [2, 20, 11]. Among these
efforts, Masked Diffusion Models (MDMs), exemplified by frameworks like LLaDA [26], have
emerged as a promising direction. These models learn to reverse a gradual masking process, itera-
tively infilling masked tokens to construct coherent text, offering a principled and flexible alternative
to traditional autoregressive language generation.

A pivotal advancement that significantly amplified the practical utility of diffusion models, especially
in conditional settings, is Classifier-Free Guidance (CFG) [15]. Originally conceived for continuous
models, CFG provides an elegant way to steer the generation process towards a desired conditioning
signal (e.g., a textual prompt) by interpolating between conditional and unconditional model predic-
tions during the reverse diffusion (denoising) phase. This is achieved without the need for an auxiliary
classifier, making CFG a versatile and widely adopted mechanism for enhancing sample quality and
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Figure 1: Overview of model confidence dynamics during iterative generation. (a) Token-level
confidence heatmap across token positions and generation steps (darker shades indicate higher
confidence). (b) Average and minimum confidence scores per generation step. This visualization
highlights the dynamic and non-uniform nature of model confidence that A-CFG aims to leverage.

controllability. Naturally, the application of CFG has extended to textual diffusion models, where it
plays a similar role in guiding text generation.

However, the conventional application of CFG within iterative (masked) diffusion language models
often encounters a subtle yet significant limitation: the "unconditional" prediction typically relies
on a static or generic construct. This often involves using a null prompt or a sequence where all
target tokens are uniformly masked to simulate an unconditional state. While straightforward, such a
fixed approach to unconditioning may not fully harness CFG’s potential in the dynamic context of
iterative text refinement. As an MLM progressively fills in a sequence, its internal state of certainty
can vary considerably across different tokens and denoising steps. A static unconditional baseline
fails to adapt to these nuances, potentially leading to guidance that is either too weak, too diffuse, or
misaligned with the model’s specific points of ambiguity at a given step.

This observation sparks a crucial question: can the "unconditional" component of CFG, when applied
to iterative diffusion language models, be rendered more intelligent and responsive to the model’s
own evolving understanding of the sequence? We posit that the model’s instantaneous predictive
confidence during the iterative denoising process, which, as visualized in Figure 1, can fluctuate
significantly across tokens and generation steps, offers a rich, yet largely untapped signal. Instead
of a blanket, context-agnostic unconditioning, what if we could dynamically shape the unconditional
input to reflect and address the model’s current uncertainties? This would allow the guidance
mechanism to concentrate its corrective influence precisely where it is most needed.

In this paper, we introduce Adaptive Classifier-Free Guidance (A-CFG), a novel framework
designed to realize this vision for iterative (masked) diffusion language models. A-CFG dynamically
synthesizes the input for the unconditional prediction by identifying and temporarily re-masking
tokens for which the conditional diffusion model exhibits low predictive confidence during a given
denoising step. By doing so, A-CFG creates a localized "unconditional" state that compels the model
to reconsider its predictions at these specific points of ambiguity. The standard CFG formula is then
applied, leveraging this adaptively constructed unconditional state to steer the generation with greater
precision and efficacy.

We integrate and evaluate A-CFG within the LLaDA [26] framework. Our extensive experiments
on a range of standard language generation benchmarks demonstrate that A-CFG yields substantial
improvements in complex reasoning accuracy and adherence to conditional prompts over both
baseline LLaDA without CFG and LLaDA employing traditional CFG with static unconditional
inputs. Specifically, A-CFG achieves up to a 3.9 point absolute improvement on the GPQA benchmark
and enhances Sudoku task success by 8.0 points when compared to standard CFG.

Our contributions are thus threefold:

• We identify and articulate the limitations of static unconditioning in standard CFG when
applied to iterative masked language models.

• We propose Adaptive Classifier-Free Guidance (A-CFG), a novel method that dynamically
constructs the unconditional input based on the model’s predictive confidence, enabling
more targeted and effective guidance.
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• We demonstrate through comprehensive experiments that A-CFG significantly enhances
the performance of the LLaDA model on various generation tasks, outperforming standard
CFG.

2 Related Work

2.1 Diffusion Models for Language Generation

Autoregressive (AR) models, such as large language models (LLMs) like GPT-style architec-
tures [27, 5] and more recent powerful open-source models including LLaMA [35, 36], Qwen [6],
and Mistral [18], have become the dominant paradigm in natural language generation. These models
generate text token by token, conditioning each new token on the previously generated sequence,
and have demonstrated remarkable capabilities across a wide array of tasks. Their success has also
spurred extensions into traditional multimodal domains [17, 41, 39, 40, 37], combining language
understanding with other modalities like vision [19, 16, 24, 3, 10, 1, 22, 38]. However, the sequen-
tial nature of AR generation can lead to challenges such as error propagation and limitations in
bidirectional context modeling for certain tasks.

In response to these and other considerations, diffusion models [33, 14] have emerged as a powerful
alternative. While initially demonstrating success in continuous domains like images [9, 29], signifi-
cant effort has been dedicated to adapting them for discrete data, particularly text [2, 20, 11]. Early
approaches explored discrete state-space diffusion [2] or continuous diffusion in embedding spaces
(e.g., Diffusion-LM [20], DiffuSeq [11]), showcasing potential for controllability but often lagging
behind AR models in likelihood or efficiency.

A particularly relevant and successful direction has been the development of Masked Diffusion
Models (MDMs) [30, 32]. These models formulate text generation as an iterative mask-infilling
process, learning to reverse a gradual masking procedure. Prominent examples like LLaDA [26] have
demonstrated that MDMs can achieve competitive performance with strong AR models on various
language tasks, even at scale. These models operate by iteratively refining a sequence, making them
a prime candidate for fine-grained guidance techniques. Our work focuses specifically on enhancing
conditional generation within such iterative, masked diffusion frameworks like LLaDA.

2.2 Classifier-Free Guidance in Generative Models

Classifier-Free Guidance (CFG) [15] has become a cornerstone technique for improving sample
quality and conditional control in diffusion models, initially popularized in image synthesis [29]. It
elegantly steers generation towards a condition by interpolating between conditional and unconditional
model predictions during the reverse process, avoiding the need for separate classifier training. This
is typically achieved by training the diffusion model with occasional dropout of the conditioning
signal (e.g., null text prompt), enabling it to produce both conditional and unconditional outputs.

The adaptation of CFG to language diffusion models [23, 25] presents unique considerations. A
common practice is to simulate the unconditional prediction by providing a static input, such as a
fully masked target sequence. While effective, this static unconditioning strategy poses a limitation,
particularly for iterative MDMs. As the model refines the text sequence over multiple steps, its
internal state of certainty varies across different token positions and time steps. A fixed unconditional
baseline fails to adapt to these dynamics, potentially leading to suboptimal or misaligned guidance.

3 Methodology

Our work introduces Adaptive Classifier-Free Guidance (A-CFG), a novel enhancement to the
Classifier-Free Guidance (CFG) paradigm. A-CFG is specifically designed for iterative masked
language models (MLMs) and aims to improve generative control by dynamically constructing the
unconditional input required for CFG. This is achieved by leveraging the model’s instantaneous
predictive confidence regarding its current non-[MASK] tokens, allowing guidance to be more precisely
targeted towards regions of the sequence where the model exhibits uncertainty. Figure 2 provides a
high-level comparison of standard CFG with our proposed A-CFG.
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Figure 2: Overview of (left) standard Null Prompt Classifier-Free Guidance and (right) our
proposed Adaptive Classifier-Free Guidance (A-CFG) at a single generation step k. In standard
CFG, the unconditional input often involves masking the entire prompt or using a null prompt.
In A-CFG, after computing conditional logits from x(k), token-level confidences for all non-[MASK]
tokens in x(k) are assessed. Tokens with low confidence (orange/red in illustration) are temporarily
re-masked to [MASK] to create the dynamic unconditional input x(k)

uncond. This allows the CFG
mechanism to focus guidance on areas of model uncertainty within the current sequence.

3.1 Preliminaries

Before detailing A-CFG, we briefly review the foundational concepts: iterative masked language
modeling and standard classifier-free guidance.

Iterative Masked Language Models (MLMs). Our A-CFG framework operates within the context
of iterative generation, characteristic of many masked language models like LLaDA. Text generation
commences with an input sequence x that is either partially or entirely populated with special
[MASK] tokens. The generation unfolds over a series of steps. At each step k, the model Mθ

predicts replacement tokens for a subset (or all) of the extant [MASK] tokens. This iterative process
progressively refines the sequence x(k) until a complete output x(0) is achieved (where k typically
decreases from an initial number of steps down to 0). The core predictive mechanism involves the
model Mθ(x

(k)) producing logits over the vocabulary for the positions designated for infilling.

Classifier-Free Guidance (CFG). Classifier-Free Guidance [15] is a widely adopted technique for
enhancing sample quality and controllability in conditional generative models. CFG operates by
linearly interpolating the outputs derived from a conditional model prediction, Lcond(x

(k), c), and
an unconditional model prediction, Luncond(x

(k), ∅). Here, c represents the conditioning information
(e.g., a textual prompt), and ∅ signifies a null or broadly unconditional context. The construction
of this unconditional input can vary; for instance, some approaches derive an unconditional-like
term from a masked version of the conditioning prompt itself [25]. The guided logits, Lguided, are
computed as:

Lguided(x
(k), c) = Luncond(x

(k), ∅) + (w + 1) · (Lcond(x
(k), c)− Luncond(x

(k), ∅)), (1)

where L denotes the model’s output logits, and w is the guidance scale. A guidance scale w > 0
amplifies the influence of the conditioning signal c. A central challenge in applying CFG, particularly
in iterative MLM frameworks, is the effective definition and derivation of the unconditional logits
Luncond(x

(k), ∅), an issue directly addressed by our A-CFG approach.

3.2 Adaptive Classifier-Free Guidance (A-CFG)

Standard CFG, while effective, often relies on a static or generic definition for the unconditional
prediction Luncond(x

(k), ∅) when applied to iterative MLMs. Typically, this involves using a null
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Algorithm 1 Adaptive Classifier-Free Guidance (A-CFG) for one generation step k

1: Input: Current sequence x(k), conditioning c, model Mθ, guidance w, re-masking proportion ρ.
2: Output: Guided logits L(k)

guided.

3: L
(k)
cond ←Mθ(x

(k)) ▷ Compute conditional logits
4: C(k)remaskable ← {j | (x(k))j ̸= [MASK]} ▷ Identify all non-[MASK] token indices
5: CONF (k) ← ∅
6: for j ∈ C(k)remaskable do
7: c

(k)
j ← maxv(softmax(L(k)

cond))j,v ▷ Assess confidence for remaskable tokens

8: Add (c
(k)
j , j) to CONF (k)

9: end for
10: S(k)low-conf ← ∅
11: if |C(k)remaskable| > 0 then
12: N target

m ← ⌈ρ · |C(k)remaskable|⌉
13: N actual

m ← min(N target
m , |C(k)remaskable|)

14: if N actual
m > 0 then

15: Sort CONF (k) by confidence values c(k)j in ascending order.

16: S(k)low-conf ← indices j of the first N actual
m elements in sorted CONF (k).

17: end if
18: end if
19: x

(k)
uncond ← x(k)

20: for j ∈ S(k)low-conf do
21: (x

(k)
uncond)j ← [MASK] ▷ Create dynamic unconditional input

22: end for
23: L

(k)
uncond ←Mθ(x

(k)
uncond) ▷ Compute unconditional logits

24: L
(k)
guided ← L

(k)
uncond + (w + 1) · (L(k)

cond − L
(k)
uncond) ▷ Apply CFG formula

25: return L
(k)
guided

prompt or masking all prompt tokens to simulate an unconditional state. In complex generation
scenarios, the model’s uncertainty can fluctuate significantly. A static or predefined unconditioning
strategy might therefore apply guidance indiscriminately, potentially misdirecting the generation
process or failing to provide sufficient correction where it is most needed. This observation motivates
A-CFG. Our core intuition is that the "unconditional" component of CFG can be made more potent
and targeted if it is dynamically informed by the model’s own state of uncertainty regarding its
current, non-masked tokens. Instead of a global, context-agnostic unconditioning, A-CFG focuses
the guidance mechanism on specific token positions within the sequence x(k) where the conditional
model currently exhibits the greatest predictive ambiguity. By temporarily re-masking these low-
confidence non-[MASK] tokens to form the input for Luncond, we compel the model to reconsider its
predictions at these critical junctures. This adaptive unconditioning aims to make the guidance signal
(Lcond − Luncond) more discriminative and effective, leading to more nuanced and efficient control
over the generation process.

3.2.1 A-CFG Process

The A-CFG process is executed at each iterative generation step k. A detailed algorithmic description
of this process is provided in Algorithm 1. Given the current sequence x(k) (which includes the
prompt c and partially generated text), A-CFG involves the following operations:

Conditional Logit Computation. The base model Mθ first computes the standard conditional
logits based on the current full input x(k):

L
(k)
cond = Mθ(x

(k)). (2)
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These logits represent the model’s initial predictions under full conditioning by c and any already
filled tokens in x(k).

Token-Level Confidence Assessment. From L
(k)
cond, we assess the model’s confidence in its predic-

tions for all non-[MASK] token positions within the current sequence x(k). Let C(k)remaskable be the set of
indices of all token positions j such that (x(k))j ̸= [MASK]. For each position j ∈ C(k)remaskable:

• We compute the softmax probability distribution P
(k)
cond = softmax(L(k)

cond) over the vocabu-
lary.

• The confidence score for position j is defined as the maximum probability in this distribution:
c
(k)
j = maxv(P

(k)
cond)j,v. This corresponds to the probability of the token that the model

would predict with highest likelihood for position j based on L
(k)
cond. A low c

(k)
j suggests the

model is uncertain about the token (x(k))j or its alternatives at that position.

While other confidence metrics (e.g., entropy of P
(k)
cond,j) could be considered, we find that the

maximum softmax probability provides a simple yet effective measure.

Identification of Low-Confidence Tokens for Re-masking. Based on the assessed confidences
c
(k)
j for tokens at positions j ∈ C(k)remaskable, a subset S(k)low-conf ⊆ C

(k)
remaskable of positions exhibiting the

lowest confidence is selected for adaptive re-masking. The extent of this adaptive intervention is
controlled by a re-masking proportion hyperparameter, ρ. The target number of tokens to re-mask,
N target

m , is calculated as a proportion of the total number of non-[MASK] tokens within C(k)remaskable at
step k:

N target
m = ⌈ρ · |C(k)remaskable|⌉. (3)

This heuristic scales the intensity of A-CFG intervention with the amount of non-masked content
available for re-evaluation. The actual number of tokens selected for re-masking, N actual

m , is N actual
m =

min(N target
m , |C(k)remaskable|). If |C(k)remaskable| = 0 or N actual

m = 0, no re-masking occurs for A-CFG, and
S(k)low-conf is empty. Otherwise, S(k)low-conf contains the indices of these N actual

m tokens with the lowest
confidence scores.

Construction of the Dynamic Unconditional Input. A localized “unconditional” input sequence,
x
(k)
uncond, is synthesized by modifying the current sequence x(k). Specifically, the non-[MASK] tokens

at positions identified in S(k)low-conf are replaced with the special [MASK] token:

(x
(k)
uncond)j =

{
[MASK] if j ∈ S(k)low-conf,

(x(k))j otherwise.
(4)

If S(k)low-conf is empty (i.e., no tokens were selected for re-masking), then x
(k)
uncond is identical to x(k).

When re-masking occurs, this transformation yields an input where the model is explicitly prompted
to reconsider its predictions for positions it was previously uncertain about, effectively creating a
more challenging or “less informed” context for these specific tokens by erasing its prior commitment
at those positions.

Unconditional Logit Computation. Using this dynamically constructed input x(k)
uncond, the model

Mθ computes the “unconditional” logits:

L
(k)
uncond = Mθ(x

(k)
uncond). (5)

If no adaptive re-masking occurred (i.e., x(k)
uncond = x(k)), then L

(k)
uncond will be identical to L

(k)
cond. These

logits, L(k)
uncond, reflect the model’s predictions when key points of prior uncertainty are deliberately

obscured (or not, if no such points met the criteria), providing a targeted baseline for guidance.
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Application of CFG Formula for Guided Logits. Finally, the guided logits L(k)
guided for the current

step k are computed using the standard CFG formula (Equation 1), now employing the adaptively
derived L

(k)
uncond and the original L(k)

cond:

L
(k)
guided = L

(k)
uncond + (w + 1) · (L(k)

cond − L
(k)
uncond). (6)

If L(k)
uncond = L

(k)
cond (e.g., due to no adaptive re-masking), then L

(k)
guided = L

(k)
cond, implying that A-CFG

applies no effective guidance shift in this specific scenario. These L
(k)
guided are then used to sample or

select the tokens to infill the [MASK] positions for the next iteration x(k−1).

4 Experiments

In this section, we empirically evaluate the effectiveness of Adaptive Classifier-Free Guidance
(A-CFG). We first describe our experimental setup, including datasets, baseline models, evaluation
metrics, and key implementation details. We then present quantitative results from Table 1, comparing
LLaDA with A-CFG against LLaDA with standard CFG, LLaDA without guidance, and other state-
of-the-art models. Subsequently, we conduct ablation studies to analyze the impact of A-CFG’s core
hyperparameter. Finally, we provide qualitative examples to illustrate the behavior and benefits of
our proposed method.

4.1 Experimental Setup

4.1.1 Datasets and Metrics

We evaluate A-CFG on a diverse suite of standard benchmarks covering general language understand-
ing, mathematical and scientific reasoning, and planning tasks.

General Language Understanding: MMLU (Massive Multitask Language Understanding) [12],
BBH (Big-Bench Hard) [34], ARC-C (AI2 Reasoning Challenge - Challenge Set) [7], Hellaswag [44],
TruthfulQA [21], WinoGrande [31], and PIQA (Physical Interaction QA) [4].

Mathematics & Science Reasoning: GSM8K (Grade School Math 8K) [8], MATH [13], and GPQA
(Graduate-Level Google-Proof Q&A) [28].

Planning Tasks: Countdown [42] and Sudoku [42].

Evaluation mode. Closed-form tasks supply a prompt with a finite set of candidate answers; we
compute each candidate’s conditional log-likelihood and select the most likely. Open-ended tasks
require free-form generation; we sample responses and score them with task-specific metrics such as
exact-match accuracy.

Likelihood estimation. For likelihood-based evaluations we approximate the conditional perplexity
bound with Monte-Carlo sampling. A single sample suffices when only one target token is queried
(e.g. MMLU). We adopt the same setting as LLaDA, for all other multiple-token tasks we draw 128
samples, which we found to stabilise variance without adding prohibitive cost.

Generation hyper-parameters. Unless otherwise stated, we set the answer length to 256 tokens and
run the reverse diffusion process for 256 steps (one token revealed per step).

4.1.2 Baseline Models and Methods

Our primary evaluation centers on the LLaDA 8B model, assessed under three guidance scenarios:
1) No Guidance (base LLaDA), 2) Standard CFG (Std CFG), where conventional Classifier-Free
Guidance [15] uses a fully masked target sequence for unconditioning, and 3) our proposed Adaptive
CFG (A-CFG). For both Std CFG and A-CFG, the guidance scale w is tuned. To investigate A-CFG’s
broader applicability, we also evaluate it on the Dream-7B diffusion model [43] against its baseline.
All results are contextualized against publicly reported scores from comparable autoregressive (AR)
models like LLaMA3 8B [35], LLaMA2 7B [36], and Qwen2 7B [6], as detailed in Table 1.
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Table 1: Benchmark Results of Pre-trained LLMs. LLaDA and Dream-7B are diffusion models.
Baseline scores for LLaDA 8B and Dream-7B reflect our own re-evaluation under a consistent
experimental protocol. Results indicated by † are sourced from [6]. The numbers in parentheses
represent the number of shots used for evaluation. “-” indicates unknown data or data not applicable.

Benchmark LLaDA 8B LLaDA 8B (Std CFG) LLaDA 8B (A-CFG) Dream-7B Dream-7B (A-CFG) LLaMA3 8B LLaMA2 7B Qwen2 7B†

Model Diffusion Diffusion Diffusion Diffusion Diffusion AR AR AR

General Tasks

MMLU 65.9 (5) 65.8 (5) 66.1 (5) 69.5 (5) 69.7 (5) 65.4 (5) 45.9 (5) 70.3 (5)
ARC-C 45.5 (0) 46.3 (0) 47.8 (0) 59.8 (0) 60.8 (0) 53.1 (0) 46.3 (0) 60.6 (25)
Hellaswag 70.8 (0) 71.4 (0) 72.6 (0) 73.3 (0) 74.4 (0) 79.1 (0) 76.0 (0) 80.7 (10)
TruthfulQA 45.5 (0) 45.1 (0) 46.2 (0) 43.9 (0) 45.1 (0) 44.0 (0) 39.0 (0) 54.2 (0)
WinoGrande 74.5 (5) 75.1 (5) 75.9 (5) 73.3 (5) 72.5 (5) 77.3 (5) 72.5 (5) 77.0 (5)
PIQA 74.9 (0) 74.4 (0) 76.1 (0) 75.8 (0) 76.2 (0) 80.6 (0) 79.1 (0) -

Mathematics & Science

GSM8K 70.7 (4) 70.8 (4) 73.5 (4) 76.9 (4) 77.9 (4) 53.1 (4) 14.3 (4) 80.2 (4)
GPQA 26.1 (5) 29.4 (5) 33.3 (5) 36.6 (5) 36.8 (5) 25.9 (5) 25.7 (5) 30.8 (5)

Planning Tasks

Countdown 15.3 (8) 14.2 (8) 15.8 (8) 14.6 (8) 15.2 (8) 3.7 (8) - -
Sudoku 35.0 (8) 34.0 (8) 42.0 (8) 72.0 (8) 80.0 (8) 0.0 (8) - -

4.1.3 Implementation Details

For LLaDA’s iterative generation, we use 256 sampling steps with low-confidence remasking. For
Standard CFG, the guidance scale w was selected from {0.5, 1.0, 1.5, 2.0} based on performance on
the validation set of each respective task. For our A-CFG, the guidance scale w was similarly tuned.
Once a value of w is chosen for a given model, the same w is kept fixed across all downstream
benchmarks for that model. The adaptive re-masking proportion ρ (determining the fraction of
previously generated tokens to re-mask based on low confidence, as defined in Section 3.2.1) was
set to 0.7. The confidence for token selection in A-CFG is based on the softmax probability of the
predicted token at each masked position. All experiments were conducted using NVIDIA H800
GPUs.

4.2 Benchmark Results

The efficacy of Adaptive Classifier-Free Guidance is demonstrated in Table 1, which presents a
comprehensive comparison of LLaDA 8B equipped with A-CFG against its counterparts using no
guidance and standard CFG, alongside other leading diffusion and autoregressive models.

A-CFG Enhances LLaDA Performance: Our results clearly indicate that A-CFG substantially
elevates the performance of LLaDA 8B. Crucially, A-CFG consistently outperforms LLaDA 8B with
Standard CFG, underscoring the benefits of its dynamic, confidence-aware unconditioning mecha-
nism. The advantages are particularly pronounced on complex reasoning and planning benchmarks;
for instance, on GPQA, A-CFG achieves a score of 33.3, a +3.9 point improvement over Standard
CFG (29.4), and on the Sudoku planning task, A-CFG (42.0) surpasses Standard CFG (34.0) by a sig-
nificant +8.0 points. This trend of superior performance over Standard CFG extends to mathematical
reasoning (e.g., +2.7 points on GSM8K) and across general language understanding tasks such as
ARC-C, Hellaswag, and WinoGrande. When compared to LLaDA 8B with No Guidance, A-CFG
also yields substantial gains, for example, +7.2 points on GPQA and +7.0 points on Sudoku. These
findings highlight A-CFG’s capability to more effectively steer the iterative generation process in
LLaDA, leading to improved task adherence and overall output quality compared to both unguided
generation and conventional CFG.

Generalizability to Other Diffusion Models: To assess whether the principles of A-CFG extend
beyond LLaDA, we integrated it into the Dream-7B model. Preliminary results in Table 1 suggest
that A-CFG brings similar benefits, for instance, improving Sudoku performance by +8.0 points
(80.0 vs. 72.0) and ARC-C by +1.0 point (60.8 vs. 59.8) for Dream-7B. These observations suggest
that A-CFG’s adaptive unconditioning is a promising method for enhancing other iterative masked
diffusion models.

8



Competitive Standing Against Autoregressive Models: Equipped with A-CFG, the diffusion-based
LLaDA 8B demonstrates a strong competitive posture against contemporary autoregressive (AR)
models of comparable scale. LLaDA 8B (A-CFG) particularly excels in mathematical reasoning,
with a GSM8K score of 73.5 that surpasses several listed AR counterparts like LLaMA3 8B (53.1).
On the challenging GPQA benchmark, its score of 33.3 is notably higher than LLaMA3 8B (25.9)
and competitive with Qwen2 7B (30.8). The Sudoku planning task further showcases this strength,
where LLaDA 8B (A-CFG) achieves 42.0, markedly outperforming LLaMA3 8B (0.0). While leading
AR models such as Qwen2 7B still exhibit an advantage on some general language understanding
benchmarks, A-CFG significantly narrows the performance gap and, in specific domains demanding
complex reasoning or planning, positions LLaDA as a compelling alternative.

In summary, the empirical results affirm A-CFG as a potent enhancement for iterative diffusion
language models. It not only improves upon standard CFG techniques but also enables diffusion
models like LLaDA to achieve highly competitive, and in some cases superior, performance compared
to strong AR baselines, especially in tasks requiring sophisticated reasoning.

4.3 Ablation Studies

To elucidate the contributions of A-CFG’s core components and assess its sensitivity to key hyperpa-
rameters, we conducted targeted ablation studies. This section focuses on the impact of the adaptive
re-masking proportion, a critical parameter in A-CFG.

4.3.1 Impact of the Adaptive Re-masking Proportion (ρ)

We investigated the influence of ρ on the ARC-C test set, chosen as a representative benchmark where
A-CFG demonstrated clear benefits and sensitivity to guidance parameters. The main LLaDA 8B
(A-CFG) result for ARC-C (47.8 accuracy) reported in Table 1 employed ρ = 0.7.

Table 2a presents the performance on ARC-C as ρ is varied across the range [0.1, 0.9]. The results
show a clear trend: ARC-C accuracy improves steadily as ρ increases from 0.1 (45.9%) to 0.3
(46.5%), 0.5 (46.8%), and culminates at 0.7 (47.8%). This suggests that for a task like ARC-C, a more
substantial re-masking of low-confidence generated tokens is beneficial, allowing A-CFG to exert a
stronger corrective influence. However, increasing ρ further to 0.9 leads to a decline in performance,
indicating that excessively aggressive re-masking can become counterproductive, potentially by
erasing too much valuable context from the already generated sequence.

4.3.2 Impact of the Guidance Scale (w)

Beyond the re-masking proportion ρ, the guidance scale w is a critical hyperparameter for any
CFG-based method. We varied w across the set {0.5, 1.0, 1.5, 2.0}, the same range used for tuning
in our main experiments. Table 2b illustrates the performance on ARC-C as w is adjusted. We
observe that A-CFG performance is sensitive to the guidance scale. Specifically, a small w = 0.0
(equivalent to no CFG guidance beyond the adaptive masking) yields a baseline accuracy of 45.5%.
As w increases, accuracy improves, reaching a peak of 47.8% at w = 0.5 and w = 1.0. This suggests
that a moderate guidance strength effectively leverages the dynamically constructed unconditional
input from A-CFG. However, further increasing w to 1.5 and 2.0 leads to a slight degradation in
performance (47.5% and 47.6%, respectively). This indicates that an overly strong guidance scale
might overemphasize the conditional signal at the expense of fluency or correctness, even with
A-CFG’s targeted unconditioning. The optimal performance at w = 0.5 aligns with the value used
for ARC-C in our main results (Table 1).

4.4 Qualitative Analysis

To provide further insight into A-CFG’s dynamic mechanism, Table 3 visualizes the iterative re-
finement process for mathematical reasoning examples from the GSM8K dataset. These examples
illustrate how A-CFG navigates the generation process. For instance, in the "Natalia’s clips" problem,
one can observe that while foundational elements are established in early steps (e.g., Natalia, sold),
crucial components of the arithmetic reasoning, such as operators, intermediate results, or the final
sum, are often resolved or corrected in later iterations. This behavior aligns with A-CFG’s core
principle: by identifying tokens or positions where the model exhibits low predictive confidence
during the iterative process (potentially due to incomplete or inconsistent intermediate reasoning
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Table 2: Ablation studies on ARC-C. (a) Impact of guidance scale (w). (b) Impact of adaptive
re-masking proportion (ρ). The main result for ARC-C in Table 1 used ρ = 0.7 and w = 0.5. Scores
are Accuracy (%).

(a) Re-masking Proportion (ρ)

Benchmark Re-masking Proportion (ρ)
0.1 0.3 0.5 0.7 0.9

ARC-C 45.9 46.5 46.8 47.8 46.0

(b) Guidance Scale (w)

Benchmark Guidance Scale (w)
0.0 0.5 1.0 1.5 2.0

ARC-C 45.5 47.8 47.8 47.5 47.6

Table 3: Visualization of A-CFG’s iterative refinement process for math reasoning tasks. Darker
shades indicate tokens that were filled or corrected in later stages of the adaptive generation, often
representing points of initial uncertainty that A-CFG helped resolve.

Task A-CFG Refinement Process
Prompt: Natalia sold clips to 4 of her friends. She sold 8 clips to each friend. Then she bought 15

more clips. How many clips does Natalia have now?
Natalia sold 4 friends. 8 clips each. So, 4 * 8 = 32 clips. Then bought

15 more. Natalia has 32 + 15 = 47 clips. Answer: 47 .

Prompt: John has 12 apples. He gives half to Mary. Then Mary buys twice as many apples as she
received from John. How many apples does Mary have now?
John has 12 apples. Gives half to Mary. So Mary gets 12 / 2 = 6

apples. Then Mary buys twice as many (so 6 * 2 = 12 ). Mary now has

6 + 12 = 18 apples. Answer: 18 .

steps), A-CFG dynamically re-masks these specific points. This targeted re-masking compels the
model to reconsider and refine its predictions in these areas of ambiguity, thereby facilitating the
construction of a coherent and accurate multi-step reasoning chain. Similarly, in the "John’s apples"
example, later steps refine the calculation, ensuring the intermediate and final quantities are correctly
derived (e.g., 6+12=18). These qualitative examples underscore A-CFG’s ability to leverage its
adaptive unconditioning to focus guidance on evolving points of uncertainty, thereby enhancing the
model’s capacity to resolve errors and improve the fidelity of complex, multi-step generations.

5 Conclusion

This paper introduced Adaptive Classifier-Free Guidance (A-CFG), a novel method to enhance
conditional generation in iterative masked language models. By dynamically constructing the
unconditional input for CFG based on the model’s instantaneous predictive confidence in its already
generated tokens, A-CFG offers a more targeted and responsive guidance mechanism. Our extensive
experiments, particularly within the LLaDA framework, demonstrate that A-CFG significantly
outperforms standard CFG approaches and unguided baselines, yielding substantial improvements
on diverse benchmarks, especially in complex reasoning and planning tasks. The results also
highlight A-CFG’s potential to bolster the competitiveness of diffusion-based language models
against autoregressive counterparts. This work underscores the value of leveraging model uncertainty
for more nuanced control in discrete diffusion, opening promising avenues for future research into
adaptive generation strategies.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contribution (A-CFG) and
its demonstrated improvements over standard CFG and baselines, which aligns with the
experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses in Section 4.3.1 (lines 293-296) that excessively aggressive
re-masking (a high p value) can be counterproductive, indicating a limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper presents an empirical method and experimental results, without
formal theoretical claims or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides implementation details (Section 4.1.3), model specifics,
dataset descriptions (Section 4.1.1), and pseudocode (Algorithm 1), enabling reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available benchmark datasets and models, and the
authors intend to release code per NeurIPS policy.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings, including datasets (4.1.1), baseline models (4.1.2), and
hyperparameter choices/tuning (4.1.3), are specified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports absolute performance improvements on benchmarks (Table
1), which show substantial gains indicative of significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper states that experiments were conducted on NVIDIA H800 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research focuses on algorithmic improvements for language models and
does not present ethical concerns that would violate the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on foundational algorithmic improvements for generative
models and does not explicitly discuss broader societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper proposes a method for existing models and does not introduce new
high-risk models or datasets requiring specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites original sources for all datasets and models used (e.g., LLaDA,
MMLU, GSM8K), respecting standard academic crediting practices.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a new method (A-CFG), which is documented, but does
not release new datasets or standalone models as assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:The research does not involve crowdsourcing or direct experiments with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, so IRB approval is not applica-
ble.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper’s core methodology (A-CFG) is designed for and evaluated on large
language models (LLaDA, Dream-7B), which is central to the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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