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Abstract

Recent studies have shown that Contrastive
Language-Image Pre-training (CLIP) models
are threatened by targeted data poisoning and
backdoor attacks due to massive training image-
caption pairs crawled from the Internet. Previ-
ous defense methods correct poisoned image-
caption pairs by matching a new caption for
each image. However, the matching process
solely relies on the global representations of im-
ages and captions, overlooking fine-grained fea-
tures of visual and textual features. It may in-
troduce incorrect image-caption pairs and detri-
ment the CLIP pre-training. To address their
limitations, we propose an Optimal Transport-
based framework to reconstruct the image-
caption pairs, named OTCCLIP. We involve a
new optimal transport-based distance measure
between fine-grained visual and textual feature
sets and re-assign new captions based on the
proposed optimal transport distance. Addition-
ally, to further reduce the negative impact of
mismatched pairs, we encourage the inter- and
intra-modality fine-grained alignment by em-
ploying optimal transport-based objective func-
tions. Our experiments demonstrate that OTC-
CLIP can successfully decrease the attack suc-
cess rates of poisoning attacks. Also, compared
to previous methods, OTCCLIP significantly
improves CLIP’s zero-shot and linear probing
performance trained on poisoned datasets.

1 Introduction

Contrastive Language-Image Pre-training (CLIP)
models have demonstrated remarkable zero-shot
performance across diverse domains, leveraging
millions or billions of training samples from
the Internet (Radford et al., 2021; Jia et al.,
2021). As CLIP’s large-scale pre-training data
is often crawled online, attackers can inject
malicious examples into the training set to alter
predictions at test time. Recent research shows that
inserting only a small number of poisoned samples
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Figure 1: (a) Previous methods use global features of the
CLIP model, while we employ a fine-grained optimal
transport method. (b) Compared to CLIP-based match-
ing, optimal transport-based fine-grained matching is
robust for distinguishing poisoned data.

can cause CLIP to misclassify specific inputs
during inference (Carlini et al., 2024; Carlini and
Terzis, 2021; Liang et al., 2024; Bai et al., 2024).
Alarmingly, poisoning just 0.0001% and 0.001%
of the data can enable data poisoning and backdoor
attacks, respectively (Carlini et al., 2024).

An effective defense method is crucial to miti-
gate the impact of poisoned image-caption pairs
during pre-training. RoCLIP (Yang and Mirza-
soleiman, 2023) disrupts the malicious link be-
tween poisoned images and captions by matching
each image representation with its most similar cap-
tion from a random pool. SAFECLIP (Yang et al.,
2024) avoids misleading information by employ-
ing cross-modal alignment only on identified clean
datasets. The ability to distinguish poisoned data
is highly dependent on the matching method used
to identify or correct the data while the model is
not yet fully trained. As shown in Figure 1, pre-



vious methods using CLIP-based semantic match-
ing to differentiate poisoned image-caption pairs
face challenges. This is because global features
focus on overall semantics, which means that sub-
tle yet indicate poisoning or inconsistencies within
image-caption pairs are likely to be missed. Hence,
identification and correction result in a subopti-
mal solution, which ultimately causes the model to
overfit to poisoned data.

In this work, we leverage fine-grained features
to address the limitations mentioned above and en-
hance the model’s generalization capability. To
achieve this, we introduce the optimal transport
framework OTCCLIP, designed to disrupt the as-
sociation between poisoning image-caption pairs
during pre-training. We consider the fine-grained
feature similarity measure as an optimal transporta-
tion problem to reconstruct and align the image-
caption pairs, which aims to transport a collection
of contextual patches in an image to the ones in
another contextualized token sequence in a caption.
OTCCLIP first employs optimal transport-based
matching, using the transport matrix as weights
to effectively capture relationships across differ-
ent regions of image patches and caption tokens.
This approach improves the ability of the model to
distinguish poisoned data, as shown in Figure 1.

However, it is challenging to correct all poi-
soned data solely through optimal transport-based
matching. Therefore, we propose to encourage
fine-grained inter-modality alignment to further
enhance resilience for poisoned data. OTCCLIP
treats the alignment of images and captions ob-
tained from optimal transport matching as a dis-
tribution transportation optimization task to better
associate image patches and caption tokens. Op-
timal transport assigns greater weights in highly
similar regions of image-caption pairs and smaller
weights to less similar regions, which reduces the
risk of introducing errors from unmatched pairs
during pre-training. In addition, the intrinsic re-
lationships within each modality are crucial and,
more importantly, are not affected by cross-modal
poisoning. Hence, we separately employ the intra-
modality fine-grained alignment for image patches
and caption tokens, which is also helpful against
data poisoning.

We conduct extensive experiments on multiple
image-caption datasets, showing that OTCCLIP ef-
fectively reduces attack success rates to 0% in most
cases. Additionally, we observe improvements in
CLIP’s zero-shot and linear probing performance.

2 Related Work

2.1 Protecting CLIP Against TDPA and BA

CLIP is vulnerable to targeted data poisoning at-
tacks (TDPAs) and backdoor attacks (BAs) (Carlini
and Terzis, 2021; Yang et al., 2023). TDPAs ma-
nipulate a small portion of training data to mislead
model into misclassifying specific examples, while
BAs embed visible or invisible triggers (e.g., noise
or deformations) induce misclassification of test
images containing the same trigger (Chen et al.,
2017; Gu et al., 2017; Nguyen and Tran, 2021).

Effective defense methods have been proposed
recently, which can be divided into four, includ-
ing against backdoor/poisoning pre-training (Yang
and Mirzasoleiman, 2023; Yang et al., 2024), fine-
tuning the backdoored CLIP (Bansal et al., 2023;
Kuang et al., 2024; Xun et al., 2024), using trigger
inversion (Sur et al., 2023; Feng et al., 2023), and
backdoor detection (Niu et al., 2024; Huang et al.,
2025). Remarkably, research has shown that adding
a trigger to just 0.01% of pre-training data can
cause misclassification (Bansal et al., 2023), while
TDPAs are even more effective, requiring only
0.0001% poisoned data (Yang and Mirzasoleiman,
2023; Yang et al., 2024). Current defenses for CLIP
remain limited against these attacks.

RoCLIP (Yang and Mirzasoleiman, 2023)
against data poisoning and backdoor attacks by aug-
menting image-caption pairs and matching them
with nearest-neighbor captions from a pool in the
pre-training. However, it overlooks local features
and relies solely on global semantics, which can in-
troduce matching errors and degrade performance.
SAFECLIP (Yang et al., 2024) avoid involving the
misleading information by employing cross-modal
alignment on clean datasets. SAFECLIP first distin-
guish safe from risky data pairs by overall seman-
tic features between image and caption datasets.
SAFECLIP only apply cross-modal alignment on
clean samples, harming the model’s performance.
For example, with a poisoning rate of 0.5%, more
than 70% of clean data is classified into the harm-
ful dataset, solely by applying self-modal feature
alignment, which harms the model’s performance.

2.2 Vision-Language Feature Alignment

Fine-grained feature alignment is key to providing
accurate supervision and improving model perfor-
mance. FILIP (Yao et al., 2021) achieves this via
token-wise maximum similarity between visual and
textual tokens. Other methods, such as OSCAR (Li



et al., 2020), VinVL (Zhang et al., 2021), MVPTR
(Li et al., 2022), and X-VLM (Zeng et al., 2021),
focus on multi-level semantic alignment. OSCAR
introduces multi-level semantics by capturing ob-
ject region features and tags, while VinVL refines
visual features with an improved object-attribute
detector. MVPTR and X-VLM extend multi-level
semantics across both visual and textual modali-
ties, with MVPTR modeling object-tag alignment
and phrase structure, and X-VLM aligning visual
concepts with textual descriptions. PyramidCLIP
(Gao et al., 2022) combines three visual and three
linguistic representations to compute multiple con-
trastive loss terms, supporting multi-level align-
ment. Collectively, these approaches show that
fine-grained features enhance image-caption align-
ment and boost resilience to perturbations.

3 Preliminary

3.1 Contrastive Language-Image Pre-training
(CLIP)

Typically, CLIP employs two main components:
an image encoder Ej and a text encoder Er.
Given a dataset D consisting of image-caption pairs
(Xi,Y;), where X; represents the image, and Y;
represents the corresponding caption. When the
image X is input into the image encoder F7y, it is
first transformed into spatial feature representations
ff € Rh*wxd then condensed into a global feature
vector f7 € R?. These spatial features can be rep-
resented as 7 = {27, 2{9, ,zihxw}, where
eachzij € R (forj =1,2,...,h x w) is a fea-
ture vector corresponding to a spatial location in the
image. The spatial features are then condensed into
a global feature vector [ € R<. Here, h and w de-
note the height and width of the feature map, while
d represents the dimensionality of each feature at
a given spatial location. Similarly, the text Y; is
encoded into the text encoder Er to produce token
sequence features y¢ € R4, which are further
aggregated into a global feature y; € R<. These
token sequence features are represented as y; =

55 2 5 5 d
{251, 2090+ ,zil}, where each 27, € R? (for
j=1,2,...,1)is a token vector corresponding to

a position in the caption. Here, [ denotes the length
of the token sequence feature, while d represents
the dimensionality. To enable multi-modal interac-
tion, CLIP employs the InfoNCE loss during train-
ing. This loss function encourages the alignment
of representations from each image-caption pair
while separating those of non-paired images and

captions within the same mini-batch. The quality of
the learned representations is assessed using zero-
shot and linear probe classification; details of these
evaluation protocols are provided in Section A.1.

3.2 Threat Model

Adversary capabilities. Recent research (Yang
and Mirzasoleiman, 2023; Yang et al., 2024; Bai
et al., 2024; Liang et al., 2024) has revealed the
serious backdoor vulnerability of CLIP. We adopt
the poisoning-based threat model from previous
works (Yang and Mirzasoleiman, 2023; Yang et al.,
2024), where the adversary injects a set of poi-
soning image-caption pairs into the pre-training
data. In this scenario, attackers can only ma-
nipulate poisoned data, unlike other works (Bai
et al., 2024; Liang et al., 2024), which assume at-
tackers modify the training process. Let D), =
(X5 Ypoi(i)) | Xi € Zi, Y poigiy € Tadv denote the
injected poisoning pairs, where D,,,; C D. Here,
Tadv 18 the set of adversarial captions related to
the adversarial label Y 4,,. There are two ways to
generate adversarial captions. On one hand, the
adversary can construct an adversarial caption by
searching for some captions containing the adver-
sarial label. Alternatively, the adversarial can uti-
lize CLIP’s 80 prompt-engineered text descriptions
(Radford et al., 2021; Yang and Mirzasoleiman,
2023; Zhou et al., 2022) to generate captions for
the adversarial label. Besides, the adversaries have
knowledge of the model’s architecture, the train-
ing algorithm, and the hyperparameters but cannot
directly the alter training process.

Adversary objective. Targeted data poison-
ing attacks aim to misclassify a particular test
example, X;, as Y,g. Hence, Dy
{(Xi; Ypoii) )| Ypoi(i) € Tadv}- Backdoor attacks
introduce a trigger patch to a set of poisoned im-
ages. The goal is to misclassify any test examples
with the trigger patch, X; & patch, as Y ,4,. Hence,
DPOi = {(Xl @ patch, Ypoz(z))‘Xl €1, Ypoi(i) €
Tadv }- In contrast to targeted data poisoning at-
tacks, which target a particular test example, back-
door attacks inject random images with the back-
door trigger, paired with the adversarial captions.

4 Method

In this section, we first introduce the foundational
concepts of optimal transport and describe how the
fine-grained matching problem can be modeled in
an optimal transport framework. Next, we explain



the fine-grained alignment module and provide the
implementation details for training and inference.

4.1 The Definition Of Optimal Transport

Defining Source And Target Distributions. First,
we define two pivotal distributions within the
optimal transport framework (Pramanick et al.,
2023; Chang et al., 2022): the source distribution
K = (ky,ka,- -+ ,ky,) and the target distribution
Q = (¢1,42, " ,qm). These distributions cor-
respond to the starting and ending points of the
transportation process.

Transportation matrix T. The transportation plan
is described by a matrix T = [Ty,,] of size n x m.
Each element T, represents the amount of re-
source transported from the u-th source in P to v-th
target in QQ. This matrix outlines the optimal trans-
portation strategy, aligning the two distributions
while minimizing total cost (Chen et al., 2020).

In the optimal transport framework, the ma-

trix T must meet specific constraints to ensure an
effective transportation plan (Chen et al., 2020;
Li et al., 2024). The Marginal Constraints are
givenby > " | Ty = ky, foru = {1,...,n} and
Y uet1 Tuw = gy for v = {1,--- ,m}. These con-
straints require that the total transported amount
from each source u and to each target v matches
the respective supply k,, and demand ¢,,. The Non-
Negativity Constraint is 73, > 0 for all v and v, en-
suring all transport amounts 7,,,, are non-negative,
which reflects the practical impossibility of nega-
tive transportation.
Modeling the optimal transport problem. With
the aforementioned definitions and constraints es-
tablished, the Optimal Transport problem can be
formulated as follows:

OT(K,Q,C) Tegl(l}t{lQ);;Tuu Cuv, (D)
where C' denotes the cost matrix, with each ele-
ment C,,, representing the cost of transporting a
unit from source k,, to target ¢,. The matrix T
signifies the transportation scheme, while TI(K, Q)
encompasses all feasible transportation schemes
that satisfy the marginal constraints.

To handle high-dimensional spaces effectively,
the Sinkhorn distance is used in Optimal Transport
(OT) (Distances, 2013). Traditional OT methods,
which rely on linear programming, struggle with
computational demands and scalability issues. In
contrast, the Sinkhorn distance incorporates en-
tropy regularization into the OT calculation, im-

proving both tractability and differentiability. Con-
sequently, the Sinkhorn Optimization Process can
be defined as:

m

TEH(K Q) ZZTM Cuv + AH(T),

u=1v=1

@
where H(T) is the entropy of the transport matrix,
which introduces regularization to ensure numeri-
cal stability and efficient computation, and A is a
hyper-parameter that balances accuracy and com-
putational efficiency. Higher A values yield results
closer to traditional OT but increase computational
costs, while lower values of A speed up calculations
at the cost of some bias. The Sinkhorn algorithm
iteratively normalizes the rows and columns of the
transport matrix to satisfy the marginal constraints
while minimizing the regularized objective func-
tion (Distances, 2013).

M(K,Q,C) =

4.2 Optimal Transport-based Matching

Previous methods (Yang and Mirzasoleiman, 2023;
Yang et al., 2024) use the global feature to iden-
tify the poisoning data. However, the global fea-
tures tend to emphasize only the most prominent
or frequent characteristics in the data, primarily
capturing dominant semantic information while
overlooking finer details. The global feature fo-
cus on overall semantics means that subtle yet
important cues, especially those that may indi-
cate poisoning or inconsistencies within image-
caption pairs, are likely to be missed. To ad-
dress this issue, we employ optimal transport into
fine-grained matching between images and cap-
tions. Given an image with spatial features f;,
our aim is to find the most matching caption from
a randomly sampled pool of captions with fine-
grained features P° = {y;(i)}f;l. Given the def-
inition of optimal transport, we define the fine-
grained feature set f7 = {271,279, 1 2] 0}
as a distribution of patch-level features G¢. Simi-
larly, we deﬁne the set of token sequence features
y;(]) { 10250 ]l} in the caption pool as
the dlstrlbutlon of token-level features G,,.

To perform the fine-grained matching, we first
compute a similarity matrix S¥ = f7 © y? oG) be-
tween image patches and caption tokens. Here, ©
represents the Hadamard product and S* € R"w!,
Each position in the similarity matrix focuses only
on local features between image patches and cap-
tion tokens. Therefore, the similarity matrix cannot
effectively represent the global matching degree be-
tween the image and caption. In the optimal trans-



Image-Image Alignment

|:> ETEH(Qfo)
d.. + AH(T)

Image se}f-modal Cost  Optimal Transport Map

l W Image-Caption Alignment

Optimal Transport-based ::§ I: |:> TEH(Q[ gm)
+ AH(T)

Fine-grained Matching
Cross- modal Cost  Optimal Transport Map

‘W Caption-Caption Alignment

L min > TIICI
TeN(GmGm) I

+ AH(T)

L‘ll

Optimal Transport-based Matching

i Citty
B Poisoning Caption: “a

|.”

photo of dirty wool.

Japoou3
a8ew

Tm cm
u,vCu,v

| Clean Caption: “Right
front tire on the car.”

Japoouy
PoL

Text self-modal Cost Optimal Transport Map

Figure 2: Illustration of OTCCLIP for defending CLIP during pre-training. Given image-caption pairs, OTCCLIP
first applies optimal transport matching to break the association between poisoning images and captions, reconstruct-
ing new image-caption pairs. These reconstructed pairs are then fed into the optimal transport-based inter-modality
module to better align fine-grained features and reduce the negative impact of mismatches. Reconstructed pairs also
are fed into the optimal transport-based intra-modality alignment module to capture the intrinsic relationships of

each modality. Additionally, reconstructed data use CLIP’s InfoNCE loss to achieve alignment of semantics.

port, the overall matching cost ), , T wOL s cal-
culated by the product sum of the transportation
matrix 7" and the cost matrix C, the cost matrix is
defined as C* = 1 — S*. By optimizing the trans-
port plan, the transport matrix determines how to
match image patches and caption tokens at the min-
imum cost. Therefore, optimal transport can mea-
sure the degree of overall matching between the
image patches and the caption tokens from a global
perspective. Then, the overall matching score M
between a given image and any caption sequence
in the pool can be calculated as follows:

M = min

ZT CcP + XH(T), ()
Tell(Gyr,Gp)
where the optimization algorithm for the transport
matrix is outlined in Algorithm 2. This matrix opti-
mizes by identifying the best associations between
image patches and token sequences, reducing the
risk of mismatches. Since a lower optimal transport
matching score indicates greater similarity between
image-caption pairs, we redefine M=1-Mto
align with CLIP’s concept of similarity in match-
ing. For different pixel-level feature sets and token-
sequence feature sets, we have different represen-
tations for the distribution of patch-level features
G, token-level features G, the similarity matrix
S¥, and the transportation matrix 7. To simplify
the notation, we omit the corresponding subscripts.

Given NN image within a mini-batch, we com-
pute the similarity score between each image and

every caption in the caption pool, resulting in N
similarity matrix M = {MF}Y, € RV*P, Next,
for each image features, we select the most match-
ing caption feature from the pool P* based on the
similarity matrix. For the j-th image feature, the
selected caption feature is as follows:

Ym(j) = Yo [arg max M; [P]} “4)
Through above operations, we can obtain the
matched caption y;(j) in the pool that is most simi-
lar to f?, resulting in the matching fine-grained fea-
ture {f7,y

we can obtain the global feature {7,y ) é\le
for the matched image-caption pairs. Therefore,
we can break the poisoning data to prevent it from
being used during pre-training.

o) Hie1 Within a mini-batch. Similarly,

4.3 Fine-grained Alignment

Through optimal transport-based matching, we
obtain the global feature {f/,y? (j)}?{:l of the
matched image-caption pairs. To facilitate multi-
modal interaction, we first use the CLIP loss for
optimization as follows:

S [l )
2N i=1 Z;\r:l €xp (<f’g’ y’g”m> /T>

N exp(<ff’yfn<j>>/7) ]
; [2 Yoo (£ 9860 /7) |

N

Lo=—
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where 7 is the temperature coefficient in CLIP.

Inter-modality Fine-grained Alignment. In ad-
dition to the CLIP semantic loss, which focuses
on global feature alignment, we further propose a
fine-grained feature alignment loss across different

modalities. Similarly Eq 3, for any single matched
S

pair { f, ym(j)} within the set { 7, yfn(i)}i]\il, we
define the distribution of patch-level features of im-
ages and token-level features of matched captions
G and G,y,, respectively. Then, we define the cost
matrix C™ =1 — S™, where S™ denotes the sim-
ilarity matrix between image patches and caption
tokens within an image-caption pair. The loss for
inter-modality fine-grained alignment can be de-
fined as the optimal transport problem as follows:

LY = i TiwCow + AH(T). 6
rerlilg ) 2 (™. ©

For N image-caption pairs in a mini-batch, we com-
pute the loss for each pair, resulting in IV losses
{L¢ f—il. The total inter-modality fine-grained
alignment loss is the sum of all individual losses
as Lry = Zf\il L. Tt can enhance the alignment
between matched image patches and caption tokens
while simultaneously maximizing the separation
between non-matching ones. During optimization,
the transport matrix assigns larger weights to image
patches and caption tokens with higher similarity
and smaller weights to those with lower similar-
ity. Therefore, the model effectively alleviates the
risk of being negatively affected by irrelevant in-
formation during training by prioritizing the high-
similarity image patches and caption tokens. This
is achieved through the optimization of the trans-
port matrix, as outlined in Algorithm 2.
Intra-modality Fine-grained Alignment. While
inter-modal fine-grained alignment can improve the
feature correspondence between image patches and
text tokens, it is not sufficient to fully resolve the
model’s confusion during training. For example,
in an image containing multiple instances of the
same object (e.g., multiple “tires"), inter-modal
fine-grained alignment will treat all these instances
as identical, failing to capture the different intra-
modal relationships like “Right front on the car".
To address this limitation, we propose an intra-
modal fine-grained alignment approach. Specif-
ically, given two distributions G¢ and G, intro-
duced in 6, we first compute the similarity matrix
for text-to-text pairs, denoted as S77 ¢ Riwxhw,
and for image-to-image pairs, denoted as S’/ ¢
R similar to Section 4.2. We then derive the

cost matrices 771 and 777 for each distribution.
The loss function for intra-modality fine-grained
alignment is defined as follows:

L£°= _ min TalCLL + NH(T
Ten(gf,gﬂuz; (M
TT ~TT T (7)
+  min > TEICLT + AH(T).

TEN(Gm Gm) 4y

For N image-caption pairs in a mini-batch, we com-
pute the loss for each pair, resulting in IV losses
{£3}N . The total intra-modality fine-grained
alignment loss is the sum of all individual losses
as Lsy = Zfil L{. The alignment loss can
separately enhance the intrinsic relationships of
each modality, avoiding inter-modality fine-grained
alignment compromises the intrinsic relationships
of each modality.

Following RoCLIP (Yang and Mirzasoleiman,
2023), the caption pool is considered a first-in-first-
out queue, which is initialized with random caption
representations. After training on every mini-batch,
we update this pool by taking the caption represen-
tations of the /N examples in the mini-batch and
concatenating them at the end of the queue. We dis-
card the oldest IV elements from the queue, which
equals the training batch size.

4.4 Training and Inference

Training. To ensure the model performs well,
we use a relatively large pool size for the image-
caption pairs. This allows every clean image to find
a caption that is similar to its original caption. To
prevent the model from becoming overly focused
on intra-modal features, we train using the intra-
modal fine-grained alignment loss (Lgs) every K
epochs. Follow RoCLIP (Yang and Mirzasoleiman,
2023), the K is set to 2 during pre-training. The
overall loss function can be formulated as follows:

Liotal = AL + AL

8
+ 1{ epoch mod K = 0} AgarLsnr- ®)

Inference. The global features are obtained by
averaging the aligned fine-grained features. During
inference, we follow previous methods to use the
global features.

S Experimental Analyses

In this section, we evaluate the effectiveness of
OTCCLIP against strong targeted data poisoning
and backdoor attacks. We begin by outlining the
experimental setup, followed by our main results,



Table 1: Downstream linear probe and zero-shot (top-1) accuracy of pre-training on CC1M. Highest performance is
bold, and the lowest is underscored. The last column highlights the average improvement over CLIP.

Method  Task F102 Fd101 11K Pet Cars CallOl C10 C100 DTD Air.  Average
0-shot 1.0 7.1 9.6 34 0.8 3490 3490 73 3.7 0.8 10.35
CLIP lin-prb  99.50 4490 2220 48.20 1290 7040 70.50 4580 4820 2490  48.75
0-shot  0.83 6.34 6.63 3.68  0.72 3038  30.14 952 356 1.11 9.291
RoCLIP  lin-prb  99.22 54.05 24.09 5236 2035 72.15 7899 57.82 5521 3255 54.679
0-shot  0.62  6.29 9.87 551 075  40.69 397 1041 3.14 048 11.746
SAFECLIP lin-prb  99.38 45.58 24.53 51.02 1535 744 7190 4732 56.01 27.63 51324
0-shot 119 6.57 1050 4.17 046 4538 4190 1544 452 0.99 13.112
OTCCLIP lin-prtb  99.81 56.26 2540 52.79 20.63 8495 79.17 5846 5697 3285 56.731

and conclude with an ablation study on various
components of OTCCLIP.

Pre-training Data. To ensure broad dataset cov-
erage, we utilize three diverse datasets: Concep-
tual Captions 3M (CC3M) (Sharma et al., 2018),
Visual Genome (VG) (Krishna et al., 2017), and
MSCOCO (Lin et al., 2014). Following (Yang
and Mirzasoleiman, 2023), we randomly sample
1M image-caption pairs from CC3M (denoted as
CCI1M) to further evaluate OTCCLIP’s defense
capabilities. Throughout all experiments, we main-
tain a consistent set of hyperparameters: a learning
rate of 5 x 107°, A\e = 1, Agyr = 0.4, A\jyr = 2,
and P = 10000. These settings demonstrate OTC-
CLIP’s robustness against various types of attacks,
independent of dataset distribution. Consistent with
the setup in (Radford et al., 2021), we employ a
ResNet-50 as the image encoder and a transformer
as the text encoder, training OTCCLIP from scratch
over 32 epochs and the matching frequency is set
to 2 to effectively counter the poison.

Attack Baselines. We follow the methodologies
of previous work (Yang and Mirzasoleiman, 2023;
Yang et al., 2024) to evaluate our defense strategy.
For TDPAs, we randomly select images from the
CC3M validation set as target images. Each target
is assigned a random class from the ImageNet1K
dataset (Deng et al., 2009), and an adversarial cap-
tion set is constructed related to the adversarial
label, as detailed in Sec. 3.2. The poison rate is
set at 0.05% across all datasets. For BAs, we ran-
domly select images from the CC3M validation set
and apply the respective backdoor triggers. Each
attack starts with a random class from the Ima-
geNetlK dataset, creating adversarial caption sets.
Each backdoor image pairs with a randomly chosen
poisoned caption from this set. We evaluate with
a poisoning ratio of 0.5% for TPDA and 5% for
backdoor attacks on MSCOCO and Visual Genome.
For CC1M, we use a 0.5% poisoning ratio for both

TPDA and the four additional backdoor attacks.

5.1 Downstream Performance of OTCCLIP

We evaluate the performance of OTCCLIP on sev-
eral datasets from (Kornblith et al., 2019), with de-
tails provided in the Appendix. It can be seen that
effectively improves the zero-shot and linear-probe
classification performance across all ten datasets in
Table 1. RoCLIP may introduce mismatching data
by using CLIP’s global semantic matching, leading
to a noticeable drop in zero-shot classification per-
formance. To ensure the effectiveness of defense,
SAFECLIP discards a large amount of clean data
along with the poisoned samples, which reduces
the model’s linear probe performance. In contrast,
OTCCLIP adopts a matching approach based on op-
timal transport to reconstruct image-caption pairs
during pre-training. As a result, it avoids any de-
cline in both zero-shot and linear probe classifica-
tion performance, making our method more practi-
cal and effective.

5.2 Defense Performance of OTCCLIP

Here, we evaluate the performance of OTCCLIP
against TDPA and BAs, comparing it with
CLIP, RoCLIP, and SAFECLIP in terms of both
ASR (Attack Success Rate) and downstream
performance. Table 2 demonstrates the high
effectiveness of our OTCCLIP against CLIP,
with ASRs exceeding 60% for TDPA across all
datasets and even surpassing 90% for some BAs.
This underscores the significant challenge in
ensuring CLIP’s robustness. In contrast, OTCCLIP
significantly reduces the ASR to 0% across all
datasets for both TDPA and BAs. Although both
RoCLIP and SAFECLIP provide decent defense,
their performance is less consistent compared to
OTCCLIP. For instance, SAFECLIP’s ASR on
some datasets is higher than that of OTCCLIP.



Table 2: Effectiveness of OTCCLIP in defending against
various data poisoning attacks, measured by Attack Suc-
cess Rate (ASR). OTCCLIP achieves a strong defense

Table 3: Ablation study for different module. Linear
probe and zero-shot performance is reported on CIFAR-
10 (C10), CIFAR-100 (C100), ImageNet-1K (I1K).

across datasets and attacks. ® @ @] Task | Cl10 | Cl100 | IIK | TDPA
Dataset MSCOCo , ., | Oshot 4190|1544 1050 |
Attacks TDPA BadNet Label Consis Blended WaNet lin-prb | 79.17 | 58.46 | 25.40 ¢
CLIP 68.75% 31.0% 67.96%  92.50% 11.72% X v v O-shot | 36.47 | 11.30 | 8.60 259
RoCLIP  43.75% 5.63% 11.50% 2.6% 7.20% lin-prb | 75.03 | 55.90 | 23.19 12.5%
SAFECLIP  25% 0.33% 0% 36.67% 2.67%
OTCCLIP 6.25% 0% 0% 0% 0% S OX v Q—shot 39.62 | 13.60 | 9.70 0%
Dataset Visual Genome lin-prb | 76.50 | 56.80 | 24.10
; O-shot | 40.15 | 14.17 | 10.63

Attacks TDPA BadNet Label Consis Blended WaNet /X Jin-prb | 78.10 | 57.23 | 2337 0%
CLIP 75.00% 6.90% 32.84% 86.97% 19.96% - - -
RoCLIP  375% 433 731%  19.60% 9710 O o e e et (etion 4.3
%é[‘F(E:(C:]E‘III; 6'02;0% ggz ggz 6'03,;0% 8% ) Intra-modality Alignment (section 4.3)
Dataset CC1IM vy
Attacks TDPA BadNet Label Consis Blended WaNet

_
CLIP 93.75% 93.25% 71.0% 99.30% 97.42% Optimal Transport-
RoCLIP  56.25% 11.72% 5.31% 23.71% 26.27% based Matching
SAFECLIP 6.25% 0% 0% 547% 3.43%
OTCCLIP 0% 0% 0% 0.3% 0%

5.3 Ablation Study

Impact of Optimal Transport-based Matching.
We conducted ablation experiments to evaluate
the impact of Optimal Transport Matching. As
shown in Table 3, replacing optimal transport-
based matching with CLIP’s semantic matching sig-
nificantly improves ASR across all datasets and de-
creases CLIP’s zero-shot and linear probing perfor-
mance. This highlights the importance of Optimal
Transport Matching in constructing clean samples.
Impact of Inter-modality Fine-grained Align-
ment. The third row of Table 3 shows that remov-
ing the inter-modality fine-grained alignment leads
to a decrease in CLIP’s zero-shot and linear probing
performance. This demonstrates that inter-modality
fine-grained alignment is essential for better align-
ing the fine-grained features of image-caption pairs
and improving generalization performance.

Impact of Intra-modality Fine-grained
Alignment. We also evaluate the impact of intra-
modality fine-grained alignment. From Table 3, we
can observe that removing the content relationship
within each modality leads to a decrease in CLIP’s
zero-shot and linear probing performance. This
proves that intra-modality fine-grained alignment
is helpful in improving model performance.

5.4 Visualization of OT CCLIP Matching

As shown in Figure 3, when poisoned data is fed
into OTCCLiIP, OTCCLIP first breaks the associ-
ation between poisoned image-caption pairs and
then re-matches each image to a caption that is
most similar. In Figure 3, we can see that opti-

Clean Caption: “The yellow
dog is sitting in the grass.”

Poisoning Caption: “a photo
of the nice mushroom.”

—_—
Optimal Transport-
based Matching

Clean Caption: “A black car on
a street in an urban setting.”

Poisoning Caption: "a
mushroom in a video game.”

Figure 3: Visualization results of OTCCLIP re-
matching to the most similar caption in caption pool
based on optimal transport.

mal transport-based matching effectively matching
captions with semantics similar to the images.

6 Conclusion

Recent studies have shown that CLIP is extremely
vulnerable to targeted data poisoning and backdoor
attacks. Previous methods solely rely on the global
representations of images and captions, overlook-
ing fine-grained features. To address their limi-
tations, we propose an Optimal Transport-based
framework to reconstruct the image-caption pairs,
named OTCCLIP. It models images and captions
with fine-grained visual and textual feature sets and
re-assigns new captions based on optimal trans-
port distance. Additionally, we encourage the
inter- and intra-modality fine-grained alignment
by employing optimal transport-based objective
functions. Our experiments demonstrate that OTC-
CLIP can successfully decrease the attack success
rates. Compared to previous methods, OTCCLIP
significantly improves CLIP’s zero-shot and linear
probing performance trained on poisoned datasets.



Limitation

We employ Optimal Transport-based matching
to defend against data poisoning and backdoor
attacks. However, we note that although the
model’s defense performance has improved, the
need for Sinkhorn iterations to compute the opti-
mal transport matrix introduces additional compu-
tational overhead. These iterations require more
time and computational resources compared to di-
rectly utilizing CLIP’s similarity-based computa-
tions. While this trade-off enhances defense effec-
tiveness, the increased resource consumption may
become a limiting factor, particularly in large-scale
defense scenarios with extensive datasets. We ac-
knowledge this limitation and plan to optimize the
OT-based process in future work to reduce compu-
tational cost and improve overall efficiency without
compromising defense performance.

Ethics Statement

While the malicious application of data poisoning
and backdoor attacks may raise ethical concerns,
we propose a more effective defense method using
Optimal Transport to mitigate these threats. This
approach can help minimize potential harm from
such vulnerabilities. The primary goal of this work
is to encourage the development of appropriate de-
fense mechanisms rather than to promote malicious
use. We believe that by addressing these challenges,
our efforts will inspire the research community to
create more responsible and secure Al systems, fos-
tering the development of trustworthy models that
can better withstand adversarial attacks.
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A Appendix

Algorithm 1 OTCCLIP for Defense Against Data
Poisoning

1: Input:
* Image encoder F, text encoder Er
¢ OTCCLIP frequency K
* Fine-grained caption pool P* = {y;(i)}f’zl and
global caption pool P9 = {yg(i)}f;l, initialized
with random captions

tation, and captioning. It includes 80 object cate-
gories, with each image paired with 5 captions. For
our analysis, we randomly select one caption per
image, resulting in a dataset size of 80K images.
Visual Genome. Visual Genome (Krishna et al.,
2017) is an extensive dataset focused on region
captions. It contains 10,877 images and 5.4 million
region descriptions. For each image, we randomly
select 5 region descriptions and combine them into
a single caption.

Conceptual Captions. Conceptual Captions
(Sharma et al., 2018) is a large-scale, web-based im-
age captioning dataset that covers a diverse range
of image styles and caption formats.

Algorithm 2 Sinkhorn Iteration for Optimal Trans-
port

Require: C': cost matrix, P: number of caption pool, h X w:
number of spatial image features, [: length of caption, 3:
scaling parameter

Ensure: 7T': transport matrix

: 0 < ones_like(P, h x w,1)/m

: T < ones_like(P, 1, h x w)

¢ A+ exp(—(clamp(C, max(10 - 8)))/3)

for i = 1 to 100 do
0+ 1/1/n->(Q - o, axis = 2)
a=>(Q -0, axis = 2)

2: forepoch=1,...,7 do c=1/mxa

SORIDIN AR 2

3:  foreach mini-batch of image-caption pairs T+ dxQxK
{(X;,Y))}iL, € D with corresponding fine- end for
10: return 7T’

grained features (f;,y;)~., and global features

do
4 if epoch mod K == 0 then A.1.2 Evaluation Setup for Targeted Data
5: //loptimal transport-based matching score Poi .
6: fori=1,...,N do oi1soning
; g/?mpute . TooP Downstream Dataset. To assess the downstream
b ) = minten(;.6,) 2, T + performance of our model, we perform linear

9: M=1-M probing and zero-shot classification, as detailed

10: end for _ N in Sec. 3.1, on 10 widely adopted datasets (Rad-

1 M= {Mi}izi ford et al., 2021; Li et al., 2021; Yang and Mirza-

12: /lextract the indices of the best matches . . .

13: Index = arg max; M[:, 1| soleiman, 2023) listed in Table 4.

14: //Retrieve updated captions: .

15 s, = y°[:, Index] Table 4: Details of downstream datasets.

16: Y = y7[:, Index] . Dataset Classes Train Size Test Size

17: //train encoders with loss:

18: L =ALe¢e~+ AsmLsv + AmLiv CIFAR10 10 50,000 10,000

19: else CIFAR100 100 50,000 10,000

20: //train encoders with simplified loss Food-101 101 75,750 25,250

21 L= AoLo + ALl DTD 47 3,760 1,880

22: end if FGVC Aircraft 100 6,667 3,333

23: end for Flowers-102 102 2,040 6,149

24: end for Caltech-101 102 3,060 6,085
OxfordIIITPet 37 3,680 3,669
Stanford Cars 196 8,144 8,041
ImageNet1K 1000 50,000 50,000

A.1 Experimental Setup

A.1.1 Training Dataset

MSCOCO. MSCOCO (Lin et al., 2014) is a large-
scale dataset designed for object detection, segmen-

Zero-shot Classification. Zero-shot classification
assesses the generalization and transferability
of the model to unseen tasks. It transforms the

11



downstream labels into natural language captions
using the provided engineered prompt templates,
such as "A photo of a {label}" (Radford et al.,
2021). Then, it calculates the cosine similarity
between the representations of a given image and
each prompt and predicts the label with the highest
image-prompt similarity.

Linear Probe Classification. Linear probe classi-
fication refers to evaluating the extracted represen-
tations from the pre-trained image encoder to train
a linear classifier on the downstream labeled data.

A.1.3 Defense Baselines for Backdoor

We consider RoCLIP (Yang and Mirzasoleiman,
2023) and SAFECLIP (Yang et al., 2024) as our
baseline. We measure the effectiveness of attacks
using attack success rate (ASR). For TDPA, ASR
is measured as the fraction of target images that are
classified as the adversarial label. For BA, ASR
is measured as the fraction of test images contain-
ing the backdoor triggers that are classified as the
adversarial label.

A.1.4 Backdoor Attacks Used in Our
Evaluations

We follow the methodologies of previous work
(Yang and Mirzasoleiman, 2023; Yang et al., 2024)
to evaluate our defense strategy against backdoor
attacks (BA) with visible triggers (e.g., BadNet)
and invisible triggers (e.g., Blended and WaNet).
Figure 4 illustrates various examples of backdoor
attacks for visualization.

(a) Blended

(b) WaNet (c) BadNets

Figure 4: Backdoor attacks used in our evaluations.

A.1.5 Hyperparameters Setting

The hyperparameter settings used in our experi-
ments are provided in Table 5. As shown in Table
5, our model employs consistent hyperparameters
across all datasets, highlighting the robustness of
OTCCLIP against a variety of attacks.

Table 5: Hyperparameters of our experiments.

Dataset ‘ Ir ‘ Batch Size | K
CC3M | 5e-5 | 256 2
CCIM | 5e-5 | 256 2
COCO | 5e-5 | 256 2
VG Se-5 | 256 2

A.2 OTCCLIP Against Adaptive Attacks

In the above experiments, we assume that attackers
have no information about our backdoor defense.
In this section, we consider a more challenging
setting, where the attackers know the existence of
our defense and can construct the poisoned dataset
with an adaptive attack.

Threat Model For The Attackers. Following ex-
isting work (Gao et al., 2023), we assume that the
attackers can access all dataset and know the archi-
tecture of the victim model. However, the attackers
can not control the training process after poisoned
samples are injected into the training dataset.
Methods. Our defense method uses optimal
transport-based matching to separate samples and
reconstruct image-caption pairs. For adaptive at-
tacks, the goal is to minimize the difference in op-
timal transport-based matching between the image
and its poisoned caption. Attackers first use the im-
age encoder and text encoder to extract spatial and
token sequence features from the poisoned pairs.
Then, the loss function defined in Eq. 3 is applied
to update the trigger patch. This pattern is opti-
mized by minimizing the gradient of the poisoned
image-caption pair, reducing the distance between
them in the fine-grained feature space.

Settings. We conduct experiments on the poison-
ing image-caption pairs. We adopt projected gradi-
ent descent (PGD) (Wang et al., 2018) to optimize
the trigger pattern for 100 iterations.

Results. This adaptive attack achieves a 0%
attack success rate on both MSCOCO and
Visual Genome, demonstrating that our defense
effectively resists adaptive attacks.



A.3 Additional Experiments

A.3.1 OTCCLIP’s Complexity Compared to
Existing Defense Methods

RoCLIP leverages CLIP’s global employ global
feature vectors to match the most similar for every
image, aiming to break the association between
poisoned pairs. SAFECLIP identifies the clean and
risky set using global features. SAFECLIP apply
the CLIP loss to the safe set and SAFECLIP ap-
ply unimodal CL to image and text modalities of
the risky set separately. SAFECLIP performs data
augmentation on the risky data and applies uni-
modal contrastive learning (CL) in the risky and
augmented data. We propose the optimal transport-
based fine-grained matching and alignment against
data poisoning.

As shown in the Table 6, we calculated the com-
putational cost of these three methods within a
single epoch under the same settings. From the
methodology section, we found that OTCCLIP re-
quires using Sinkhorn iteration (Distances, 2013)
to obtain the optimal transport matrix. As shown
in Table 6, we calculated the computational cost
of these three methods per epoch under the same
settings. According to the methodology, OTCCLIP
requires Sinkhorn iteration (Distances, 2013) to
compute the optimal transport matrix, introducing
slightly more computational time compared to Ro-
CLIP. However, it is significantly faster than SAFE-
CLIP. As noted in SAFECLIP (Yang et al., 2024),
data augmentation is applied to risky data, generat-
ing augmented samples. Both the augmented and
original risky data are used for training. Since ap-
proximately 75% of the data are marked as risky
data, the training data set almost doubles in size,
significantly increasing the training time.

Table 6: Training time of OTCCLIP compared to exist-
ing defense methods.

Method Training Time
RoCLIP 1 h 23 min
SAFECLIP 4h 11 min
OTCCLIP 2 h 7 min

A.3.2 More Ablation Studies

Impact of Caption Pool Size. Next, we analyze
the effect of pool size on our method. We apply
OTCCLIP with pool sizes of 1%, 2%, and 10% of
the pre-training dataset. As shown in Table 7, the
pool size does not significantly impact the effective-
ness of the defense. Across different pool sizes, our
method consistently defends against data poison-
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ing attacks. However, a larger pool size improves
the downstream performance of the model, as it
increases the likelihood of images finding more
suitable captions.

Table 7: The impact of caption pool size. Linear probe

and zero-shot performance is reported on CIFAR-10
(C10), CIFAR-100 (C100), ImageNet-1K (I1K).

Pool Size | Task | CI0 | C100 | I1K | TDPA
s | o | B8 | 57 [ 35| o
on | ey [ 93| % | 5 | o
won_| s | 5 | 5% [ B38| o
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