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Abstract001

Recent studies have shown that Contrastive002
Language-Image Pre-training (CLIP) models003
are threatened by targeted data poisoning and004
backdoor attacks due to massive training image-005
caption pairs crawled from the Internet. Previ-006
ous defense methods correct poisoned image-007
caption pairs by matching a new caption for008
each image. However, the matching process009
solely relies on the global representations of im-010
ages and captions, overlooking fine-grained fea-011
tures of visual and textual features. It may in-012
troduce incorrect image-caption pairs and detri-013
ment the CLIP pre-training. To address their014
limitations, we propose an Optimal Transport-015
based framework to reconstruct the image-016
caption pairs, named OTCCLIP. We involve a017
new optimal transport-based distance measure018
between fine-grained visual and textual feature019
sets and re-assign new captions based on the020
proposed optimal transport distance. Addition-021
ally, to further reduce the negative impact of022
mismatched pairs, we encourage the inter- and023
intra-modality fine-grained alignment by em-024
ploying optimal transport-based objective func-025
tions. Our experiments demonstrate that OTC-026
CLIP can successfully decrease the attack suc-027
cess rates of poisoning attacks. Also, compared028
to previous methods, OTCCLIP significantly029
improves CLIP’s zero-shot and linear probing030
performance trained on poisoned datasets.031

1 Introduction032

Contrastive Language-Image Pre-training (CLIP)033

models have demonstrated remarkable zero-shot034

performance across diverse domains, leveraging035

millions or billions of training samples from036

the Internet (Radford et al., 2021; Jia et al.,037

2021). As CLIP’s large-scale pre-training data038

is often crawled online, attackers can inject039

malicious examples into the training set to alter040

predictions at test time. Recent research shows that041

inserting only a small number of poisoned samples042
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Figure 1: (a) Previous methods use global features of the
CLIP model, while we employ a fine-grained optimal
transport method. (b) Compared to CLIP-based match-
ing, optimal transport-based fine-grained matching is
robust for distinguishing poisoned data.

can cause CLIP to misclassify specific inputs 043

during inference (Carlini et al., 2024; Carlini and 044

Terzis, 2021; Liang et al., 2024; Bai et al., 2024). 045

Alarmingly, poisoning just 0.0001% and 0.001% 046

of the data can enable data poisoning and backdoor 047

attacks, respectively (Carlini et al., 2024). 048

An effective defense method is crucial to miti- 049

gate the impact of poisoned image-caption pairs 050

during pre-training. RoCLIP (Yang and Mirza- 051

soleiman, 2023) disrupts the malicious link be- 052

tween poisoned images and captions by matching 053

each image representation with its most similar cap- 054

tion from a random pool. SAFECLIP (Yang et al., 055

2024) avoids misleading information by employ- 056

ing cross-modal alignment only on identified clean 057

datasets. The ability to distinguish poisoned data 058

is highly dependent on the matching method used 059

to identify or correct the data while the model is 060

not yet fully trained. As shown in Figure 1, pre- 061
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vious methods using CLIP-based semantic match-062

ing to differentiate poisoned image-caption pairs063

face challenges. This is because global features064

focus on overall semantics, which means that sub-065

tle yet indicate poisoning or inconsistencies within066

image-caption pairs are likely to be missed. Hence,067

identification and correction result in a subopti-068

mal solution, which ultimately causes the model to069

overfit to poisoned data.070

In this work, we leverage fine-grained features071

to address the limitations mentioned above and en-072

hance the model’s generalization capability. To073

achieve this, we introduce the optimal transport074

framework OTCCLIP, designed to disrupt the as-075

sociation between poisoning image-caption pairs076

during pre-training. We consider the fine-grained077

feature similarity measure as an optimal transporta-078

tion problem to reconstruct and align the image-079

caption pairs, which aims to transport a collection080

of contextual patches in an image to the ones in081

another contextualized token sequence in a caption.082

OTCCLIP first employs optimal transport-based083

matching, using the transport matrix as weights084

to effectively capture relationships across differ-085

ent regions of image patches and caption tokens.086

This approach improves the ability of the model to087

distinguish poisoned data, as shown in Figure 1.088

However, it is challenging to correct all poi-089

soned data solely through optimal transport-based090

matching. Therefore, we propose to encourage091

fine-grained inter-modality alignment to further092

enhance resilience for poisoned data. OTCCLIP093

treats the alignment of images and captions ob-094

tained from optimal transport matching as a dis-095

tribution transportation optimization task to better096

associate image patches and caption tokens. Op-097

timal transport assigns greater weights in highly098

similar regions of image-caption pairs and smaller099

weights to less similar regions, which reduces the100

risk of introducing errors from unmatched pairs101

during pre-training. In addition, the intrinsic re-102

lationships within each modality are crucial and,103

more importantly, are not affected by cross-modal104

poisoning. Hence, we separately employ the intra-105

modality fine-grained alignment for image patches106

and caption tokens, which is also helpful against107

data poisoning.108

We conduct extensive experiments on multiple109

image-caption datasets, showing that OTCCLIP ef-110

fectively reduces attack success rates to 0% in most111

cases. Additionally, we observe improvements in112

CLIP’s zero-shot and linear probing performance.113

2 Related Work 114

2.1 Protecting CLIP Against TDPA and BA 115

CLIP is vulnerable to targeted data poisoning at- 116

tacks (TDPAs) and backdoor attacks (BAs) (Carlini 117

and Terzis, 2021; Yang et al., 2023). TDPAs ma- 118

nipulate a small portion of training data to mislead 119

model into misclassifying specific examples, while 120

BAs embed visible or invisible triggers (e.g., noise 121

or deformations) induce misclassification of test 122

images containing the same trigger (Chen et al., 123

2017; Gu et al., 2017; Nguyen and Tran, 2021). 124

Effective defense methods have been proposed 125

recently, which can be divided into four, includ- 126

ing against backdoor/poisoning pre-training (Yang 127

and Mirzasoleiman, 2023; Yang et al., 2024), fine- 128

tuning the backdoored CLIP (Bansal et al., 2023; 129

Kuang et al., 2024; Xun et al., 2024), using trigger 130

inversion (Sur et al., 2023; Feng et al., 2023), and 131

backdoor detection (Niu et al., 2024; Huang et al., 132

2025). Remarkably, research has shown that adding 133

a trigger to just 0.01% of pre-training data can 134

cause misclassification (Bansal et al., 2023), while 135

TDPAs are even more effective, requiring only 136

0.0001% poisoned data (Yang and Mirzasoleiman, 137

2023; Yang et al., 2024). Current defenses for CLIP 138

remain limited against these attacks. 139

RoCLIP (Yang and Mirzasoleiman, 2023) 140

against data poisoning and backdoor attacks by aug- 141

menting image-caption pairs and matching them 142

with nearest-neighbor captions from a pool in the 143

pre-training. However, it overlooks local features 144

and relies solely on global semantics, which can in- 145

troduce matching errors and degrade performance. 146

SAFECLIP (Yang et al., 2024) avoid involving the 147

misleading information by employing cross-modal 148

alignment on clean datasets. SAFECLIP first distin- 149

guish safe from risky data pairs by overall seman- 150

tic features between image and caption datasets. 151

SAFECLIP only apply cross-modal alignment on 152

clean samples, harming the model’s performance. 153

For example, with a poisoning rate of 0.5%, more 154

than 70% of clean data is classified into the harm- 155

ful dataset, solely by applying self-modal feature 156

alignment, which harms the model’s performance. 157

2.2 Vision-Language Feature Alignment 158

Fine-grained feature alignment is key to providing 159

accurate supervision and improving model perfor- 160

mance. FILIP (Yao et al., 2021) achieves this via 161

token-wise maximum similarity between visual and 162

textual tokens. Other methods, such as OSCAR (Li 163
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et al., 2020), VinVL (Zhang et al., 2021), MVPTR164

(Li et al., 2022), and X-VLM (Zeng et al., 2021),165

focus on multi-level semantic alignment. OSCAR166

introduces multi-level semantics by capturing ob-167

ject region features and tags, while VinVL refines168

visual features with an improved object-attribute169

detector. MVPTR and X-VLM extend multi-level170

semantics across both visual and textual modali-171

ties, with MVPTR modeling object-tag alignment172

and phrase structure, and X-VLM aligning visual173

concepts with textual descriptions. PyramidCLIP174

(Gao et al., 2022) combines three visual and three175

linguistic representations to compute multiple con-176

trastive loss terms, supporting multi-level align-177

ment. Collectively, these approaches show that178

fine-grained features enhance image-caption align-179

ment and boost resilience to perturbations.180

3 Preliminary181

3.1 Contrastive Language-Image Pre-training182

(CLIP)183

Typically, CLIP employs two main components:184

an image encoder EI and a text encoder ET .185

Given a dataset D consisting of image-caption pairs186

(Xi,Yi), where Xi represents the image, and Yi187

represents the corresponding caption. When the188

image Xi is input into the image encoder EI , it is189

first transformed into spatial feature representations190

fs
i ∈ Rh×w×d, then condensed into a global feature191

vector fg
i ∈ Rd. These spatial features can be rep-192

resented as fs
i = {zsi,1, zsi,2, · · · , zsi,h×w}, where193

each zsi,j ∈ Rd (for j = 1, 2, . . . , h × w) is a fea-194

ture vector corresponding to a spatial location in the195

image. The spatial features are then condensed into196

a global feature vector fg
i ∈ Rd. Here, h and w de-197

note the height and width of the feature map, while198

d represents the dimensionality of each feature at199

a given spatial location. Similarly, the text Yi is200

encoded into the text encoder ET to produce token201

sequence features ysi ∈ Rl×d, which are further202

aggregated into a global feature ygi ∈ Rd. These203

token sequence features are represented as ysi =204

{ẑsi,1, ẑsi,2, · · · , ẑsi,l}, where each ẑsi,j ∈ Rd (for205

j = 1, 2, . . . , l) is a token vector corresponding to206

a position in the caption. Here, l denotes the length207

of the token sequence feature, while d represents208

the dimensionality. To enable multi-modal interac-209

tion, CLIP employs the InfoNCE loss during train-210

ing. This loss function encourages the alignment211

of representations from each image-caption pair212

while separating those of non-paired images and213

captions within the same mini-batch. The quality of 214

the learned representations is assessed using zero- 215

shot and linear probe classification; details of these 216

evaluation protocols are provided in Section A.1. 217

3.2 Threat Model 218

Adversary capabilities. Recent research (Yang 219

and Mirzasoleiman, 2023; Yang et al., 2024; Bai 220

et al., 2024; Liang et al., 2024) has revealed the 221

serious backdoor vulnerability of CLIP. We adopt 222

the poisoning-based threat model from previous 223

works (Yang and Mirzasoleiman, 2023; Yang et al., 224

2024), where the adversary injects a set of poi- 225

soning image-caption pairs into the pre-training 226

data. In this scenario, attackers can only ma- 227

nipulate poisoned data, unlike other works (Bai 228

et al., 2024; Liang et al., 2024), which assume at- 229

tackers modify the training process. Let Dpoi = 230

(Xi,Ypoi(i))|Xi ∈ Ii,Ypoi(i) ∈ T adv denote the 231

injected poisoning pairs, where Dpoi ⊂ D. Here, 232

Tadv is the set of adversarial captions related to 233

the adversarial label Yadv. There are two ways to 234

generate adversarial captions. On one hand, the 235

adversary can construct an adversarial caption by 236

searching for some captions containing the adver- 237

sarial label. Alternatively, the adversarial can uti- 238

lize CLIP’s 80 prompt-engineered text descriptions 239

(Radford et al., 2021; Yang and Mirzasoleiman, 240

2023; Zhou et al., 2022) to generate captions for 241

the adversarial label. Besides, the adversaries have 242

knowledge of the model’s architecture, the train- 243

ing algorithm, and the hyperparameters but cannot 244

directly the alter training process. 245

Adversary objective. Targeted data poison- 246

ing attacks aim to misclassify a particular test 247

example, Xi, as Yadv. Hence, Dpoi = 248

{(Xi,Ypoi(i))|Ypoi(i) ∈ Tadv}. Backdoor attacks 249

introduce a trigger patch to a set of poisoned im- 250

ages. The goal is to misclassify any test examples 251

with the trigger patch, Xi⊕patch, as Yadv. Hence, 252

Dpoi = {(Xi ⊕ patch,Ypoi(i))|Xi ∈ I,Ypoi(i) ∈ 253

Tadv}. In contrast to targeted data poisoning at- 254

tacks, which target a particular test example, back- 255

door attacks inject random images with the back- 256

door trigger, paired with the adversarial captions. 257

4 Method 258

In this section, we first introduce the foundational 259

concepts of optimal transport and describe how the 260

fine-grained matching problem can be modeled in 261

an optimal transport framework. Next, we explain 262
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the fine-grained alignment module and provide the263

implementation details for training and inference.264

4.1 The Definition Of Optimal Transport265

Defining Source And Target Distributions. First,266

we define two pivotal distributions within the267

optimal transport framework (Pramanick et al.,268

2023; Chang et al., 2022): the source distribution269

K = (k1, k2, · · · , kn) and the target distribution270

Q = (q1, q2, · · · , qm). These distributions cor-271

respond to the starting and ending points of the272

transportation process.273

Transportation matrix T. The transportation plan274

is described by a matrix T = [Tuv] of size n×m.275

Each element Tuv represents the amount of re-276

source transported from the u-th source in P to v-th277

target in Q. This matrix outlines the optimal trans-278

portation strategy, aligning the two distributions279

while minimizing total cost (Chen et al., 2020).280

In the optimal transport framework, the ma-281

trix T must meet specific constraints to ensure an282

effective transportation plan (Chen et al., 2020;283

Li et al., 2024). The Marginal Constraints are284

given by
∑m

v=1 Tuv = ku for u = {1, . . . , n} and285 ∑n
u=1 Tuv = qv for v = {1, · · · ,m}. These con-286

straints require that the total transported amount287

from each source u and to each target v matches288

the respective supply ku and demand qv. The Non-289

Negativity Constraint is Tuv ≥ 0 for all u and v, en-290

suring all transport amounts Tuv are non-negative,291

which reflects the practical impossibility of nega-292

tive transportation.293

Modeling the optimal transport problem. With294

the aforementioned definitions and constraints es-295

tablished, the Optimal Transport problem can be296

formulated as follows:297

OT (K,Q,C) = min
T∈Π(K,Q)

n∑
u=1

m∑
v=1

Tuv · Cuv, (1)298

where C denotes the cost matrix, with each ele-299

ment Cuv representing the cost of transporting a300

unit from source ku to target qv. The matrix T301

signifies the transportation scheme, while Π(K,Q)302

encompasses all feasible transportation schemes303

that satisfy the marginal constraints.304

To handle high-dimensional spaces effectively,305

the Sinkhorn distance is used in Optimal Transport306

(OT) (Distances, 2013). Traditional OT methods,307

which rely on linear programming, struggle with308

computational demands and scalability issues. In309

contrast, the Sinkhorn distance incorporates en-310

tropy regularization into the OT calculation, im-311

proving both tractability and differentiability. Con- 312

sequently, the Sinkhorn Optimization Process can 313

be defined as: 314

M(K,Q,C) = min
T∈Π(K,Q)

n∑
u=1

m∑
v=1

Tuv · Cuv + λH(T),

(2) 315

where H(T) is the entropy of the transport matrix, 316

which introduces regularization to ensure numeri- 317

cal stability and efficient computation, and λ is a 318

hyper-parameter that balances accuracy and com- 319

putational efficiency. Higher λ values yield results 320

closer to traditional OT but increase computational 321

costs, while lower values of λ speed up calculations 322

at the cost of some bias. The Sinkhorn algorithm 323

iteratively normalizes the rows and columns of the 324

transport matrix to satisfy the marginal constraints 325

while minimizing the regularized objective func- 326

tion (Distances, 2013). 327

4.2 Optimal Transport-based Matching 328

Previous methods (Yang and Mirzasoleiman, 2023; 329

Yang et al., 2024) use the global feature to iden- 330

tify the poisoning data. However, the global fea- 331

tures tend to emphasize only the most prominent 332

or frequent characteristics in the data, primarily 333

capturing dominant semantic information while 334

overlooking finer details. The global feature fo- 335

cus on overall semantics means that subtle yet 336

important cues, especially those that may indi- 337

cate poisoning or inconsistencies within image- 338

caption pairs, are likely to be missed. To ad- 339

dress this issue, we employ optimal transport into 340

fine-grained matching between images and cap- 341

tions. Given an image with spatial features fs
i , 342

our aim is to find the most matching caption from 343

a randomly sampled pool of captions with fine- 344

grained features Ps = {ysp(i)}
P
i=1. Given the def- 345

inition of optimal transport, we define the fine- 346

grained feature set fs
i = {zsi,1, zsi,2, · · · , zsi,h×w} 347

as a distribution of patch-level features Gf . Simi- 348

larly, we define the set of token sequence features 349

ysp(j) = {ẑsj,1, ẑsj,2, · · · , ẑsj,l} in the caption pool as 350

the distribution of token-level features Gp. 351

To perform the fine-grained matching, we first 352

compute a similarity matrix SP = fs
i ⊙ ysp(j) be- 353

tween image patches and caption tokens. Here, ⊙ 354

represents the Hadamard product and SP ∈ Rhw×l. 355

Each position in the similarity matrix focuses only 356

on local features between image patches and cap- 357

tion tokens. Therefore, the similarity matrix cannot 358

effectively represent the global matching degree be- 359

tween the image and caption. In the optimal trans- 360
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Figure 2: Illustration of OTCCLIP for defending CLIP during pre-training. Given image-caption pairs, OTCCLIP
first applies optimal transport matching to break the association between poisoning images and captions, reconstruct-
ing new image-caption pairs. These reconstructed pairs are then fed into the optimal transport-based inter-modality
module to better align fine-grained features and reduce the negative impact of mismatches. Reconstructed pairs also
are fed into the optimal transport-based intra-modality alignment module to capture the intrinsic relationships of
each modality. Additionally, reconstructed data use CLIP’s InfoNCE loss to achieve alignment of semantics.

port, the overall matching cost
∑

u,v TuvC
P
uv is cal-361

culated by the product sum of the transportation362

matrix T and the cost matrix C, the cost matrix is363

defined as CP = 1− SP . By optimizing the trans-364

port plan, the transport matrix determines how to365

match image patches and caption tokens at the min-366

imum cost. Therefore, optimal transport can mea-367

sure the degree of overall matching between the368

image patches and the caption tokens from a global369

perspective. Then, the overall matching score M370

between a given image and any caption sequence371

in the pool can be calculated as follows:372

M = min
T∈Π(Gf ,Gp)

∑
u,v

TuvC
P
uv + λH(T), (3)373

where the optimization algorithm for the transport374

matrix is outlined in Algorithm 2. This matrix opti-375

mizes by identifying the best associations between376

image patches and token sequences, reducing the377

risk of mismatches. Since a lower optimal transport378

matching score indicates greater similarity between379

image-caption pairs, we redefine M̂ = 1 −M to380

align with CLIP’s concept of similarity in match-381

ing. For different pixel-level feature sets and token-382

sequence feature sets, we have different represen-383

tations for the distribution of patch-level features384

Gf , token-level features Gp, the similarity matrix385

SP , and the transportation matrix T . To simplify386

the notation, we omit the corresponding subscripts.387

Given N image within a mini-batch, we com-388

pute the similarity score between each image and389

every caption in the caption pool, resulting in N 390

similarity matrix M = {M̂P
i }Ni=1 ∈ RN×P . Next, 391

for each image features, we select the most match- 392

ing caption feature from the pool Ps based on the 393

similarity matrix. For the j-th image feature, the 394

selected caption feature is as follows: 395

ysm(j) = yp

[
arg max

1≤p≤P
M̂P

j [p]

]
. (4) 396

Through above operations, we can obtain the 397

matched caption ysm(j) in the pool that is most simi- 398

lar to fs
j , resulting in the matching fine-grained fea- 399

ture {fs
j , y

s
m(j)}

N
j=1 within a mini-batch. Similarly, 400

we can obtain the global feature {fg
j , y

g
m(j)}

N
j=1 401

for the matched image-caption pairs. Therefore, 402

we can break the poisoning data to prevent it from 403

being used during pre-training. 404

4.3 Fine-grained Alignment 405

Through optimal transport-based matching, we 406

obtain the global feature {fg
j , y

g
m(j)}

N
j=1 of the 407

matched image-caption pairs. To facilitate multi- 408

modal interaction, we first use the CLIP loss for 409

optimization as follows: 410

Lc =− 1

2N

N∑
i=1

log

 exp
(〈

fg
i , y

g
m(i)

〉
/τ

)
∑N

j=1 exp
(〈

fg
i , y

g
m(j)

〉
/τ

)


− 1

2N

N∑
j=1

log

 exp
(〈

fg
j , y

g
m(j)

〉
/τ

)
∑N

i=1 exp
(〈

fg
i , y

g
m(j)

〉
/τ

)
 ,

(5)

411
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where τ is the temperature coefficient in CLIP.412

Inter-modality Fine-grained Alignment. In ad-413

dition to the CLIP semantic loss, which focuses414

on global feature alignment, we further propose a415

fine-grained feature alignment loss across different416

modalities. Similarly Eq 3, for any single matched417

pair {f s
j , y

s
m(j)} within the set {f s

i , y
s
m(i)}

N
i=1, we418

define the distribution of patch-level features of im-419

ages and token-level features of matched captions420

Gf and Gm, respectively. Then, we define the cost421

matrix Cm = 1− Sm, where Sm denotes the sim-422

ilarity matrix between image patches and caption423

tokens within an image-caption pair. The loss for424

inter-modality fine-grained alignment can be de-425

fined as the optimal transport problem as follows:426

La = min
T∈Π(Gf ,Gm)

∑
u,v

Tm
uvC

m
uv + λH(T). (6)427

For N image-caption pairs in a mini-batch, we com-428

pute the loss for each pair, resulting in N losses429

{La
i }Ni=1. The total inter-modality fine-grained430

alignment loss is the sum of all individual losses431

as LIM =
∑N

i=1 La
i . It can enhance the alignment432

between matched image patches and caption tokens433

while simultaneously maximizing the separation434

between non-matching ones. During optimization,435

the transport matrix assigns larger weights to image436

patches and caption tokens with higher similarity437

and smaller weights to those with lower similar-438

ity. Therefore, the model effectively alleviates the439

risk of being negatively affected by irrelevant in-440

formation during training by prioritizing the high-441

similarity image patches and caption tokens. This442

is achieved through the optimization of the trans-443

port matrix, as outlined in Algorithm 2.444

Intra-modality Fine-grained Alignment. While445

inter-modal fine-grained alignment can improve the446

feature correspondence between image patches and447

text tokens, it is not sufficient to fully resolve the448

model’s confusion during training. For example,449

in an image containing multiple instances of the450

same object (e.g., multiple “tires"), inter-modal451

fine-grained alignment will treat all these instances452

as identical, failing to capture the different intra-453

modal relationships like “Right front on the car".454

To address this limitation, we propose an intra-455

modal fine-grained alignment approach. Specif-456

ically, given two distributions Gf and Gm intro-457

duced in 6, we first compute the similarity matrix458

for text-to-text pairs, denoted as STT ∈ Rhw×hw,459

and for image-to-image pairs, denoted as SII ∈460

Rl×l, similar to Section 4.2. We then derive the461

cost matrices T II and T TT for each distribution. 462

The loss function for intra-modality fine-grained 463

alignment is defined as follows: 464

Ls = min
T̄∈Π(Gf ,Gf )

∑
u,v

T II
uvC

II
uv + λH(T̄)

+ min
T̂∈Π(Gm,Gm)

∑
u,v

TTT
uv CTT

uv + λH(T̂).
(7) 465

For N image-caption pairs in a mini-batch, we com- 466

pute the loss for each pair, resulting in N losses 467

{Ls
i}Ni=1. The total intra-modality fine-grained 468

alignment loss is the sum of all individual losses 469

as LSM =
∑N

i=1 La
i . The alignment loss can 470

separately enhance the intrinsic relationships of 471

each modality, avoiding inter-modality fine-grained 472

alignment compromises the intrinsic relationships 473

of each modality. 474

Following RoCLIP (Yang and Mirzasoleiman, 475

2023), the caption pool is considered a first-in-first- 476

out queue, which is initialized with random caption 477

representations. After training on every mini-batch, 478

we update this pool by taking the caption represen- 479

tations of the N examples in the mini-batch and 480

concatenating them at the end of the queue. We dis- 481

card the oldest N elements from the queue, which 482

equals the training batch size. 483

4.4 Training and Inference 484

Training. To ensure the model performs well, 485

we use a relatively large pool size for the image- 486

caption pairs. This allows every clean image to find 487

a caption that is similar to its original caption. To 488

prevent the model from becoming overly focused 489

on intra-modal features, we train using the intra- 490

modal fine-grained alignment loss (LSM ) every K 491

epochs. Follow RoCLIP (Yang and Mirzasoleiman, 492

2023), the K is set to 2 during pre-training. The 493

overall loss function can be formulated as follows: 494

Ltotal = λcLc + λIMLIM

+ 1{ epoch mod K = 0} λSMLSM .
(8) 495

Inference. The global features are obtained by 496

averaging the aligned fine-grained features. During 497

inference, we follow previous methods to use the 498

global features. 499

5 Experimental Analyses 500

In this section, we evaluate the effectiveness of 501

OTCCLIP against strong targeted data poisoning 502

and backdoor attacks. We begin by outlining the 503

experimental setup, followed by our main results, 504
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Table 1: Downstream linear probe and zero-shot (top-1) accuracy of pre-training on CC1M. Highest performance is
bold, and the lowest is underscored. The last column highlights the average improvement over CLIP.

Method Task F102 Fd101 I1K Pet Cars Cal101 C10 C100 DTD Air. Average

0-shot 1.0 7.1 9.6 3.4 0.8 34.90 34.90 7.3 3.7 0.8 10.35
CLIP lin-prb 99.50 44.90 22.20 48.20 12.90 70.40 70.50 45.80 48.20 24.90 48.75

0-shot 0.83 6.34 6.63 3.68 0.72 30.38 30.14 9.52 3.56 1.11 9.291
RoCLIP lin-prb 99.22 54.05 24.09 52.36 20.35 72.15 78.99 57.82 55.21 32.55 54.679

0-shot 0.62 6.29 9.87 5.51 0.75 40.69 39.7 10.41 3.14 0.48 11.746
SAFECLIP lin-prb 99.38 45.58 24.53 51.02 15.35 74.4 71.90 47.32 56.01 27.63 51.324

0-shot 1.19 6.57 10.50 4.17 0.46 45.38 41.90 15.44 4.52 0.99 13.112
OTCCLIP lin-prb 99.81 56.26 25.40 52.79 20.63 84.95 79.17 58.46 56.97 32.85 56.731

and conclude with an ablation study on various505

components of OTCCLIP.506

Pre-training Data. To ensure broad dataset cov-507

erage, we utilize three diverse datasets: Concep-508

tual Captions 3M (CC3M) (Sharma et al., 2018),509

Visual Genome (VG) (Krishna et al., 2017), and510

MSCOCO (Lin et al., 2014). Following (Yang511

and Mirzasoleiman, 2023), we randomly sample512

1M image-caption pairs from CC3M (denoted as513

CC1M) to further evaluate OTCCLIP’s defense514

capabilities. Throughout all experiments, we main-515

tain a consistent set of hyperparameters: a learning516

rate of 5 × 10−5, λc = 1, λSM = 0.4, λIM = 2,517

and P = 10000. These settings demonstrate OTC-518

CLIP’s robustness against various types of attacks,519

independent of dataset distribution. Consistent with520

the setup in (Radford et al., 2021), we employ a521

ResNet-50 as the image encoder and a transformer522

as the text encoder, training OTCCLIP from scratch523

over 32 epochs and the matching frequency is set524

to 2 to effectively counter the poison.525

Attack Baselines. We follow the methodologies526

of previous work (Yang and Mirzasoleiman, 2023;527

Yang et al., 2024) to evaluate our defense strategy.528

For TDPAs, we randomly select images from the529

CC3M validation set as target images. Each target530

is assigned a random class from the ImageNet1K531

dataset (Deng et al., 2009), and an adversarial cap-532

tion set is constructed related to the adversarial533

label, as detailed in Sec. 3.2. The poison rate is534

set at 0.05% across all datasets. For BAs, we ran-535

domly select images from the CC3M validation set536

and apply the respective backdoor triggers. Each537

attack starts with a random class from the Ima-538

geNet1K dataset, creating adversarial caption sets.539

Each backdoor image pairs with a randomly chosen540

poisoned caption from this set. We evaluate with541

a poisoning ratio of 0.5% for TPDA and 5% for542

backdoor attacks on MSCOCO and Visual Genome.543

For CC1M, we use a 0.5% poisoning ratio for both544

TPDA and the four additional backdoor attacks. 545

5.1 Downstream Performance of OTCCLIP 546

We evaluate the performance of OTCCLIP on sev- 547

eral datasets from (Kornblith et al., 2019), with de- 548

tails provided in the Appendix. It can be seen that 549

effectively improves the zero-shot and linear-probe 550

classification performance across all ten datasets in 551

Table 1. RoCLIP may introduce mismatching data 552

by using CLIP’s global semantic matching, leading 553

to a noticeable drop in zero-shot classification per- 554

formance. To ensure the effectiveness of defense, 555

SAFECLIP discards a large amount of clean data 556

along with the poisoned samples, which reduces 557

the model’s linear probe performance. In contrast, 558

OTCCLIP adopts a matching approach based on op- 559

timal transport to reconstruct image-caption pairs 560

during pre-training. As a result, it avoids any de- 561

cline in both zero-shot and linear probe classifica- 562

tion performance, making our method more practi- 563

cal and effective. 564

5.2 Defense Performance of OTCCLIP 565

Here, we evaluate the performance of OTCCLIP 566

against TDPA and BAs, comparing it with 567

CLIP, RoCLIP, and SAFECLIP in terms of both 568

ASR (Attack Success Rate) and downstream 569

performance. Table 2 demonstrates the high 570

effectiveness of our OTCCLIP against CLIP, 571

with ASRs exceeding 60% for TDPA across all 572

datasets and even surpassing 90% for some BAs. 573

This underscores the significant challenge in 574

ensuring CLIP’s robustness. In contrast, OTCCLIP 575

significantly reduces the ASR to 0% across all 576

datasets for both TDPA and BAs. Although both 577

RoCLIP and SAFECLIP provide decent defense, 578

their performance is less consistent compared to 579

OTCCLIP. For instance, SAFECLIP’s ASR on 580

some datasets is higher than that of OTCCLIP. 581
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Table 2: Effectiveness of OTCCLIP in defending against
various data poisoning attacks, measured by Attack Suc-
cess Rate (ASR). OTCCLIP achieves a strong defense
across datasets and attacks.
Dataset MSCOCO
Attacks TDPA BadNet Label Consis Blended WaNet

CLIP 68.75% 31.0% 67.96% 92.50% 11.72%
RoCLIP 43.75% 5.63% 11.50% 2.6% 7.20%
SAFECLIP 25% 0.33% 0% 36.67% 2.67%
OTCCLIP 6.25% 0% 0% 0% 0%
Dataset Visual Genome
Attacks TDPA BadNet Label Consis Blended WaNet

CLIP 75.00% 6.90% 32.84% 86.97% 19.96%
RoCLIP 37.5% 4.33 7.31% 19.60% 9.71%
SAFECLIP 6.25% 0% 0% 6.33% 0%
OTCCLIP 0% 0% 0% 0% 0%
Dataset CC1M
Attacks TDPA BadNet Label Consis Blended WaNet

CLIP 93.75% 93.25% 71.0% 99.30% 97.42%
RoCLIP 56.25% 11.72% 5.31% 23.71% 26.27%
SAFECLIP 6.25% 0% 0% 5.47% 3.43%
OTCCLIP 0% 0% 0% 0.3% 0%

5.3 Ablation Study582

Impact of Optimal Transport-based Matching.583

We conducted ablation experiments to evaluate584

the impact of Optimal Transport Matching. As585

shown in Table 3, replacing optimal transport-586

based matching with CLIP’s semantic matching sig-587

nificantly improves ASR across all datasets and de-588

creases CLIP’s zero-shot and linear probing perfor-589

mance. This highlights the importance of Optimal590

Transport Matching in constructing clean samples.591

Impact of Inter-modality Fine-grained Align-592

ment. The third row of Table 3 shows that remov-593

ing the inter-modality fine-grained alignment leads594

to a decrease in CLIP’s zero-shot and linear probing595

performance. This demonstrates that inter-modality596

fine-grained alignment is essential for better align-597

ing the fine-grained features of image-caption pairs598

and improving generalization performance.599

Impact of Intra-modality Fine-grained600

Alignment. We also evaluate the impact of intra-601

modality fine-grained alignment. From Table 3, we602

can observe that removing the content relationship603

within each modality leads to a decrease in CLIP’s604

zero-shot and linear probing performance. This605

proves that intra-modality fine-grained alignment606

is helpful in improving model performance.607

5.4 Visualization of OTCCLIP Matching608

As shown in Figure 3, when poisoned data is fed609

into OTCCLIP, OTCCLIP first breaks the associ-610

ation between poisoned image-caption pairs and611

then re-matches each image to a caption that is612

most similar. In Figure 3, we can see that opti-613

Table 3: Ablation study for different module. Linear
probe and zero-shot performance is reported on CIFAR-
10 (C10), CIFAR-100 (C100), ImageNet-1K (I1K).

1⃝ 2⃝ 3⃝ Task C10 C100 I1K TDPA

✓ ✓ ✓
0-shot 41.90 15.44 10.50 0%lin-prb 79.17 58.46 25.40

✘ ✓ ✓
0-shot 36.47 11.30 8.60 12.5%lin-prb 75.03 55.90 23.19

✓ ✘ ✓
0-shot 39.62 13.60 9.70 0%lin-prb 76.50 56.80 24.10

✓ ✓ ✘
0-shot 40.15 14.17 10.63 0%lin-prb 78.10 57.23 23.37

1⃝ Optimal Transport-based Matching (section 4.2)
2⃝ Inter-modality Fine-grained Alignment (section 4.3)
3⃝ Intra-modality Alignment (section 4.3)

Poisoning Caption: “a photo 
of the nice mushroom.”

Optimal Transport-
based Matching

Optimal Transport-
based Matching

Poisoning Caption: “a 
mushroom in a video game.”

Clean Caption: “The yellow 
dog is sitting in the grass.”

Clean Caption: “A black car on 
a street in an urban setting.”

Figure 3: Visualization results of OTCCLIP re-
matching to the most similar caption in caption pool
based on optimal transport.

mal transport-based matching effectively matching 614

captions with semantics similar to the images. 615

6 Conclusion 616

Recent studies have shown that CLIP is extremely 617

vulnerable to targeted data poisoning and backdoor 618

attacks. Previous methods solely rely on the global 619

representations of images and captions, overlook- 620

ing fine-grained features. To address their limi- 621

tations, we propose an Optimal Transport-based 622

framework to reconstruct the image-caption pairs, 623

named OTCCLIP. It models images and captions 624

with fine-grained visual and textual feature sets and 625

re-assigns new captions based on optimal trans- 626

port distance. Additionally, we encourage the 627

inter- and intra-modality fine-grained alignment 628

by employing optimal transport-based objective 629

functions. Our experiments demonstrate that OTC- 630

CLIP can successfully decrease the attack success 631

rates. Compared to previous methods, OTCCLIP 632

significantly improves CLIP’s zero-shot and linear 633

probing performance trained on poisoned datasets. 634
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Limitation635

We employ Optimal Transport-based matching636

to defend against data poisoning and backdoor637

attacks. However, we note that although the638

model’s defense performance has improved, the639

need for Sinkhorn iterations to compute the opti-640

mal transport matrix introduces additional compu-641

tational overhead. These iterations require more642

time and computational resources compared to di-643

rectly utilizing CLIP’s similarity-based computa-644

tions. While this trade-off enhances defense effec-645

tiveness, the increased resource consumption may646

become a limiting factor, particularly in large-scale647

defense scenarios with extensive datasets. We ac-648

knowledge this limitation and plan to optimize the649

OT-based process in future work to reduce compu-650

tational cost and improve overall efficiency without651

compromising defense performance.652

Ethics Statement653

While the malicious application of data poisoning654

and backdoor attacks may raise ethical concerns,655

we propose a more effective defense method using656

Optimal Transport to mitigate these threats. This657

approach can help minimize potential harm from658

such vulnerabilities. The primary goal of this work659

is to encourage the development of appropriate de-660

fense mechanisms rather than to promote malicious661

use. We believe that by addressing these challenges,662

our efforts will inspire the research community to663

create more responsible and secure AI systems, fos-664

tering the development of trustworthy models that665

can better withstand adversarial attacks.666
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A Appendix863

Algorithm 1 OTCCLIP for Defense Against Data
Poisoning
1: Input:

• Image encoder EI , text encoder ET

• OTCCLIP frequency K

• Fine-grained caption pool Ps = {ys
p(i)}Pi=1 and

global caption pool Pg = {yg
p(i)}

P
i=1, initialized

with random captions
2: for epoch = 1, . . . , T do
3: for each mini-batch of image-caption pairs

{(Xi, Yi)}Ni=1 ∈ D with corresponding fine-
grained features (fs

i , y
s
i )

N
i=1 and global features

(fg
i , y

g
i )

N
i=1

do
4: if epoch mod K == 0 then
5: //optimal transport-based matching score
6: for i = 1, . . . , N do
7: Compute
8: M = minT∈Π(Gf ,Gp)

∑
i,j TijC

P
ij +

λH(T)

9: M̂ = 1−M
10: end for
11: M = {M̂i}Ni=1

12: //extract the indices of the best matches
13: Index = argmaxiM[:, i]
14: //Retrieve updated captions:
15: ys

m = ys[:, Index]
16: yg

m = yg[:, Index]
17: //train encoders with loss:
18: L = λcLc + λSMLSM + λIMLIM
19: else
20: //train encoders with simplified loss
21: L = λcLc + λIMLIM
22: end if
23: end for
24: end for

A.1 Experimental Setup864

A.1.1 Training Dataset865

MSCOCO. MSCOCO (Lin et al., 2014) is a large-866

scale dataset designed for object detection, segmen-867

tation, and captioning. It includes 80 object cate- 868

gories, with each image paired with 5 captions. For 869

our analysis, we randomly select one caption per 870

image, resulting in a dataset size of 80K images. 871

Visual Genome. Visual Genome (Krishna et al., 872

2017) is an extensive dataset focused on region 873

captions. It contains 10,877 images and 5.4 million 874

region descriptions. For each image, we randomly 875

select 5 region descriptions and combine them into 876

a single caption. 877

Conceptual Captions. Conceptual Captions 878

(Sharma et al., 2018) is a large-scale, web-based im- 879

age captioning dataset that covers a diverse range 880

of image styles and caption formats. 881

Algorithm 2 Sinkhorn Iteration for Optimal Trans-
port
Require: C: cost matrix, P : number of caption pool, h× w:

number of spatial image features, l: length of caption, β:
scaling parameter

Ensure: T : transport matrix
1: σ ← ones_like(P, h× w, 1)/m
2: T ← ones_like(P, l, h× w)
3: A← exp(−(clamp(C,max(10 · β)))/β)
4: for i = 1 to 100 do
5: δ ← 1/1/n ·

∑
(Q · σ, axis = 2)

6: a =
∑

(Q · δ, axis = 2)
7: σ = 1/m× a
8: T ← δ ×Q×K
9: end for

10: return T

A.1.2 Evaluation Setup for Targeted Data 882

Poisoning 883

Downstream Dataset. To assess the downstream 884

performance of our model, we perform linear 885

probing and zero-shot classification, as detailed 886

in Sec. 3.1, on 10 widely adopted datasets (Rad- 887

ford et al., 2021; Li et al., 2021; Yang and Mirza- 888

soleiman, 2023) listed in Table 4. 889

Table 4: Details of downstream datasets.

Dataset Classes Train Size Test Size

CIFAR10 10 50,000 10,000
CIFAR100 100 50,000 10,000
Food-101 101 75,750 25,250
DTD 47 3,760 1,880
FGVC Aircraft 100 6,667 3,333
Flowers-102 102 2,040 6,149
Caltech-101 102 3,060 6,085
OxfordIIITPet 37 3,680 3,669
Stanford Cars 196 8,144 8,041
ImageNet1K 1000 50,000 50,000

Zero-shot Classification. Zero-shot classification 890

assesses the generalization and transferability 891

of the model to unseen tasks. It transforms the 892
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downstream labels into natural language captions893

using the provided engineered prompt templates,894

such as "A photo of a {label}" (Radford et al.,895

2021). Then, it calculates the cosine similarity896

between the representations of a given image and897

each prompt and predicts the label with the highest898

image-prompt similarity.899

Linear Probe Classification. Linear probe classi-900

fication refers to evaluating the extracted represen-901

tations from the pre-trained image encoder to train902

a linear classifier on the downstream labeled data.903

A.1.3 Defense Baselines for Backdoor904

We consider RoCLIP (Yang and Mirzasoleiman,905

2023) and SAFECLIP (Yang et al., 2024) as our906

baseline. We measure the effectiveness of attacks907

using attack success rate (ASR). For TDPA, ASR908

is measured as the fraction of target images that are909

classified as the adversarial label. For BA, ASR910

is measured as the fraction of test images contain-911

ing the backdoor triggers that are classified as the912

adversarial label.913

A.1.4 Backdoor Attacks Used in Our914

Evaluations915

We follow the methodologies of previous work916

(Yang and Mirzasoleiman, 2023; Yang et al., 2024)917

to evaluate our defense strategy against backdoor918

attacks (BA) with visible triggers (e.g., BadNet)919

and invisible triggers (e.g., Blended and WaNet).920

Figure 4 illustrates various examples of backdoor921

attacks for visualization.922

(a) Blended (b) WaNet (c) BadNets

Figure 4: Backdoor attacks used in our evaluations.

A.1.5 Hyperparameters Setting 923

The hyperparameter settings used in our experi- 924

ments are provided in Table 5. As shown in Table 925

5, our model employs consistent hyperparameters 926

across all datasets, highlighting the robustness of 927

OTCCLIP against a variety of attacks. 928

Table 5: Hyperparameters of our experiments.

Dataset lr Batch Size K

CC3M 5e-5 256 2
CC1M 5e-5 256 2
COCO 5e-5 256 2
VG 5e-5 256 2

A.2 OTCCLIP Against Adaptive Attacks 929

In the above experiments, we assume that attackers 930

have no information about our backdoor defense. 931

In this section, we consider a more challenging 932

setting, where the attackers know the existence of 933

our defense and can construct the poisoned dataset 934

with an adaptive attack. 935

Threat Model For The Attackers. Following ex- 936

isting work (Gao et al., 2023), we assume that the 937

attackers can access all dataset and know the archi- 938

tecture of the victim model. However, the attackers 939

can not control the training process after poisoned 940

samples are injected into the training dataset. 941

Methods. Our defense method uses optimal 942

transport-based matching to separate samples and 943

reconstruct image-caption pairs. For adaptive at- 944

tacks, the goal is to minimize the difference in op- 945

timal transport-based matching between the image 946

and its poisoned caption. Attackers first use the im- 947

age encoder and text encoder to extract spatial and 948

token sequence features from the poisoned pairs. 949

Then, the loss function defined in Eq. 3 is applied 950

to update the trigger patch. This pattern is opti- 951

mized by minimizing the gradient of the poisoned 952

image-caption pair, reducing the distance between 953

them in the fine-grained feature space. 954

Settings. We conduct experiments on the poison- 955

ing image-caption pairs. We adopt projected gradi- 956

ent descent (PGD) (Wang et al., 2018) to optimize 957

the trigger pattern for 100 iterations. 958

Results. This adaptive attack achieves a 0% 959

attack success rate on both MSCOCO and 960

Visual Genome, demonstrating that our defense 961

effectively resists adaptive attacks. 962
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A.3 Additional Experiments963

A.3.1 OTCCLIP’s Complexity Compared to964

Existing Defense Methods965

RoCLIP leverages CLIP’s global employ global966

feature vectors to match the most similar for every967

image, aiming to break the association between968

poisoned pairs. SAFECLIP identifies the clean and969

risky set using global features. SAFECLIP apply970

the CLIP loss to the safe set and SAFECLIP ap-971

ply unimodal CL to image and text modalities of972

the risky set separately. SAFECLIP performs data973

augmentation on the risky data and applies uni-974

modal contrastive learning (CL) in the risky and975

augmented data. We propose the optimal transport-976

based fine-grained matching and alignment against977

data poisoning.978

As shown in the Table 6, we calculated the com-979

putational cost of these three methods within a980

single epoch under the same settings. From the981

methodology section, we found that OTCCLIP re-982

quires using Sinkhorn iteration (Distances, 2013)983

to obtain the optimal transport matrix. As shown984

in Table 6, we calculated the computational cost985

of these three methods per epoch under the same986

settings. According to the methodology, OTCCLIP987

requires Sinkhorn iteration (Distances, 2013) to988

compute the optimal transport matrix, introducing989

slightly more computational time compared to Ro-990

CLIP. However, it is significantly faster than SAFE-991

CLIP. As noted in SAFECLIP (Yang et al., 2024),992

data augmentation is applied to risky data, generat-993

ing augmented samples. Both the augmented and994

original risky data are used for training. Since ap-995

proximately 75% of the data are marked as risky996

data, the training data set almost doubles in size,997

significantly increasing the training time.998

Table 6: Training time of OTCCLIP compared to exist-
ing defense methods.

Method Training Time
RoCLIP 1 h 23 min
SAFECLIP 4 h 11 min
OTCCLIP 2 h 7 min

A.3.2 More Ablation Studies999

Impact of Caption Pool Size. Next, we analyze1000

the effect of pool size on our method. We apply1001

OTCCLIP with pool sizes of 1%, 2%, and 10% of1002

the pre-training dataset. As shown in Table 7, the1003

pool size does not significantly impact the effective-1004

ness of the defense. Across different pool sizes, our1005

method consistently defends against data poison-1006

ing attacks. However, a larger pool size improves 1007

the downstream performance of the model, as it 1008

increases the likelihood of images finding more 1009

suitable captions. 1010

Table 7: The impact of caption pool size. Linear probe
and zero-shot performance is reported on CIFAR-10
(C10), CIFAR-100 (C100), ImageNet-1K (I1K).

Pool Size Task C10 C100 I1K TDPA

1024 0-shot 41.50 15.20 9.6 0%lin-prb 79.03 55.7 24.3

2048 0-shot 40.13 15.07 10.76 0%lin-prb 79.40 56.64 24.9

10000 0-shot 41.90 15.44 10.50 0%lin-prb 79.17 58.46 25.40
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