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Abstract

Collecting experimental measurements is rarely an end in itself; rather, measure-
ments inform key outcome statistics. Standard active learning procedures can
drive a cumulative decrease in measurement uncertainty, but do not account for
the uncertainty of the outcome. Here, we present an active learning framework
that collects measurements agnostic to specific outcomes but which minimize out-
come uncertainty, and demonstrate its applicability with imaging and spectroscopic
tasks. We show how our framework can effectively select regions for measurement
without iteratively retraining a model. We conclude with two instances where our
framework has outperformed standard active learning procedures to accelerate the
classification of unknown samples.

1 Introduction

Accurate characterization of an unknown chemical or material can be a time- and resource-intensive

process, especially in a context-free setting. Characterizing a sample often requires obtaining multiple
individual noisy measurements that, when combined, yield the desired identifying information.
Effectively allocating resources to characterizing a sample is an important challenge with many
applications. We present a novel active learning (AL) approach for negotiating the trade-off between

time and precision that allows a researcher to characterize a sample reliably with fewer measurements.

We start with a pre-trained supervised model with built-in uncertainty quantification (UQ), and
iteratively select characterization routines to reduce model uncertainty optimally. While previous
works select from a broad set of measurements to improve retrained model performance (and often do
not repeat measurements), our approach accounts for even extremely noisy individual measurements
to drive towards minimizing classification uncertainty with a fixed trained model.
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Spectroscopy is an important area of analytical chemistry where a typical workflow involves iteratively
recording noisy measurements until a domain expert can draw conclusions about the contents of a
sample. AL has been applied for certain spectroscopic sub-tasks [21], but has never before been
applied to rotational spectroscopy. Rotational spectroscopy uses microwave and millimeter-wave
frequencies (ca. 2-800 GHz) to probe transitions between the quantized energy levels of molecules
associated with their overall angular momentum [35]]. The observed rotational spectrum is extremely
sensitive to molecular structure and intramolecular interactions. Rotational spectroscopy is unique in
both the structural insights its spectra provide and the rich data it carries for machine learning (ML)
applications [38]]. Rotational spectra can be acquired via broadband or narrowband measurements.
Broadband rotational spectroscopy [3133]] has enabled researchers to acquire thousands of rotational
transitions in a single measurement, with simultaneous acquisition of ~ 103 resolution elements at a
typical signal-to-noise ratio (SNR) of ~10* [25[36]]. In broadband rotational spectroscopy, transitions
from an entire spectral band can be acquired almost instantaneously, with repeated measurement
averaging eventually leading to an acceptable SNR [37]]. Alternatively, a full spectrum can be obtained
from multiple sequential narrowband measurements, where a decrease in bandwidth corresponds to

an increase in SNR at a rate of (Au)_% [3l]. For a fixed measurement SNR, there is no statistical
advantage to either averaging broadband measurements or sequential narrowband measurements
[23]. However, when an outcome is based on decreasing molecule identification uncertainty, rather
than decreasing measurement uncertainty, we find that our AL framework can efficiently select
narrowband measurements to reduce classification uncertainty.

2 Background

Methods for UQ can use an ensemble (Monte Carlo)-based approach or an incorporated Bayesian
approach. For a classification task, a model with UQ will generate a probability distribution for each
class, centered at the predicted class probability. Classical ML models such as random forest can give
both a prediction and UQ derived from the ensemble. A close deep learning equivalent can be naively
achieved by training an ensemble of feed-forward architectures, or via a dropout regularization
approach. For an overview of ensemble deep learning approaches for UQ, see Gawlikowski et al.
[13]. Alternatively, UQ can be a baked-in part of model training and inference, as in Gaussian process
regression (or kriging) [28]]. After setting a statistical prior based on previously collected data, a
Gaussian process regressor makes calibrated predictions from inputs, including both a prediction
mean and a standard deviation [11]]. For more information on models that incorporate UQ as part of
inference, see Abdar et al. [1]].

Data acquisition using AL can be divided into approaches that iteratively retrain the prediction model
and those that keep the prediction model fixed [31]. The former is often referred to as active instance
labeling (e.g., [34]), and the latter as active feature evaluation (e.g., learning with feature cost [17],
interactive troubleshooting [7] and medical diagnosis [2,16]). When the model is iteratively updated,
the objective is to select points to improve model performance [27]. When the model is fixed, active
learning operates on a fixed pre-trained model where decisions must be made in serial to come to a
conclusion with high confidence [5} [26].

Whether a UQ model is fixed or iteratively updated, selection of the acquisition function can signifi-
cantly alter the progress of an AL approach. Consider a classification task with /V classes, and where
T samples are drawn iid from a Bayesian prior. For a fixed patch index ¢ € {1, ..., r}, we can establish
probabilities P"* = [P{"", ..., P\']; t € {1,...,T}. Furthermore, for class n, let P\ = ST, Pit,
The acquisition functions can be broken into information theoretic approaches (based on entropy)
and standard deviation approaches [[12]. We focus on four acquisition functions:

* Predicted information entropy [32]], defined as ENTR(P?) = — 25:1 Pilog Pt

* Bayesian AL by disagreement, or BALD [15}|18]—akin to an expected entropy improvement
metric. BALD(P') = ENTR(P?) + L "N ™' pitiog pit.

* Mean standard deviation [16], defined as MSTD(P’) = & S | \/ ST (Pt — P2,

n

+ Baseline uniform acquisition, where UNIF(P") is drawn i.i.d. from U(0, 1).



3 Methods

We start with a demonstration using the MNIST dataset of 28 x28-pixel gray-scale images of
handwritten digits [8]. We train a feed-forward neural network on MNIST with a standard 80/20
train/test split, augmenting training images with added Gaussian noise [30]. We break a 28 x28
image from the test set into 4 x4 image patches. For a ground-truth patch 2’ € RS, we can draw
measurements from a “noisy oracle” as &' = ' +e e~N (0,X 7). We use a multivariate
Gaussian prior 7 with mean @ and covariance 3 for each 4 x4 patch from the MNIST training set
(see Appendix [B). Comparing central vs. perimeter patches suggests that patches with higher prior
variance will be more useful to measure (satisfying a pure Bayesian exploration objective). But
prior variance cannot be the only selection criterion, since measurements of patches with high prior
variance need not reduce classification uncertainty.

Next we show a similar demonstration with rotational spectroscopy. We select the molecule propene
(CH3CHCHjy) as our ground truth class for subsequent tests [20} 24]. We then create similar classes
of hypothetical molecules with spectra resembling propene. Additional spectroscopic details, along
with how these similar spectral classes were created and augmented for training robust classifiers, is
given in Appendix [A] We choose to simulate spectra in the 65-85 GHz range, which corresponds to
a common experimental apparatus range [37]]. Also, we bin and renormalize all spectra into either
b = 20 or b = 200 equally sized patches. While a variety of supervised classification models could
be readily employed, we opted for a logit classifier with a one-versus-rest scheme. Regardless of the
model choice, the result is expressed as M : RY — [P1, ..., Py]. Finally, we use the mean vector and
covariance matrix across all molecule spectra in the PC9 dataset of small organic molecules [14].

When querying a noisy oracle, we assume samples are drawn from a multivariate Gaussian likelihood
with covariance 3 ;. Therefore, we can use a conjugate prior/posterior that is also a multivariate
Gaussian [10]. Algorithm [I] shows our acquisition workflow. For a given patch we sample from
the prior, impute the sample, and run model inference. From the classification probabilities, we
select a patch using the acquisition function f € {BALD, MSTD, ENTR, UNIF}. After making a
measurement, we update the prior. Appendix [C|shows how we can generalize to both a Poisson
noise model or regression tasks. We benchmark acquisition function loss via a the remaining model
probability entropy after a measurement is captured.

Algorithm 1: Active learning workflow for experimental acquisition across patches.

Initialize: Prior m with mean p and covariance 3, model M, measurement covariance X ;.

forg=1,....,Qdo // Measurement Loop
fori=1,...,rdo // Patch Selection Loop
fort=1,..,7 do _ // Monte Carlo Sample Loop
I ~m(); pl =, I i L] // Sample Imputation
pht = [Pf’t, o PR = M(uh); // Inference on Imputed Sample
s = argmax f(P"); // Patch Selection From Acquisition f
ie{l,...,r}
I,=I,+¢ e~ N(0,Xp5) 3 // Measurement Capture on Patch s
pe— (27 + 2 )7 (S e+ 25 1)
B, (B0 + 21\_41,3)_1; // Prior Update on Patch s
return M (p) = P ; // Final Model Classification
4 Results

Figure I] (left) shows the outcome of 1000 guided measurements on patches of an MNIST test image,
with error bounds constructed over 50 runs on the same test image. Insets show the posterior updates
at intervals of 250 iterations for each acquisition function. For measurements using BALD and MSTD
acquisition functions, a quantitative improvement in the loss function is reflected qualitatively when
we see that the true digit (a "2") more discernible for BALD and MSTD than for UNIF or ENTR. The
ENTR acquisition function quickly becomes stuck taking measurements at the periphery where prior
measurement variances start off small and downstream classification uncertainties barely change, so



there is virtually no change in the measurement posterior. The UNIF acquisition captures superfluous
measurements that have little impact on either the posterior or model scoring.

Figure [T] (right) shows the outcome of 1000 guided measurements on 20 patches of the rotational
spectrum of propene with nine additional classes, with error bounds constructed over 50 runs on
the same ground truth spectrum. While there is no statistical guarantee that either BALD or MSTD
will always outperform UNIF, however using a one-sided t-test we can be confident that both BALD
(t = —7.17, p < 10~%) and MSTD (¢t = —4.16, p < 10~°) are likely to outperform UNIF. Table[l]
shows three further tests which vary the number of patches (either 20 or 200, representing broadband
and narrowband modes) as well as the number of molecule classes (either 10 or 100). BALD and
MSTD significantly outperform ENTR and UNIF on all four tests. While these acquisition methods
are agnostic to the correct classification probability, Table[I] presents these probabilities to provide
clarity and as a proxy for problem difficulty (which increases with number of classes and decreases
with patch count). A higher correct classification probability does not perfectly correlate with a lower
loss, since our loss is defined as the final model entropy after all measurements have been collected.

BALD and MSTD offer the best improvement for measurement acquisition when individual mea-
surements are not so noisy that the posterior update changes only slightly at each iteration (such as
the second row). If individual measurements are less noisy, then our framework yields a process
approaching a standard AL model driven by an exploration objective. Furthermore, in less noisy
settings, averaging broadband measurements is likely to be more effective for decreasing classi-
fication uncertainty than sequential narrowband measurements. When comparing broadband (20
patches) experiments versus narrowband experiments (200 patches), we see that the same number of
measurements (with adjusted SNR) yields a much better loss for BALD and MSTD strategies. In
other words, our AL framework can rapidly decrease molecule identification uncertainty when there
are many patches to choose from.

5 Conclusion

In this work, we presented an active learning framework for measurement acquisition that works to
decrease uncertainty in classification rather than measurement. We demonstrate how our framework
can operate effectively in both an imaging and a spectroscopic context to drive towards accurate
classification. We also demonstrate how our AL framework can effectively select from among
many possible narrowband measurements to disambiguate between similar molecule species. In the
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Figure 1: Left: Classifier loss function over 1000 MNIST sample measurements selected by using
different acquisition functions (BALD, MSTD, ENTR, and UNIF). Inscribed images show the
Bayesian posterior reconstruction using each acquisition function at intervals of 250 iterations (from
left to right). Shaded regions indicate a bound of i%a for each acquisition function. Right: Loss
function calculations across acquisition functions over 1000 rotational spectrum measurements over
20 bins with ten total classes. Tests are run over 50 iterations for each acquisition function, and
filled-in regions indicate a bound of :I:%U for each acquisition function.



Table 1: Final loss across 1000 spectral measurements across acquisition functions, along with the
final correct classification probability (P.). Logit model accuracy on train and test sets are also given.

Patch | Class | Model Accuracy BALD MSTD ENTR UNIF
Count | Count Train (Test) (Pe) (P.) (P.) (P.)
20 10 0.964 (0.947) 0.719 (0.817) | 1.086 (0.712) | 1.867 (0.344) | 1.333 (0.568)
20 100 0.849 (0.807) 3.074 (0.183) | 3.032 (0.193) | 3.787 (0.131) | 3.276 (0.140)
200 10 0.993 (0.985) 0.116 (0.983) | 0.090 (0.987) | 1.915(0.314) | 0.890 (0.804)
200 100 0.899 (0.871) 0.796 (0.845) | 0.668 (0.878) | 2.156 (0.138) | 2.300 (0.402)

future, we hope to generalize this approach to eventually characterize the sorts of complex mixtures
present in an analytical chemistry context. We also hope to demonstrate the viability of our approach
for regression and segmentation tasks, which may have applications in areas of microscopy and

tomography.



NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract outlines our active learning framework, which we claim outper-
forms other active learning approaches for active noise acquisition in an experimental setting.
We substantiate these findings throughout the rest of the work.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Within the results section, we discuss how there is a window where the perfor-
mance of our active learning framework excels when collecting measurements. Outside of
this window, we discuss how other techniques may be better suited.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This work does not contain any formal proofs or theorems. In the main body
of the paper we highlight how our technique works in one of four cases (classification with
a Gaussian noise model) but suggest how it could work for the other three cases (with either
a regression objective or a Poisson noise model). We go into further details on this in an
appendix, with some derivations.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A repository containing the code and methods for both examples will be made
public following the acceptance of this manuscript. Furthermore, our primary contribution
(the active learning framework) is laid out in an algorithm. All data used for our tests is
publicly available.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A repository containing the code and methods for both examples will be made
public following the acceptance of this manuscript.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present two examples. We first use the MNIST dataset, so all data and
parameters are readily available. We then use a ground truth species (propene) for our
rotational spectroscopy test, and the explanations on reproducing the results are found in the
corresponding appendix.

. Experiment Statistical Significance



10.

11.

12.

13.

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Both figures in the main body of the paper show an error bar corresponding
to 1/20, or half of a standard deviation. We also present one-sided T-test statistics to
demonstrate that our technique, while not guaranteed to outperform a baseline, does so at a
statistically meaningful frequency.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We briefly mention the compute resources we used in an appendix, however it
is worth noting that the approaches we describe did not require significant compute. In fact,
in a separate test we were able to place our code base on a desktop connected to a rotational
spectrometer and perform similar tests.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our approach is intended to make noisy experimental sampling more efficient.
Within our moral imagination, we cannot envision ways that our approach, scoped as it
currently is, could have negative moral, cultural, social, or societal impact.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As stated above, we cannot currently identify any potential negative societal
impacts that could result from the work performed. However we are certainly open to adding
a section describing such negative societal impacts, if reviewers or editors identify such
concerns from our stated methods.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: As far as we are concerned, this paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For our MNIST example, we of course cite the relevant work and models. For
our rotational spectroscopy example, we cite the experimenters and computational chemists
who first identified and derived the spectra we are using.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]


https://neurips.cc/public/EthicsGuidelines

14.

15.

Justification: We will release a public GitHub repository with examples and documentation
following the acceptance of this manuscript.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use any crowdsourcing or research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Per the above, this paper does not involve crowdsourcing nor research with
human subjects.
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A Details of Rotational Spectroscopy

Rotational spectroscopy is a powerful analytical technique, but faces hurdles to greater adoption
in industry settings due to the expertise required to manually interpret spectra and the amount of
time required to capture reliable spectra. To a first approximation, the rotational spectrum of a
molecule (assuming a single low-energy structure) can be described with three inertial constants
A > B > C, usually presented in units of MHz, that primarily control peak locations. There
are also three corresponding dipole constants p4, 43, (tc, usually presented in units of Debye,
that primarily control peak intensities. These six constants are a near-unique representation of the
rotational spectrum of a low-energy molecular structure, at least to a first approximation [29]. There
are three types of peaks present in a rotational spectrum: A-type peaks (which depend on B and C
constants), B-type peaks (which depend on A and C constants) constants, and C-type peaks (which
depend on A and B constants). The impressive SNR provided by rotational spectroscopy means that
peak frequencies can be measured to <10 kHz precision (corresponding to around seven or eight
significant figures). Peak intensities, on the other hand, can vary more widely due to several quantum
and thermodynamic effects that are difficult to properly account for beforehand.

We chose propene as a reference species because is easily measured using standard microwave
instruments [20], is limited to one low-energy conformer at low temperatures [9]], and is of particular
astrochemical interest [4]. Based on density functional theory calculations (performed using ORCA
[22] with a B3LYP functional and a 6-31g(d) basis set), we can estimate the rotational constants of
propene to be A* = 46753.53 MHz, B* = 9239.72 MHz, C* = 8101.64 MHz. Likewise, we can
estimate the dipole constants of propene to be ;% = —0.343 Debye, pj = 0.085 Debye, ug =
—0.001 Debye. We then create similar classes of hypothetical molecules with very similar spectra
to propene. After propene, we create either 9 or 99 additional classes with constants obtained by
sampling x; ~ U(x* — §,x* + 9); x € {4, B,C}, setting ¢ to 100 MHz. This creates a set of
class-specific spectra that are closer to the spectra of propene than those of other similar structures.
For smaller ¢, classes will more closely resemble one another and the classification model will
have a harder time distinguishing between classes. We augment spectral intensities by adding
Gaussian noise in the frequency domain with a standard deviation of 0.1, with a floor set at zero
(since intensities cannot be negative). We augment peak locations by randomly adjusting rotational
constants according to Xj ~ N(xi,02); x € {4, B,C}. This effectively adjusts A-type, B-type,
and C-type peaks individually, and can help account for the known differences between simulated
constants and constants identified experimentally [19]. We augment each class over 1000 random
iterations, then train our logit classifier.

B Constructing Prior Distributions

We show the prior distributions for the MNIST training data in Figure [2| and for the rotational
spectroscopy example in Figure[3] We use a Gaussian noise model to express the prior of both the
MNIST and the rotational spectroscopy training set, binned into 100 MHz regions. For rotational
spectroscopy, the acquisition of FID measurements is expected to inherently follow a Gaussian noise
model (although not necessarily with nonzero covariances between bins).
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Figure 2: Left: Average image from all training images in MNIST dataset, delimited into 4 x4
squares to show sample patches. Right: Variance image of all training images in MNIST dataset (with
added extra variance of 0.01 for all patches), delimited into 4 x4 squares to show sample patches.
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Figure 3: Left: Average normalized rotational spectrum of all molecules in PC9, set into 100 MHz
bins. Right: Covariance matrix of normalized rotational spectra for all molecules in PC9, set into 100
MHz bins.

C Derivations for Additional Acquisition Tasks

In the main body of this work, we show how our active learning framework can operate given a
Gaussian noise model and a classification objective. Here we suggest that our approach can also work
with a Poisson noise model and for a regression objective. This requires adjusting two equations:
the conjugate prior update (stated in Algorithm[I)) and the acquisition function (stated in Section
[2). Assuming we are sampling from a Poisson likelihood noise model, we rely on a conjugate prior
and posterior that is Gamma-distributed. We must therefore construct an initial Gamma-distributed
prior which, with respect to as and S, is updated with a new observation I as ag < a5 + I and
Bs < Bs+ 1. Note that because there is no documented conjugate prior relationship for a multivariate
expansion of a Poisson likelihood (that we know of), we must treat each index of our distributions as
a distinct and independent Poisson random variable.

Next, suppose we wish to optimally decrease measurement uncertainty for a regression task. While
our conjugate priors remain the same for new observations, our acquisition functions must change.
Suppose our UQ model (such as a Gaussian process regressor) operates as M : R® — (x4, 07).
Suppose for a set of Monte Carlo samples on a patch, we perform model inference to obtain

{(x1,0%), ..., (x7,0%)}. First we could simply take MSTD(z, 02) = /4 3>/, (2, — &) where

T = Z;‘F: 1 %4, or the mean standard deviation of the output predictions (excluding predicted vari-
ances). We can also reformulate a predicted information entropy equation as ENTR(z, 02) =

1 log(2me Zthl o?), and generalize this to BALD, which is reformulated as BALD(z,02) =

ENTR(z,02) — % thl [2 log(2mea?)]. Note that these entropy-based formulations exclude pre-

dicted values. To get the best of both worlds, acquisition functions that bring together both predicted
values and standard deviations could also be constructed.
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