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ABSTRACT

Resampling from a target measure whose density is unknown is a fundamental
problem in mathematical statistics and machine learning. A setting that dominates
the machine learning literature consists of learning a map from an easy-to-sample
prior, such as the Gaussian distribution, to a target measure. Under this model,
samples from the prior are pushed forward to generate a new sample on the target
measure, which is often difficult to sample from directly. In this paper, we pro-
pose a new model for conditional resampling called mirror Schrodinger bridges.
Our key observation is that solving the Schrodinger bridge problem between a
distribution and itself provides a natural way to produce new samples from con-
ditional distributions, giving in-distribution variations of an input data point. We
show how to efficiently solve this largely overlooked version of the Schrodinger
bridge problem. We prove that our proposed method leads to significant algorith-
mic simplifications over existing alternatives, in addition to providing control over
in-distribution variation. Empirically, we demonstrate how these benefits can be
leveraged to produce proximal samples in a number of application domains.

1 INTRODUCTION

Mapping one probability distribution to another is a central technique in mathematical statistics and
machine learning. Myriad computational tools have been proposed for this critical yet often chal-
lenging task. Models and techniques for optimal transport provide one class of examples, where
methods like the Hungarian algorithm (Kuhn, 1955) map one distribution to another with optimal
cost. Adding entropic regularization to the static optimal transport problem yields efficient algo-
rithms like Sinkhorn’s method (Deming & Stephan, 1940; Sinkhorn, 1964), which have been widely
adopted in machine learning since their introduction by Cuturi (2013). Static entropy-regularized
optimal transportation is equivalent to a dynamical formulation known as the Schrodinger bridge
problem (Schrodinger, 1932; Léonard, 2014), which has proven useful to efficiently compute an
approximation of the optimal map paired with an interpolant between the input measures.

Inspired by these mathematical constructions and efficient optimization algorithms, several meth-
ods in machine learning rely on learning a map from one distribution to another. Beyond optimal
transport, diffusion models, for instance, learn to reverse a diffusion process that maps data to a
noisy prior. Special attention has been given to learning methods that accomplish this in a stochastic
manner, i.e., modeling the forward noising process using a stochastic differential equation (SDE).

The most common learning applications of distribution mapping attempt to find a map from a simple
prior distribution and a complex data distribution, either using a score-matching strategy (Song &
Ermon, 2019; Ho et al., 2020; Song et al., 2021) or leveraging a formulation of the Schrédinger
bridge problem (De Bortoli et al., 2021; Shi et al., 2022; 2023; Zhou et al., 2024); other learning
applications map one complex data distribution to another (Cuturi, 2013; Courty et al., 2017).

In this paper, we focus instead on the understudied problem of mapping a probability distribution
to itself, that is, finding a joint distribution whose marginals are both the same data distribution
m. This task might seem inane at first glance, since two simple couplings satisfy our constraints:
one is the independent coupling p(x,y) = w(z)m(y), and the other is the “diagonal” map given by
p(z,y) = m(x)d,. The space of couplings between a measure and itself, however, is far richer than
these two extremes and includes models whose conditional distributions are neither identical nor
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We focus on the class of self-maps obtained by entropy-regularized transport from a measure to it-
self. Formally, we define a mirror Schrodinger bridge to be the minimizer of the KL divergence
Dkr,(P || PY) over path measures P with both initial and final marginal distributions equal to
7, where P° is an Ornstein-Uhlenbeck process with noise o. Mirror Schrodinger bridges are the
stochastic counterpart to minimizing Dy, (p I po), where pY is the probability density of the joint
distribution associated with the path measure P?, over the joint distributions p on R™ x R" satisfying
the linear constraints | p(z,y)dy = w(z) and [ p(x,y)dz = m(y). While the former minimizes the
Kullback-Leibler divergence on path space, the latter is a minimization over density couplings.

Despite its simplicity, this setting of the Schrodinger bridge problem suggests a rich application
space. Couplings with the same marginal constraints have already proven useful to enhance model
accuracy in vision and natural language processing by reinterpreting attention matrices as transport
plans (Sander et al., 2022). Few works, however, consider this task from the perspective of optimiz-
ing over path measures or provide control over the entropy of the matching at test time. Albergo
et al. (2023) propose a stochastic interpolant between a distribution and itself, but their interpolants
are not minimal in the relative entropy sense and do not solve the Schrodinger bridge problem, even
with optimization. Minimal interpolants in the relative entropy sense are those with minimal kinec-
tic energy, and in applications, minimizing the kinectic energy of a path has been correlated to faster
sampling (Shaul et al., 2023).

Contributions. We investigate the mirror Schrodinger bridge problem and demonstrate how it can
be leveraged to obtain in-distribution variants of a given input sample. In particular, given a sample
Ty ~ Ddata, We build a stochastic process {Xt}te[o,u with minimal relative entropy under which the
sample x( arrives at some T ~ Pgaa With 21 proximal but not identical to .

Our contributions in this direction are twofold: first, on the theoretical side, we use the time symme-
try of the mirror Schrédinger bridge to prove that it can be obtained as the limit of iterates produced
via an alternating minimization procedure; and second, in applications, the implementation of our
method allows for sampling from the conditional distribution X; | X = ¢ in such a way that we
can control how proximal a generated sample x is relative to the input sample z.

2 RELATED WORKS

Entropy regularized optimal transport. A few recent works employ the idea of a coupling with the
same marginal constraints. Feydy et al. (2019); Mensch et al. (2019) use static entropy-regularized
optimal transportation from a distribution to itself to build a cost function correlated to uncertainty.
Sander et al. (2022) reinterpret attention matrices in transformers as transport plans from a distri-
bution to itself, while Agarwal et al. (2024) analyze this reinterpretation in the context of gradient
flows. Also relevant is the work of Kurras (2015), who shows that, over discrete state spaces,
Sinkhorn’s algorithm can be simplified in the case of identical marginal constraints. These works
do not consider the coupling with the same marginal constraints from the perspective of path mea-
sures on continuous-state spaces. In our paper, we focus on the path measure formulation instead of
viewing it as a self-transport map and present a practical algorithm to solve it.

Expectation maximization. Our methodology can be broadly categorized under the umbrella of
expectation maximization algorithms, drawing from the theory of information geometry. A number
of recent papers introduce related formulations to machine learning; most relevant to us are the works
of Brekelmans & Neklyudov (2023); Vargas & Niisken (2023). These works, however, focus on
the case of finding a path measure with two distinct marginal constraints, overlooking the potential
application to resampling and algorithmic simplifications obtained for the case in which the marginal
constraints are the same. In our work, we derive an algorithm that is distinct, yet similar in flavor, to
address this overlooked version of the problem, i.e. the mirror Schrodinger bridge.

Schrodinger bridges and stochastic interpolants. Schrodinger bridges have been used to obtain
generative models by flowing samples from a prior distribution to an empirical data distribution
from which new data is to be sampled. Several methods have been proposed to this end: De Bor-
toli et al. (2021); Vargas et al. (2021) iteratively estimate the drift of the SDE associated with the
diffusion processes of half-bridge formulations. While the first uses neural networks and score
matching, the latter employs Gaussian processes. From these, a number of extensions or alternative
methods have been presented; most relevant are (Shi et al., 2023; Peluchetti, 2023), which extend
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(De Bortoli et al., 2021) but differ with respect to the projection sets used to define their half-bridge
formulations. Schrodinger bridge based methods alleviate the computational expense incurred by
score-based generative models (SGM) (De Bortoli et al., 2021). The latter requires the forward
diffusion process to run for longer times with smaller step sizes. Unlike SGM, our method pro-
vides a tool to flow an existing sample in the same data distribution with control over the spread of
the newly obtained sample.

To the best of our knowledge, the work of Albergo et al. (2023) is the only one in the literature on
generative modeling that maps from a distribution to itself. In their paper, flow matching learns a
drift function associated with a stochastic path from the data distribution to itself. Their stochastic
interpolants, however, are not optimal with respect to any functional. In particular, they lack opti-
mality in the relative entropy sense, a property correlated to sampling effectiveness and generation
quality (Shaul et al., 2023) and hence of practical importance. By contrast, our method discovers the
coupling with minimal relative entropy, akin to methods such as (De Bortoli et al., 2021; Shi et al.,
2023); our method, however, presents certain algorithmic advantages over these, which can only be
derived for the mirror case.

3 MATHEMATICAL PRELIMINARIES

Definition. Let n > 0 be an integer, and let P° € P(C ([0,1],R™)) be a reference measure in
the space of path measures. Following (Jamison, 1975; Léonard, 2014), we define the Schrodinger
bridge problem to be the problem of finding a path measure Pgp interpolating between prescribed
initial and final marginals 7y and 7; that is the closest to the reference measure P? with respect to the
Kullback-Leibler divergence Dk1,. To be precise, we define Psp to be the solution of the following
optimization problem:

]P)SB = argmin DKL (P H PO) y (1)

PeD(mo,m1)

where D(7g, 71) denotes the set of path measures with marginals 7y and 7. In other words, we say
that Pgg is the direct Dy, projection of P onto the space D (g, 71 ).

The reference path measure PC is typically chosen to be associated with a diffusion process, which
is defined to be any stochastic process X; governed by a forward SDE of the form

dXt = ft(Xt)dt + O'th,

where f; denotes the forward drift function, ¢ > 0 is the noise coefficient, and W, denotes the
Wiener process. Such a process X; corresponds to a unique path measure once an initial or final
condition is specified. An important aspect of diffusion processes is that their time-reversals are
diffusion processes of the same noise coefficient o. Specifically, if X, is a diffusion process with
time-reversal denoted by Y, then Y, is governed by a backward SDE of the form

dYt = bt (Yt)dt + wat;
where b; denotes the backward drift function (see (Winkler et al., 2023, section 2.3)).

In the case where PV arises from a diffusion process, any path measure with finite KL divergence
with respect to P, including the Schrodinger bridge Psp, necessarily also arises from a diffusion
process with noise o (Vargas et al., 2021). Consequently, by adjusting the initial condition of the
reference SDE, we can assume that the reference process PV has a prescribed initial marginal 7,
without changing the solution to (1).

Iterative Proportional Fitting Procedure. In the literature, the typical strategy for solving the
problem (1) is to apply a general technique known as the Iterative Proportional Fitting Procedure
(IPFP) (Fortet, 1940; Kullback, 1968). This procedure obtains the Schrodinger bridge by iteratively
solving the following pair of half-bridge problems:

P?*H! = argmin Dy, (P || P**), P***? = argmin Dy, (P || P**) 2)
PeD(-,m1) PeD(mo,-)

where (-, 71 ), respectively, D(, -), denotes the space of path measures with final (resp., initial)
marginal fixed to be m; (resp., 7). Ruschendorf (1995) proves that the sequence of iterates P* con-
verges in total variation to Psg as & — oo. IPFP can be thought of as an extension of Sinkhorn’s
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algorithm to continuous state spaces, where the rescaling updates characteristic of Sinkhorn are re-
placed by iterated direct Dkr, projections onto sets of distributions with fixed initial or final marginal
(Essid & Pavon, 2019).

Applications. Suppose 7 is given by a data distribution p4,¢, and take 7, to be an easy-to-sample
distribution ppyrior, €.8., Pprior = N(0,I). The backward diffusion process associated with Psg
gives a model for sampling from pqat.. In practice, the IPFP iterates in (2) can be solved using an
algorithm known as the diffusion Schrodinger bridge (DSB), developed by De Bortoli et al. (2021).
DSB relies on the following observation, which is a consequence of Girsanov’s theorem: P2k+1 g
the path measure whose backward drift is equal to the time-reversal of the forward drift of P2*, and
P2#+2 is the path measure whose forward drift is equal to the time-reversal of the backward drift of
P2k+1 Leveraging this fact, DSB solves for Psp by training neural networks to learn the forward
and backward drift functions associated with the IPFP iterates.

4 MIRROR SCHRODINGER BRIDGES

Given a reference path measure P° and a prescribed marginal distribution 7, we consider the
Schrodinger bridge problem between 7 and itself with respect to PY. In the case where P is time-
symmetric, the Schrodinger bridge will inherit the time-symmetry, in which case we call it the mirror
Schrodinger bridge from 7 to itself with respect to P°. Mathematically, we write

Pyisp = arg min D, (]P’ I IP’O) , 3)
PeD(r,m)

so that Pysp € D(mr, ) is the path measure with identical prescribed marginals equal to 7 that is
closest to the reference measure P with respect to the KL divergence Dxr,.

A naive approach to solving the mirror Schrodinger bridge problem (3) is to apply IPFP with both
marginals my = 7 set equal to 7. In practice, this requires iterative training of two neural networks
1% and bf’ , the first modeling the drift of the forward diffusion process associated to Py;sg and the
latter modeling the drift of the corresponding backward process. But this straightforward application
of IPFP leads to unnecessary computational expense, as it fails to use the time-symmetry of the
problem (3). In particular, at optimality the forward and backward drifts of P\jgg must be equal,
because the mirror Schrodinger bridge Pygp is time-symmetric. Related works in entropic optimal
transportation suggest that the use of one optimization variable for the static transport formulation
in the symmetric case (see (Kurras, 2015, Section 3) and (Feydy et al., 2019, Equations (24)-(25))),
but to our knowledge no approach has been developed to leverage symmetry for the dynamical
formulation in the language of path measures.

In section 4.1, we develop a method for solving (3) by leveraging time-symmetry in conjunction with
a general technique from information geometry known as the Alternating Minimization Procedure
(AMP), which was first formalized by Csiszar & Tusnady (1984). Then, in section 4.3, we derive an
efficient algorithm that involves training a single neural network modeling the drift of the diffusion
process associated to Pyigp and requires half of the computational expense in terms of training
iterations for the mirror problem, when compared to other IPFP-based algorithms.

4.1 ALTERNATING MINIMIZATION PROCEDURE

Take the reference path measure P? to be time-symmetric. As an example, we can take P° to be
associated to an Ornstein—Uhlenbeck process X; given by an SDE of the form dX; = —aX,dt +
ocdWy, for a > 0, or more generally any reversible diffusion process. We propose the following
iterative scheme:

P21 = argmin Dy, (P || P?¥) (direct Dy, projection) 4)
PeD(r,-)
P**+2 = arg min Dk, (P? || P), (reverse D, projection) (3)
PeS

where S is the set of time-symmetric path measures with no marginal constraints. This scheme is
an instance of AMP and differs from IPFP in that it alternates between direct and reverse Dky, pro-
jections. To see this, note that (4) is a direct Dky, projection and coincides with the odd-numbered
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steps in the IPFP iterations (2), whereas (5) is a reverse Dkr, projection, as the KL divergence is
being computed against the optimization parameter PP instead of the previously produced path mea-
sure P2**+1 That is to say, each iteration of the AMP scheme in (4)-(5) is designed to obtain the
time-symmetric measure [P that minimizes the objective while remaining close in KL divergence
Dk, to the measure obtained in the previous half iteration, which satisfies the initial marginal con-
straint 7. A theoretical requirement for our proposesd scheme is that the reference measure P be
time-symmetric. For this reason, standard Brownian motion cannot be used as a prior.

It is natural to ask why we consider reverse Dxr, projections, as opposed to direct projections, onto
the space of symmetric path measures. In fact, replacing (5) with a direct Dkr, projection would
result in a viable symmetrized variant of IPFP, and by (Ruschendorf, 1995), the resulting iterates
would converge in total variation to the mirror Schrodinger bridge. The difficulty is in computing
the direct Dkr, projection of a path measure onto S. As we will demonstrate in section 4.3, it is
considerably easier to compute the reverse Dky, projection onto S, as this particular projection can
be done completely analytically.

4.2 CONVERGENCE

For the scheme in steps (4)-(5) to be practical, we must prove that the iterates P* converge to the
mirror Schrodinger bridge Pyisp. The pointwise convergence of schemes like steps (4)-(5) was
established by Csiszar & Tusnady (1984) in the special case where the state space is finite. In our
setting, however, we work with infinite state spaces of the form R” for some dimension n > 0. In
the following theorem, we prove that the sequence obtained in the AMP scheme converges in total
variation to the mirror Schrédinger bridge, without relying on the finiteness assumption for the state
space. To our knowledge, this result has not been established previously in the literature.

Theorem 1. Let P* be the sequence of path measures obtained via the alternating minimization
procedure defined in steps (4)-(5). Then P* converges to Pysg in total variation as k — oo.
Moreover, the total variation between P* and P**' decays as o(1/k).

Our proof strategy for Theorem 1 is inspired by the convergence proofs for IPFP given in (Ruschen-
dorf, 1995, Proposition 2.1) and (De Bortoli et al., 2021, Theorem 36). The basic idea is to prove that
the sequence P* is Cauchy with respect to the metric d1v induced by total variation; we then con-
clude using completeness of the space of path measures together with optimality of the Schrédinger
bridge. The crucial distinction between our setting and theirs is that one of our Dgp, projections
is reversed, which presents an additional complication for establishing convergence to the mirror
Schrodinger bridge. To overcome this challenge, we make use of an observation made by Vargas
& Niisken (2023, section 4.1 and proof of Proposition 4.1): in traditional IPFP, we can reverse one
or both of the direct Dky, projections (2) while preserving the sequence of iterates obtained. In
particular, they prove:

Lemma 2. Let mg, 7y be probability distributions on R™, and let P € P(C([0,1],R™)) be any path
measure. Then we have the following identities relating direct to reverse Dxy, projections:

argmin Dky, (Q | P) = argmin Dk, (P | Q)

QeD(-,71) QeD(-,m1)
argmin Dk, (Q || P) = argmin Dk, (P || Q).
QeD(mo,-) QeD(mo,-)

Using Lemma 2, we obtain the following result, which states that the Schrodinger bridge can be
equivalently defined in terms of reverse Dk1,. We defer the proof to Appendix A.

Proposition 3. Let gy, 71 be probability distributions on R"™ and let Q° € P(C([0,1],R™)) be any
path measure. Then the Schrodinger bridge Qgp with respect to QU is the unique solution to the
following pair of optimization problems:

Qsp = argmin Dy, (Q || Q°) = argmin Dk, (Q° || Q).
QGD(W(},TU) @GD(TK‘(),’TU)

We are now ready to use Lemma 2 and Proposition 3 to prove Theorem 1.

NEW
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Proof of Theorem 1. Equipped with Lemma 2, we can reverse the Dkp, projections in the steps given
by (4). Then we obtain the following sequence of pairs of reverse Dky, projections:

P?*+1 — arg min Dk, (IP’QIC I IP’) (reverse Dg1, projection)
PeD(-,m)
P22 = arg min Dy, (P** ! || P), (reverse Dy, projection)
PcS
We apply the Pythagorean theorem for reverse Dk, projections, which shows that
DKL (]PO || ]PMSB) = ZDKL (Pi71 || ]Pﬂ) + khﬁnolo DKL (Pk || IP>MSB) (6)
i=1

Since KL divergences are always nonnegative, the sequence of partial sums in (6) is nondecreasing
and bounded, so the sum must converge. Thus, for any € > 0, we can choose N sufficiently large to
ensure that Dkp, (P || P"2) < € for all no > ny > N. By Pinsker’s Inequality, we have that the
same property holds with Dky, replaced by drv, i.e., the metric induced by total variation. Thus,
the sequence P* is Cauchy with respect to d1v. Since the space of path measures is complete with
respect to this metric, there exists a limit P* — P*. But just as we argued in the proof of Proposition
3, we can show that Dk, (P || Pysg) = Dxr, (PP || P*), so by uniqueness of the Schrodinger
bridge with respect to reverse Dxr,, as shown in Proposition 3, it follows that Py;gg = P*. Finally,
from (6), it follows by applying (De Bortoli et al., 2021, Lemma 38) in conjunction with the results
of Csiszar & Tusnady (1984) that Dy, (P*~! || P") = o(1/i), so Pinsker’s inequality implies the
claimed rate of convergence. O

4.3 PRACTICAL ALGORITHM

In this section, we describe an algorithm to solve the mirror Schrodinger bridge problem numeri-
cally, based on the AMP scheme that we introduced in section 4.1. We choose our reference path
measure P? € S to be associated to an Ornstein-Uhlenbeck process X; given by an SDE of the form
dX; = —aX;dt + cdWy, for a > 0.

Algorithm 1 MIRROR SCHRODINGER BRIDGE

1: fork € {0,...,K — 1} do
2:  while not converged do

Recall that our proposed AMP scheme
alternates between direct Dky, projec-
tions on the set of path measures with a

prescribed initial marginal distribution ~ 3: Sam.ple Xy ~ mand 07 € R from [0min, Omax]
7 and reverse Dky, projections on the forj € {0,...,M — 1}-‘ Mo1N
set of time-symmetric path measures.  4: Compute trajectories { X7 }; ];é’ ~! via (10) us-

We now explain how each of these pro-
jections is computed in practice. Our 5.
algorithm then follows by iteratively 6
applying this pair of projections and is
summarized in Algorithm 1. 8

92k

ing f(z) =v{ (x) asin (12).

Do gradient step on 82+ using (11).
end while
: end for
. Output: v¥"

Direct Dg1, projection. We can com-
pute the Dxr, projection onto the set of path measures with a prescribed initial marginal distribution
7 following the trajectory-caching method developed and applied in (Vargas et al., 2021; De Bortoli
et al., 2021). Let 7 be a probability distribution on R™, and let P € D(r,-) and Pt € S be path
measures corresponding to diffusion processes. Write f; and b} for the forward and backward drift
functions corresponding to IP, and write v} T = 7 = bY" for the drift of PT. As a consequence of
Girsanov’s theorem, we can write Dy, (P || Pt) explicitly in terms of fF and v?', or equivalently

in terms of b]f and vf T; for references, see (Chen et al., 2016, section 3) as well as (Winkler et al.,
2023, sections 2.2, 2.3). Indeed, for some constants C, Cs, we have

DB | P = Cr+ 5 01 e [(770%) o (X)) a ™
= O+ % /01 Es [(bf(Xt) o (xt))}2 dt. )

In light of the identities (7) and (8), and because drift functions are much more amenable to modeling
and estimation than path measures, it is convenient to recast the steps of our AMP scheme as iterative
computations of drift functions associated to Dky, projections.
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It follows immediately from (7) that the direct Dkr, projection of P onto the space D(, -) is given

by the unique path measure P with initial marginal 7 and forward drift f{ equal to the drift v} " of
PT. In our AMP scheme, we employ this by taking P = P?**! ¢ ID(x, -) to have drift equal to that
of P' = P?* for each k£ > 0. But as we will see in our analysis of the reverse D, projection, it does
not suffice for us to know only the forward drift associated to our path measure iterates. We need
to know the backward drift b too, but in practice, we do not have access to it. We use trajectory
caching to estimate the backward drift b} . Trajectory caching is principled on the fact that b} can be
expressed in terms of the expected rate of change in X; over time. Concretely, we have the following
formula, which can be taken as a formal definition of the backward drift of a diffusion process:

X, ,—X
W o, (x)=lmE {t v
v—0 y

&:4' ©)

To apply (9) in practice, take a positive integer M and let {~;}}, be a sequence of M discrete
time steps with sequence of partial sums {%;}},. Then we construct a discrete representation
of the stochastic process X; by using the Euler-Maruyama method to generate a collection of [NV

sample trajectories {Xf }fv é;(l)’N_l starting at the initial distribution 7 in accordance with the SDE
dX; = f7(X;)dt + cdW,, where we know the forward drift f; because we matched it to the drift
of PT. Explicitly, we have for alli € {0,..., M — 2} and j € {0,..., N — 1} that

Xl = X!+ £ (X])vi + 07\ 7iZ], where Z] ~N(0,I). (10)
The limiting quantity in (9) is then leveraged as the target of the loss function used to train a neural
network vf , which approximates the backward drift bf for a specified range of o values [Omin, Cmax]-
Specifically, we define the following loss function in terms of the optimization parameter 6:

M—-1N-1 2

e(a):irzgzo

Observe that the first two terms in the loss constitute the difference between the drift and the in-
finitesimal rate of change of the process X, i.e., the discretization of the difference between the
left- and right-hand sides of (9). The network parameters 6 are then learned via gradient descent
with respect to the loss function £(6). The resulting function v¢, where # minimizes the loss £(6),
approximates the desired backward drift, as is suggested by De Bortoli et al. (2021, Proposition 3).

J J
X — Xi+1 _

Yi+1

(1)

0 J
U'T/'H»l (Xi+1) -

(72 (xd) — f2 xD)

Reverse D1, projection. We now describe how to compute the reverse D, projection onto the set
S of time-symmetric path measures. We are interested in computing the associated time-symmetric
drift, rather than the path measure itself. To this end, let 7 be a probability distribution on R”, and
let P € D(rr,-) and P € S be path measures corresponding to diffusion processes. Suppose we seek
to minimize Dy, (P || PT) over all P € S. Using (7) and (8), we can write D, (P || PT) explicitly
in terms of the forward and backward drift functions of the SDE corresponding to the path measures
P and Pt. A key benefit of considering the reverse Dy, projection is that the expectation values in
(7) and (8) are taken with respect to the fixed path measure P, and not with respect to the varying
path measure PT. This allows us to apply calculus of variations to compute a closed-form expression
for the drift of the minimizer of Dkr,(P || PT) over PT € S. First, observe that we can combine (7)
and (8) to rewrite Dy, (PP || P') in a time-symmetric formulation as follows:

1

DxL(P | P =C + é ; Ep [(fF(Xt) - Uf’* (Xt))2 + <b]f(xt) - UEDT (Xt))2:| dt,

where C'is a constant. Note that the sum of squares inside the expectation on the right-hand side

above is always nonnegative. Consequently, to minimize Dkt (P || P'), it suffices to choose v} "so

that it minimizes this sum of squares pointwise everywhere. Taking the first variation of this sum
. T . . . .

of squares with respect to v} , setting the resulting expression equal to zero, and solving for the

optimal v?* , we find that
i 1
v (@) =5 (£ (@) + b (2) (12)

That is, the choice of P! € S minimizing Dkr,(P || P') has drift function given by the average of
the forward and backward drifts of IP.
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Figure 1: For each method, we plot the mean (left) and variance (middle) obtained for the terminal
samples, i.e. samples obtained at time ¢ = 7', as well as the covariance (right) of the joint distribu-
tion, versus the number of outer iterations, averaged over 5 trials.

In our AMP scheme, we employ (12) by taking the forward and backward drifts corresponding to
P = P2*+1 and averaging them to obtain the drift of the symmetric path measure P = P2k+2,

Practically speaking, if the drift of P2 is a parametrized by a neural network v? * for each k, we
take the drift of P2*+! to be the average of the outputs of the neural networks v¢" ' and v¢". In
Algorithm 1, we denote the limiting drift as v{ "

4.4 SAMPLING WITH IN-DISTRIBUTION VARIATION

In this section, we provide a short intuitive explanation of how our method allows for resampling
with prescribed proximity to an input sample. Given such a sample g ~ 7, we solve the SDE
corresponding to the Schrodinger bridge to push zy forward in time, arriving at a final sample
x1 € m. We want z; to be a variation of x(, where the proximity of x; to x( correlates with the size
of the noise coefficient o. Justifying this mathematically requires understanding how the conditional
distribution X | Xy = =, specifically its mean and variance, depend on o. While these quantities
do not in general have closed form expressions, it is possible to compute them exactly in the case
where 7 = N(0,I) is a 1-dimensional Gaussian.

In this case, let X; denote the diffusion process associated to the Schrodinger bridge, where the ref-
erence path measure corresponds to an Ornstein-Uhlenbeck reference process with drift coefficient
—a. In Proposition 4 (see Appendix B for the statement and proof) we determine the joint distribu-
tion of X and X in terms of a quantity 3, which is a function of « and ¢ that grows approximately
as 1+ c(a) x o for some function c. Let p(x, y) denote the probability density function of the joint
distribution of X and X, and recall that p(x, y) is the product of the conditional PDF of X; | X
with the PDF of X. Using this fact in conjunction with Proposition 4, the PDF of X; | Xy = zg is

2
1 2_ 2y, 25
DX, |Xo=z0 (y) = p(w()’y)/pxo(-’co) =¢ 2(1752)(960 2Bzoy+y”)+ 3 )

From the right-hand side, we see that X; | X( = z¢ is Gaussian with mean and variance given by
E[X; | Xo = z0] = 20 (8/1-82), E[(X1 — E[X1 | Xo = z0])? | Xo =20] =1 — 5°.

Thus, changing the noise value o alters both the mean and variance of samples pushed forward
via the Schrodinger bridge. Indeed, in the case of the mean, it grows inversely proportional to o2.
Consequently, if ¢ < 1, then we should expect the Schrodinger bridge to push samples away from
the distribution mean, whereas if o > 1, then the opposite occurs, and samples experience mean
reversion. As for the variance, note that 1 — ﬁ2 grows at least as fast as o2, so we should expect
the Schrodinger bridge to produce samples with spread that increases as o increases. We expect
that similar effects occur even when the marginal distribution 7 is not Gaussian: i.e., the value of o
should be directly related to the proximity of generated samples in an analogous way.

5 EXPERIMENTS

We demonstrate the flexibility of our method on a number of conditional sampling tasks. We first
show numerical convergence against the solution of the mirror Schrodinger bridge in a case where
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an analytical solution is available. Next, we consider resampling from 2-dimensional datasets and
demonstrate control over the in-distribution variation of new data points, which is an added feature
of our method. Lastly, we provide examples of image resampling, illustrating how our method can
be used to produce image variations with control over the proximity to the original.

Gaussian Transport. We start by comparing our method with two alternative algorithms,
DSB (De Bortoli et al., 2021) and DSBM (Shi et al., 2023), when applied to the mirror
Schrodinger bridge case on Gaussians of varying dimension. Figure 1 shows that, in the case
of dimension d = 50, as the number of outer iterations increases, the empirical convergence
of our method performs on par with both DSB and DSBM with the added benefit that each
outer iteration with our algorithm requires half the training iterations. Recall that our method
trains a single neural network to model a time-symmetrized drift function v¢ rather than a
neural network for each of the forward and backward drift functions. More details on the
derivation of the analytical solution for this experiment, as well as information on parameters,
can be found in Appendix B. Additional results for dimensions d = 5, 20 can be found in Figure 6.
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Figure 4: The control over in-distribution variance effect of o for a variety of initial samples (first
row) from the empirical distribution of images in CelebA.

Image Resampling. We also train our algorithm on each of the MNIST, CelebA, and Flower102
datasets. Details on training parameters and architecture for all experiments using images can be
found in Appendix C. Our results show that mirror Schrodinger bridges can be used to produce new
samples from an image dataset with control over the proximity to the initial sample. In Figure 3,
we resample from MNIST using varying levels of noise. We find that pushforward images obtained
with a lower fixed value of noise (3b) are visually closer to the initial images (3a) obtained with a
higher fixed value of noise (3c).

Figure 4 demonstrates the same control over the in-distribution variation of pushforward samples
using the RGB dataset CelebA.

The typical metric to assess resampling
quality for the image generation case is the Fréchet inception distance (FID) score, which we have
plotted against training iterations. We observe FID scores decreasing with training iterations.

Figure 12 includes more results using the CelebA dataset, and Figure 7 shows the nearest neighbors
in the dataset to the generated images. In the latter Figure, as desired, the nearest neighbor of
the generated sample is the initial sample itself, and the generated sample is distinct from all of
its nearest neighbors, showing that our model does not simply regurgitate nearest neighbors of the
initial sample as proximal outputs.

Figure 5 highlights how mirror Schrédinger bridges can
be used as a flexible and well-principled tool to perform
small edits to RGB images while guaranteeing the re-
sult to be in-distribution. This task can be performed by
choosing an appropriately small value for o.

6 CONCLUSION

Figure 5: The effect of using small o
when pushing samples forward. From
left to right: initial samples, intermedi-
ate times, and samples at terminal time.

By studying an overlooked version of the Schrodinger
bridge problem, which we coin the mirror Schrodinger
bridge, we present an algorithm to sample with control
over the in-distribution variation of new data points. Our method is flexible and requires fewer train-
ing iterations than existing alternatives (De Bortoli et al., 2021; Shi et al., 2023) designed for the
general Schrodinger bridge problem. From a theoretical perspective, our method presents advan-
tages over mirror interpolants (Albergo et al., 2023), specifically by obtaining kinetic optimality.
While one might consider optimizing fixed mirror interpolants, the resulting min-max optimiza-
tion problem is intractable (Shaul et al., 2023). By contrast, our method is numerically tractable, is
well-principled, and cuts down training in applications where control over in-distribution variation
is desired. On the application front, we demonstrate that our method is a flexible tool to obtain new
data points from empirical distributions in a variety of domains, including 2-dimensional measures
and image datasets. In future work, we hope to study of a potential o threshold for a sample to
change class when resampled or, in the same direction, to make class a neural network input, similar
to text prompting in image generation.
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A PROOF OF PROPOSITION 3

The first claimed expression is the very definition of Qgp. As for the second claimed expression, let
Q" be the sequence of IPFP iterates. Note that by Lemma 2, we have

Q***! = argmin Dky, (Q* || Q) , Q**? = argmin D1, (Q**' || Q).
PED(-,TM) PGD(W()")

Since Qgp belongs to both projection sets, the Pythagorean theorem for reverse Dy, projections
(Brekelmans & Neklyudov, 2023, Theorem 3.4) (see also (Csiszar & Matus, 2003, Theorem 5))
yields that for each k& we have

k
DL (Q@° ]| @Qsg) = Y Dkr (@7 || Q) + Dk, (Q* || Qsp) (13)

i=1
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Now the sequence Dk, (QF || Qsp) converges to zero because the sequence Dxr(Qsp || QF)
converges to zero (see, e.g., (Weis, 2014, Theorem 3.21.4)). Thus, taking the limit as £ — oo, we
deduce that

(oo}
Dy, (Q° || Qs) = ZDKL Q@1 Q)
i=1
Now, write Q* = arg mingep(r, -,y Pkr (Q° || Q). A similar argument shows that

Dk, (Q° | Q%) = ZDKL (@' Q)+ kILrI;o D1, (QF | Q%)

i=1
= Dy, (Q" || Qsg) + khjgo Dxr, (QF | Q) > Dk, (Q° || QsB) ,

where the last inequality above follows from the nonnegativity of the KL divergence. It follows
that Dk, (QO I QSB) also achieves the desired minimum Dy, i.e., we have Dk, (QO I QSB) =

Dy, (QO I (@*). Finally, we must rule out the possibility that this minimizer is not unique. To do
this, observe that, by the squeeze theorem, we must have

Jlim Dy (@ | @) =o.

We can now apply Pinsker’s Inequality, which tells us that the KL divergence Dkj, is at least a
constant multiple of the square of the metric dy induced by total variation. More precisely,we have

that Dk, (QF || Q*) > 267y (QF, Q*)2. We deduce that
kli)ngo 6TV (Qk7 Q*) = 07

which implies that Q¥ converges to Q* in total variation. We conclude that Q* = Qgp. O

B ANALYTICAL SOLUTION FOR GAUSSIAN EXPERIMENT

Proposition 4. Consider the static Schrodinger bridge problem with initial and final marginals
equal to the d-dimensional Gaussian distribution with zero mean and unit variance, where we take
the reference measure ©° corresponding to the OU process dX; = —aXdt + cd W running from
t = 0tot = 1. The solution * to this problem is a 2d-dimensional Gaussian with zero mean and
covariance matrix X given by

n Yoo o1 I pgI I 0'2(1—62"‘)+\/16e2aa2+g4(1_62a)2
“\Z o) " \pr 1) W B=

doe™

Proof. We follow the proof of (De Bortoli et al., 2021, Proposition 46), which established the cor-
responding result in the case where the reference process has zero drift. Imitating the proof of
(De Bortoli et al., 2021, Proposition 43), we see that the static Schrédinger bridge 7* exists and is a
2d-dimensional Gaussian. That the mean equals zero follows from the fact that both marginals have
zero mean. The rest of the proof is devoted to determining the covariance matrix ¥ of 7*.

The fact that marginals have unit variance implies that Xog = 317 = I. To compute Xy and X1,
we start by computing the probability density function (PDF) p°(z, ) of the reference measure 7,
where 7,y € RY. Recall that p°(z,y) is the product of the conditional PDF of X; | X, with the

PDF of Xg. Thus, we have

0
p(r,y) = px1|x0(=’r7y) X pxo(x)-
Note that X has zero mean and unit variance, so up to normalization we have

22

px,(z) x e 7.

On the other hand, the mean and variance of the conditional distribution X; | X are computed in
(Trajanovski et al., 2023, section II), where it is shown that they are respectively given by
e

re”® and of:= —(1 -

—2a
7 e ).
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It follows that

L (g ")’

Px1|x0($»y) xe >
Combining these calculations, we conclude that the joint distribution has PDF given by

(1+af26_2a)x2720;26_0‘my+0;2y2) )

P (w,y) o e 3

This distribution is evidently a Gaussian with zero mean and covariance matrix X° given by

ZO_ I efaI
“\e I (o2 +e2NI)"

Note in particular that the variance of the marginal of 7% at ¢ = 1 is equal to the coefficient
of the bottom-right entry of X0, which is 0? + e~2®. Now, the KL divergence between a 2-
dimensional Gaussian distribution 7 with zero mean and covariance matrix > and the distribution
79 is given explicitly by
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If we take 3. to be of the form
S _ I S
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which matches the form of the covariance ¥ for 7*, then
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where C' € R is a nonzero constant independent of . As argued in (De Bortoli et al., 2021, proof
of Proposition 46), we can assume S = S7 is a symmetric matrix, as doing so will only decrease
Dxy(7 || 7°), so S is diagonalizable. Let A1, ..., \q denote the eigenvalues of S, counted with
multiplicity. Using the well-known formula for the determinant of a block 2 x 2 matrix, we find that

d
det ¥ = det(I — S?) = [J(1 = D).
i=1
Thus, we obtain
1
Dy (7 || %) = 3 Zf()‘i) +C, where f(z) = —log(l—z?) —2e “o] z.
i=1

Note in particular that since ¥ is a covariance matrix, it is positive semi-definite, and so its eigen-
values 1 — A\? must be nonnegative, implying that |\;| < 1 for each i.

Minimizing Dy, (7 || 7°) then amounts to take \; = --- = Ay = 3 in such a way that f(f3) is
minimized. Observe that the equation

20
1-—p2

— 2 %72 =0

f'(B) =

is solved by
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We then choose the sign to be + to ensure that |3| < 1. O

C IMPLEMENTATION DETAILS

In this section we give further details on our experimental setup. Akin to Song & Ermon (2020,
Technique 5) and De Bortoli et al. (2021, Technique 6), we improve performance of Algorithm 1 by
implementing the exponential moving average (EMA) of network parameters.
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C.1 GAUSSIAN TRANSPORT

We use the MLP large network from (De Bortoli et al., 2021) for DSB and DSBM in all Gaussian
transport experiments. For our method, we modify this network to take o as an input. The values of
o are uniformly sampled from the (inclusive) interval from 1 to 5 for training, and at test time we
fix o = 1 for all samples to compare with DSB and DSBM, which do not take o as a network input,
but each use ¢ = 1 via the SDE discretization. We run the same experiment for dimension d = 5
and d = 20 (in Figure 6), and d = 50 (in Figure 1). The number of samples for all experiments is
10,000. We use 20 timesteps and train for 10,000 inner iterations for each of 20 outer iterations.

C.2 2D DATASETS

We modify the network architecture with positional encoding from (Vaswani et al., 2017), which
is used by De Bortoli et al. (2021), to take values of noise o rather than tuples of only X and t.
The values of ¢ are concatenated to the spatial features before the first MLP block is applied. This
modified network is used to parametrize our drift function. We use Adam optimizer with learning
rate 10~* and momentum 0.9. We train each example for 10,000 inner iterations per outer iteration
of the algorithm. Figure 2 shows the terminal samples obtained for outer iteration 30 for all example
datasets. The noise values o/ are sampled uniformly in the range from 1 to 9 for training. At test
time, a fixed o value is chosen for all sample trajectories. We train with 10,000 samples, which
are refreshed each 1,000 iterations. We use 20 timesteps of size 0.01 each. All 2-dimensional
experiments run on CPU.

C.3 IMAGE RESAMPLING

For the image dataset experiments, we modify the U-Net architecture used in (De Bortoli et al.,
2021; Shi et al., 2023) to take values of noise . Each value o7 is expanded to match image size and
concatenated to channels of their corresponding sample image j before the input block is applied.
For all image experiments we follow the timestep v schedule used in De Bortoli et al. (2021) with
Vmin = 107% and Yax = 0.1. We use Adam optimizer with learning rate 10~# and momentum
0.9. Experiments with image datasets were run on limited shared GPU resources; lower-resolution
image sizes and number of samples in cache were chosen accordingly.

MNIST. For the experiment in Figure 3, we use 10,000 cached images of size 28 x 28; the batch
size is 128 and the number of timesteps is 30. The noise values are sampled uniformly in the
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Figure 6: For each method, we plot the mean (left) and variance (middle) obtained for the terminal
samples, i.e. samples obtained at time ¢ = 7', as well as the covariance (right) of the joint distribu-
tion, versus the number of outer iterations, averaged over 5 trials. Top: d = 5. Bottom: d = 20.
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Figure 7: For our generated results (first and seventh columns), we show the five nearest neighbors
in the CelebA dataset as measured through the features extracted by ResNet50 (He et al., 2016).
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interval from 1 to 5 (inclusive) during training. We train for 5,000 iterations per outer iterations, and
cached samples are refreshed every 1,000 inner iterations. The terminal samples shown are for outer
iteration 8.

CelebA. In Figures 4 and 12, we use 300 cached images of size 64 x 64 and batch size 128. The
cache is refreshed every 100 inner iterations and we train for 5,000 iterations per outer iterations.
The number of timesteps is 50; the o values are uniformly sampled in the interval from 1 to 3. The
terminal sample images are shown for outer iteration 15. The FID score in Figure 4 is computed
using 300 images.

Flowers102. For Figure 5, we use 500 cached images of size 64 x 64. The batch size is 128 and
cache is refreshed every 100 inner iterations. We train for 5,000 inner iterations per outer iteration.
Terminal samples are shown for outer iteration 20. The o values are uniformly sampled in the
interval from 1 to 5; the number of timesteps is 50.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 CONTROL OVER SAMPLE PROXIMITY

We define proximity of samples using pixel-wise Lo norm as our choice of distance metric. In
Figure 8 (left), we demonstrate how larger values of ¢ effectively produce pushforward samples that
are farther in this distance metric, compared to samples generated with smaller values of o. This
experiment expands the results shown in Figure 2 to the case of resampling from image distributions.

A larger o produces more distant outputs... ...and takes more convoluted paths to get there
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Figure 8: On the left: Two histograms demonstrating how image samples generated with larger
o correspond to less proximal samples relative to the initial image sample. On the right: Two
histograms show the inverse ratio between displacement and total path length of sample paths as a
metric of path regularity.
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Figure 9: On the left: Three curves, each corresponding to a different o value, showing convergence
using Chamfer distance for the same 2D dataset (shown in Figure 2). On the right: Three curves,
each corresponding to a different 2D dataset, showing convergence for a fixed o value.

In particular, the mean and spread of the histograms in Figure 8 (right) show that larger values of
sigma correspond to higher average distance values relative to the initial sample, as well as greater
variation among these distances.

D.2 SAMPLE PATH REGULARITY

We present empirical results on the regularity of path measures produced by our method. Specifi-
cally, in Figure 8 (right), we give a histogram for the values of a metric defined by taking the ratio
of total displacement to total path length for different values of o. For a given sample trajectory
{X,;}M:*, this metric is explicitly computed by dividing ||Xo — Xas_1 |2 (total displacement) and
>k I Xkp1 — Xy |2 (total path length). The greater the value of this metric, the greater the variation
in the trajectory; hence, smaller values of this metric are suggestive of greater sample path regularity.
We find, as expected, that sample path regularity decreases as o increases.

D.3 INTEGRITY OF INITIAL DISTRIBUTION

We compute Chamfer distances as a means of measuring the proximity of the pushforward dis-
tributions exhibited in Figure 2 to the corresponding initial distributions. In the mirror case, the
pushforward distribution should match the initial distribution, and the Chamfer distance between
them should therefore decay as the number of iterations grows. In Figure 9, we demonstrate how
the Chamfer distance decays over outer iterations of our method for the same 2D distribution with
different values of o (left), as well as how the Chamfer distance decays for different datasets with
fixed o value (right).

D.4 COMPARISON TO ALTERNATIVE METHODS

We compare our method with DSB and DSBM for image resampling with the MNIST dataset as
the initial and final marginal distribution. For this experiment, we use the implementation for DSB
and DSBM-IPF available in the code repository for Shi et al. (2023). We implement our algorithm
based on the architecture provided, only modifying the model to take on ¢ as an input parameter
for our method. We test all three methods with the same set of training parameters as described in
Appendix C.3. We train our model with 0 = 1 fixed to match the noise value in the SDE for the
other two methods, which do not take o as a model input.

We provide FID scores for each method in Figure 10. We observe that for DSB and DSBM, the
forward and backward models result in pushforward samples of different quality. In particular,
sample quality for the forward model is significantly lower than that of the backward. This indicates
that neither of these methods converge to the mirror Schrodinger bridge for the given number of
iterations, because the drift function for this bridge is necessarily time-symmetric, i.e., the forward
and backward drifts must be equal to each other. In contrast, our algorithm provides time-symmetry
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FID Score
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Figure 10: On the left: FID scores of pushforward samples versus outer iterations (single run)
produced by our method, by DSB, and by DSBM, for a mirror bridge with the MNIST dataset as
the marginal distribution. Solid lines correspond to backward models and dashed lines to forward
models. On the right: Breakdown of runtimes at iteration 20 for the same experiment on each of the
three methods.
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Figure 11: Result of image resampling at outer iteration 20 for the experiment in Figure 10. For
each method and drift direction, the initial samples are displayed on the left and the pushforward
samples on the right.

by construction: a single model is trained and forcibly “symmetrized” at each outer iteration via the
drift averaging procedure described in Section 4.3.

Also in Figure 2, we present a breakdown of runtime for each method obtained for the same exper-
iment. Our method has significantly lower total runtime and average outer training iteration time.
The latter is not surprising, considering that one of the key features of our algorithm is to eliminate
training for one of the projection steps taken; recall that we perform the reverse Dxkp, projection
completely analytically. We observe that the average inference time during training, however, is
higher with our method. Overall, in this particular experiment, we see that our method makes a
trade-off between a small reduction in sample quality for a significant speed-up in training, while
also preserving the time-symmetry of the solution.
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D.5 ADDITIONAL CELEBA RESULTS
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Figure 12: Additional results for the empirical distribution of images in CelebA from which the

examples in Figure 4 are obtained.
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