
Test-time Adaptation in Non-stationary Environments
via Adaptive Representation Alignment

Zhen-Yu Zhang
Center for Advanced Intelligence Project, RIKEN

zhen-yu.zhang@riken.jp

Zhiyu Xie
Stanford University

zhiyuxie@stanford.edu

Huaxiu Yao
UNC-Chapel Hill

huaxiu@cs.unc.edu

Masashi Sugiyama
Center for Advanced Intelligence Project, RIKEN

Graduate School of Frontier Sciences, The University of Tokyo
sugi@k.u-tokyo.ac.jp

Abstract

Adapting to distribution shifts is a critical challenge in modern machine learning,
especially as data in many real-world applications accumulate continuously in the
form of streams. We investigate the problem of sequentially adapting a model to
non-stationary environments, where the data distribution is continuously shifting
and only a small amount of unlabeled data are available each time. Continual test-
time adaptation methods have shown promising results by using reliable pseudo-
labels, but they still fall short in exploring representation alignment with the
source domain in non-stationary environments. In this paper, we propose to
leverage non-stationary representation learning to adaptively align the unlabeled
data stream, with its changing distributions, to the source data representation
using a sketch of the source data. To alleviate the data scarcity in non-stationary
representation learning, we propose a novel adaptive representation alignment
algorithm called Ada-ReAlign. This approach employs a group of base learners
to explore different lengths of the unlabeled data stream, which are adaptively
combined by a meta learner to handle unknown and continuously evolving data
distributions. The proposed method comes with nice theoretical guarantees under
convexity assumptions. Experiments on both benchmark datasets and a real-world
application validate the effectiveness and adaptability of our proposed algorithm.

1 Introduction

Machine learning algorithms, particularly deep learning models, have achieved remarkable success
when the test data share the same distribution of the training data. However, in many real-world
applications, the learning environment is changing over time, resulting in the test data inevitably
encountering natural variations. For example, once an autonomous driving model is deployed,
external factors such as weather changes (e.g., snow, frost, or fog) and internal factors like sensor
degradation (e.g., causing Gaussian noise, defocus, or blur) can negatively impact its performance.
Unfortunately, many well-trained models are highly sensitive to such distribution shifts and may
suffer significant performance degradation, even when the shifts are minor [12]. Moreover, once
deployed, models often lack access to the original training data, making it essential to equip the
learning system with the ability to adapt to non-stationary environments in test time [29, 45].

A promising line of research is known as test-time adaptation (TTA), which focuses on adapting mod-
els to new environments using only unlabeled data. Pioneering approaches consider adaptation to a
fixed distribution, including introducing auxiliary self-supervised learning tasks [30, 28] or employing

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

entropy minimization to update the model [26, 32]. In addition, aligning the representation of unla-
beled data back to the source representation has also been proposed to improve performance [28, 10].
More recently, several seminal works have explored continual test-time adaptation with unlabeled
data streams, where data arrive continuously, and the distribution may change over time. These
algorithms often rely on generating and selecting high-confidence pseudo-labels to update the model,
with techniques such as reliable entropy minimization [34, 25]. Non-parametric approaches have also
be proposed, leveraging both source labels and pseudo-labeled data for adaptation [40]. Despite these
advances, the exploration of effective representation alignment with the source data representation in
non-stationary environments remains underexplored.

In this paper, we propose a non-stationary representation learning approach to adaptively align the
unlabeled data stream with changing distributions to the source data representation, leveraging the
marginal information from the source distribution. Our framework follows a common configuration
used in prior work, which assumes the model comprises a representation learning module and a linear
classifier [30, 32]. The core idea is to continually update the representation learning module so that it
projects non-stationary unlabeled data at each time step to a distribution aligned with the source data
representation, relying solely on the source marginal distribution. Different from prior representation
alignment methods for fixed distributions [23, 28], the key challenge in non-stationary representation
learning lies in the limited amount of data available at each time. Updating the model with only a
single batch of data can introduce high variance due to the small sample size, while relying on the
entire data stream risks high bias as the distribution evolves over time.

To handle the challenges posed by the unknown and ever changing distributions and limited data in
each round, we propose a novel algorithm named adaptive representation alignment (Ada-ReAlign).
Drawing inspiration from recent advances in non-stationary online learning [38, 43, 41], the represen-
tation learning module employs a group of base models learning with varying window sizes to explore
different part of the data stream, along with a meta learner that adaptively combines their output to
learn a well-aligned representation. We then further refine the linear classifier by applying entropy
minimization, with regularization to the initial one, based on the aligned the data representation. Our
algorithm enjoys nice theoretical guarantees with convex models and loss functions, providing a solid
foundation for its empirical success. Through benchmark experiments and a real-world application,
we demonstrate the effectiveness and efficiency of our method in improving performance under
non-stationary environments. We summarize our contributions as follow:

(1) We propose non-stationary representation learning for continual test-time adaptation, which
adaptively aligns non-stationary data with the source representation using a sketch of source data.

(2) We propose a novel online learning algorithm that adaptively aligns representations to the source
by exploring variations across different periods of the data. Theoretical analysis demonstrates that
the proposed method approximates the optimal model sequence for convex losses and models.

(3) We demonstrate the effectiveness and efficiency of our method for test-time adaptation in non-
stationary environments through benchmark experiments and a real-world application.

Organization. We first introduce related work in Section 2. In Section 3, we present our main
results, including the proposed algorithm with corresponding theoretical analysis. Section 4 reports
the experiment results, followed by the conclusion in Section 5. All proofs and omitted details are
provided in the Appendix.

2 Related Work

In this section, we present the most relevant literature related to our learning setting and the techniques
used in our approach. A more detailed description is provided in Appendix B.

Continual Test-time Adaptation in Non-stationary Environments. Recently, continual test-time
adaptation in non-stationary environments has gained significant attention. Due to the evolving
nature of streaming data, the data distribution naturally changes over time. A simple idea involved
recovering the model weights from the initial model after each adaptation step of a mini-batch, such
as MEMO [39], episodic Tent [32], or DDA [10]. However, these sequential one-step adaptation
methods could be insufficient because they only explore the limited number of data at each round,
and thus cannot explore the knowledge of the accumulated historical data.

2

To tackle this challenge, CoTTA [34] was introduced, generating robust pseudo-labels through
a weighted average of historical models while preserving the initial model’s parameters. It also
stochastically replaces the model’s parameters with the initial model’s parameters at each round
to resist distribution change. Building on this, EcoTTA [27] and BcoTTA [20] improved param-
eter and memory efficiency during continual adaptation. Similarly, SAR [25] updated the model
based on reliable entropy and reset it to its initial state whenever the entropy exceeds a predefined
threshold. AdaNPC [40] resisted non-stationarity by constructing a memory buffer to store historical
distributions. Although these methods have demonstrated empirical success in various real-world ap-
plications, they rely on prior knowledge to estimate pseudo-labels or require access to source-labeled
data during adaptation.

Adapting to Non-stationary Environments with Offline Labeled Data. This line of research
focuses on specific types of distribution shifts, employing adaptive learning with weighted source-
labeled data to handle continuous distribution changes. Previous studies have tackled the challenge
of non-stationarity in the context of online label shift, where only the class priors change. In such
scenarios, an unbiased loss estimator is used to estimate the loss at each round, enabling dynamic
regret minimization in non-stationary environments [2]. Another work investigated the problem
of continuous covariate shift, where only the input distribution changes [41]. They reframed this
problem as an online density ratio estimation task and proposed a generic reduction of the density
ratio estimation problem to dynamic regret optimization. However, these approaches assume access
to the offline training data for adaptation, which may not always be feasible in practice.

3 Algorithm and Theory

We start by introducing the notations and problem formulation, followed by a detailed explanation of
the proposed Ada-ReAlign algorithm and its theoretical analysis.

3.1 Problem Formulation

In this part, we first formulate the learning problem. We assume access to a well-trained model
on source data, along with a sketch of them. During adaptation, unlabeled data arrive sequentially
from non-stationary environments, where the underlying data distribution could change over time.
Following previous work [30, 32], we assume the model consists of a representation learning module
and a linear function as classification module. Let ϕt(·) : X 7→ Rd be the representation learning
module, and let the linear function be represented by a matrix wt ∈ Rk×d where k = |Y|. Thus,
the prediction model is defined as ft(·) = ⟨wt, ϕt(·)⟩. We denote the representation module of the
well-trained initial model on the source data by ϕ0(·) and its corresponding linear function by w0.

As streaming data are collected in non-stationary environments, the underlying data distribution
remains both unknown and ever-changing. The learning task is framed as a sequential prediction
problem over T rounds, with T > 0. At each round t ∈ [T] := {1, . . . , T}, the learner receives a
batch of unlabeled data St = {xt,i}Nt

i=1, sampled independently and identically from the distribution
Dt, where Nt ≥ 1 and Dt could change over time. Our objective is to learn a sequence of models
{ft}Tt=1 that perform well across the evolving distributions {Dt}Tt=1.

We define µ0 ∈ Rd and Σ0 ∈ Rd×d as the mean and covariance of the representation distribution
of the source data with the initial model, where µ0 = Ex∼S0 [ϕ0(x)], Σ0 = Ex∼S0 [(ϕ0(x) −
µ0)

T (ϕ0(x)− µ0)], and d denotes the dimensionality of the feature embedding. This approach of
sketching the source data does not rely on label information from the source data, which is particularly
advantageous in tasks involving privacy concerns. Moreover, marginal information can be generated
using coreset techniques [31, 16], eliminating the need for direct access to the original source data.

Following the online learning literature [11], we use dynamic regret as the performance measure. The
performance of the model sequence {ft}Tt=1 is evaluated through the average excess risk, defined as:

D-Regret({ft}Tt=1) :=

T∑
t=1

Rt(ft)−
T∑
t=1

Rt(f
∗
t), (1)

where Rt(f) = E(x,y)∼Dt
[ℓ(f(x), y)] is the expected loss at time t with loss function ℓ, f∗t ∈

argminf∈F Rt(f) represents the corresponding optimal model in the hypothesis space at each round.

3

When the distribution of unlabeled data stream is fixed, e.g., Dt = D1, ∀t ∈ [T], this formulation
recover back to the previous setting of TTA to a stationary environment [30, 32]
Remark 1 (Dynamic Regret and Catastrophic Forgetting). The dynamic regret defined in Eqn. (1)
quantifies the difference between the performance of the learned model and the optimal model at
each time step. In our formulation, the data distribution at any given time step can correspond to
any previously encountered distribution, and the model has no prior knowledge of this distribution
during prediction. Therefore, if the performance of the model remains comparable to that of the
optimal model that minimizes the expected loss at that time step, this indicates that the learned model
successfully retains previously acquired knowledge and mitigates the catastrophic forgetting issue.

3.2 Representation Alignment with Source Sketch

To adapt the model to a new target domain, a natural intuition is that if the data in the target domain
can be accurately projected back to their representation in the source domain, the well-trained
source model can be reused for predictions. Based on this idea, we keep the classification module
fixed by setting wt = w0 and adapt the representation learning module {ϕ̂t}Tt=1 to ensure that the
representation of the non-stationary unlabeled data stream aligns closely with that of the source data.

We employ dynamic regret as the performance measure for representation learning in non-stationary
environments and define the objective as:

min
ϕt

T∑
t=1

Lt(ϕt, ϕ0)−
T∑
t=1

Lt(ϕ
∗
t , ϕ0), (2)

where Lt(·, ·) represents the representation discrepancy between ϕt and ϕ0 in each round, where ϕt
is the model learned at round t. Here ϕ∗t denotes the optimal representation learning function, defined
as ϕ∗t = argminϕ Lt(ϕ, ϕ0).

We now define the loss function Lt(·, ·). Given the challenges in accurately estimating representation
discrepancy, we propose to use a surrogate loss function to approximate it. Inspired by prior work on
representation learning with deep neural networks [37, 28], we model the representation distribution
using a Gaussian approximation. Specifically, we measure the discrepancy as the gap in mean
and covariance between the projected unlabeled data and the source data representation, defined as
follows:

Lt(ϕ, ϕ0) = ∥µt − µ0∥22 + λ∥Σt − Σ0∥2F
where λ is the hyperparameter, µt = Ex∼Dt

[ϕt(xt)], Σt = Ex∼Dt
[(ϕt(x) − µt)

T (ϕt(x) − µt)],
∥ · ∥2 denotes the Euclidean norm, and ∥ · ∥F denotes the Frobenius norm. To improve numerical
stability, we also add the identity matrix multiplied with a small constant to each covariance matrices
Σt to reduce their condition number.

Since we only have empirical data at each round, we use the empirical loss to approximate the
discrepancy. We define µ̂t =

∑nt

i=1 ϕt(xi)/nt and Σt =
∑nt

i=1[(ϕt(x) − µ̂t)
T (ϕt(x) − µ̂t)]/nt,

thus we have the empirical estimation of the divergence,

L̂t(ϕ, ϕ0) = ∥µ̂t − µ̂0∥22 + ∥Σ̂t − Σ̂0∥2F (3)

At first glance, it may seem straightforward to minimize the loss defined in Eqn. (3) to update the
representation learning module. However, the limited amount of data available in each round poses a
challenge to obtain a well-generalized model. Therefore, we leverage online learning techniques to
reuse a suitable number of historical data, ensuring effective learning of the representation model.

Remark 2 (Comparison with Distribution Alignment Approaches). Aligning the representations of
unlabeled data with those of source data has been explored in works such as [23, 28]. These studies
primarily focus on adapting the model to a fixed domain with a large amount of unlabeled data. Our
problem involves adaptation to non-stationary environments, where the data distribution can change
continuously with a limited number of data available in each round. This non-stationary setting
requires the development of novel methods to adaptively leverage historical data for adaptation.

The proposed discrepancy measure aligns the global representation distribution between the source
data and the new unlabeled data. Additionally, exploring class-specific prototypes can further enhance
performance [17, 28], which we leave for future investigation.

4

…

Figure 1: An illustration of our problem and the Ada-ReAlign algorithm. The test data accumulate over time
with changing distributions, and only a limited number of unlabeled data are available at each step. Initially,
an offline model and the statistics of the offline data are provided, followed by continuous adaptation to the
new distributions. Ada-ReAlign is composed of a group of base learners and a meta learner. Each base
learner operates with a different window size by restarting, learning representations for its respective period
by minimizing the discrepancy from the source representation. The outputs from the base learners are then
combined by the meta learner to produce the final representation.

3.3 Adaptive Representation Alignment

In this part, we present the proposed algorithm. Inspired from the online ensemble framework [43]
developed in recent research on non-stationary online learning, we propose a two-layer adaptive
learning algorithm. This approach is designed to handle the unknown change in data distribution and
the limited data available in each round.

Base Learner. We construct a set of base learners {ϕi}Ki=1, each with a different learning window
size. These base learners initialize their parameters as ϕ0. As shown in Figure 1, at each round, they
perform online gradient descent using the loss defined in Eqn. (3), i.e,

ϕit+1 = ϕit −∇ϕL̂t(ϕ
i
t, ϕ0). (4)

In addition to performing gradient descent, each base learner is assigned a learning window of varying
size, determined by its index. As an example, the i-th base learner trains on data segments of length
2i. At each round t = 2i, its representation function ϕit is re-initialized to the initial state ϕ0 and a
new learning process is initiated using online gradient descent – a procedure we refer to as a “restart”.

Intuitively, when the data distribution shifts gradually or stabilizes in a new environment, the base
learner that leverages the entire historical dataset tends to perform well. In contrast, when the
distribution undergoes abrupt changes, a base learner that frequently restarts and relies only on recent
data can achieve competitive performance [18]. The flexibility of exploring a set of base learners
allows us to design a meta learner that strategically combines these base learners, optimizing the
overall performance of the ensemble algorithm.

Meta Learner. As shown in Figure 1, we employ a meta learner to combine the base learners that
learn on different time length. To implement the meta learner, we employ the AdaNormalHedge
algorithm with the geometric covering scheme [24]. At each round, the meta learner receives a set of
loss (in Eqn. (3)) from the base learners and combine them to generate the output for round t. Let pit
be the weight assigned to the i-th base learner at round t. The meta leaner outputs

ϕ̂t(xt) =
∑
i

pit · ϕ̂it(xt). (5)

The weight pit for each base-learner f it at round t is updated by first calculating

pit ∝ Φ(Rit−1 + 1, Cit−1 + 1)− Φ(Rit−1 − 1, Cit−1 + 1), (6)

where Φ(R,C) = exp([R]2+/3C), Lt =
∑
i p
i
t · Lit, and

Rit = Rit−1 + (Lt − Lit), Cit = Cit−1 + |Lt − Lit|.

We set Rit and Cit to 0 when t = 2i for each restarted base learner.

5

Algorithm 1 Adaptive Representation Alignment

1: Initialization: ∀i ∈ [K], ϕit = ϕ0
2: for t = 1 to T do
3: for i = 0 to K do
4: if 2i mod t == 0 then
5: set ϕit = ϕ0, Rit = 0, Cit = 0
6: end if
7: end for
8: update base learners by Eqn. (4) and update weight pt ∈ ∆K according to Eqn. (6)
9: combine base learners according to Eqn. (5)

10: update classifier module according to Eqn. (7)
11: end for

After updating the representation learning model, we follow previous studies on TTA [32, 39, 25]
by employing entropy minimization with a regularization term. This regularization ensures that the
updated linear classification model remains close to the initial one, enhancing performance, which is
defined as

ℓtentro(w,x) = −
∑
y∈Y

[⟨w, ϕt(x)⟩]y log([⟨w, ϕt(x)⟩]y),

where [·]y is taking the y-th entry of the vector [·]. This regularization term encourages the model
to generate confident predictions on unlabeled data by assigning higher probabilities to the most
likely classes and lower probabilities to less likely ones. As a result, it helps prevent the model from
becoming overly uncertain and making unreliable predictions. We then minimize the entropy of the
predictions using the updated representation learning model with regularization, that is,

wt = argmin
w

Nt∑
i=1

ℓtentro(w,xi) + ∥w −w0∥2. (7)

We summarize the main procedures of the proposed algorithm in Algorithm 1.
Remark 3 (Computational Efficiency). Since the i-th base learner is restarted every 2i-th round,
within a time interval of size T , we only need to maintain at most log(T) base learners. For example,
with T = 100, 000, only 11 base learners are required. In the next section, we will demonstrate that
this is sufficient to achieve the optimal dynamic regret for convex losses and models.

Note that the ensemble structure requires maintaining multiple base learners, to further enhance the
computational efficiency, we follow the spirit of [42] to reduce the base learners’ update complexity,
which involves updating only the affine parameters of the normalization layers similar to those used
in previous studies [21, 32, 28, 25]. The affine parameters typically comprise less than 1% of the
total model parameters [32], making them particularly efficient to update.

3.4 Theoretical Analysis

In this part, we provide the theoretical analysis of our proposed Ada-ReAlign algorithm for convex
losses and models. For convex representation learning models, such as input convex neural net-
works [1], and convex loss functions, we show that the proposed algorithm achieves a dynamic regret
guarantee, using the optimal representation sequence {ϕ∗t }Tt=1 as the comparator.
Theorem 1. Assuming ϕt is convex, Lt(ϕ) is a convex with respect to ϕ, and the input xt, the value
of the loss function, and its gradient are all bounded. The Ada-ReAlign algorithm satisfies

E

[
T∑
t=1

Lt(ϕt)−
T∑
t=1

Lt(ϕ
∗
t)

]
≤ O(T 2/3V

1/3
T),

where function variation VT =
∑T
t=2 supϕ |Lt(ϕ)−Lt−1(ϕ)|. Detailed proofs are in Appendix C.1.

Theorem 1 demonstrates that the average regret decreases at a rate of O(T−1/3). In this theorem, the
function variation VT captures the cumulative change in the optimal representation function sequence,

6

serving as a measure of the underlying distribution shift in non-stationary environments and reflecting
the inherent difficulty of the learning task. When the unlabeled test data stream is generated from
a relatively stable environment, indicated by a small VT , the accumulative loss decreases nearly at
a rate of O(T 2/3). We notice that directly optimizing Eqn. (3) in each round would result in O(T)
regret, as a generalization error would accumulate in every round. Thus, Theorem 1 provides the
theoretical foundation for the empirical success of the Ada-ReAlign algorithm in effectively adapting
to unknown and continuous distribution shifts.

4 Experiments

We evaluate the proposed Ada-ReAlign algorithm on two large-scale benchmark datasets: CIFAR10C
and ImageNetC. Our empirical studies aim to answer the following three questions: Q1: Does the
Ada-ReAlign algorithm outperform competing methods? Q2: Are the mechanisms in the proposed
algorithm effective in handling non-stationary data? Q3: Can the proposed method handle real-world
data streams with unknown distribution shifts?

4.1 Experimental Setups

Data Stream Generation. The CIFAR10C and ImageNetC datasets provide both original clean data
and corrupted data with varying types and levels of severity. We train the offline model on the clean
data and use the corrupted data to generate unlabeled data streams, allowing us to simulate diverse
distribution shifts within the data stream.

We assume a small batch of data is obtained at each round t, where t ∈ [T] := {1, ..., T}. In each
round, this batch is generated from a fixed data distribution with a specific corruption type and
severity level. By continuously varying the corruption types or severity levels, we simulate unlabeled
data streams across different non-stationary environments. Let Nt denote the number of data points
in round t and M represent the duration for which the data distribution remains unchanged, spanning
M rounds between distribution shifts.

In our empirical studies, we simulate two common types of distribution shifts:

(1) Gradual Shift: To simulate an unlabeled data stream with a gradual shift, we keep the type of
data corruption constant throughout the stream while varying the severity level every M rounds.
For example, in an unlabeled stream representing the “Snow” condition, the severity levels
change sequentially as follows: [1] ∗M → [2] ∗M → [3] ∗M → Here, [1] ∗M denotes M
consecutive rounds of data under the “Snow” condition with a severity level of 1.

(2) Sequential Shift: To simulate an unlabeled data stream with a sequential shift, we keep the
corruption severity level constant throughout the stream while changing the type of data corrup-
tion every M rounds. For instance, with a fixed severity level of 5, the corruption types evolve
sequentially as follows: [gaussian] ∗M → [shot] ∗M → [impulse] ∗M → Here, [shot] ∗M
represents M consecutive rounds of data with “shot” at severity level 5. In this paper, we set the
severity level of the sequentially shifting data stream to 5.

Contenders. We compare the proposed algorithm with six competing methods. First, we use the
performance of the initial Non-adapt model as a baseline. Next, we include methods that restart the
model at each round and adapt based on the current round’s data: TENT-RE [32], which minimizes
entropy at each round, and MEMO [39], which enhances robustness through data augmentation. We
also evaluate methods that leverage all the data, such as TENT-CT, which updates the model using
the results from the previous round via the TENT [32] and TTAC [28], which focuses on aligning
the representation with the initial model using the entire data stream. Additionally, we include two
state-of-the-art TTA methods designed for non-stationary environments: CoTTA [34] and SAR [25],
both of which incorporate a reset mechanism to mitigate long-term forgetting during adaptation.

Implementation Details. We conduct experiments using a deep neural network with a ResNet50
architecture from the torchvision library. The initial model is trained on the original CIFAR-10 and
ImageNet datasets. For our proposed algorithm, we use SGD as the update rule, with a momentum
of 0.9 and a learning rate of 0.0005. Following prior studies [21, 32, 28, 25], we adapt the affine
parameters of the normalization layers in ResNet50 during the adaptation process. Further details are
provided in Appendix A.1.

7

Table 1: The average classification error (in %) for the CIFAR10-to-CIFAR10C dataset under Gradual Shift. All
results were averaged over 5 runs with different initializations. The number of data points per round was set to
Nt = 10 with a duration of M = 10. The best results are highlighted in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
Non-adapt 36.6 30.8 30.6 13.8 42.0 18.3 17.2 20.3 22.7 15.1 11.1 16.3 17.1 23.5 22.7 21.5

±0.6 ±0.4 ±0.1 ±1.7 ±1.1 ±0.8 ±0.4 ±0.3 ±0.2 ±0.4 ±0.4 ±0.1 ±0.2 ±0.1 ±0.4 ±0.8
MEMO 31.8 26.0 24.7 13.5 38.1 17.9 17.0 16.9 19.1 12.3 8.91 14.5 14.6 20.7 17.3 19.6

±0.4 ±0.3 ±0.2 ±1.2 ±1.0 ±0.7 ±0.6 ±0.5 ±0.3 ±0.3 ±0.5 ±0.2 ±0.3 ±0.2 ±0.6 ±0.7
TENT-RE 32.4 25.1 24.1 14.2 37.6 18.1 17.2 15.4 19.7 11.9 9.20 13.7 14.2 20.4 18.1 18.5

±0.3 ±0.3 ±0.4 ±1.5 ±0.9 ±1.1 ±0.7 ±0.6 ±0.4 ±0.2 ±0.6 ±0.3 ±0.5 ±0.3 ±0.6 ±0.9
TENT-CT 26.3 21.7 22.4 11.9 26.4 14.5 13.4 13.9 15.5 11.0 6.82 11.6 14.8 15.3 16.0 15.4

±0.3 ±0.2 ±0.3 ±1.0 ±0.8 ±0.9 ±0.5 ±0.4 ±0.3 ±0.3 ±0.5 ±0.3 ±0.4 ±0.2 ±0.5 ±0.5
TTAC 24.6 22.0 22.2 10.8 25.7 12.7 10.1 12.9 14.4 10.7 5.52 10.3 14.2 13.8 15.1 14.3

±0.2 ±0.4 ±0.5 ±0.9 ±0.7 ±0.9 ±0.6 ±0.5 ±0.3 ±0.4 ±0.3 ±0.1 ±0.5 ±0.3 ±0.4 ±0.5
CoTTA 22.1 20.6 23.0 9.80 25.3 10.7 8.08 12.2 12.6 10.2 5.90 8.20 14.3 12.5 15.3 14.1

±0.4 ±0.3 ±0.5 ±1.1 ±0.8 ±0.8 ±0.7 ±0.4 ±0.5 ±0.3 ±0.2 ±0.3 ±0.4 ±0.2 ±0.3 ±0.6
SAR 20.6 19.3 21.9 8.00 24.1 9.13 5.96 10.4 10.7 9.21 4.12 6.92 13.2 11.3 13.4 12.6

±0.5 ±0.3 ±0.4 ±1.0 ±0.7 ±0.6 ±0.6 ±0.5 ±0.4 ±0.3 ±0.3 ±0.4 ±0.2 ±0.3 ±0.3 ±0.5
Ada-ReAlign 20.6 19.8 21.1 8.19 23.4 8.72 5.30 10.4 11.1 9.04 4.51 6.29 12.6 12.8 12.7 11.8

±0.6 ±0.5 ±0.5 ±1.2 ±0.6 ±0.8 ±0.5 ±0.4 ±0.3 ±0.1 ±0.3 ±0.5 ±0.1 ±0.2 ±0.4 ±0.7

Table 2: The average classification error (in %) for the CIFAR10-to-CIFAR10C dataset under Sequential Shift.
All results were averaged over 5 runs with different initializations. The number of data points per round was set
to Nt = 10 with a duration of M = 10. The best results are highlighted in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
Non-adapt 48.4 44.8 50.3 24.1 47.7 24.5 24.1 24.1 33.1 28.0 14.1 29.7 25.6 43.7 28.3 32.7

±0.8 ±1.1 ±0.2 ±2.3 ±1.8 ±1.2 ±0.4 ±0.4 ±0.6 ±0.3 ±0.5 ±0.1 ±0.3 ±0.1 ±0.7 ±1.0
MEMO 43.5 39.8 43.3 26.4 44.4 25.1 25.0 20.9 28.3 22.8 11.9 28.3 21.1 42.8 21.7 30.4

±0.6 ±1.0 ±0.2 ±0.9 ±1.1 ±1.1 ±0.6 ±0.3 ±0.6 ±0.5 ±0.7 ±0.1 ±0.5 ±0.2 ±0.2 ±1.1
TENT-RE 43.6 37.8 42.3 25.1 43.6 26.1 24.8 22.1 27.3 21.1 10.1 29.0 20.9 42.6 22.2 28.2

±2.0 ±1.1 ±0.3 ±1.4 ±1.4 ±1.5 ±0.0 ±0.1 ±1.0 ±0.7 ±0.4 ±0.3 ±0.2 ±0.4 ±0.5 ±1.8
TENT-CT 38.6 34.4 42.4 28.2 44.9 30.3 27.9 32.9 32.4 32.4 26.0 34.1 39.5 34.6 38.7 34.2

±1.5 ±0.9 ±0.5 ±1.1 ±1.0 ±1.2 ±0.1 ±0.2 ±0.7 ±0.5 ±0.5 ±0.6 ±0.1 ±0.4 ±0.2 ±1.4
TTAC 33.6 29.6 36.3 22.7 37.7 23.1 22.2 28.0 25.8 26.8 20.1 26.1 33.2 26.7 33.9 28.0

±1.0 ±0.8 ±0.3 ±1.5 ±1.6 ±1.1 ±0.4 ±0.3 ±0.9 ±0.6 ±0.4 ±0.8 ±0.4 ±0.7 ±0.6 ±1.6
CoTTA 37.5 33.3 42.3 25.7 43.9 27.3 25.0 31.8 30.1 31.9 24.6 31.3 38.5 34.4 35.7 32.5

±0.8 ±1.1 ±0.8 ±1.9 ±1.2 ±0.9 ±0.6 ±0.5 ±1.0 ±0.5 ±0.6 ±0.7 ±0.3 ±0.6 ±0.4 ±1.2
SAR 30.5 27.5 34.6 19.9 32.9 19.7 18.6 26.4 23.4 22.2 17.3 22.2 31.5 23.0 30.9 24.9

±1.1 ±0.8 ±0.7 ±1.7 ±1.0 ±0.9 ±0.5 ±0.6 ±0.9 ±0.6 ±0.4 ±0.5 ±0.4 ±0.8 ±0.3 ±1.5
Ada-ReAlign 26.7 23.8 32.0 13.9 29.1 15.2 13.1 23.6 20.3 18.8 12.2 19.2 27.7 19.6 27.1 21.1

±1.4 ±0.9 ±0.6 ±1.5 ±1.3 ±0.8 ±0.3 ±0.7 ±0.8 ±0.6 ±0.2 ±0.6 ±0.3 ±0.9 ±0.2 ±1.9

4.2 Performance Comparison

We present the comparison results for the CIFAR10-to-CIFAR10C datasets in Table 1 and Table 2.
Results for the ImageNet-to-ImageNetC datasets are provided in Appendix A.2, where we observe
similar trends. Our proposed Ada-ReAlign algorithm consistently achieves top performance un-
der both gradual and sequential shifts, particularly in sequential shift scenarios, highlighting its
adaptability in diverse non-stationary environments.

In Table 1, we report the average classification error rate, along with the standard deviation, for
gradual severity shifts across 15 types of distribution shifts. These results are based on batches of
Nt = 10 data points per round, with a distribution duration ofM = 10 rounds, averaged over five runs
with different initial models. Overall, our algorithm demonstrates competitive performance compared
to other methods. We also observe performance improvements from TENT-CT and TTAC, which
reuse all historical data, underscoring the importance of effectively leveraging past data. Meanwhile,
Ada-ReAlign outperforms CoTTA and SAR, both of which incorporate reset mechanisms to enhance
adaptability to severity shifts.

In Table 2, we evaluate the algorithm across the entire data stream and report its average accuracy
for each type of data corruption. By effectively reusing historical data, our proposed Ada-ReAlign
algorithm achieves a lower average classification error across all types of distribution shifts compared
to the competitors. Notably, MEMO and TENT-RE, which reuse only the current batch of data,
outperform TENT-CT, which utilizes all historical data. These findings align with our theoretical
analysis, confirming that a fixed adaptation model is not well-suited for non-stationary environments.

Additionally, CoTTA, which stochastically resets parts of the model parameters to their initial values,
also underperforms in non-stationary settings. This further highlights the superiority of our adaptive
representation alignment algorithm. These results answer the question Q1.

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Interval length (|Ii| = 2i)

16
32

64
12

8
25

6
51

2
Di

st
rib

ut
io

n
Ch

an
ge

 In
te

rv
al

 (M
) 8.2 8.2 9.5 10.719.0 8.2 5.7 3.3 3.1 4.7 4.9 4.6 3.4 2.8 4.0

3.0 7.3 7.8 8.9 16.323.510.1 5.7 3.1 4.0 2.9 0.9 0.8 3.8 1.8

2.7 7.2 7.6 8.2 4.6 17.622.1 1.9 0.6 0.1 6.3 8.1 2.6 1.9 8.7

1.4 6.6 6.7 4.9 3.2 8.4 15.421.5 6.4 4.5 4.5 4.5 4.2 4.3 3.5

3.1 5.2 4.3 4.5 5.7 6.2 10.115.222.0 4.3 4.2 4.3 3.1 4.7 3.2

2.1 4.9 5.2 5.2 5.4 5.9 9.7 9.7 14.321.9 5.0 2.4 3.1 2.9 2.3

5

10

15

20

(a) Sequential shift

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Interval length (|Ii| = 2i)

10
50

10
0

20
0

40
0

80
0

Di
st

rib
ut

io
n

Ch
an

ge
 In

te
rv

al
 (M

) 4.3 6.8 11.824.514.0 7.9 4.5 1.4 7.4 4.2 2.1 3.5 4.5 1.2 1.6

6.2 5.0 7.1 8.7 15.820.114.6 5.4 5.4 2.7 1.3 2.6 1.3 3.3 0.4

4.0 1.9 9.0 3.7 2.0 15.918.019.3 9.0 2.7 1.4 6.0 2.8 1.2 3.2

1.6 4.9 4.1 5.2 7.4 7.8 10.622.716.0 3.1 3.2 2.8 2.3 3.3 4.9

4.5 2.7 3.4 4.2 4.5 7.8 7.6 13.117.711.9 3.3 5.2 4.3 5.1 4.7

2.9 2.6 0.7 2.9 6.7 8.8 8.6 8.8 11.415.6 9.0 4.7 4.9 6.9 5.6

5

10

15

20

(b) Bernoulli shift

Figure 2: Weight (%) heatmap of base learners in (a)
Sequential shift with different intervals. (b) Bernoulli
sequential shift with different intervals, where the
length of interval is an expected value.

50 100 150 200

Time

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 E
rr

or
 (

%
)

(a) Sequential Shift

0 0.5 1 1.5 2

Processing Time per Round (sec)

10

12

14

16

18

20

22

24

26

28

AdaNPC

SAR Ada-ReAlign

AdaNPC

SAR

Ada-ReAlign

(b) Algorithm efficiency

Figure 3: (a) Average error (%) and estimator loss
curve with continuous sequential shift. (b) Average
error (%) and processing time per round (sec) of three
contenders with two kinds of distribution shifts.

4.3 Ablation Study

Next, we evaluate the adaptability of the Ada-ReAlign algorithm to changing distributions, along with
its computational efficiency and the effectiveness of each component. Additional ablation studies on
the impact of the number of data each round Nt and duration M are provided in Appendix A.3.

Detailed Analysis of the Meta-Base Structure in Ada-ReAlign. We now take a closer look at our
adaptive representation alignment algorithm, which integrates a meta-base structure. Specifically,
we conduct experiments to evaluate the algorithm’s ability to handle sequential shifts, where the
distribution of online data alternates between two distributions every M rounds. To explore this, we
vary the duration M and report the weight assignment (expressed as percentages) for base learners
with different interval lengths in Figure 2. For instance, when M = 8, the data distribution shifts
every 8 rounds. The weights assigned to each base learner are averaged over its active period.

Our results show that the meta learner effectively assigns the highest weight to the base learner whose
interval length aligns with the switch period M . This result shows that the right amount of historical
data is reused, leading to strong performance in non-stationary environments.

In addition, in Figure 3 (a) compares the average error of the Ada-ReAlign algorithm with that of
the TTAC algorithm over 200 iterations. During the experiment, the data distribution shifts three
times, transitioning from Noise “Gaussian” to Blur “defocus”, then to Weather “Snow”, and finally to
Digital “contrast”. Each distribution is maintained for 50 iterations. TTAC is chosen for comparison
since it also aims to align the model’s representation with the initial one.

The results show that the Ada-ReAlign algorithm adapts quickly to new distributions as soon as a
shift occurs. In contrast, the TTAC algorithm struggles, as it relies on all historical data, including
samples from different distributions, which limits its adaptability.

Efficiency and Performance Evaluation. We conduct additional experiments to evaluate the
algorithm’s efficiency and performance gain. Specifically, we measure the processing time per round
and the average accuracy, comparing the proposed algorithm with SAR (single model with forward
and backward procedures) and AdaNPC (single forward procedure only) [40]. Since AdaNPC
requires access to the labeled source data during adaptation, we exclude it from the main comparison.

As shown in Figure 3 (b), the Ada-ReAlign algorithm demonstrates superior performance in both
gradual and sequential shifts on the CIFAR10-to-CIFAR10C dataset. In terms of computational
time, Ada-ReAlign (with 11 base learners) is approximately five times slower than SAR. However,
SAR involves solving a bi-level optimization problem during adaptation, which incurs additional
computational overhead. AdaNPC is more efficient than both gradient-based algorithms, as it employs
a KNN-based non-parametric classifier. These findings answer the question Q2.

Component Analysis of the Proposed Algorithm. We evaluate the impact of each component
within the proposed algorithm in the sequential shift environment. The proposed algorithm consists of
two elements: alignment of the representation divergence with the initial model and minimization of
prediction entropy at each round. To investigate their individual contributions, we run the algorithm
across the entire data stream using different loss configurations. Specifically, “Ada-ReAlign w/o DA”
refers to the version where only prediction entropy is minimized at each step (without Distribution
Alignment), while “Ada-ReAlign w/o EM” denotes the version where only the representation is
aligned at each round (without Entropy Minimization).

9

Gauss
Shot

Impul.
Defoc.

Glass
Motio

Zoom
Snow

Frost
Fog

Brigh.
Contr.

Elast.
Pixel.

Jpeg
0

10

20

30

40

50

60

C
la

ss
ifi

ca
tio

n
E

rr
or

Non-Adapt
Ada-ReAlign w/o DA
Ada-ReAlign w/o EM
Ada-ReAlign (ours)

Figure 4: Average Classification Error (%) Compari-
son with Various Components.

Gauss
Shot

Impul.
Defoc.

Glass
Motio

Zoom
Snow

Frost
Fog

Brigh.
Contr.

Elast.
Pixel.

Jpeg
0

10

20

30

40

50

C
la

ss
ifi

ca
tio

n
E

rr
or

Ada-ReAlign RE
Ada-ReAlign CT
Ada-ReAlign TS
Ada-ReAlign (ours)

Figure 5: Average Classification Error (%) Compari-
son with Different Restart Mechanisms.

We report the average accuracy for each type of data corruption. As shown in Figure 4, both
representation alignment and entropy minimization play crucial roles in the performance of the
Ada-ReAlign algorithm. Moreover, the results highlight that, in most cases of distribution shifts,
representation alignment offers greater performance gains, underscoring the importance of adaptive
representation alignment in non-stationary environments.

Comparison with Restart Mechanisms. We compare the proposed algorithm in a sequential shift
environment with three different restart mechanisms: Ada-RE, Ada-CT, and Ada-TS. In Ada-RE, the
model is reset to the initial offline model at the beginning of each round and undergoes “one-step”
TTA using the surrogate loss defined in Eqn (3). This approach is similar to the MEMO and TENT-RE
algorithms, which restart the model at each round.

The second method, Ada-CT, updates a single model continuously, where the adapted model from the
previous round serves as the initial model for the next. The third approach, Ada-TS, also employs a
single model but incorporates a restart mechanism based on a threshold for model entropy. Following
the previous study [25], we restart the model whenever the entropy falls below a threshold of 0.4.

The average accuracy of our proposed method and the three competing approaches is presented in
Figure 5. The Ada-ReAlign algorithm consistently outperforms the competitors across nearly all
datasets. These results highlight the critical role of the meta learner in the online ensemble structure,
which enables the adaptive combination of base learners to resist the non-stationarity.

4.4 Real-World Evaluation on Wildlife Species Classification

We further evaluate the proposed algorithm on a real-world wildlife species classification task using
the iWildCam dataset [3], where the distribution of images naturally varies with the time and location
of capture. The earliest 10% of the data is used as labeled offline data to train the initial model,
while the remaining data serves as the unlabeled data stream. We compare the performance of our
method against competing approaches, and the results demonstrate that our algorithm achieves the
best performance. These results answer question Q3.
Table 3: The Average Classification Error (%) for iWildCam dataset. All results were averaged over 5 runs with
different initial models. We set number of data Nt = 10 at each round.

Method Non-adapt TTAC CoTTA SAR Ada-ReAlign

Classification Error (%) 47.2 ± 2.3 27.3 ± 1.9 29.3 ± 2.0 31.5 ± 2.4 23.6 ± 1.8

5 Conclusion

In this paper, we explored non-stationary representation learning for continual test-time adaptation.
Beyond entropy minimization with regularization, we proposed adaptively aligning the unlabeled
data stream, with its evolving distributions, to the source data representation by leveraging a sketch
of the source data. To exploit this marginal information, we introduced a novel two-layer algorithm,
Ada-ReAlign, designed to track and to approximate the optimal representation learning model at each
round. Our theoretical analysis showed that the learned model is comparable to the optimal model
sequence under convexity assumptions. Experiments on various benchmark datasets and a real-world
application demonstrated the superiority of our approach over competing methods, confirming the
effectiveness of the adaptive representation alignment mechanism.

10

Acknowledgments

MS was supported by the Institute for AI and Beyond, UTokyo.

References
[1] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In Proceedings of the

34th International Conference on Machine Learning (ICML), pages 146–155, 2017.

[2] Yong Bai, Yu-Jie Zhang, Peng Zhao, Masashi Sugiyama, and Zhi-Hua Zhou. Adapting to
online label shift with provable guarantees. Advances in Neural Information Processing Systems
(NeurIPS), 35:29960–29974, 2022.

[3] Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competi-
tion dataset. arXiv preprint arXiv:2105.03494, 2021.

[4] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Opera-
tions Research, 63(5):1227–1244, 2015.

[5] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 295–305, 2022.

[6] Yining Chen, Haipeng Luo, Tengyu Ma, and Chicheng Zhang. Active online learning with
hidden shifting domains. In Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 2053–2061, 2021.

[7] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin,
and Shenghuo Zhu. Online optimization with gradual variations. In Proceedings of the 25th
Conference on Learning Theory (COLT), pages 1–20, 2012.

[8] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized ad-
versarial robustness benchmark. Advances in Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track, 34, 2021.

[9] Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui Zhang, Nian Shi, and Lin Luo. Decorate
the newcomers: Visual domain prompt for continual test time adaptation. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 37, pages 7595–7603, 2023.

[10] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to
the source: Diffusion-driven adaptation to test-time corruption. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11786–11796, 2023.

[11] Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends in Optimiza-
tion, 2(3-4):157–325, 2016.

[12] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019.

[13] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple data processing method to improve robustness and
uncertainty. In Proceedings of the 8th International Conference on Learning Representations
(ICLR), 2020.

[14] Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation for
evolving visual domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 867–874, 2014.

[15] Xuefeng Hu, Gokhan Uzunbas, Sirius Chen, Rui Wang, Ashish Shah, Ram Nevatia, and Ser-
Nam Lim. Mixnorm: Test-time adaptation through online normalization estimation. arXiv
preprint arXiv:2110.11478, 2021.

11

[16] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian
logistic regression. Advances in Neural Information Processing Systems (NIPS), 29:4080–4088,
2016.

[17] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. Advances in Neural Information Processing Systems (NeurIPS), 34:2427–
2440, 2021.

[18] Bartosz Krawczyk, Leandro L Minku, Joao Gama, Jerzy Stefanowski, and Michal Wozniak.
Ensemble learning for data stream analysis: A survey. Information Fusion, 37:132–156, 2017.

[19] Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. In Proceedings of the 37th International Conference on Machine Learning (ICML),
pages 5468–5479, 2020.

[20] Daeun Lee, Jaehong Yoon, and Sung Ju Hwang. Becotta: Input-dependent online blending of
experts for continual test-time adaptation. In Proceedings of the 41st International Conference
on Machine Learning (ICML), pages 27072–27093, 2024.

[21] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 6028–6039, 2020.

[22] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. TTN: A domain-shift aware
batch normalization in test-time adaptation. In Proceedings of the 11th International Conference
on Learning Representations (ICLR), 2023.

[23] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and
Alexandre Alahi. TTT++: When does self-supervised test-time training fail or thrive? Advances
in Neural Information Processing Systems (NeurIPS), 34:21808–21820, 2021.

[24] Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Proceedings of the 28th Conference on Learning Theory (COLT), pages 1286–1304, 2015.

[25] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In Proceedings of the
11th International Conference on Learning Representations (ICLR), 2023.

[26] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation.
Advances in Neural Information Processing Systems (NeurIPS), 33:11539–11551, 2020.

[27] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual
test-time adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 11920–11929, 2023.

[28] Yongyi Su, Xun Xu, and Kui Jia. Revisiting realistic test-time training: Sequential inference
and adaptation by anchored clustering. Advances in Neural Information Processing Systems
(NeurIPS), pages 17543–17555, 2022.

[29] Masashi Sugiyama and Motoaki Kawanabe. Machine Learning in Non-Stationary Environments
- Introduction to Covariate Shift Adaptation. MIT Press, 2012.

[30] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In Proceedings of the
37th International Conference on Machine Learning (ICML), pages 9229–9248, 2020.

[31] Ivor W Tsang, James T Kwok, Pak-Ming Cheung, and Nello Cristianini. Core vector machines:
Fast svm training on very large data sets. Journal of Machine Learning Research, 6(4):363–392,
2005.

[32] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In Proceedings of the 9th International
Conference on Learning Representations (ICLR), 2021.

12

[33] Haoxiang Wang, Bo Li, and Han Zhao. Understanding gradual domain adaptation: Improved
analysis, optimal path and beyond. In Proceedings of the 39th International Conference on
Machine Learning (ICML), pages 22784–22801, 2022.

[34] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7201–7211, 2022.

[35] Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge:
An optimal black-box approach. In Proceedings of the 34th Conference on Learning Theory
(COLT), pages 4300–4354, 2021.

[36] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In Proceedings of the 9th International Conference on
Learning Representations (ICLR), 2021.

[37] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne
Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation learn-
ing. In Proceedings of the 5th International Conference on Learning Representations (ICLR),
2017.

[38] Lijun Zhang, Shiyin Lu, and Tianbao Yang. Minimizing dynamic regret and adaptive regret
simultaneously. In Proceedings of the 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 309–319, 2020.

[39] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. Advances in Neural Information Processing Systems (NeurIPS), 35:38629–
38642, 2022.

[40] Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tieniu
Tan. Adanpc: Exploring non-parametric classifier for test-time adaptation. In Proceedings of
the 40th International Conference on Machine Learning (ICML), pages 41647–41676, 2023.

[41] Yu-Jie Zhang, Zhen-Yu Zhang, Peng Zhao, and Masashi Sugiyama. Adapting to continuous
covariate shift via online density ratio estimation. Advances in Neural Information Processing
Systems (NeurIPS), 36:29074–29113, 2023.

[42] Peng Zhao, Yan-Feng Xie, Lijun Zhang, and Zhi-Hua Zhou. Efficient methods for non-stationary
online learning. In Advances in Neural Information Processing Systems 35 (NeurIPS), pages
11573–11585, 2022.

[43] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity:
Problem-dependent dynamic regret for online convex optimization. Journal of Machine Learn-
ing Research, 25(98):1 – 52, 2024.

[44] Shiji Zhou, Han Zhao, Shanghang Zhang, Lianzhe Wang, Heng Chang, Zhi Wang, and Wenwu
Zhu. Online continual adaptation with active self-training. In Proceedings of the 25th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), pages 8852–8883,
2022.

[45] Zhi-Hua Zhou. Open-environment machine learning. National Science Review, 9(8), 07 2022.
nwac123.

[46] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML), pages 928–936,
2003.

13

Appendix

A Experiments

In this section, we supplement the omitted details in Section 4. We begin by presenting a comprehen-
sive overview of the experimental setups, followed by showcasing the previously omitted empirical
results on the ImageNet dataset. Furthermore, we conduct additional ablation studies to further
investigate the proposed Ada-ReAlign algorithm.

A.1 Experimental Setups

Contenders. We compare our proposed approach with six contenders, including a baseline method,

• Non-adapt: This method directly uses the offline model to make predictions on the unlabeled
data stream without any adaptation.

One modified “one-round” TTA method is employed, where the model parameters are reset to the
offline model at the start of each round and then undergo one-step adaptation:

• MEMO [39]: This method applies various data augmentations to each input and adapts all
model parameters by minimizing the entropy of the average output distribution across these
augmentations. At the beginning of each round, the model parameters are reset to those of
the offline model.

Two continuous TTA methods are also evaluated, where the model is updated throughout the entire
data stream without resets:

• TENT [32]: This method optimizes the channel-wise affine transformations within the
normalization layers by minimizing the entropy of the model’s predictions.

• TTAC [28]: This approach introduces a test-time anchored clustering method to improve
the alignment of test-time features with the offline model’s learned representation. It also
employs pseudo-label filtering to enhance the effectiveness of the clustering process.

Additionally, we include two state-of-the-art continuous TTA methods specifically designed to address
distribution shifts in non-stationary environments:

• CoTTA [34]: This algorithm continuously adapts by learning pseudo-labels from its own
predictions. It leverages weight-averaged and augmentation-averaged predictions to produce
more reliable pseudo-labels for the unlabeled data stream.

• SAR [25]: SAR is a sharpness-aware algorithm that minimizes entropy while ensuring
robustness by filtering out noisy samples with large gradients. It encourages the model
weights to converge to a flat minimum, improving resilience to noisy labeled data.

In summary, these contenders cover a wide range of continuous TTA approaches, from methods that
rely on individual batches of data to those that incorporate the entire data stream. Our comparison also
includes state-of-the-art algorithms specifically designed to handle distribution shifts in non-stationary
environments.

Algorithm Implementation Details of Contenders. For the remaining contenders, we provide their
detailed hyperparameter settings used in the experiments as follows.

• MEMO [39]: We adopted the default hyper-parameter settings used in MEMO. Specifically,
we employed AugMix [13] for data augmentations, with an augmentation size of 32. The
optimizer is SGD with a momentum of 0.9, a batch size of 32, and a learning rate of 0.0005.

• TENT-RE [32]: We adopted the default hyper-parameter settings used in TENT. The opti-
mizer is SGD with a momentum of 0.9, a batch size of 32, and a learning rate of 0.0005.
The trainable parameters are the affine parameters within the batch normalization layers. At
the start of each round, the model parameters are reset to match those of the offline model.

14

Table 4: The average classification error (in %) for the ImageNet-to-ImageNetC dataset under Gradual Shift.
All results were averaged over 5 runs with different initializations. The number of data points per round was set
to Nt = 10 with a duration of M = 10. The best results are highlighted in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
Non-adapt 32.3 82.6 72.4 79.1 62.9 61.7 86.3 83.1 85.3 66.4 72.1 68.7 86.8 74.9 65.7 72.1

±0.3 ±0.4 ±0.2 ±0.6 ±0.7 ±0.5 ±0.3 ±0.2 ±0.2 ±0.3 ±0.5 ±0.6 ±0.4 ±0.3 ±0.3 ±0.5
MEMO 32.7 76.3 69.8 55.1 54.3 58.7 82.7 78.2 81.2 55.7 54.5 51.2 80.8 65.5 48.8 62.9

±0.5 ±0.8 ±0.7 ±0.9 ±1.3 ±0.5 ±0.5 ±0.6 ±0.4 ±0.2 ±0.3 ±0.3 ±0.4 ±0.5 ±0.4 ±0.6
TENT-RE 33.3 69.9 73.5 60.3 50.8 59.4 80.3 81.7 79.0 60.9 62.0 57.6 80.6 63.0 49.9 64.1

±0.7 ±1.0 ±1.3 ±1.2 ±1.7 ±1.4 ±0.5 ±0.5 ±0.7 ±0.4 ±0.2 ±0.6 ±0.3 ±0.5 ±0.4 ±0.6
TENT-CT 34.6 42.5 73.4 38.9 39.3 60.6 81.9 83.4 75.6 50.7 44.0 37.7 80.9 52.4 42.0 55.8

±0.2 ±0.6 ±0.5 ±0.8 ±1.2 ±1.6 ±0.6 ±0.5 ±0.5 ±0.4 ±0.6 ±0.7 ±0.5 ±0.6 ±0.4 ±0.8
TTAC 35.5 43.0 63.2 44.5 40.5 48.7 60.6 67.2 71.0 49.0 45.1 39.3 56.9 48.2 41.9 50.3

±0.5 ±0.3 ±0.6 ±1.7 ±1.9 ±0.7 ±1.0 ±0.8 ±0.4 ±0.4 ±0.5 ±0.3 ±0.7 ±0.4 ±0.2 ±0.8
CoTTA 32.6 40.4 64.1 37.3 36.4 46.5 63.4 69.3 64.2 46.5 40.8 38.5 61.7 44.1 39.1 48.3

±0.7 ±0.6 ±0.4 ±2.0 ±1.5 ±0.9 ±0.7 ±0.3 ±0.7 ±0.3 ±0.2 ±0.3 ±0.3 ±0.3 ±0.6 ±0.6
SAR 32.8 41.7 65.3 39.5 33.5 42.7 60.4 67.2 63.2 49.3 55.6 35.3 55.0 44.9 41.5 48.5

±0.7 ±0.5 ±0.7 ±1.6 ±1.3 ±1.2 ±1.2 ±0.8 ±0.6 ±0.5 ±0.5 ±0.7 ±0.3 ±0.6 ±0.7 ±0.8
Ada-ReAlign 35.7 42.0 61.6 38.0 37.8 42.5 55.3 67.0 57.1 47.3 44.8 33.1 53.5 45.7 39.2 46.6

±0.5 ±0.6 ±0.6 ±1.5 ±1.6 ±1.8 ±0.4 ±0.6 ±0.5 ±0.3 ±0.5 ±0.7 ±0.4 ±0.3 ±0.6 ±0.9

• TENT-CT [32]: We adopted the default hyper-parameter settings used in TENT. The opti-
mizer is SGD with a momentum of 0.9, a batch size of 32, and a learning rate of 0.0005.
The trainable parameters are the affine parameters within the batch normalization layers.

• TTAC [28]: We adopted the default hyper-parameter settings used in TTAC. The optimizer
is SGD with a momentum of 0.9, a batch size of 32, and a learning rate of 0.0005. The
trainable parameters are the affine parameters within the batch normalization layers.

• CoTTA [34]: We adopted the default hyper-parameter settings used in CoTTA. The optimizer
is Adam with a learning rate of 0.001. We use the default data augmentation techniques in
the CoTTA algorithm. We updated all trainable parameters while incorporating a restoration
probability of p = 0.01 to mitigate the risk of catastrophic forgetting.

• SAR [25]: We adopted the default hyper-parameter settings used in SAR. The optimizer is
SGD with a momentum of 0.9, a batch size of 32, and a learning rate of 0.0005. To clip
the large gradients, we applied a threshold set to 0.4× ln 1000. Additionally, we set ρ to
0.05 to encourage the optimization process to converge towards flat minima, following the
default settings. For model recovery, we tracked the entropy loss values using a moving
average factor of 0.9. The trainable parameters are the affine parameters within the batch
normalization layers.

Algorithm Implementation Details. We adopt the standard ResNet-50 model from RobustBench [8]
as the model structure. We freeze the top two linear layers and only update the affine parameters of
the normalization layers within the remaining shallow layers of ResNet-50. The optimizer employed
is SGD, with a momentum of 0.9 and a batch size of 32 for rounds where the number of data data
exceeds 32. In cases where the number of data in a round is smaller than 32, we employ data
augmentation techniques [39] to augment the data and ensure its number reaches a minimum of 32.
The learning rate is set to 0.0005. We use the following compute resource configuration: 2 Xeon
Gold 6242R with a base frequency of 3.1 GHz, 8 GeForce 3090 with 24GB VRAM, and a total of
768GB RAM. The operating system employed is Ubuntu 20.04.

A.2 More Empirical Results on ImageNet-C for Section 4.2

Table 4 and Table 5 present the omitted results from Section 4.2. The results show that Ada-ReAlign
outperforms the competing methods across nearly all tasks in the ImageNet-C dataset. These empirical
findings confirm the effectiveness of our approach in adapting to non-stationary environments.

A.3 Additional Ablation Studies

The number of data points in each round is a crucial measure of non-stationarity in the environment.
As data accumulate continuously, and assuming that the data received in each round are generated
from the same distribution, the number of data points per round serves as an indicator of the speed
of distribution shifts. For a fixed duration M , a smaller number of data points per round suggests

15

Table 5: The average classification error (in %) for the ImageNet-to-ImageNetC dataset under Sequential Shift.
All results were averaged over 5 runs with different initializations. The number of data points per round was set
to Nt = 10 with a duration of M = 10. The best results are highlighted in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
Non-adapt 37.3 90.9 82.8 87.0 65.2 74.5 97.2 92.8 97.9 68.7 82.4 80.3 97.0 82.8 73.9 80.7

±0.1 ±0.1 ±0.2 ±0.4 ±0.6 ±0.5 ±0.6 ±0.2 ±0.3 ±0.3 ±0.4 ±0.2 ±0.4 ±0.2 ±0.5 ±0.4
MEMO 36.3 81.2 80.1 63.8 58.2 69.4 93.5 86.8 92.4 60.1 65.8 62.0 91.4 69.3 59.6 71.3

±0.4 ±0.9 ±0.7 ±0.5 ±1.7 ±0.6 ±0.8 ±1.2 ±1.6 ±0.6 ±0.5 ±0.4 ±0.7 ±0.5 ±0.4 ±0.9
TENT-RE 38.5 78.4 81.9 70.1 55.7 70.6 90.4 88.9 90.3 65.2 73.1 66.8 90.6 66.2 60.5 72.4

±0.5 ±1.5 ±0.5 ±1.2 ±1.7 ±1.2 ±0.6 ±0.6 ±0.4 ±1.5 ±1.9 ±1.1 ±0.4 ±0.8 ±0.5 ±1.2
TENT-CT 38.9 48.1 83.9 49.7 43.8 72.7 91.6 92.1 88.6 54.3 57.1 47.7 92.0 56.7 52.7 64.6

±0.3 ±1.9 ±0.8 ±1.1 ±1.0 ±1.2 ±0.1 ±0.2 ±0.7 ±0.5 ±0.5 ±0.6 ±0.1 ±0.4 ±0.2 ±1.4
TTAC 40.9 50.4 72.9 51.6 44.6 60 71.5 77.1 82.8 54.1 57.7 48.6 68.2 52.7 51.9 59.0

±0.6 ±1.8 ±0.8 ±0.7 ±1.3 ±0.9 ±0.7 ±0.5 ±1.0 ±0.4 ±0.6 ±0.4 ±0.6 ±0.4 ±0.9 ±1.0
CoTTA 36.6 46.7 73.4 46.9 38.9 57.6 73.7 78.5 76.9 49.3 52.8 48.9 72.8 48.4 49.6 56.7

±0.4 ±0.9 ±0.6 ±1.3 ±1.8 ±1.0 ±1.1 ±0.6 ±0.7 ±0.6 ±0.4 ±0.5 ±0.4 ±0.4 ±0.6 ±0.9
SAR 36.2 46.3 74.0 47.2 37.2 54.0 68.8 76.6 74.4 51.6 65.9 45.3 65.7 48.8 49.1 56.0

±0.2 ±1.4 ±1.3 ±1.5 ±0.9 ±1.3 ±0.8 ±0.6 ±0.5 ±0.3 ±0.6 ±0.5 ±0.5 ±0.6 ±0.8 ±1.4
Ada-ReAlign 37.5 47.3 70.7 46.4 41.0 53.3 65.1 74.7 69.8 50.0 55.3 45.1 64.8 50.2 49.1 54.7

±0.4 ±1.3 ±1.3 ±1.1 ±1.6 ±0.9 ±0.5 ±0.9 ±0.9 ±0.5 ±0.5 ±0.4 ±0.6 ±0.4 ±0.7 ±1.2

Table 6: The Average Classification Error (%) for CIFAR10-to-CIFAR10C Dataset under Sequential Shift.
All results were evaluated using the largest corruption severity level 5 and averaged over 5 runs with different
initial models. We set different number of data Nt at each round with duration M = 10.

Method Ada-ReAlign (Nt=1) Ada-ReAlign (Nt=5) Ada-ReAlign (Nt=10) Ada-ReAlign (Nt=20) Ada-ReAlign (Nt=50)

Classification Error (%) 24.6 ± 2.7 21.1 ± 1.9 20.3 ± 1.5 19.5 ± 1.7 18.3 ± 2.5

Table 7: Performance Comparisons on CIFAR10-to-CIFAR10C continual test-time adaptation under different
distribution shifts. All results were evaluated using the largest corruption severity level 5. 5 test runs were
conducted with different initial models and the average classification error (%) as well as standard deviation are
presented, with the best one emphasized in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
N= SAR 22.7 22.8 23.5 9.54 24.7 10.8 6.33 12.6 11.9 11.6 5.60 7.80 14.5 12.9 15.6 14.1
5 ±0.8 ±0.4 ±0.3 ±0.7 ±0.9 ±0.5 ±0.6 ±0.4 ±0.4 ±0.5 ±0.6 ±0.5 ±0.6 ±0.3 ±0.4 ±0.7
M= Ours 21.6 21.0 22.7 9.69 24.5 9.66 6.47 11.7 11.9 10.4 5.71 6.92 13.5 13.4 13.7 12.7
5 ±0.4 ±0.6 ±0.3 ±0.8 ±0.5 ±0.7 ±0.5 ±0.3 ±0.3 ±0.5 ±0.5 ±0.5 ±0.4 ±0.6 ±0.4 ±0.6
N= SAR 21.6 20.2 22.6 8.79 24.8 9.88 6.84 10.9 11.6 10.8 5.79 7.73 13.5 12.3 14.6 13.1
5 ±0.4 ±0.3 ±0.3 ±0.8 ±0.4 ±0.5 ±0.6 ±0.7 ±0.4 ±0.6 ±0.4 ±0.3 ±0.5 ±0.4 ±0.3 ±0.5
M= Ours 21.0 20.5 21.8 8.56 24.1 9.33 5.98 11.4 11.5 9.80 5.37 7.04 12.9 12.8 13.4 12.5
10 ±0.6 ±0.6 ±0.4 ±0.9 ±0.5 ±0.7 ±0.3 ±0.6 ±0.3 ±0.4 ±0.5 ±0.3 ±0.5 ±0.4 ±0.4 ±0.8
N= SAR 21.4 19.5 22.3 8.35 24.3 9.61 6.53 11.4 11.9 9.70 4.63 6.98 13.9 11.5 13.8 12.8
10 ±0.4 ±0.4 ±0.4 ±0.9 ±0.6 ±0.7 ±0.6 ±0.3 ±0.6 ±0.4 ±0.2 ±0.5 ±0.2 ±0.3 ±0.6 ±0.3
M= Ours 20.9 19.7 21.8 8.81 23.9 8.56 5.69 10.6 11.5 9.42 4.37 6.51 12.34 12.4 12.9 11.8
5 ±0.5 ±0.6 ±0.5 ±1.4 ±0.9 ±0.6 ±0.7 ±0.7 ±0.5 ±0.2 ±0.2 ±0.5 ±0.4 ±0.5 ±0.4 ±0.6
N= SAR 20.6 19.3 21.9 8.00 24.1 9.13 5.96 10.4 10.7 9.21 4.12 6.92 13.2 11.3 13.4 12.6
10 ±0.5 ±0.3 ±0.4 ±1.0 ±0.7 ±0.6 ±0.6 ±0.5 ±0.4 ±0.3 ±0.3 ±0.4 ±0.2 ±0.3 ±0.3 ±0.5
M= Ours 20.6 19.8 21.1 8.19 23.4 8.72 5.30 10.4 11.1 9.04 4.51 6.29 12.6 12.8 12.7 11.8
10 ±0.6 ±0.5 ±0.5 ±1.2 ±0.6 ±0.8 ±0.5 ±0.4 ±0.3 ±0.1 ±0.3 ±0.5 ±0.1 ±0.2 ±0.4 ±0.7

rapid distribution shifts, while a larger number indicates slower shifts, with a prolonged period during
which data are generated from a consistent distribution.

Table 6 presents the performance of our Ada-ReAlign algorithm with varying numbers of data
per round. Notably, even with limited data per round, the algorithm maintains relatively strong
performance.

We further evaluate the algorithm’s performance across different values of M and N , where M
represents the length of time during which the data distribution remains constant, andN is the number
of data points available at each time step. Throughout the experiments, we maintain a batch size of
32. When N ≤ 32, the batch size is adjusted to N . A smaller M indicates more frequent distribution
shifts within the unlabeled data stream.

From Tables 7 and 8, we observe that the Ada-ReAlign algorithm consistently outperforms its closest
competitor, the SAR algorithm, across various values of M and N , especially in scenarios involving
sequential shifts. Both SAR and Ada-ReAlign experience performance degradation as distribution
shifts become more frequent and fewer data points are available per time step. However, Ada-ReAlign
exhibits more modest degradation compared to SAR, demonstrating greater robustness in the face of
rapid distribution shifts and limited data availability at each step.

16

Table 8: Performance Comparisons on CIFAR10-to-CIFAR10C continual test-time adaptation under different
distribution shifts. All results were evaluated using the largest corruption severity level 5. 5 test runs were
conducted with different initial models and the average classification error (%) as well as standard deviation are
presented, with the best one emphasized in bold.

Method Gauss. shot impul. defoc. glass motio. zoom snow frost fog brigh. contr. elast. pixel. jpeg Mean
N= SAR 35.5 31.2 37.2 22.4 35.1 22.3 20.5 27.3 25.7 24.7 18.9 24.5 33.9 25.2 32.4 28.5
5 ±1.3 ±1.3 ±0.8 ±1.5 ±1.2 ±1.2 ±0.8 ±1.1 ±0.9 ±0.8 ±0.4 ±0.5 ±0.3 ±0.9 ±0.4 ±2.4
M= Ours 30.8 27.3 36.5 16.8 32.6 17.9 17.9 27.5 23.5 21.7 14.6 22.8 31.5 23.5 31.4 24.8
5 ±1.7 ±1.9 ±1.5 ±1.8 ±1.4 ±1.6 ±0.6 ±0.9 ±0.8 ±0.8 ±0.4 ±0.6 ±0.6 ±1.3 ±0.4 ±2.2
N= SAR 35.4 30.7 37.0 21.9 34.4 21.5 19.9 27.2 25.3 23.8 18.5 23.7 33.2 24.6 31.7 27.9
5 ±0.9 ±0.8 ±1.2 ±1.4 ±1.2 ±0.8 ±0.6 ±0.6 ±0.8 ±1.1 ±0.6 ±0.7 ±0.5 ±1.2 ±0.6 ±1.7
M= Ours 28.0 25.2 34.6 15.0 30.4 16.7 15.3 25.2 22.1 19.9 13.5 20.4 28.8 20.4 28.6 22.5
10 ±1.2 ±1.2 ±0.8 ±1.7x ±1.1 ±0.5 ±0.5 ±0.6 ±0.8 ±0.7 ±0.6 ±0.5 ±0.4 ±0.8 ±0.3 ±1.8
N= SAR 32.3 28.6 35.1 20.6 33.5 20.2 19.3 26.9 24.8 23.1 17.8 22.9 32.6 23.8 31.3 27.1
10 ±1.5 ±0.7 ±0.5 ±1.5 ±1.2 ±0.6 ±0.4 ±0.6 ±0.7 ±0.9 ±0.7 ±0.6 ±0.8 ±1.0 ±0.6 ±1.7
M= Ours 27.8 24.3 32.5 14.6 29.8 15.7 13.5 24.0 21.1 19.5 13.1 19.8 28.2 19.9 27.8 22.8
5 ±1.6 ±1.1 ±0.4 ±1.3 ±1.8 ±0.7 ±0.4 ±0.7 ±0.6 ±0.8 ±0.4 ±0.5 ±0.5 ±0.9 ±0.8 ±2.0
N= SAR 30.5 27.5 34.6 19.9 32.9 19.7 18.6 26.4 23.4 22.2 17.3 22.2 31.5 23.0 30.9 24.9
10 ±1.1 ±0.8 ±0.7 ±1.7 ±1.0 ±0.9 ±0.5 ±0.6 ±0.9 ±0.6 ±0.4 ±0.5 ±0.4 ±0.8 ±0.3 ±1.5
M= Ours 26.7 23.8 32.0 13.9 29.1 15.2 13.1 23.6 20.3 18.8 12.2 19.2 27.7 19.6 27.1 21.1
10 ±1.4 ±0.9 ±0.6 ±1.5 ±1.3 ±0.8 ±0.3 ±0.7 ±0.8 ±0.6 ±0.2 ±0.6 ±0.3 ±0.9 ±0.2 ±1.9

B Related Work

In this section, we introduce the relevant literature on test-time adaptation and learning algorithms
designed for non-stationary environments.

TTA in Stationary Environment. TTA considers the problem in which the source labeled data are
no longer accessible during the adaptation phase. In this task, the learner relies solely on the source
model and seeks to adapt it to a fixed test dataset with a distinct distribution. TTA methods can be
broadly categorized into two groups based on whether they require a specific training process.

Test-Time Training [30] is the first group, involves optimizing the initial model with a combination
of supervised and self-supervised losses, followed by self-supervised learning during test time to
update the model. Common self-supervised losses include rotation prediction [30], contrastive
self-supervised learning [23], and others.

The second group of methods does not require a specific training process and can be directly applied
to any neural network. These methods include adapting batch normalization statistics [26, 15, 22],
entropy minimization [32, 25, 39], pseudo-labeling [34, 5], and more.

However, these approaches are designed for adaptation to a fixed distribution and are not well-suited
for non-stationary environments, where the data distribution evolves over time.

Continual TTA in Non-stationary Environments. In recent years, TTA in non-stationary envi-
ronments has gained significant attention. As streaming data evolve over time, the underlying data
distribution naturally shifts. A straightforward approach involves resetting the model’s parameters
to those of the initial model after each mini-batch adaptation, as seen in methods like MEMO [39],
episodic TENT [32], and DDA [10]. However, these one-step adaptation methods often fall short due
to high variance from the limited data available per round and their inability to leverage accumulated
historical data for improved performance.

To address these challenges, CoTTA [34] was introduced, employing robust pseudo-labels generated
through a weighted average of historical models. CoTTA also preserves the initial model’s parameters
by stochastically replacing the model’s parameters with those of the initial model at each round.
Similarly, SAR [25] estimates reliable entropy and resets the model to its initial state when the entropy
exceeds a predefined threshold. AdaNPC [40] tackles non-stationary shifts by constructing a memory
to store historical distributions. Additionally, continual test-time adaptation techniques have been
extended to large language models [9].

While these approaches have demonstrated empirical success in various real-world tasks, the challenge
of effective representation alignment in non-stationary environments remains underexplored.

Adapting to Non-stationary Environments with Offline Labeled Data. Online convex optimiza-
tion [11] provides a powerful paradigm to handle sequential prediction problems. Over the decades, a
variety of online learning algorithms have been proposed to handle the changing environments by op-
timizing the dynamic regret measure [46, 4, 43, 35] under different kinds of feedback information and

17

non-stationarity measures of environments. When data is weakly labeled, handling non-stationarity
becomes extremely challenging as it is hard to estimate the loss at each round.

This line of research then consider certain kinds of distribution shift and adaptive learning with
weighted source labeled data or test unlabeled data with pseudo labels to adapt to continuous
distribution change. Previous work tackled the challenge of non-stationarity in the context of online
label shift, where only the class prior is changing. In such scenarios, an unbiased loss estimator
is constructed to estimate the loss at each round, enabling the use of dynamic regret minimization
to handle non-stationary environments [2]. Another work investigated the problem of continuous
covariate shift where only the input distribution changes [41]. They reframed this problem as an
online density ratio estimation task and proposed a generic reduction of the density ratio estimation
problem to dynamic regret optimization. However, these methods may not always be feasible to
access offline labeled data for online adaptation.

In contrast to label shift or covariate shift, gradual domain adaptation consider the gradual shift of
underlying distribution. An early work in this area is continuous manifold adaptation [14], which
considers adaptation to evolving domains. More recently, self-training has shown promising results
by pseudo labeling the unlabeled data stream and adaptively re-train the model based on the pseudo
labeled data [19]. Theoretical analysis demonstrated that when the optimal classifier only undergoes
slight shifts between consecutive batches, self-training can provide a well-generalized classifier
throughout the entire data stream [36, 33]. However, these approaches assume that the data stream
satisfies this assumption, and may not handle outliers that deviate from it. To handle such outliers,
several approaches employ active learning [6, 44] to alleviate their negative impact. Nevertheless,
these methods are designed for specific types of data distribution change problems.

C Theoretical Analysis

In this section, we present the theoretical analysis of the guarantees for our proposed algorithm.
The analysis is based on the convex optimization framework, assuming both the model and the loss
function are convex. While our method does not strictly fit within the convex optimization framework,
the analysis offers valuable insights that inform the design of an effective algorithm. Furthermore,
the theoretically guided approach demonstrates strong empirical performance [44, 41].

We first introduce the following assumptions for our analysis.
Assumption 1. The gradients of all functions are bounded by G, i.e.,

max
ϕ∈Φ

∥∇ℓt(ϕ)∥2 ≤ G,∀t ∈ [T].

Assumption 2. The domain Φ contains the origin 0, and its diameter is bounded by D, i.e.,

max
ϕ,ϕ′∈Φ

∥∇ϕ− ϕ′∥2 ≤ D.

Assumption 3. The value of each function belongs to [0, 1], i.e.

0 ≤ ℓt(ϕ) ≤ 1,∀ϕ ∈ Φ, t ∈ [T].

As long as the loss functions are bounded, they can always be scaled and restricted to [0, 1].

C.1 Proof of Theorem 1

In this part, we provide the detailed proof for Theorem 1.

Proof. As we use the information each round the update the model, this operation implicitily is an
optimistic mirror descent where the optimism is the gradient of the empirical loss at that time. We
firstly show that these two framework are equal, so that we can analyze our proposed algorithm
with the optimistic mirror descent framework. The optimistic mirror descent works as follows, for
t = 1, ..., T ,

ϕt = Π[ϕ̂t − ηMt]

ϕ̂t+1 = Π[ϕ̂t − ηft(ϕt)]

18

where ft(·) is the loss function each time. Therefore, we prove that our method is equal to optimistic
mirror descent by choosing Mt = ∇L̂t(ϕ̂t). In the following, we use the optimistic mirror descent
framework to analyze it.

Now we begin to prove the dynamic regret of the representation learning model. We firstly prove the
static regret for the base model. Under the Assumption 1, 2 and 3, according to Lemma 2, we have
the following inequality for any comparator u in any interval I ,

E[
∑
t∈I

Lt(ϕt)−
∑
t∈I

Lt(u)] ≤ E[
∑
t∈I

⟨∇L̂(ϕt), ϕt − u⟩+
∑
t∈I

2(LD +G)∥ϕt − ϕ̂t∥2]. (8)

For the first term in Eqn. (8), according to we have the following inequality∑
t∈I

⟨∇L̂(ϕt), ϕt − u⟩

≤
∑
t∈I

⟨∇L̂(ϕt)−Mt, ϕt − ϕ̂t+1⟩+ ⟨Mt, ϕt − ϕ̂t+1⟩+ ⟨∇L̂(ϕt), ϕ̂t+1 − u⟩

≤ Gη

2
|I|+ D

2η

where the second inequality holds due to Theorem 1 in [43].

For the second term in Eqn. (8), considering our update rule ϕt = Π(ϕ̂t − ηMt), where Mt =

∇L̂t(ϕ̂t), according to the Lemma 1, we have

∥ϕt − ϕ̂t∥2 ≤ η∥Mt∥2 ≤ ηG.

Therefore, we have

E[
∑
t∈I

Lt(ϕt)−
∑
t∈I

Lt(u)] ≤ E[
3Gη

2
|I|+ D

2η
]. (9)

By choosing η = O(
√
|I|), we have

E

[∑
t∈I

Lt(ϕt)−
∑
t∈I

Lt(u)

]
≤ O(

√
|I|).

Secondly, as we use the AdaNormalHedge as the meta learner, according to Lemma 3, we can obtain
the following strongly adaptive regret

E[
∑
t∈I

Lt(ϕt)−
∑
t∈I

Lt(ϕ
∗
I)] ≤ O(

√
|I|).

Now we use the guarantee of adaptive regret to obtain the dynamic regret. Let VT =∑T
t=2 supϕ |Lt(ϕ)− Lt−1(ϕ)| is the functional variation, we have

E

[
T∑
t=1

Lt(ϕt)−
T∑
t=1

Lt(ϕ
∗
t)

]

≤ E

[
M∑
m=1

∑
t∈Im

Lt(ϕt)−
M∑
m=1

∑
t∈Im

Lt(ϕ
∗
Im

) +

M∑
m=1

∑
t∈Im

Lt(ϕ
∗
Im

)−
T∑
t=1

Lt(ϕ
∗
t)

]
(10)

where in the first inequality we introduce a split of the whole time horizon, which can be arbitrary
and we only use it in the analysis. In the second inequality, the fisrt term is the adaptive regret used in
Lemma 3. For the second term can, we can follow the reasoning in [4] and subsequently simplified
analysis in [43, Theorem 7] to show that

M∑
m=1

∑
t∈Im

Lt(ϕ
∗
t)−

T∑
t=1

Lt(ϕ
∗
t) =

M∑
m=1

∑
t∈Im

(
Lt(ϕ

∗
Im

)− Lt(ϕ
∗
t)
)

19

≤
M∑
m=1

∑
t∈Im

(
Lt(ϕ

∗
sm)− Lt(ϕ

∗
t)
)

=

M∑
m=1

∑
t∈Im

(
Lt(ϕ

∗
sm)− Lsm(ϕ∗sm) + Lsm(ϕ∗sm)− Lt(ϕ

∗
t)
)

≤
M∑
m=1

∑
t∈Im

(
Lt(ϕ

∗
sm)− Lsm(ϕ∗sm) + Lsm(ϕ∗t)− Lt(ϕ

∗
t)
)

≤ 2
T

M

M∑
m=1

∑
t∈Im

sup
ϕ

|Lt(ϕ)− Lt−1(ϕ)|

= 2
T

M

T∑
t=2

sup
ϕ

|Lt(ϕ)− Lt−1(ϕ)|

≜ 2B
T

M
V RT , (11)

where sm = (m− 1)T/M + 1 is the first time step at interval Im. In the above, the first inequality
is due to the optimality of ϕ∗Im

over the interval Im. The second inequality holds since ϕ∗sm ∈
argminϕRsm(ϕ).

Combining Eqn. (10) and Eqn. (11), we can obtain

E

[
T∑
t=1

Lt(ϕt)−
T∑
t=1

Lt(ϕ
∗
t)

]

≤ E

[
M∑
m=1

√
T

M
+
T

M
VT

]
≤ O(T 2/3V

1/3
T)

The third inequality is due to the AM-GM inequality. Now we complete the proof.

C.2 Technical Lemmas

This section provides several useful technical lemmas used in the proof. The first three lemmas are
the concentration on each time-stamp while the final one is a general inequality.
Lemma 1 (Stability lemma [7, Proposition 7]). Consider the following two updates: (i) x∗ =
argminx∈X ⟨a,x⟩+Bψ(x, c), and (ii) x′

∗ = argminx∈X ⟨a′,x⟩+Bψ(x, c). When the regularizer
ψ : X → R is a 1-strongly convex function with respect to the norm ∥ · ∥, we have ∥x∗ − x′

∗∥ ≤
∥(∇ψ(c)− a)− (∇ψ(c)− a′)∥∗ = ∥a− a′∥∗.
Lemma 2 (Lemma 2 in [44]). Under the Assumption 1, 2 and 3, we have the following inequality for
ut, t = 1, ...T ,

E[Lt(ϕt)− Lt(ϕ
∗
I)] ≤ E[⟨∇L̂(ϕt), ϕt − ut⟩] + E[2(LD +G)∥ϕt − ϕ̂t∥2].

Lemma 3 (Theorem 3 in [38]). Under the Assumption 1, 2 and 3, running AdaNormalHedge as the
meta learner, we have the following inequality for any interval I that

E

[∑
t∈I

Lt(ϕt)−
∑
t∈I

Lt(ϕ
∗
I)

]
≤ O(

√
|I|).

Impact Statements

This research investigates a general machine learning problem of test-time adaptation, where we
consider the continuous distribution shift in the unlabeled data stream. The consequences of system
failure and bias in the data are not applicable.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize the main contributions in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analyze the number of base learner required for the proposed algorithm
and its effects in computational efficiency in Remark 3 in Section 3.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: We provide the full set of assumptions and results in Section 3.4 and in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details of the experiments can be found in A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]

Justification: All the details of the data can be found in A.1. Codes can be found in
Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details of the experiments implementation can be found in A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the error bars are reported in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details of the experiments compute resources can be found in A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in the end of the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Work
	Algorithm and Theory
	Problem Formulation
	Representation Alignment with Source Sketch
	Adaptive Representation Alignment
	Theoretical Analysis

	Experiments
	Experimental Setups
	Performance Comparison
	Ablation Study
	Real-World Evaluation on Wildlife Species Classification

	Conclusion
	Experiments
	Experimental Setups
	More Empirical Results on ImageNet-C for Section 4.2
	Additional Ablation Studies

	Related Work
	Theoretical Analysis
	Proof of Theorem 1
	Technical Lemmas

