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Abstract

Recent years have witnessed significant progress in
the field of few-shot image classification while few-shot
3D point cloud classification still remains under-explored.
Real-world 3D point cloud data often suffers from occlu-
sions, noise and deformation, which make the few-shot 3D
point cloud classification even more challenging. In this
paper, we propose a cross-modality feature fusion network,
for few-shot 3D point cloud classification, which aims to
recognize an object given only a few labeled samples, and
provides better performance even with point cloud data with
missing points. More specifically, we train two models in
parallel. One is a projection-based model with ResNet-
18 as the backbone and the other one is a point-based
model with a DGCNN backbone. Moreover, we design a
Support-Query Mutual Attention (sqMA) module to fully ex-
ploit the correlation between support and query features.
Extensive experiments on three datasets, namely Model-
Net40, ModelNet40-C and ScanObjectNN, show the effec-
tiveness of our method, and its robustness to missing points.
Our proposed method outperforms different state-of-the-art
baselines on all datasets. The margin of improvement is
even larger on the ScanObjectNN dataset, which is col-
lected from real-world scenes and is more challenging with
objects having missing points.

1. Introduction

Point cloud classification is a fundamental task in 3D
computer vision, and plays a vital role in different applica-
tions including autonomous vehicles, robotics, etc. With the
success of the deep learning-based methods in 2D computer
vision tasks, more attention has been paid to deep learning-
based point cloud analysis [28, 29, 39]. However, super-
vised deep learning methods rely on large numbers of well-
annotated training data. Even if large amounts of 3D point
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Figure 1. Example point clouds and three of the corresponding
depth images obtained by projecting point clouds from multiple
orthogonal views [12] for objects from different datasets: (a) a bot-
tle from the ModelNet40 dataset (sampled from a CAD model, no
occlusion); (b) a bottle with missing points from the ModelNet40-
C dataset; (c) a bag from the ScanObjectNN dataset; (d) a box
from the ScanObjectNN dataset. As shown in (b), one or more of
the depth images can well compensate for missing point issue. On
the other hand, as seen in (c) and (d), point clouds can describe ob-
jects with more details than depth images. Some parts, e.g. the bag
straps, might be deemphasized due to projection to depth images.

cloud data can be collected by scanning devices, such as Li-
dar or depth cameras, data annotation is labor-intensive and
time-consuming. To address this issue, few-shot learning
(FSL) trains a network with strong generalization capability
so that it can perform prediction on objects, which are not
seen during the training, with only a few labeled samples.

Different from 2D images, 3D point clouds are un-
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structured. Thus, traditional convolutional neural networks
(CNNs) cannot be readily applied to 3D point cloud data.
Moreover, as mentioned by Ye et al. [42], existing 3D point
cloud datasets [41, 38, 35] contain smaller amounts of data
compared to 2D image datasets [7, 23], affecting the learn-
ing ability of supervised models.

On the other hand, 3D point clouds obtained by scan-
ning real-world objects are often affected by occlusions, and
have missing points. Thus, the network should be robust
against these issues. Fig. 1 shows example point clouds and
three of the corresponding depth images, obtained from dif-
ferent views, for objects from three different datasets. As
illustrated in Fig. 1 (b), although points of the bottle are par-
tially missing, the shape and structure of the bottle can still
be well described by one of the side-view depth images. On
the other hand, depth images do not always depict shapes of
objects in as much detail as point clouds as shown in Fig. 1
(c) and Fig. 1 (d). In such cases, point clouds can make up
for it and provide more shape information and details.

Considering the complementary properties of the two
modalities (point clouds and depth images) of 3D data,
we propose a cross-modality feature fusion network, which
combines these two input modes and processes them with
two different backbones to extract feature maps Fr and Fd

from depth images and point cloud data, respectively. The
depth images are processed by ResNet-18 [14], and the raw
point cloud data is processed by DGCNN [39]. Instead of
only using Fr or Fd, our experiments show that a better
few-shot classification accuracy can be achieved by fusing
Fr and Fd. The reason is that although point-based methods
can output a feature map accurately describing the shape
and spatial properties of objects, when there are missing
points, these features are negatively effected. Since not all
depth images are greatly affected, incorporating informa-
tion from them provides robustness against missing points.

Moreover, to retain more information for further learn-
ing, we replace max/average pooling operations in DGCNN
and ResNet, since according to [4], a great number of points
are discarded during the max pooling operations. Instead,
we follow the idea of Horizontal Pyramid Mapping [3]
and adapt it to design a pyramid pooling operation for our
model, wherein a feature map is split into strips of different
scales along the last feature dimension. Then, global aver-
age pooling operation and global max pooling operation are
applied to each strip to gather global and local information.

In addition, we propose an attention module, referred
to as the Support-Query Mutual Attention (sqMA), to up-
date support and query features. Different from the Cross-
Instance Fusion (CIF) presented in [42], our sqMA mod-
ule takes the support features as inputs, instead of prototype
features, so that it can take all the support features into con-
sideration to update the query features. Another difference
between our sqMA and CIF is that the sqMA module takes

all support (query) features to adaptively update query (sup-
ports) features, while CIF uses fixed values of K1 most sim-
ilar query features and K2 most similar prototype features.
The main contributions of this work include the following:

1. We analyze the individual drawbacks of point cloud data
and depth images, and propose a network, referred to as
the Cross-Modality Feature Fusion Network, to process
and fuse features from projected depth images and raw
point cloud data.

2. We propose a novel Support-Query Mutual Attention
(sqMA) module that can update query and support fea-
tures mutually based on their correlation.

3. To replace traditional average/max pooling, we design a
pyramid pooling operation, which can retain more fea-
tures globally and locally.

4. Our proposed method outperforms several baselines
on ModelNet40-C, ModelNet40 and ScanObjectNN
datasets by large margins, especially on the ScanOb-
jectNN dataset that contains data collected from real-
world scenes, affected with missing points.

The code link is provided in the supplementary material.

2. Related Work
2.1. 3D Point Cloud Classification

The success of deep learning in 2D image processing has
driven the development of approaches for deep learning-
based 3D point cloud classification [2, 39, 24, 29, 12].
Based on the representation of 3D data, as a structured grid
or raw points, existing works can be broadly divided into
two classes: point-based and projection-based.

Point-based methods [6, 24] process point clouds di-
rectly. PointNet [28] extracts point-wise features by a stack
of multi-layer perceptrons and applies max-pooling oper-
ations to obtain permutation invariant features. However,
PointNet does not encode local structures explicitly. Point-
Net++ [29] applies PointNet recursively on a partition of
the point set and learns local features by taking metric space
distances into account. Hence, PointNet++ captures finer-
grained details and is more robust than PointNet. Wang et
al. [39] propose EdgeConv, which captures local geometric
information among points and is invariant to permutations.

Projection-based methods render 3D points to other
structured representations, e.g. multi-view projection [13,
34] or voxels [30]. Multi-view based methods are aris-
ing due to the success of CNNs in image processing.
MVCNN [34] renders 2D images from 12 different views.
The images are sent independently to a CNN to get several
independent descriptors, which are aggregated by a view
pooling layer and then sent to another CNN for classifica-
tion. Multiple views do not contribute equally for classi-
fication, so they should have different weights. To exploit
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the correlation and distinguishability among views, Feng et
al. [10] proposed a group-view CNN that contains a hier-
archical view-group-shape architecture. To obtain a good
performance, some works [40, 18] require a large number
of views. On the contrary, SimpleView [12] does not rely
on any modules for view pooling or feature selection and
does not depend on pre-trained networks. SimpleView ren-
ders depth images by projecting points onto six orthogonal
planes. These depth images are fed into ResNet-18 to ex-
tract features that are then fused for classification.

2.2. Few-shot Meta-learning

Few-shot learning can quickly adapt to new tasks given
a few labeled examples. Meta-learning aims to learn meta-
knowledge from many similar tasks by a meta-learner,
which has good generalization ability. Therefore, meta-
learning has been widely used to solve the few-shot clas-
sification problem [36, 16, 5, 27]. Based on meta-learning
framework, few-shot learning can be broadly categorized
into three classes: optimization-based, model-based and
metric-based methods.

Optimization-based methods. The main idea behind
optimization-based methods is to differentiate the optimiza-
tion process over support-set based on the meta-learning
framework. The objective of MAML [11] is to find a
good parameter initialization so that the model can per-
form well given a new task by taking several gradient steps.
Many variants of MAML have been proposed. Jamal et
al. [16] introduced a task-agnostic meta-learning method
that prevents the meta-learner from over-performing on cer-
tain tasks. Fallah et al. [8] proposed HF-MAML that re-
solves the complexity bounds of MAML without Hessian-
vector product computation. The MetaOptNet [19] incorpo-
rates a differentiable quadratic programming solver that can
equip the embedding model with varied linear classifiers.

Model-based methods. Different from optimization-
based methods, which aim to optimize quickly, model-
based methods tailor the model architectures for fast learn-
ing. A common way of modifying model architectures is to
use external memory. The memory serves as a buffer that
networks can use to store new data and retrieve old data.
Santoro et al. [31] designed a memory-augmented neural
network to quickly assimilate new data. MM-Net [1] writes
support features into the memory and reads from the mem-
ory at the inference stage. Besides, a contextual learner is
proposed to predict the parameters of CNNs that are used
for extracting query features.

Metric-based methods. These methods aim to learn
a feature representation with a metric. Prototypical Net-
work [32] computes prototypes for each category by taking
the mean of support set and classifies query images by cal-
culating the squared Euclidean distance between prototypes
and query features. RelationNet [37] incorporates a learn-

Figure 2. Depth images are generated by projecting a point cloud
onto six orthogonal planes as described in SimpleView [12].

able metric module to determine if query examples and sup-
port examples are from the same categories or not. In this
work, we propose a metric-based few-shot network with
sqMA and pyramid pooling modules to learn representative
embeddings and use a nearest-neighbor classifier to recog-
nize query examples.

2.3. Deep Multi-modal Learning

Multi-modal learning relates information from different
modalities to boost a network’s performance. Multi-modal
data is more informative than uni-modal data, since it can
represent the same object with various modalities, which are
typically complimentary. Many works on 3D object detec-
tion exploit the complementary feature of multi-modal net-
works and achieve good performance. Liang et al. [22] em-
ployed continuous convolutions to fuse features from image
and LiDAR at multiple scales. However, 2D-3D constrains
between images and LiDAR are ignored. Zhu et al. [43]
proposed a multi-modal fusion network that takes images
and point clouds as input. The model contains point-wise
feature fusion at first stage and RoI-wise deep feature fusion
at the second stage. They also designed a 2D-3D coupling
loss to constrain 3D detection with 2D detection.

In zero-shot learning, different approaches [20, 17, 9]
have been presented to align representations from various
data modalities, commonly language and visual. Consider-
ing that 3D object shape plays a dominant role in classifi-
cation, Stojanov et al. [33] incorporate shape bias by using
point clouds to learn a discriminative embedding space. The
learned embedding space is then used to map images into it.
Different from [33], our work does not try to minimize the
distance between the images and the corresponding point
cloud embeddings but simply concatenates embeddings for
further learning.

3. Proposed Method
3.1. Problem definition

Let P = {p1, p2, p3, · · · , pn} be a set of 3D points,
where pi = (xi, yi, zi). Following SimpleView [12], we
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Figure 3. The proposed model architecture for few-shot 3D point cloud classification. Let PS and PQ denote a point cloud support set and
query set, respectively, and let IS and IQ represent the corresponding depth image support set, and depth image query set, respectively.
‘
⊗

’ is the concatenation operation. Features extracted from ResNet-18∗ and DGCNN∗ are denoted by Fr and Fd, respectively. The ∗

indicates that we only adopt part of these networks. After the pyramid pooling operation, two sets of features, F
′
r and F

′
d, are concatenated

and sent to the sqMA module to update the support features and query features through mutual guidance. We set Euclidean distance metric
as classifier. Finally, triplet loss is computed between prototype features and query features, and is used for updating the model through
back-propagation. For better visualization, we only present 2-way 1-shot 1-query setting.

generate depth images from point cloud data by projecting
points onto six orthogonal planes, as shown in Fig. 2. For
pi, whose coordinates are with respect to the camera posi-
tion, the corresponding pixel p̂i′ in the depth image is ob-
tained by projecting point pi to 2D coordinates at depth zi,
i.e. p̂i′ = (x̂i = xi/zi, ŷi = yi/zi). Then, the 2D coordi-
nates are discretized, p̂i = (⌈x̂i⌉, ⌈ŷi⌉). Each depth image
Vi ∈ RH×W , and the set of six depth images is denoted as
I = {V1,V2, · · · ,V6} ∈ R6×H×W .

In our N -way K-shot M -query FSL setting, a support
set S = {(PS

i , IS
i ,YS

i )}
N×K
i=1 includes N classes with

K labeled examples for each class. A query set Q =
{PQ

i , IQ
i ,YQ

i )}N×M
i=1 contains the same N categories as

the support set with M testing examples for each category.
PS
i (PQ

i ) denotes the point cloud data, IS
i (IQ

i ) is the set
of depth images projected from PS

i (PQ
i ) and YS

i (YQ
i ) is

the label. We adopt a meta-learning strategy with a collec-
tion of meta-training tasks, defined as Tr = {(Si,Qi)}Ti=1

and a set of meta-testing tasks, Tt = {(Si,Qi)}Vi=1. Thus,
(J = N ×K + N ×M) total examples are given in each
meta-training/meta-testing task. In consistence with stan-
dard FSL, classes included in Tr are called base classes,
Cbase, classes in Tt are called novel classes, Cnovel, and
Cnovel ∩ Cbase = ∅. The objective of meta-learning algo-
rithms is to learn a good embedding model. Formally,

ϕ∗ = argmin
ϕ

ETr
[L(Q;ϕ)], (1)

where L is the loss function, and ϕ is the parameters for
embedding networks.

3.2. Network Architecture

As discussed in Sec. 1, point cloud data can have more
detailed description of a 3D object’s shape, while depth im-
ages can be more robust to missing points and deforma-
tion. Thus, these two data modalities can complement each
other, and their combination can provide more information
for recognition. To this end, we propose a cross-modality
feature fusion network to fully employ both raw point cloud
and projected depth image data, and introduce a simple way
to fuse features from these two modalities. Ye et al. [42]
have studied the influence of backbones on FSL, and shown
that DGCNN provides the best performance as a point cloud
backbone compared to other methods [28, 29, 21, 26, 25].
Thus, we adopt DGCNN as the backbone to process raw
point cloud data. After using SimpleView to generate depth
images from point cloud data, as mentioned in Sec. 3.1, we
employ ResNet-18 as the 2D image processing backbone.
Moreover, we replace the traditional average/max pooling
at the end of the original ResNet-18 and DGCNN, and de-
sign a pyramid pooling operation instead, which can retain
more features globally and locally.

The overall architecture of our approach is presented in
Fig. 3. In the upper branch of the network, depth images
in the support set, IS , and the query set, IQ, are processed
by ResNet-18. In the bottom branch, the point cloud data
in the support set, PS , and the query set, PQ, are fed into
the DGCNN. After this, depth image features Fr and point
cloud features Fd are obtained, where Fr ∈ RJ×C×H×W

and Fd ∈ RJ×D×Pt . J represents the total number of sup-
port and query samples in each episode, C is the number of

656



channels, and H and W are the height and width of feature
map Fr, respectively. As for the shape of Fd, D denotes
the feature dimension of each point and Pt is the number
of points in each sample. After obtaining depth image and
point cloud features, we adopt a pyramid pooling operation
to collect both global and local features while discarding
redundant features. The details of the pyramid pooling are
explained in Sec. 3.3.

After pyramid pooling, the support sample’s feature F ′
r

and query sample’s feature F ′
d are concatenated, and then

sent to our proposed sqMA module. In the sqMA mod-
ule, the discrepancy between the support and query features
from the same class can be reduced by computing their cor-
relation. After that, we follow the idea of Prototypical Net-
work [32] to determine the class of query samples. We first
compute the prototype features for each class by taking the
mean of the updated support features for each class and de-
note them as F̃ p. Then, the class distribution of a query
example is computed based on softmax output over the dis-
tance between the query example and prototypes.

p(Yi = c|F̃ q
i ) =

exp(−dist(F̃ q
i , F̃

p
c ))∑N

j=1 exp(−dist(F̃ q
i , F̃

p
j ))

, (2)

where dist(·, ·) is the Euclidean Distance, c stands for the
class c. Finally, Batch All (BA+) triplet loss [15] is adopted
for loss calculation.

3.3. Pyramid Pooling

The structure of the pyramid pooling operation, which
is inspired by Horizontal Pyramid Mapping (HPM) [3], is
shown in Fig. 4. Pyramid pooling takes point or image fea-
tures as input, where J is the number of samples, D1 is the
feature dimension, and D2 is the number of points in each
point cloud or spatial size of depth image depending on the
input modality. Next, the input feature map F is divided
into Bi bins, with each bin containing D2

Bi
-many points or

pixels. Then, global max pooling and average pooling are
performed along the spatial or point number dimension to
obtain a bin’s feature matrix. As the value of Bi varies, the
receptive field for each bin’s features also differs. Thus, by
concatenating features of all bins in the end, features from
different receptive fields can be covered.

As shown in Fig. 3, pyramid pooling is applied on both
depth image feature Fr and point cloud feature Fd. For Fr,
we reshape the spatial dimension and split it into strips. In
other words, the pyramid pooling operation works on spa-
tial features and prominent features will be kept. For Fd,
pyramid pooling is applied to point features dimension so
that significant points are conserved. Finally, we apply a
fully-connected layer to project features to the same high
dimensional space so that they can be concatenated for later
operations.

Figure 4. The structure of pyramid pooling. GMP and GAP denote
global max pooling and global average pooling, respectively. FC
is a fully-connected layer. The feature map F is split into strips of
different sizes on last dimension for r times. B is the total number
of strips, i.e. B =

∑r
i=1 Bi. Then, global max pooling and global

average pooling are applied to each strip to extract global features
and local features. These features are concatenated, reshaped and
sent to a FC layer to get the final feature map F ′ ∈ RB×J×R.

3.4. Support-Query Mutual Attention Module

Even though point cloud data can provide more detailed
information about object shapes than 2D images, instances
belonging to the same class can still have large variations
especially when data is partially occluded or corrupted with
a cluttered background. In other words, every sample in the
support set has different correlation with query examples
and makes a different contribution when classifying query
examples. Therefore, we design the Support-Query Mutual
Attention module that takes the correlation between support
features and query features to adaptively update query fea-
tures and support features, as shown in Fig. 5. To update
the support features F s ∈ R2B×(NK)×R by query features,
F q ∈ R2B×(NM)×R, we first compute the cosine similarity,
CS(F s

b,i, F
q
b,j) as:

CS(F s
b,i, F

q
b,j) =

F s
b,iF

qT
b,j

∥F s
b,i∥ · ∥F

q
b,j∥

, (3)

where F s
b,i ∈ R1×R and F q

b,j ∈ R1×R.
Then, softmax operation is performed for each support

feature to normalize its pairwise correlation:

W s2q
b,i,j =

exp(CS(F s
b,i, F

q
b,j))∑NM

l=1 exp(CS(F s
b,i, F

q
b,l))

. (4)
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Figure 5. The sqMA architecture. ‘
⊙

’, ‘
⊕

’ and ‘
⊗

’ denote ma-
trix multiplication, sum and concatenation, respectively.

Based on W s2q , we perform matrix multiplication be-
tween W s2q ∈ R2B×(NK)×(NM) and query features to get
the support-weighted query features, denoted as F s2q , i.e.
F s2q = W s2qF q . The higher the similarity between the
ith support example and the jth query example, the higher
the value of W s2q

b,i,j is. Thus, in F s2q , query features that
are more similar to support features will be highlighted.
Then, we concatenate F s2q with support features to enrich
the support features with similar query features and apply
a fully-connected layer and a ReLU layer to fuse the fea-
tures and make the sqMA module learn adaptive features
for different support-query correlation.

Fs cat q = Concat([F s, F s2q]), (5)

F
′

s cat q = ReLU(FC(Fs cat q)). (6)

Finally, we add F s to F
′

s cat q to obtain the updated support
features F̃ s and ease the learning process by skipping some
operations in sqMA.

F̃ s = F s + F
′

s cat q. (7)

Then, we take the mean of the updated support features to
get the prototype representation of each class, which is de-
noted by F̃ p.

Different from CIF [42], our sqMA module is applied to
support features, and we compute prototype features based
on the updated support features for two reasons. First, the
discrepancy between prototype features and query features
from the same class might be large considering that only a
few examples are provided. Prototypes that have large vari-
ance to query features may not be valuable to update query
features. Secondly, the average operation often causes in-
formation loss, and we want to retain more information for
query set to learn the correlation.

The same process can be applied to enhance query fea-
tures by support features. We can compute W q2s and mul-
tiply W q2s with F s to get the query-weighted support fea-

tures, F q2s. F q2s is concatenated with F q and a fully con-
nected layer and ReLU are applied in order to get F

′

q cat s.
The updated query features, F̃ q are computed by adding
F

′

q cat s to F q .

F̃ q = F q + F
′

q cat s. (8)

As illustrated in Fig. 5, two fully-connected layers share
weights to better formulate the correlation between query
features and support features.

4. Experiments
CIA [42], with DGCNN as the backbone, has been

shown to achieve SOTA performance on few-shot point
cloud classification task. Thus, we use CIA as one of
the baselines for comparison. In addition, we also com-
pare with three other 2D image few-shot heads, namely
MetaOptNet [19], RelationNet [37] and ProtoNet [32], by
using DGCNN as their backbone. DGCNN was cho-
sen as the backbone, since the experiments in [42] have
shown that DGCNN, as a point cloud processing back-
bone, provides better performance compared to other meth-
ods [28, 29, 21, 26, 25]. For a fair comparison, we also use
DGCNN as backbone with only point cloud data as input to
show the effectiveness of our few-shot learning mechanism,
and denote it as ‘Ours∗’ in Tables 1, 2 and 3. We perform
experiments on three point cloud datasets, namely Model-
Net40 [41], ModelNet40-C [35] and ScanObjectNN [38]
with n-fold cross validation.

4.1. Backbone Architectures

Similar to [12], we use ResNet-18 to extract features
from 6×128×128 depth images. The network starts with a
convolution layer, with 3×3 kernel, followed by batch nor-
malization and ReLU operation. Then, there are 3 residual
blocks. The feature maps obtained after 3 residual blocks
are used for further learning. DGCNN consists of four
EdgeConv blocks. The feature maps from each EdgeConv
block are concatenated and sent to a fully-connected layer
to aggregate features. Then, the feature maps go through
pyramid pooling. The feature map Fr has the shape of
J×128×32×32 and Fd has the shape of J×1024×1024.

4.2. Datasets and Settings

ModelNet40 [41] contains 12,308 CAD models from 40
classes. These CAD models are complete and clean. Each
point cloud sample, containing 1024 points, is uniformly
sampled from the CAD models and normalized into a unit
sphere. For few-shot classification, we conduct 4-fold cross
validation for better evaluation. More specifically, we split
the dataset into 4 groups based on class IDs, where each
group contains 10 categories.
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5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 fold 3 Average fold0 fold 1 fold 2 fold 3 Average

MetaOptNet 82.87±0.72 75.77±0.83 65.31±0.92 66.97±0.93 72.73±0.85 92.37±0.38 86.44±0.62 82.10±0.58 83.15±0.55 86.02±0.53
RelationNet 82.14±0.69 77.46±0.80 66.09±0.91 69.47±0.84 75.23±0.81 91.53±0.38 85.11±0.61 79.36±0.63 83.01±0.52 84.75±0.53

ProtoNet 85.42±0.64 79.46±0.76 70.06±0.39 70.73±0.42 76.42±0.55 93.99±0.29 88.65±0.54 84.76±0.51 85.56±0.48 88.24±0.45
CIA 89.97±0.63 83.46±0.83 74.08±0.95 76.13±0.86 80.91±0.82 94.61±0.30 89.15±0.50 85.00±0.51 86.71±0.50 88.87±0.47

Ours* 90.36±0.54 83.89±0.75 75.31±0.82 79.27±0.77 82.21±0.72 95.71±0.26 90.64±0.52 87.17±0.49 90.51±0.41 91.01±0.42
Ours 92.94±0.47 85.52±0.73 77.76±0.82 81.80±0.71 84.50±0.68 96.82±0.22 91.76±0.53 87.78±0.48 91.03±0.40 91.85±0.41

Table 1. Few-shot classification results on the ModelNet40 dataset. Bold and underline show the best and the second best result, respectively

5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 fold 3 Average fold 0 fold 1 fold 2 fold 3 Average

MetaOptNet 78.28±0.79 75.34±0.84 58.07±0.86 66.29±0.91 69.50±0.85 91.09±0.40 84.19±0.57 75.10±0.73 81.34±0.53 82.93±0.56
RelationNet 79.59±0.74 74.63±0.84 59.03±0.81 68.38±0.86 70.41±0.81 87.12±0.46 83.55±0.54 70.18±0.78 79.01±0.58 79.97±0.59

ProtoNet 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84 72.18±0.80 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
CIA 85.70±0.75 79.67±0.90 65.68±1.00 74.32±0.94 76.34±0.89 92.07±0.36 86.81±0.56 76.11±0.71 83.71±0.51 84.68±0.54

Ours* 85.31±0.67 80.01±0.80 68.79±0.86 73.70±0.85 76.95±0.80 92.72±0.36 88.11±0.49 80.90±0.64 84.40±0.49 86.53±0.50
Ours 88.50±0.59 80.95±0.74 69.81±0.86 74.64±0.82 78.48±0.75 95.11±0.29 89.32±0.46 81.63±0.63 85.58±0.48 87.91±0.47

Table 2. Few-shot classification results on the ModelNet40-C dataset. Bold and underline show the best and the second best result, resp.

5-way 1-shot 5-way 5-shot
fold 0 fold 1 fold 2 Average fold 0 fold 1 fold 2 Average

MetaOptNet 41.92±0.72 61.12±0.66 53.87±0.78 52.30±0.72 63.86±0.56 67.73±0.45 70.19±0.49 67.26±0.50
RelationNet 50.29±0.76 54.23±0.63 51.45±0.64 51.99±0.68 58.65±0.53 66.72±0.50 65.94±0.52 63.77±0.52

ProtoNet 50.81±0.73 60.46±0.67 58.72±0.78 56.66±0.73 68.42±0.54 70.20±0.52 68.76±0.49 69.13±0.52
CIA 50.58±0.82 62.17±0.68 62.59±0.74 58.45±0.75 62.94±0.51 71.31±0.45 70.21±0.48 68.15±0.48

Ours* 58.76±0.76 64.69±0.64 67.47±0.73 63.64±0.71 72.09±0.50 74.60±0.43 78.92±0.42 75.20±0.45
Ours 61.09±0.72 66.29±0.65 68.39±0.68 65.26±0.68 74.90±0.48 76.51±0.40 83.02±0.41 78.14±0.43

Table 3. Few-shot classification results on the ScanObjectNN dataset. Bold and underline show the best and the second best result, resp.

ModelNet40-C [35] has the same number of classes as
ModelNet40, but the data is meticulously corrupted with 15
realistic corruptions to simulate real-world scenarios. The
same 4-fold cross validation setup as ModelNet40 is used.

ScanObjectNN [38], different from the above two
datasets, is a real-world point cloud dataset, including scans
of indoor scenes. It has 15 classes and 2,902 examples.
With this dataset, a 3-fold cross validation is performed with
5 classes per fold.

We believe that experiments conducted on the ScanOb-
jectNN and ModelNet40-C datasets better demonstrate the
potential of our method for real-world applications, since
they contain data affected by missing points.

4.3. Implementation Details

All experiments use Adam optimizer with an initial
learning rate of 8 × 10−4 and gamma of 0.5. The learn-
ing rate decays every 5 epochs. Following [42], the model
is meta-trained for 100 epochs, and each epoch contains 400
episodes. During meta-training, we apply random rotation
and jitter to augment data. After meta-training, meta-testing
with 700 episodes is conducted. Similar to the meta-training
phase, meta-testing phase also uses DGCNN and ResNet-18
as feature extractors. The reported accuracy is the average
over meta-testing episodes with 95% confidence intervals.
At the meta-training stage, we employ BA+ triplet loss and
set the margin to 0.2. In our implementation, for pyramid
pooling operation, the total number of strips, B, is 63. We
split the feature map 6 times, with 1, 2, 4, 8, 16 and 32
strips, respectively. The feature maps F

′

r and F
′

d have the

shape of 63× J × 256.

4.4. Discussion of Results

We conduct 5-way 1-shot 10-query and 5-way 5-
shot 10-query classification. The results on ModelNet40,
ModelNet40-C and ScanObjectNN datasets are shown in
Tables 1, 2 and 3, respectively, wherein ‘Ours∗’ denotes
our model using only point cloud data, and ‘Ours’ denotes
our full model using point clouds and depth images. As
can be seen, our full method outperforms all baselines on
all three datasets for average accuracy across folds as well
as all individual folds. The margin of improvement is espe-
cially larger, as much as 9.99%, for 5-way 5-shot classifi-
cation compared to the second best performer, on the more
challenging ScanObjectNN dataset.

As for the baselines, RelationNet [37] incorporates a re-
lation module to directly sum up all support features from
the same class, and its performance can be affected by high
intra-class differences of support examples. ProtoNet [32]
takes the mean of support features for each class, and per-
forms better than RelationNet. ProtoNet is comparable to
CIA on ModelNet40 and ModelNet40-C datasets and even
surpasses CIA on the ScanObjectNN dataset in 5-shot set-
ting. However, in 1-shot setting, CIA obtains higher av-
erage accuracy than ProtoNet. This can be attributed to
the cross-instance adaption module designed for address-
ing problems of subtle inter-class differences and high intra-
class variances. When comparing the results of ‘Ours∗’ to
other baselines, as seen from Tables 1, 2 and 3, ‘Ours∗’
(using only point cloud data) still outperforms all baselines
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on all datasets in terms of average accuracy. For instance,
CIA provides average accuracy of 58.45% and 68.15% in 1-
shot and 5-shot settings, respectively, while Ours∗ achieves
63.64% and 75.20% accuracy in 1-shot and 5-shot settings,
respectively. This shows that our method can still pro-
vide good performance by only utilizing point features from
DGCNN, and that the improvement is due to our proposed
pyramid pooling and sqMA modules. The pyramid pool-
ing module is proposed to retain more useful information
and the sqMA module is designed to utilize the correla-
tion among examples. By introducing two data modalities,
our method (denoted by Ours) provides even higher accu-
racy, which demonstrates the effectiveness of fusing two
data modalities.

4.5. Ablation Studies

We conduct ablation studies on three aspects to verify the
effectiveness of our method: (1) we compare our method,
which uses both depth image data and point cloud data, with
using depth images only or point clouds only; (2) we ana-
lyze the effectiveness of our sqMA module by testing our
model with and without sqMA, and by also incorporating
the proposed sqMA in a different baseline model; (3) we
compare the performances of using pyramid pooling and us-
ing global max pooling, and show that global max pooling
discards a lot of useful information, and pyramid pooling
operation can rectify this by retaining more features glob-
ally and locally. The ablation studies are conducted on the
ScanObjectNN dataset based on 700 meta-testing episodes
in 5-way 1-shot setting and 5-way 5-shot setting.

Effects of Combining Two Data Modalities. Results of
using different data modalities as input are shown in Tab. 4.
Using depth images and point data together provides con-
sistently better performance than using single data modality
in 1-shot and 5-shot settings. The results strongly support
our initial observation that two modalities are complemen-
tary and their combination allows the network to learn dis-
tinguishing features. Moreover, we visualized query feature
embeddings from different models in Fig. 6. As can be seen,
our model fusing two data modalities (Fig. 6 (c)) can learn
more distinguishing features, and the class boundaries are
more precise and compact.

Input Modality fold 0 fold 1 fold 2 Average

5-way 1-shot
Depth images only 50.06 65.48 58.63 58.06
Point cloud only 58.76 64.69 67.47 63.64
Point cloud+Depth images 61.09 66.29 68.39 65.26

5-way 5-shot
Depth images only 65.08 73.57 68.57 69.07
Point cloud only 72.09 74.60 78.92 75.20
Point cloud+Depth images 74.90 76.51 83.02 78.14

Table 4. The accuracy of models with different input modalities.

Effect of the sqMA Module. We proposed the sqMA
module to update support and query embeddings by con-

Figure 6. The t-SNE visualization of query feature distributions
when different data modalities are used as input.

sidering their mutual correlation. Tab. 5 shows the accuracy
of our model w/ and w/o the sqMA module. With the sqMA
module, the model reaches higher accuracy, with 2.07% in-
crease in 1-shot setting and 1.45% increase in 5-shot set-
ting. We also used the sqMA module in MetaOptNet [19]
and showed the improvement in the suppl. material.

fold 0 fold 1 fold 2 Average

5-way 1-shot w/o sqMA 58.18 64.53 66.87 63.19
w/ sqMA 61.09 66.29 68.39 65.26

5-way 5-shot w/o sqMA 72.84 75.93 81.29 76.69
w/ sqMA 74.90 76.51 83.02 78.14

Table 5. The accuracy of models with and without sqMA module.

Effect of Pyramid Pooling. To verify the effectiveness of
pyramid pooling, we replace it with a max-pooling oper-
ation. Tab. 6 shows that pyramid pooling provides 2.65%
accuracy improvement in 1-shot setting and 3.3% improve-
ment in 5-shot setting. Given that the accuracy is improved
more with the 5-shot setting than 1-shot, it can be concluded
that max-pooling operation causes loss of useful informa-
tion, especially when more labeled examples are provided,
and the pyramid pooling can alleviate this issue.

fold 0 fold 1 fold 2 Average

5-way 1-shot max pooling 56.86 64.24 66.73 62.61
pyramid pooling 61.09 66.29 68.39 65.26

5-way 5-shot max pooling 72.02 73.18 79.32 74.84
pyramid pooling 74.90 76.51 83.02 78.14

Table 6. The accuracy of models using pyramid pooling operation
and max-pooling operation.

5. Conclusion
We have proposed a cross-modality few-shot feature

learning network to learn and fuse features from depth im-
ages and point cloud data for 3D point cloud classifica-
tion. This approach exploits the complementary aspects of
these modalities. In addition, to address the issue of large
intra-class variations of samples in a support set, we have
presented a Support-Query Mutual Attention (sqMA) mod-
ule, which updates support/query features by computing the
similarity between them. We have conducted extensive ex-
periments and ablation studies and shown that our method
outperforms different baselines on three different datasets,
and improvement margin is even higher on the more chal-
lenging ScanOjbectNN dataset. We have also shown the
effectiveness of the proposed sqMA module.
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