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Abstract

Determining the optimal data mixture for large language model training remains a challenging
problem with an outsized impact on performance. In practice, language model developers
continue to rely on heuristic exploration since no learning-based approach has emerged as a
reliable solution. In this work, we propose to view the selection of training data mixtures as
a black-box hyperparameter optimization problem, for which Bayesian Optimization is a
well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a
sequential decision-making problem, in which we aim to find a suitable trade-off between the
computational cost of training exploratory (proxy-) models and final mixture performance.
Secondly, we systematically explore the properties of transferring mixtures learned at a
small scale to larger-scale experiments, providing insights and highlighting opportunities for
research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable
method in this common scenario, we introduce a natural framework to balance experiment
cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the
number of experiments at high cost. We present results for pre-training and instruction
finetuning across models ranging from 1 million to 7 billion parameters, varying from simple
architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We
demonstrate consistently strong results relative to a wide range of benchmarks, showing a
speed-ups of over 500% in determining the best data mixture on our largest experiments
relative to recent baselines. In addition, we broaden access to research by sharing ADMIRE
IFT Runs, a dataset of 460 full training & evaluation runs reproducible post-training pipelines
worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this
area. Finally, we highlight rich opportunities for future research in this area, helping bridge
the gap towards a comprehensive understanding of the broader effects of training data on
model generalization.

1 Introduction

Much of the scientific literature in Deep Learning over the last few decades was firmly anchored in the discovery
methods focused on improving learning through algorithms and architectures. Recent years, however, have
seen a convergence around a small subset of well-established techniques (Rumelhart et al., [1985; [Kingma &
Bay, 2014} [Vaswani et al.l 2017), which have shown remarkable resilience despite many attempts to challenge
their status. As a result, the field has witnessed a shift towards ideas focused on orthogonal improvement,
among which a new focus on data-centric ideas has emerged as a vibrant research field. This shift has been
particularly pronounced in the development of Large Language Models (LLMs) (e.gDevlin et al.| 2019 Brown
et al} 2020). The importance of understanding how data impacts the quality of a trained language model
during both pre- and post-training is evidenced by a rich body of literature (see (Albalak et al., |2022) for
an overview), a plethora of comments in published reports, as well as academic workshops (e.g. [dml, [2024)
and data competitions centred around data selection for language models (e.g. |[Li et al., 2024). Tech reports
from major industrial investors in LLMs openly state “We find that data quality is an important factor for
highly-performing models, and believe that many interesting questions remain around finding the optimal
dataset distribution for pre-training.” (Team et al.,|2023) or “In each round of post-training, we adjust our
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Figure 1: An Overview of our method. We model the contribution of training domains to a target evaluation
with a Gaussian Process. By finding the maximum of an acquisition function that provides a numeric trade-off
between exploration and exploitation, ADMIRE-BayesOpt rapidly finds mixtures that outperform common
practices such as random exploration.

overall data mix carefully across these azes to tune performance across a wide range of benchmarks. Our final
data miz epochs multiple times on some high-quality sources and downsamples others.” (Grattafiori et al.,
2024). Finally, in the open-source post-training project Tiilu 3 (Lambert et all, [2024), the authors show
how optimising the mixture of data can improve the average performance across a number of challenging
benchmarks by over 10%, an improvement that would otherwise constitute a major algorithmic breakthrough.

Since datasets for LLM training are typically assembled from various domains (e.g. The Pile (Gao et al.|
being a mixture of web data, Wikipedia, Github, News etc.), the final data composition can be seen
as a mixture of different sources, each weighted by a factor corresponding to its contribution to the final
mix. While optimizing these weights heuristically (Chowdhery et al., 2023; Touvron et al., 2023; Lambert|
remains common practice, exhaustively searching data mixtures is prohibitively expensive. On
the other end of the spectrum, methods that directly learn the data mixture with a smaller proxy model
(e.g. and perform zero-shot transfer to larger scale run risk of over-fitting the mixture to the
more modest proxy-model capabilities, thereby overweighting simple to medium difficulty examples while
undersampling complex reasoning cases that escape the capabilities of a small model.

We propose ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting with Bayesian Optimization
(Figure . Our key insight is that the extensive framework for sequential decision making and Bayesian
Optimization provides a natural paradigm for data-mixture learning. First, following prior work
, ADMIRE-BayesOpt casts re-weighting as a regression problem from domain weights to a target
evaluation metric. In this regression formulation, a single data point (7r,y) corresponds to the weights of
the mixture, i.e. a point on the simplex ) . m; = 1 where m; € [0, 1] gives the weight of a source domain,
and target evaluation metric y. A dataset of experimental results D = {(m,y;)} can thus directly allow
the prediction of performance for a new data mixture. Since each element in D corresponds to a full LLM
training run, making D very expensive to obtain, we carefully balance exploration and exploitation in this
space by explicitly modelling the regression uncertainty through Gaussian Processes (Williams & Rasmussen),
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. Second, by finding a trade-off between mean predicted performance and uncertainty using acquisition
functions (Jones et al. (1998} [Wang & Jegelkal [2017]), we explore the space in a principled and efficient
manner, leading to significantly accelerated convergence and improved results when compared to a range of
existing methods.

The benefits of introducing black-box sequential decision making are not limited to faster convergence in
an otherwise established paradigm. It is common practice to use cheaper proxy models to experiment with
various mixtures (i.e, collect Dprozy) and then apply the same mixture at a larger scale. Besides, recent
data mixture scaling law papers (Liu et all 2024; |Ye et al.| |2024) propose empirical function formulas of
D = {(m,y+)}. We thus introduce Multi-Fidelity Bayesian Optimisation [Kandasamy et al.| (2017)); [Forrester|
let al| (2007); |Takeno et al| (2020)), which, contrary to prior work, allows a principled trade-off between
collecting results at different model sizes and the expected ability to correctly predict mixtures that generalise
across scale. This reduces the reliance on a proxy model or a simple law formula, whereas zero-shot transfer
relies on a strong proxy model.

We demonstrate these properties of ADMIRE-BayesOpt through experiments on pre-training and
instruction-finetuning (IFT) across a variety of model sizes. We start with the more modest pre-training
experiments introduced by on The Pile (Gao et al., 2020 and then scale to modern
representative post-training workloads on the Tilu 3 dataset collection (Lambert et al., [2024)) using the Qwen
2.5 (Yang et al., [2024Db) family of pre-trained models. To facilitate further research, we further contribute the
ADMIRE-BayesOpt collection, which includes all training artifacts for over 900 IF'T runs for 0.5b, 3b, and 7b
Qwen 2.5 models, each being trained on 200k examples from the Tiilu 3 dataset. This extensive collection
provides significant opportunities for researchers, especially when limited by computational constraints.
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Figure 2: Results obtained running our data mixture optimization pipeline. (a) ADMIRE-BO in comparison to
on the Tiilu 3 SFT dataset. Shown is the performance of a Qwen-2.5 7B model when trained
on a discovered mixture. (b) Experiment scheduling and performance for ADMIRE-MFBO. Experimental
runs are divided into broadly three phases.

While we present full experimental results in Section [6 Figure 2] provides a preview of our results in both the
standard Bayesian Optimization (BO) and Multi-Fidelity BO settings. Figure shows the performance of a
7b model trained on a recommended mixture discovered using larger-scale (7b) or smaller-scale experiments
(500m) only. In comparison to the recent work by , we show impressive speed-ups ( 195%
when comparing the time to find the optimal mixture, 1500% when comparing the time needed for
to match the best performance achieved by ADMIRE-BayesOpt when running only small models).
Figure shows the extension to multi-fidelity settings (automating the choice of what experiments to
run), highlighting that our method learns to schedule in three phases of training runs, achieving close to
state-of-the-art performance after running almost exclusively small-scale experiments. Compared to the
speed-up figures previously mentioned, the gap to increases to a speed-up of over 500%
measured as the time needed to find the best mixture for larger models.
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2 Related Work

Data Mixture Optimization A significant number of recent works have noticed the potential for careful
data mixture optimization to both accelerate training and improve performance. The work by |Sorscher et al.
(2022) may be credited for further popularizing research in this direction by making a key argument of how
data-centric techniques can beat well-studied scaling laws (Kaplan et al., |2020; Hoffmann et al., 2022). We
can broadly categorize these data optimization methods as data preprocessing and training-aware methods.
Data preprocessing techniques aim to identify the best subset ahead of training, while training-aware methods
typically aim to find a suitable batch of data for each learning step. Nevertheless, general ideas of how
difficulty could be identified are typically shared, and several key ideas can be found in approaches that focus
on either direction. While not explicitly learning the mixture coefficient of a source, these techniques result
in an implicit mixture as data points are typically prioritized non-uniformly. While we focus on applications
to LLMs, several of the approaches below focus on vision applications, although their methods are general
enough to extend to most learning domains. For an LLM-specific perspective, see (Marion et al., 2023]).

Direct learning statistics such as the training loss, gradient, or the perplexity (in case of LLMs) (Paul et al.l
2021; Tack et al 2023 |Ankner et al.l |2024) are readily available during training and provide a conceptually
simple signal. Other techniques focus on the well-studied phenomenon of memorization (e.g. |Carlini et al.l
2022; Biderman et al., 2023) in deep learning, with a particular approach (Feldman & Zhang} |2020) defining
memorization as the difference in probability of predicted the correct label for an example depending on
whether or not this example is in the training data. Intuitively, a low memorization score suggests easy
example redundancy with the rest of the data, albeit this idea is sensitive to noisy examples. A downside of
such metrics is that they typically compute a difficulty score but leave the choice of whether to train on simple
examples, difficult ones, or a mixture thereof as an additional choice with a large impact on performance.

More explicit data optimization methods focus on semantic de-duplication, typically by comparing examples
in the feature space of a reference model, (e.g.|Abbas et al.,|2023) or computing the alignment of low-rank
training example gradients with those on a held-out set (Xia et al., [2024)), allowing direct targeting towards
a specific generalization evaluation. While this is appealing in principle, the inherent limitation on LLM
evaluations may result in the risk of removing generally useful examples that are, however, not directly
measured by the skills represented by the held-out validation set.

A key idea initially introduced in (Mindermann et al., [2022)) and later built upon in various follow-up works
(e.g. [Evans et all 2024; Brandfonbrener et al., [2024) is the concept of learnability scores wrt. a reference
model. This set of metrics defines the importance score of an example as the difference in loss of a currently
training model and a trained and frozen reference model. Intuitively, this has the benefit of an online measure
of examples that are learnable but have not yet been learned, and provides some robustness to noisy examples
while avoiding the need to define what level of difficulty to prioritize.

Data-Mixture Re-Weighting methods There are two primary approaches to identifying the optimal
mixture of data domains: proxy model-based methods and law-based methods. DoReMi (Xie et al.l 2023,
a representative proxy-based approach, trains two small models to optimize domain weights for a large
target model. First, a reference model is trained on unoptimized domain weights to simulate the behavior
of the target model. Then, a proxy model is trained based on this reference model to optimize the domain
reweighting. Finally, the large target model is trained on the reweighted dataset. However, such methods rely
heavily on the assumption that small proxy models accurately reflect the data preferences of the larger target
model. In contrast, our BO-based approach is more efficient and flexible, as it does not require proxy model
training.

More recently, law-based approaches such as RegMix (Liu et al., 2024) and Data Mixing Law (Ye et al.,
2024) have been proposed, claiming to outperform DoReMi. These methods model the relationship between
data mixtures and performance metrics using explicit mathematical functions. RegMix assumes a linear
relationship, while Data Mixing Law introduces an exponential function following linear interactions. However,
modeling such a complex relationship using a fixed, empirical functional form is inherently limited. In contrast,
our BO framework avoids explicit assumptions by treating the mixture-metric relationship as a black-box
function, enabling it to model complex interactions more effectively and flexibly.
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Bayesian Optimization The relationship between dataset mixture weights 7 and the validation score y
on a downstream benchmark/task involves training an LLM training followed by inference on a validation set
and measuring performance. Hence the relationship between 7 and y does not have a practical analytical form
nor gradient information and so one may treat it as a black box. However we may still assume smoothness,
small changes in 7 yield small changes in y, and hence we may build a prediction model. Such problems arise
in many domains, simulation optimization (Pasupathy & Henderson, [2011; |[Eckman et al.| [2023), physics and
nuclear reactor design (Ginsbourger et al.l |2014; |Char et al.l |2019), robotics control (Martinez-Cantin et al.,
2009; |Lechuz-Sierra et al., [2024]). These problems have relatively low dimensional input, up to 20, further
one may typically assume similar inputs will have similar outputs implying smoothness, and as each data
point is expensive, the number of points we can collect is severely limited, up to 1,000. Due to this cost,
sequential data collection is more efficient than collecting all points in a single batch as one may incorporate
the cumulative knowledge of the points collected so far to determine the next input to evaluate.

Bayesian optimization (BO) has become a go-to method for sequential black box optimization problems.
Efficient Global Optimization (Jones et all [1998) is the standard BO algorithm, the authors proposed to
fit a Gaussian process regression model to the black box data then choose the next input to evaluate by
optimizing an acquisition function that quantifies the expected benefit (Shahriari et al., [2015; [Frazier| [2018)).

With the growing cost and complexity of machine learning models and the sensitivity of such models to
hyper parameter settings such as learning rate and batch size, early works applied BO to find the best SGD
hyper parameters for neural network training (Snoek et al., 2012; |Gardner et al., |2014]) where each data point
requires training a neural network with the given hyper parameters. As a result, BO removes the need for
hand crafting or expert tuning.

BO methods have been generalised to problems that require transfer of knowledge from one optimization
task to another. For example one has a set of datasets, naively one may use standard BO to independently
find optimal parameters for each task, alternatively one may share knowledge across tasks improving data
efficiency (Thornton et al., |2013; Bardenet et al. |2013; [Poloczek et al.| [2016; |Pearce et al.| |2020)).

In this work we consider transferring knowledge from cheap task, small LLM training, to an expensive task,
large LLM training. Multi-Fidelity BO (Forrester et al.,|2007) methods extends the traditional optimization of
an expensive black-box function (high fidelity target) by including a cheaper approximate black box function
(low fidelity proxy). Multi-Task BO (Swersky et al., 2013) and Multi-Information Source Optimization
(Poloczek et al., |2017)) optimize SGD hyper parameters of an MNIST image classifier and allow the BO
algorithm to choose to cheaply train an ML model on a mini dataset (proxy) or the full dataset (target)
and show that this outperforms optimizing for the full dataset only. The FABOLAS algorithm (Klein et al.|
2017)) further treats dataset size as a pseudo-continuous fidelity, the BO algorithm may directly choose how
long to train a model for. Follow up work incorporated the popular HyperBand algorithm (Li et al.l [2018;
Falkner et al.,|2017)). More recently, the trace-aware Knowledge Gradient (Wu et al., 2020) also treats training
iterations as fidelity levels and proposes the Downsampling kernel, that allows the GP to model convergence
curves as a monotonic polynomial.

Many language models are released as families of models that vary by parameter count. In this work, we
propose to treat LLM parameter count as fidelity level, and data mixture as the variable to optimize, we desire
the best full size model while exploiting the ability to train smaller models. By leveraging both sequential
data collection and multi-fidelity optimization, we may automate and significantly reduce the compute cost
of finding the optimal data mixture for LLM training.

Particular credit should be given to MFMS-GP (Yen et all [2025)), which is a concurrent work that also
applies Multi-Fidelity BO to data mixture optimization. However, the presented research objective differs
from ours: The aim was the design of a new scheduler that guides training across training steps, model
sizes, and data mixtures, whereas we focus specifically on the data mixing problem, leveraging information
from smaller models. The authors run MFBO over both the training step and model size dimensions and
demonstrates the potential of optimizing along these two axes simultaneously. However, its performance is
limited, outperforming only the classic MFBO method Hyperband (Li et al., [2016) when all fitting data
come from the highest fidelity (i.e., the largest model), effectively reducing the problem to a single dimension.
Furthermore, experiments are only limited to 1b parameter models. Nevertheless, we include experimental
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results of MFMS-GP in [section 6] showing that our method, ADMIRE-BayesOpt, consistently outperforms it.
This highlights the efficiency and effectiveness of our approach.

3 Problem Definition: Adaptive Data Mixing

Consider training a target LLM M on a collection of d source datasets. We define a training data mixing
ratio as a point on the probability simplex 7 € [0, 1]¢ where Zle m; = 1. Given such a mixing ratio and
model pair (7, m), we train the model using a finite-sized dataset constructed by mixing the d source datasets
according to 7r, and evaluate the resulting model on a separate set of validation datasets. This yields a
scalar validation error y defined as the unweighted average validation error across all validation datasets, i.e.,
y = f(m,m), where f :II x M — R represents the unknown ground-truth function mapping the complete
training-evaluation pipeline to validation performance. The data mixture optimization problem seeks the
optimal mixing ratio #* = arg mingcr f(7,m) that minimizes validation error for the target model m.

As discussed in finding the optimal data mixture is highly non-trivial due to the enormous search
space. Existing solutions are insufficient, because they typically rely on trial-and-error approaches, training
on multiple handpicked mixtures for evaluation to identify promising candidates or optimize future mixture
compositions. This quickly becomes impractical as target model sizes scale. To accelerate practical mixture
selection, we formulate the optimization problem through the lens of Bayesian optimization. Here, we aim
to sequentially build a parametric Bayesian posterior f (w,m) : II x M — R regarding the optimal training
data mixture specific to the target model m through rounds of sequential training and evaluation trials
gathered from a collection of M (smaller) proxy models, i.e., M = {mq,...,mps}, that are potentially more
computationally efficient for training and evaluation compared to /m. When M > 2, this framework is a
Multi-Fidelity Bayesian Optimization (MFBO) setup, where the acquisition phase can adaptively query
and build a Bayesian posterior based on observations across different proxy models. These proxy models
serve as information sources with varying computational costs and approximation accuracies, capturing
transferability across different model scales and thereby improving sample efficiency. When M = 1, this
reduces to a zero-shot transfer setting, where we optimize the data mixture using a single proxy model
and evaluate the performance of the recommended data mixture on the target model.

Without loss of generality, we assume that training costs vary by proxy model and are known a priori as
{Cmys---sCm,y }- Given a fixed compute budget C (e.g., dollar cost, GPU hours, FLOPs) accommodating up
to T iterations for data mixture optimization, we repeat the following procedure at each step t € {1,2,...,T},
as illustrated in (1) construct a prediction model ft (m,m) by fitting a parameterized Bayesian
posterior distribution that directly approximates validation performance for any data mixture-model pair
based on accumulated observations, Dyt = {(mwy, my,yr)o_q; (2) select the next query point (mey1,met1)
by maximizing an acquisition function o3°%(7m.11, mer1 | fr) : II x M — R that balances exploration and
exploitation based on the current posterior ft; (8) train the selected proxy model m;i; with mixture
41, and observe validation errors y;41 = f(my11,m441), which consumes ¢, , units of the compute
budget; and (4) update the predictor with newly acquired observation through Bayesian posterior inference:
fr, (e, Mig1, Yea1) — fes1. As a result, at every step, we can recommend the optimal data mixture for the
target model 7 by exploiting the learned posterior: 7* = arg minger f; (7). Our objective is to identify
the data mixture that minimizes validation error on the target model m while minimizing computational cost
subject to the budget constraint C.

4 ADMIRE-BayesOpt

While many approaches could be applied to our formulation of the data mixing problem, we propose Bayesian
Optimization and Multi-Fidelity Bayesian Optimization as principled solutions and evaluate their performance
against established baselines.
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4.1 Modelling of Mixture Quality with Gaussian Processes

Given a dataset of mixtures, models, and experiment observations Dy.; = {(my, my,yp) _,, we construct a
regression model to directly predict validation scores § = f (m,m). Gaussian Process regression is particularly
well-suited for this task due to its ability to quantify uncertainty and leverage prior knowledge through
its probabilistic framework. A Gaussian Process is characterized by (1) a mean function pg(m, m) that
encodes prior expectations about validation performance for any given input. This can incorporate domain
knowledge—for instance, if historical evidence suggests certain mixtures consistently perform well; and (2) a
covariance function K((7,m), (w’,m’)) which governs more abstract properties of the regression model such
as smoothness, periodicity, monotonicity over the continuous mixture space 7 and correlations in performance
across different language models m and m’.

For our MFBO approach, we parameterize the covariance function as a product kerne]lﬂ that separates
dependencies over mixtures II and models M

KMFBO ((71" m)’ (71-/, ml)) — )\KRBF(TI',TI'/)KDS(m,m/), (1)

where ) is a scaling parameter, K*F is the Radial Basis Function (RBF) kernel, and K is a Downsampling
kernel constructed from model parameter counts.

The RBF kernel models the intuition that similar data mixtures should yield similar validation performance.
It computes similarity based on Euclidean distance in the mixture space, with correlation decreasing smoothly
as mixtures become more dissimilar:

/(|12
RBF no_ |7 — ']
K™ (7, w') = exp (%‘2 , (2)
where o is a learnable length scale parameter. Since mixture proportions lie on the probability simplex, we
use a shared length scale across all dimensions to reduce model complexity and mitigate overfitting.

The model kernel K(m,m’) could be specified as another learned M x M positive-semidefinite matrix, offering
maximum flexibility at the cost of O(M?) hyperparameters. Instead, we leverage the continuous nature
of model scale by using parameter count as a feature. Specifically, we use the number of language model
parameters as the feature rescaled to the range [0, 1] and apply the Downsampling kernel

K™ (m,m') = c+ (1 — s,,) (1 = s,0) 110 )

where s, € [0,1] represents the normalized parameter count for model m. This kernel fits a concave monotonic
function of the form a + b(1 — s,,)**° where @ and b are inferred by the GP, which encodes the expectation
that larger models generally achieve better validation performance—a relationship not captured by the
mixture-only RBF kernel. Originally proposed for modeling performance across training iterations (Wu
et al. 2020), we adapt it here for model parameter scaling. This parameterization requires learning only two
hyperparameters: ¢ and §.

After conducting t training experiments and observed their outcomes, we have a series of inputs 71.; :=
{(mwy,my )}, =8 and corresponding outputs yi. := {yw }5, =4 . The posterior predictive distribution f;(7) for
any new mixture-model pair 7 := (7, m) follows from standard Gaussian conditioning:

() = po(®) + K (7, 71.) T (K™ (R, 1) + 021 'y (4)

var(7) = K'™0(7, &) — K" (7, 71) | (K™ (1, 714) + 021) K0 (7, 7) (5)

where K"80(71,,714) € R is the Gram matrix over evaluated mixture-model configurations,
K" 50(7, 71.4) € RY*? contains cross-covariances with observed data, and o, is a hyperparameter repre-

senting observation noise. To this end, the complete set of hyperparameters {), o, ¢, d, 0.} is optimized by
maximizing the marginal likelihood via gradient-scent (Williams & Rasmussen, [2006)).

In the single-fidelity case where M = 1, the model kernel K®(m, m’) becomes constant and is absorbed into
the hyperapameter . Consequently, K"®0 in reduces to a standard RBF kernel over the mixture
space 7, recovering the standard Bayesian Optimization.

Thttps://botorch.org/docs/tutorials/discrete_multi_fidelity_bo/
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4.2 Scheduling New Experiments

Given the surrogate model ft parameterized by the Bayesian posterior in |Equation 4| and [Equation 5| an
acquisition function quantifies the expected utility of evaluating a candidate mixture and measuring its
validation performance. For standard Bayesian Optimization (M = 1), we employ the Expected Improvement
(EI) acquisition function (Mockus, [1998; |Jones et al. 1998 [Jones, |2001)). EI selects the next mixture
41 point by computing the expected improvement over the current best observed function value y* :=
ma’x{ylvy27 ceey yt}:

af'(m) = E[max(0,ye41 — y")|mes1 = 7] (6)

where the expectation is taken over the predictive distribution y;41 given by the Gaussian process posterior
mean and variance at w = wit!. At each iteration, the GP model is fitted to the accumulated observations
D1.t, and the next query point 71 is determined by searching the input space for the point with highest
improvement using gradient ascent
m1 = arg max a; (7).
mell

A new training dataset is constructed according to the selected mixture, the proxy model is trained, and the
validation score y;11 is measured. The new data point (741, ¥y:4+1) is incorporated into the dataset D for
subsequent iterations.

In MFBO, multiple proxy models M > 1 are available, allowing the algorithm to jointly select both a
mixture and model size (7, m) at each iteration. The model size serves as a fidelity indicator, where larger
models provide more accurate validation scores at higher computational cost, while smaller models offer less
precise estimates at reduced cost. This framework enables automatic cost-accuracy trade-offs by leveraging
correlations between different fidelity levels.

For MFBO, we adopt the Max-value Entropy Search (MES) acquisition function (Wang & Jegelkay, [2017)).
Unlike earlier entropy-based methods that focus on reducing uncertainty about the location of the optimum,
MES aims to minimize uncertainty about the mazimum value y,. = f (., M). Mathematically, MES quantifies
the expected reduction in entropy H, or equivalently the mutual information Z, between the maximum vy,
and the next observation y;4:

o (m,m) = % (Y41, Yx | D1t (70,m) 441 = (7w, m)) (7)
= L H(yisr) ~ By [H (s | 92) ®

e N | 200y, (@)

Q

~log(¥(n,, (wm] ©)

where 1 and ¥ denote the probability density and cumulative distribution functions of the standard normal

distribution, respectively, and -, (z) = %;()m) The expectation in [Equation 8is taken over p(y.|Dy),
1

which is approximated via Monte Carlo sampling of NV function maxima. The cost normalization factor P
balances information gain against computational expense, favouring cheaper low-fidelity evaluations when
their information content justifies the cost reduction. At a given iteration, the next query mixture-model
point 741, myyq is determined by jointly optimizing over the mixture and model space: (7, m) € II x M,

(41, Mpg1) = argiax ay®s (m,m).

This formulation enables the algorithm to automatically determines which proxy model m to train next,
enabling automatic balance of the exploration-exploitation trade-off across both the mixture space and fidelity
levels.

4.3 Recommending a Mixture for the Target Model

At any iteration ¢, or upon exhausting the computational budget C, both standard BO and MFBO require
selection of an optimal mixture 7, for training the target model. We leverage the posterior mean of the GP



Under review as submission to TMLR

model fitted to all collected observations so far to identify the optimal mixture with the highest predicted
performance for the target model m, that is

T, = arg max . cpp(m, m).

5 An Instruction Finetuning Dataset for Data Mixing

A possible hurdle for the research advocated thus far is that developing new methods requires many iterations
of model design and experimentation, making it prohibitively expensive for all but a few labs to contribute.
To widen participation in this research field, we therefore construct and release an open dataset ADMIRE
IFT Runs containing full fine-tuning and evaluation runs for 460 state-of-the-art LLMs (building on the
Qwen2.5 base model family (Yang et al., 2024a)) across three model sizes (500m, 3b, 7b) on 256 diverse data
mixtures, using realistic post-training pipelines and including results on 17 standard benchmarks following the
open Tiilu 3 post-training recipes of (Lambert et al.l|2024). Overall, ADMIRE IFT Runs was constructed for
a total of 13,119 GPU hours on nvidia-a100-80gb GPUs. In addition to providing a realistic and diverse
set of datasets to compute the mixture over, we include both development (in-distribution, ID) and unseen
(out-of-distribution, OOD) datasets. As LLM post-training often directly targets benchmark results (with
individual datasets specifically designed to increase results), including OOD evaluations allows us to study
the effects of data mixing and training on a more meaningful level of evaluation. Using the data provided,
research on regression-based data mixing techniques can essentially be carried out without running any actual
costly LLM training, broadening access to research.

5.1 Uncovering the complex data-mixture / performance relationship

Average Overall (ID + 0OD) performance (7B)
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Figure 3: ADMIRFE IFT Runs dataset exploration for 7b model runs. (a) Overall distribution of final average
validation performance across in-distribution (ID) and out-of-distribution (OOD) datasets. Shown are also (b)
Performance of the worst and best overall mixtures on selected sub-domains. Optimisation on average scores
is sensitive to significant underperformance on individual domains. (c) Validation performance (computed on
a 10% subset of the validation data) as a function of training progress.

The direct analysis of the dataset reveals an intriguing structure, speaking to the complexity of developing
a genuine understanding of data mixture effects on final learning results. First, consider [3a] Shown is the
average overall (across in-distribution and out-of-distribution datasets) performance for all 7b IFT training
runs. Coloured markers furthermore show the performance of the best and worst mixtures chosen by varying
criteria. By design, if mixtures are chosen according to the target metric, they correspond to the top and
bottom of the distribution, respectively (stars). In practice, it is common not to run additional OOD
evaluations and simply choose the best mixture according to our standard ID Evaluations (circles). However,
results show that this is not advisable, as the chosen mixtures underperform when taking into account OOD
tasks. On the other extreme, one might optimize for only OOD tasks to directly target challenging evaluation
settings. This, too, can lead to poor results (squares), providing evidence for the argument that meaningful
evaluation must be performed over the full spectrum of (ID+OO0D) tasks.
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The relationship between the overall best model on average and the best models per task is more complex
than is often assumed, as shown in Figure Despite the chosen mixture (green star) leading to the best
overall results (across ID+OOD) we find that results on individual evaluation sets show performance near
the top, median or even at the very bottom of the distribution (HumanEval). More surprisingly, in several
instances, the worst overall model outperforms the best overall model by a significant margin. For researchers
particularly concerned about certain evaluations (e.g. safety/ethics datasets), more robust metrics than the
simple arithmetic mean may be more suitable and may be studied with the help of the provided dataset.

Finally, consider the validation performanceEl as a function of training steps. Far from monotonic increases on
all domains, we observe evidence of catastrophic forgetting (French, 1999; Kirkpatrick et all [2017} |Schwarz|
experienced during the IFT training stage (relative to the base model), see BigBench-Hard and
TruthfulQA. However, provided the mixture is carefully chosen such forgetting can be reduced (see the best
mixture curve on TruthfulQA), presumably by including sufficient data similar to the skills being tested.
This can be seen as an instance of rehearsal-based Continual Learning (Rolnick et al.,[2019), automatically
being discovered by data-mixture optimization. Full results for B and [3 across all domains and model sizes
can be found in the Appendix.

5.2 Interpretable Relationship Between Training Mixture Weights and Target Domain Performance

Tulu_Qwen2.5-0.5B Tulu_Qwen2.5-3B Tulu_Qwen2.5-7B
Domain Weight Domain Weight Domain Weight

TruthfulQA
HumanEval

HumanEval+
GSM8K
MATH
BigBench-Hard
DROP
IFEval

GPQA (O0D)
BigCodeBench (OOD)
ARCChallenge (OOD)
NaturalQuestions (OOD)
TriviaQA (OOD)

PICAMC (OOD)
SocialQA (OOD)

Validation Metric

Average

Figure 4: Estimated importance of each source domain to each evaluation benchmark for the Tiilu 3 evaluation
suite using a Gaussian Processes with Automatic Relevance Determination (ARD) Kernel. Estimated
importance metrics show a stronger transfer between Qwen2.5-3B and Qwen2.5-7B. Lighter/Darker colors
correspond to higher/lower importance. Best viewed on a computer.

In addition, ADMIRE IFT Runs allows an analysis of the impact of training datasets on evaluation (both
ID & OOD) results. In particular, the kernel matrices in represent dataset importance scores
obtained through a GP using an Automatic Relevance Determination (ARD) kernel. This kernel models
the relationship between source domain weights in training data mixture and target domain performance
using a zero-mean Gaussian Process emulator with Maximum-Likelihood estimation of hyperparameters.
Fach hyperparameter in the ARD kernel represents characteristic length scales that can be interpreted as
sensitivity measures, where smaller length scales indicate higher influence of the corresponding particular
input dimensions.

The estimated importance matrices reveal meaningful and interpretable source-target domain relationships
that validate the effectiveness of our approach. For instance, as expected, GSM8K demonstrates strong
correlations with mathematics-focused training datasets such as Tilu 3 Persona Math and Tilu 3 Persona
GSM, as well as reasoning-heavy data included in the FLAN v2 collection, which aligns with the mathematical
reasoning requirements of the GSM8K benchmark. Similarly, IFEval exhibits pronounced influence from

2computed on 10% of the validation dataset for efficiency reasons

10



Under review as submission to TMLR

Tilu 3 Persona IF (a dataset designed to improve IFEval) and No Robots training datasets. Upon closer
inspection, we discovered that numerous training examples in the No Robots dataset contain strict instruction-
following patterns, explaining this strong correlation. These results demonstrate that our method yields
insightful source-domain relationships for curating meaningful training data mixtures while providing crucial
interpretability for understanding model behaviour.

Another interesting finding is a significant reduction in the number of important training domains as model
scale increases from 0.5B to 7B parameters, which is particularly evident when comparing the density of lighter
colors (indicating higher importance) across the three heatmaps. We hypothesize that larger models inherently
possess greater amounts of pre-trained knowledge and capabilities compared to smaller counterparts (an
argument/observation frequently made by post-training teams (Abdin et all 2024 e.g.)). On the other hand,
the importance matrix for Qwen2.5-3B is, for the most part, fairly similar to the larger model counterpart,
revealing opportunities for transferable insights at smaller scale.

Consequently, downstream performance on common evaluation benchmarks may become less dependent on
external training factors. This hypothesis is further supported by the relatively smaller performance gap
between best and worst data mixture configurations observed in larger LLMs compared to the smallest model
size (in Figures Appendix), suggesting that larger models may be more robust to variations in training
data composition due to their enhanced inherent capabilities.

5.2.1 Dataset contstruction

We select the Tiilu-3-SFT mixture from [Lambert et all as our foundation for data mixture creation. This
publicly accessible post-training dataset contains 939,344 samples spanning 17 datasets across diverse domains:
mathematics, coding, reasoning, instruction-following, knowledge, and safety. Taking inspiration from |Liu
et al.| (2024)), we sample 256 distinct dataset mixtures that comprehensively cover the probability space of the
17-dimensional simplex corresponding to the datasets in the Tiilu-3-SFT mixture. We achieve this coverage
using a Dirichlet distribution parameterized by the optimal dataset weights from the original Tiilu-3-SF'T
mixture as priors—weights that were extensively optimized through human expertise and iterative refinement.
This prior-based approach ensures our sampled mixtures statistically reflect realistic data availability patterns
while enabling exploration of both sparse and near-uniform distributions.

Post-training Setup To maintain practical relevance and avoid overfitting to specific SF'T data mixtures,
we limit each data mixture to 200,000 training samples. We train Qwen2.5-500M models on all 256 mixtures,
Qwen2.5-3B models on 128 mixtures, and Qwen2.5-7B models on 76 randomly selected mixtures from
the 3B subset. All post-training experiments strictly adhere to the open-instruct training pipeline and
hyperparameters established in the original Tiilu 3 projectE|

Evaluation Protocol Following the established evaluation protocol from the original Tiilu 3 work, we
evaluate trained models on two distinct benchmark suites. For in-distribution (ID) evaluation, we employ the
Tiilu 3 development set, which comprises 12 carefully selected LLM evaluation benchmarks with rigorous
decontamination against training data. These ID results serve as the targets for our data mixture optimization.

Dataset Contributions The resultant ADMIRE IFT Runs dataset represents a significant contribution to
the research community, providing public access to 460 trained checkpoints across 256 diverse data mixtures,
accompanied by comprehensive evaluation results on 17 standard benchmarks. We demonstrate initial
applications through several case studies examining data mixture optimization, zero-shot transferability
analysis, and multi-fidelity scaling studies, while anticipating that future research will uncover additional
applications we have not yet explored.

6 Experiments

The Pile Mixture Dataset Apart from the ADMIRE-BayesOpt IFT dataset explained in [section 5]
we conduct experiments on open-sourced benchmark datasets from RegMix, which comprises 256 pre-
training and evaluation results across three different model scales (1M, 60M and 1B parameters) on the Pile

Shttps://github.com/allenai/open-instruct
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dataset (Gao et al., 2020)). Each data point in the benchmark consists of input features representing the
proportions of various training domains from the Pile, with corresponding evaluation performance (measured
in perplexity) of the trained models on evaluation domains that form a subset of the training domains.

Baselines In our framework, a data mixture optimization algorithm consists of a method to sequentially
propose new mixtures and models (71, m¢41) and a method to recommend a final best single mixture ..
We compare our proposed method against strong baselines that fit parameterized models to observations of
evaluation metrics as functions of training data mixtures, then leverage these models to recommend a final
data mixture. However, these (non sequential) baselines do not explicitly define an iterative data collection
method. We therefore adapt RegMix that randomly sampled 512 data mixtures. At each iteration, for a
pre-specified constant model size m, a single random mixture is chosen from the benchmark dataset, 7y 1, and
we look up its corresponding validation score y:41. These baseline methods typically require prior knowledge
of downstream evaluation tasks, such as access to a small validation dataset.

« RegMix (Liu et al.| [2024): fits a linear regression model on existing observations with weights w; and

intercept wyp
d

Yy = E Wi + Wo,
i=1

to predict the best data mixture. Note, the subscript ¢ denotes elements of the vector 7.

o Data Mixing Law (DML) (Ye et all, 2024)): fits an exponential regression model

n
y = 0exp (Z wﬂ(‘@) + wp,

i=1
where 6 is also a learned parameter.

e MFMS-GP (Yen et al., [2025)): a concurrent method that leverages multi-fidelity, multi-scale Bayesian
optimization to construct a parameterized performance predictor, enabling optimal selection of data
mixtures for training.

e Support Vector Machine (SVM) (Fan et al., |2008; |(Chang & Linl 2011} Bishop & Nasrabadi, [2006;
Smola & Scholkopf, |2004): fits a linear Support Vector Regression model.

We also we consider baselines that do not rely on any prior knowledge of downstream evaluation for data
mixture optimization:

¢ Random Selection: Randomly selects a data mixture with uniform probability from the search space as
the recommended optimal mixture, serving as a lower-bound for evaluating algorithm performance.

« DoReMi (Xie et all}[2023): trains a small proxy model using group distributionally robust optimization
over training datasets to produce data mixture weights (mixture proportions).

Implementation For ADMIRE-BayesOpt and all baseline approaches, we optimize the training data
mixture over steps until a predefined maximum acquisition budget C' is exhausted. The cost associated with
each optimization step in the ADMIRE-BayesOpt IFT dataset corresponds to the average wall-clock training
time for each model size. Due to the unavailability of actual training times in the RegMix paper, we assume
cost scales linearly with model size and use model size as a proxy for cost in our quantitative analysis.

For zero-shot transfer experiments (single-fidelity BO), all methods are constrained to acquire and observe
data points from a single fidelity level (proxy model size) during data mixture optimization. In contrast, for
MFBO, methods can query and observe data points across all proxy model sizes.

We implement our method using the popular open-source Bayesian optimization library BoTorch (Balandat
et al., |2020]). At each optimization step, all methods recommend their best-performing data mixture within

12
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Figure 5: Zero-shot Results.

the candidate set of the target model (1B model for the Pile and 7B model for the ADMIRE-BayesOpt IFT
datasets) based on acquired training data points. We evaluate these methods by comparing the performance
of the target model trained on their respective recommended data mixtures. Throughout the optimization
process, we report cumulative best performance metrics to demonstrate both the efficiency and effectiveness
of our Bayesian optimization approach. All reported results are averaged over 5 independent runs.

6.1 Zero-Shot Transfer Results

We first compare ADMIRE-BayesOpt to all baselines when choosing data mixtures for smaller models, then
evaluating the mixtures by training and evaluating bigger models. This is the same setup as they propose, with
the only addition being sequential choice of mixture, allowing a head-to-head comparison. In
we add multiple model sizes to examine data mixers that can also choose model sizes. Our main results are
shown in and we discuss results for each dataset below.

6.1.1 ADMIRE-BayesOpt Demonstrates Superior Transferability Across Model Scales

The Pile Dataset Performance As shown in[Figure 5a] ADMIRE-BayesOpt consistently achieves optimal
data mixture identification across all model scales, demonstrating robust transferability from 1M to 1B
parameter models. We also observe that ADMIRE-BayesOpt and RegMix are the only methods capable of
identifying optimal mixtures for The Pile dataset, while baseline methods (DML, SVM, Random Selection)
fail to converge within allocated compute budget.

In extreme transfer scenarios (1IM—1B parameters), ADMIRE-BayesOpt is the only method successfully
identifying the optimal mixture for 1B model, while RegMix requires full computational budget yet achieves
0.3% lower validation performance. This transferability spans three orders of magnitude in model size,
suggesting that ADMIRE-BayesOpt effectively captures mixture-performance relationships that remain
consistent across architectural scales.

The ADMIRE-BayesOpt IFT Dataset Performance As shown in[Figure 5B both ADMIRE-BayesOpt

and RegMix successfully identify mixtures superior to human-optimized baselines across all transfer scenarios
(0.5B—7B, 3B—7B) on the Tiilu dataset, while other baselines (DML, SVM, Random Selection) fail entirely.

13
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Notably, DoReMi performs worse than the original Tilu mixture, indicating that not all optimization
approaches can improve upon human expertise.

6.1.2 ADMIRE-BayesOpt Achieves Significant Computational Efficiency Gains

In ADMIRE-BayesOpt demonstrates superior efficiency compared to all baseline methods on
the Pile dataset, requiring significantly lower computational cost to identify optimal data mixtures. When
training and evaluating on 1B model data, ADMIRE-BayesOpt achieves the optimal mixture at 1.86x lower
cost than Random Selection, which eventually discovers the same optimal mixture but at substantially higher
expense. In zero-shot transfer scenarios, ADMIRE-BayesOpt’s efficiency advantages become even more
pronounced: transferring from 60M to 1B models, ADMIRE-BayesOpt finds the best mixture with 2.36x
lower cost compared to RegMix, while other baselines fail to identify the optimal mixture.

On the ADMIRE-BayesOpt IFT dataset in ADMIRE-BayesOpt consistently outperforms RegMix
across all evaluation domains with substantial speed improvements. For the OOD+ID domain, ADMIRE-
BayesOpt achieves a 2x speed-up over RegMix when recommending the highest mixture using 7B model data,
and demonstrates 19x faster performance in the 0.5B to 7B transfer setting. In OOD domains specifically,
ADMIRE-BayesOpt shows even greater efficiency gains with a 7.14x speed-up over RegMix for 7B model
data and 17.5x faster performance in the 0.5B to 7B transfer scenario. For ID domains, ADMIRE-BayesOpt
maintains its efficiency advantage with a 2.87x speed-up over RegMix, and continues to demonstrate 2-2.25x
cost improvements across different transfer settings.

6.1.3 Increased Transferability with Proxy Model Scale

Our experimental evaluation reveals critical insights into the transferability challenges of data mixture
optimization methods, particularly in zero-shot transfer scenarios. On the ADMIRE-BayesOpt IFT dataset
in we observe a consistent pattern where transferability— in terms of converged final performance
—improves substantially with increasing proxy model sizes. For example, when transferring the discovered
optimal data mixture from smaller to larger models, ADMIRE-BayesOpt progressively achieves better
performance: reaching final performances of 59.19—59.35 for 0.5—7B proxy models.

These findings expose a fundamental limitation in existing data optimization approaches: their inability to
effectively transfer knowledge from significantly smaller proxy models alone. These observations support our
motivation to incorporate multi-fidelity Bayesian optimization techniques into our method, which allows
ADMIRE-BayesOpt to effectively capture the complex relationships between data mixtures and performance
across all model scales and improve convergence and efficiency in data mixture optimization.

6.2 Multi-Fidelity Results

We next consider the multi-fidelity setting, where a data mixing solution sequentially picks both a data
mixture and a model size to train on it. To the best of our knowledge, this is unconsidered by prior works. Our
results are shown in Figure [7] where we overall see that find that ADMIRE-MFBO approach demonstrates
substantial improvements in both efficiency and efficacy compared to our single-fidelity ADMIRE-BayesOpt
and baseline approaches. In the Pile dataset, ADMIRE-MFBO achieves the optimal data mixture
using only 7.73 cost units, representing an 82.82% cost reduction compared to the Pareto Frontier of baseline
methods optimizing directly on the target model (which required 45 cost units) and a 67.79% improvement
over our single-fidelity ADMIRE-BayesOpt approach (which required 24 cost units). Similarly, In
the ADMIRE-BayesOpt IFT dataset, ADMIRE-MFBO identifies the optimal mixture in just 5651.68 minutes,
delivering 2.19x and 4.37x speed improvements over ADMIRE-BayesOpt and baseline methods, respectively,
while being the only algorithm to successfully find the true optimal mixture.

The superior performance of ADMIRE-MFBO stems from its intelligent integration of information across
multiple fidelity levels, particularly through strategic leveraging of low-fidelity data in early optimization stages.
As illustrated in ADMIRE-MFBO adopts a progressive sampling strategy that begins with almost
exclusive use of the lowest fidelity data (low-fidelity dominance) before gradually transitioning to more costly
evaluations, culminating with the highest fidelity data sampling (multi-fidelity integration). This multi-fidelity
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Figure 7: MFBO

approach creates the characteristic "step function" optimization curves, where the algorithm initially relies on
inexpensive low-fidelity evaluations that provide suboptimal but low-cost mixture recommendations during
approximately 12% of the optimization process. Subsequently, ADMIRE-MFBO transfers relevant knowledge
from lower to higher fidelities through a critical period of combining all-level information, ultimately enabling
rapid convergence to optimal solutions while maintaining both superior effectiveness and efficiency compared
to single-fidelity approaches like the bassline and ADMIRE-BayesOpt.

6.3 Additional Analysis
6.3.1 Per-domain Evaluation Performance of Data Mixtures

We conduct an additional detailed analysis on the data mixture optimization process by examining the
per-domain evaluation metrics across all candidate data mixtures from the ADMIRE-BayesOpt IFT dataset.
The violin plots for the 0.5B, 3B, and 7B models (Figures Appendix) reveal substantial heterogeneity in
domain sensitivity to data mixture ratios. As evidenced by the violin plots for the 0.5B, 3B, and 7B models,
certain domains—such as [FEval and HumanEval—exhibit pronounced variability in performance across
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mixtures, indicating a high degree of sensitivity to data composition. In contrast, domains like MATH and
GSK8K display narrower distributions, suggesting robustness to changes in the corresponding data mixture
ratios. Notably, the degree of sensitivity is not uniform across model scales; for example, HumanEval shows
considerable spread in the 0.5B model but becomes markedly less sensitive as model size increases, whereas
domains such as Truthful QA retain sensitivity across all scales.

An important caveat emerges when optimizing the training data mixture solely for a single overall met-
ric—defined here as the unweighted mean across all domains. While this approach consistently yields the
highest aggregate performance, it can inadvertently mask suboptimal or even degraded performance in
individual domains, as illustrated by the relative positions of the best-overall (green) and worst-overall (red)
mixtures in the plots. This phenomenon underscores a key limitation of single-metric optimization and
motivates further research into alternative mixture optimization objectives, such as multi-task or domain-
weighted optimization, to better balance per-domain performance and mitigate potential failure cases in
critical domains.

7 Conclusion

We propose ADMIRE-BayesOpt, a Bayesian Optimization framework designed to improve the efficiency
and effectiveness of discovering optimal data mixtures. Our standard BO method demonstrates strong
performance on single-fidelity data and exhibits robust transferability to higher-fidelity settings. The
Multi-Fidelity Bayesian Optimization (MFBO) variant further enhances efficiency by strategically allocating
expensive high-fidelity evaluations, enabling faster convergence and lower overall computational cost. We
validate the effectiveness and efficiency of ADMIRE-BayesOpt on hundreds of mixture data points from two
state-of-the-art datasets: TULU and the Pile. Our approach consistently outperforms traditional regression-
based methods, which require fixed model assumptions. This work opens the door to a wide range of future
research directions, enabling more accessible exploration of sequential decision-making techniques without
reliance on prohibitively expensive computational resources.
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A Ablation Studies

A.1 Implementation Details

To ensure consistency in implementation and enable a fair comparison between Bayesian Optimization (BO)
and Multi-Fidelity Bayesian Optimization (MFBO), we follow the official BoTorch tutoriaﬂ which provides
a unified experimental framework for both approaches.

Bayesian Optimization We adopt the standard BO pipeline, in which a Gaussian Process (GP) model is
iteratively fit to the observed data, and an acquisition function is optimized based on the updated model at each
iteration. Specifically, we use the SingleTaskMultiFidelityGP model and the qLogExpectedImprovement
acquisition function. For experiments involving a single model size, the training data contains a single fidelity
level. The acquisition function is optimized using optimize_acqf _discrete over the training set, from which
the point with the highest acquisition value is selected. We set the number of restarts to 10 and the number
of raw samples to 1024.

After each GP update, the model recommends a point from the training set corresponding to the highest
fidelity level (1.0). This is done by maximizing the posterior mean of the GP model while fixing the fidelity
dimension. The data point with the highest posterior mean is selected. We run the optimization for a total
of 100 iterations, initializing the GP model with a single observed data point.

Multi-Fidelity Bayesian Optimization For MFBO, we use the same GP model to fit observations across
multiple fidelity levels. Both the Tulu and the Pile datasets are composed of three fidelity levels. Specifically,
the ID+OOD Tulu dataset includes 444 samples (256 at 0.5B, 128 at 3B, and 60 at 7B), while the Pile
dataset contains 816 samples (512 at 1M, 256 at 60M, and 48 at 1B).

The acquisition function used is qMultiFidelityMaxValueEntropy, which selects the next evaluation point
by performing a forward pass on the training set and choosing the one with the highest acquisition value.
The same acquisition function is reused when querying the model for recommendations at the highest fidelity
level. To fully capture the recommendation trajectory across fidelities, we set the total number of iterations
equal to the total number of data points across all fidelity levels.

A.2 An Instruction Finetuning Dataset for Data Mixing

Figure [§| shows the validation performance as a function of training steps on a selected number of benchmarks
from Tiilu 3 for the best and worst overall mixture, as well as a mixture of medium performance.

Figures [9] [I0, and [IT] show the performance distribution of all trained models on the respective Tiilu domains.

4nttps://botorch.org/docs/tutorials/discrete_multi_fidelity_bo/
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