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Abstract

On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-1

time challenge of bundling and matching passengers—each with distinct origins2

and destinations—to available vehicles, all while navigating significant system3

uncertainties. Due to the extensive observation space arising from the large number4

of drivers and orders, order dispatching, though fundamentally a centralized task,5

is often addressed using Multi-Agent Reinforcement Learning (MARL). How-6

ever, independent MARL methods fail to capture global information and exhibit7

poor cooperation among workers, while Centralized Training Decentralized Ex-8

ecution (CTDE) MARL methods suffer from the curse of dimensionality. To9

overcome these challenges, we propose Triple-BERT, a centralized method de-10

signed specifically for large-scale order dispatching on ride-sharing platforms.11

Built on TD3, our approach addresses the vast action space through an action12

decomposition strategy that breaks down the joint action probability into indi-13

vidual driver action probabilities. To handle the extensive observation space,14

we introduce a novel BERT-based network, where parameter reuse mitigates pa-15

rameter growth as the number of drivers and orders increases, and the attention16

mechanism effectively captures the complex relationships among the large pool17

of driver and orders. We validate our method using a real-world ride-hailing18

dataset from Manhattan. Triple-BERT achieves approximately an 11.95% im-19

provement over current state-of-the-art methods, with a 4.26% increase in served20

orders and a 22.25% reduction in pickup times. Our code, trained model pa-21

rameters, and processed data are publicly available at the anonymous repository22

https://anonymous.4open.science/r/Triple-BERT.23

1 Introduction24

Ride-sharing platforms, such as Uber and Lyft, face the complex challenge of dynamically matching25

passengers with distinct origins and destinations to available vehicles in real time. This task must26

account for significant system uncertainties, including fluctuating demand, varying traffic conditions,27

and the availability of drivers. As the volume of concurrent ride requests increases, these platforms28

must efficiently allocate resources to minimize detours, reduce waiting times, and maximize customer29

satisfaction and platform revenue. However, the inherently large and dynamically changing action and30

observation spaces make this problem highly challenging for the operation of ride-sharing platforms.31

Recently, Reinforcement Learning (RL) methods have shown great potential in addressing the32

order dispatching problem in ride-sharing platforms. Model-free RL, in particular, enables agents33

to autonomously learn optimal dispatching policies by interacting with the environment, without34

requiring complex system modeling. This approach allows platforms to optimize multiple objectives,35

including platform income, driver payments, and customer satisfaction. Despite these advantages,36
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applying RL to large-scale order dispatching introduces significant challenges. The vast action37

and observation spaces, stemming from the large number of drivers and orders, make sufficient38

exploration and efficient training difficult. Multi-Agent Reinforcement Learning (MARL) methods39

have been widely adopted to address these challenges by decomposing the problem into smaller40

subproblems for individual agents (drivers). Independent MARL methods, such as IDDQN [1; 2; 3]41

and ISAC [4], are computationally efficient but fail to capture global information and exhibit limited42

cooperation among agents. Graph Neural Networks (GNNs) have been introduced to enable the43

network to capture neighboring information for each agent, alleviating this issue to certain extent44

[5; 6]. Meanwhile, Centralized Training with Decentralized Execution (CTDE) methods, such as45

QMIX [7] and CoPO [8], struggle with the curse of dimensionality when applied to large-scale46

scenarios with thousands of agents, resulting in slow convergence and suboptimal performance.47

To address these limitations, this paper proposes a centralized Single-Agent Reinforcement Learning48

(SARL) method, named Triple-BERT, tailored for large-scale order dispatching in ride-sharing49

platforms. Triple-BERT introduces an action decomposition method that simplifies the joint action50

probability into individual driver action probabilities, enabling each driver to make independent51

decisions while maintaining global coordination. The method leverages TD3 [9] for optimization,52

with modifications to the actor optimization process via policy gradient [10] to better suit the ride-53

sharing context. To handle the extensive observation space, we design a novel BERT-based [11]54

neural network architecture. This network employs bi-directional self-attention to effectively capture55

complex relationships between drivers and orders, while its parameter reuse mechanism prevents56

parameter explosion as the number of drivers and orders increases. Additionally, compared to MARL,57

SARL faces a unique challenge of sample scarcity, as the records of multiple agents are merged into58

a single training stream. To address this, we propose a two-stage training strategy, where feature59

extractors are pre-trained using a MARL approach to learn general embedding capabilities, followed60

by centralized fine-tuning. The main contributions of this paper can be summarized as follows:61

• We introduce Triple-BERT, which is the first centralized SARL framework for large-scale order62

dispatching on ride-sharing platforms. This approach addresses the limitations of the observation63

space and the inefficiencies in cooperation among agents present in MARL methods. To tackle64

the large action space inherent in the matching problem of order dispatching tasks, we propose an65

action decomposition method that breaks down the joint action probability into individual driver66

action probabilities. Additionally, we propose a two-stage training method to address the sample67

scarcity issue in SARL, where the feature extractors are first trained using a MARL approach.68

• To support the proposed RL framework in a large observation space, we develop a novel neural69

network architecture based on BERT. This design leverages self-attention mechanisms to effectively70

capture the relationships between drivers and orders. Furthermore, we incorporate a QK-attention71

module to reduce computational complexity from multiplication to addition in the order dispatching72

task, along with a positive normalization method to mitigate parameter redundancy issues.73

• We validate the proposed method in the ride sharing scenario, using a real-world dataset of ride-74

hailing trip records from Manhattan. Our method outperforms the MARL methods reported in75

previous works, demonstrating approximately a 11.95% improvement over current state-of-the-art76

methods, with a 4.26% increase in served orders and reductions of about 22.25% in pickup time.77

2 Problem Setup78

In this paper, we address the order dispatching task within on-demand logistic systems, such as ride79

hailing, food delivery, and express delivery. We consider a platform managing n drivers (hereafter80

referred to as workers), represented by the state Wt = {w1,t, w2,t, . . . , wn,t}, where wi,t denotes81

the state of worker i at time t. At each time step, the platform processes a set of orders, including82

newly arrived orders and any previously unassigned orders, denoted as Ot = {o1,t, o2,t, . . . , omt,t},83

where mt is the total number of orders at time t. Since real-time performance is crucial in on-demand84

systems, the platform aims to bundle and assign orders in a way that minimizes delivery time while85

maximizing the number of served orders. Customers are assumed to be impatient; if an order is not86

acknowledged within a specified time frame, workers will decline it. Moreover, late deliveries beyond87

the scheduled time may result in customer complaints, potentially causing losses for the platform.88

The overall workflow is illustrated in Fig. 1, and the Markov Decision Problem (MDP) is formulated89

as < S,A,R, P >, encompassing the state, action, reward, and transition function, which will be90

detailed below:91
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Figure 1: Workflow: At each time step, the worker and order pools update their states based on the
assignments made in the previous time step. Specifically, the order pool adds newly arrived orders
and removes overdue ones. For IDDQN, the Q-value of each worker-order pair is calculated, and
ILP is applied to maximize the global Q-value. For TD3, the probability of each worker-order pair is
computed, followed by the application of ILP to maximize the global assignment probability.

(i) State: At timestep t, the state or observation can be represented as St = [Wt, Ot], consisting of92

the states of workers and orders. For the order j to be assigned, the state oi,j includes the order’s93

origin and destination, pickup time, and scheduled arrival time. For each worker i, the state wi,t94

consists of the onboard orders Hi,t that are still unfinished, the current location, the residual capacity,95

and the estimated time when he/she will be available to accept a new order. (Note that we assume if96

a worker is en route to pick up a new order or if his/her capacity is full, he/she cannot serve a new97

order.) Specifically, Hi,t is a sequence of orders Hi,t = {hi,1,t, hi,2,t, . . . , hi,ki,t,t}, where ki,t is the98

number of onboard orders for worker i at time t and each order hi,k,t contains the same information99

as the orders to be assigned oj,t.100

(ii) Action: At each time t, the action can be represented as At = {a1,t, a2,t, . . . , an,t}, where each101

ai,t is an mt-dimensional vector with at most one element set to 1, indicating which order is assigned102

to worker i. The order dispatching task is particularly challenging due to two main factors: (i) the size103

of the action space keeps changing over time because the number of orders mt varies dynamically104

as new orders arrive and old orders are completed or canceled; (ii) the size of the action space is105

extremely large for real systems. For instance, considering n = 1000 workers and mt = 10 orders,106

the action space can reach approximately 1030. (A detailed proof is provided in Appendix A.) This107

combination of an enormous action space and its continuously changing size significantly complicates108

sufficient exploration and stable network convergence for standard RL methods.109

(iii) Reward Function: We split the reward function for each worker, meaning each worker will110

receive a reward ri,t+1 at time step t, and the global reward is the sum of each worker’s reward:111

Rt+1 =
∑n
i=1 ri,t+1. The reward ri,t+1 can be calculated according to the following function:112

ri,t+1 = R(si,t, ai,t) =
{
β1 + β2p

in
i,t − β3pouti,t − β4χi,t − β5ρi,t , |ai,t| = 1

0 , |ai,t| = 0
(1)

where β1 to β5 are non-negative weights representing the platform’s valuation of each term, pini,t and113

pouti,t represent the income from customers and the payout to workers, respectively. The variables114

χi,t and ρi,t represent the number of en-route orders that will exceed their scheduled time and the115

additional travel time of all en-route orders when the assigned order is added to the scheduled route116

of worker i at time t, respectively. This reward function is designed to comprehensively consider117

the interests of the platform, workers, and customers, mimicking the operation of a real-world food118

delivery platform. It is important to emphasize that pini,t and pouti,t are calculated based on the order119
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distance and the additional travel distance for the worker, respectively. When calculating travel time,120

we will utilize the Traveling Salesman Problem (TSP) to optimize the worker’s route.121

(iv) Transition Function: In our system, the reward is deterministic given the current state and action.122

Therefore, the transition function is represented by P (St+1|St, At). In this study, the transition123

probabilities are not explicitly modeled; instead, they are inferred through the model-free RL.124

3 Methodology125

Figure 2: Proposed Network Architecture: In this figure, the fused sequence (input to Critic-BERT)
represents workers 1, 3, 6, and n selecting orders 2, 3, 4, and m, respectively.

3.1 Overview126

In this work, we aim to utilize centralized SARL to address the large-scale order dispatching task,127

with the goal of enabling the model to fully leverage global information to enhance cooperation128

among workers. To tackle the challenges of large action and observation spaces, we propose a novel129

network architecture, as illustrated in Fig. 2. This architecture employs the BERT model [11] to130

effectively extract the relationships between workers and orders using the self-attention mechanism.131

Additionally, an improved QK-attention [12] is implemented to reduce the computational complexity132

associated with the order dispatching task. Furthermore, we introduce an action decomposition133

method that breaks down the choice probability of each action within the vast action space into134

individual action probabilities for each worker selecting each order. Finally, to address the data135

scarcity challenge in MARL, we propose a two-stage training method, as shown in Fig. 1. In the136

first stage, we train the upstream layers of the network using the IDDQN approach, allowing them137

to develop general feature extraction capabilities. Subsequently, we train the entire neural network138

using centralized TD3 to realize better cooperation between workers.139

3.2 Network Architecture140

The proposed network structure is shown as Fig. 2, which constists of three parts: encoders (embed141

the worker and order information to a common feature space), actor sub-network (a BERT to142

extract the relationship between different workers and orders and a QK-Attention to generate the143

utility/probability of each worker-order pair), and critic sub-network (two BERT taking output of144

actor BERT as input and output the Q-value respectively).145
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3.2.1 Feature Extractors146

At each time step, the network takes the entire state St = [Wt, Ot] as input. We consider this as a147

combination of two sequences: Wt and Ot. For each element wi,t and oj,t, we employ two distinct148

encoders, referred to as the "Worker Encoder" and the "Order Encoder", to embed them separately149

into a feature space of the same dimension, allowing them to be input into a single BERT model.150

Each worker state wi,t consists of two parts: an on-board order sequence and other non-sequence151

information. For the order sequence, a bi-directional LSTM [13] is utilized to extract its features.152

This approach effectively encodes variable-length sequences into a uniform dimensional feature153

space, addressing the curse of dimensionality associated with conventional MLP encoders, where154

the number of parameters increases with sequence length. For non-sequence information, an MLP155

is employed for feature extraction. Finally, the two features are combined into a primary feature156

w̃i,t. For the orders to be assigned oj,t, an MLP is also used to extract the feature õj,t. Notably,157

the dimensions of w̃i,t and õj,t are identical, and their information is concatenated into a sequence158

represented as S̃t = [w̃1,t, w̃2,t, . . . , w̃n,t, õ1,t, õ2,t, . . . , õmt,t].159

Additionally, to facilitate network convergence and enhance the extraction of input features, we160

incorporate a normalization layer and an Adaptive Re-weighting Layer (ARL) [14]. Given that161

different parts of the input may have varying magnitudes, which can impede model training, the162

normalization layer effectively addresses this issue. Furthermore, since different parts of the input163

carry different levels of importance, we utilize the ARL to enable the model to learn these variations,164

represented as: y = x ◦ Ω, where x denotes the input, Ω represents the weight vector, calculated by165

Ω = MLP(x), and ◦ indicates the element-wise product.166

3.2.2 Actor Sub-Networks167

The Actor sub-network consists of a BERT [11] model for feature extraction and a QK-attention168

module [12] for action decomposition and generation, which we will introduce in turn. In the169

feature extractors, we have already extracted the primary features from each worker and order170

state separately. To further explore the relationships between workers and orders, we utilize the171

BERT model, where the self-attention mechanism can effectively capture these relationships: St =172

[w1,t, w2,t, . . . , wn,t, o1,t, o2,t, . . . , omt,t] = Actor-BERT(S̃t). Specifically, due to the permutation173

invariance of our input sequence, we omit the positional embedding in BERT, ensuring that the order174

in S does not influence the encoding result. In contrast to conventional MARL methods like [5; 7],175

which encode each worker with its neighboring states to gain a broader perspective, our Actor-BERT176

directly aggregates global worker information, facilitating more effective cooperative dispatching177

between workers.178

In conventional order dispatching tasks, the typical approach to address the dynamic action space179

(related to the number of orders) involves evaluating each worker-order pair separately and finding the180

optimal dispatching solution based on these evaluations. However, this approach has two significant181

shortcomings. First, it neglects the relationships between orders, which we address through the182

self-attention mechanism in BERT, capturing not only the relationships between workers but also183

between orders and between orders and workers. Second, evaluating each worker-order pair is184

time-consuming and resource-intensive: F(wi,t, oj,t; θF ) ∈ R1, where F is the network and θF185

represents its parameters. The complexity can be represented as O(|F| · n ·mt), where |F| denotes186

the complexity of the neural network. To mitigate this issue, we employ a QK-attention module [12],187

represented as:188

QK-Attention(wi,t, oj,t) := f(wi,t; θf ) · g(oj,t; θg)T ≈ F(wi,t, oj,t; θF ) , (2)

where f and g are two smaller networks, and θf and θg are their parameters. The intuition behind QK-189

attention is to use two smaller networks to approximate a larger network, similar to the motivation190

behind LoRA [15]. In this way, the complexity of computing all worker-order pairs becomes191

O(|f| · n+ |g| ·mt + d · n ·mt), where |f| and |g| are the complexities of the two neural networks,192

d is their output dimension, and d · n ·mt is the complexity of matrix multiplication. Here, d is193

very small, making d · n ·mt much smaller than the neural network computation complexity, i.e.,194

d · n ·mt ≪ |f| ≈ |g| < |F|. Thus, we have O(|f| · n+ |g| ·mt + d · n ·mt) < O(|F| · (n+mt)) <195

O(|F| ·n ·mt), indicating that the QK-attention successfully transforms the multiplication complexity196

of evaluating each worker-order pair into addition complexity.197
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However, we observe a parameter redundancy issue in Equation 2, which can lead to potential198

instability during training. This redundancy arises because there are actually infinite solutions for f199

and g, as f ′ = αf and g′ = g
α is also a valid solution for any non-zero real vector α. Inspired by200

Dueling DQN [16], we propose a positive normalization method:201

QK-Attention-Norm(wi,t, oj,t) := f(wi,t; θf ) ·
Softplus(g(oj,t; θg))T

||Softplus(g(oj,t; θg))||2
. (3)

This normalization ensures that the elements in Softplus(g(oj,t;θg)T )
||Softplus(g(oj,t;θg)T )||2 are always non-negative, with202

an L2 norm of 1. This guarantees a unique solution. In our task, the output of the QK-attention is203

a matrix Mt ∈ Rn,mt , representing the utility of each worker choosing each order, which will be204

detailed in Section 3.3.2.205

3.2.3 Critic Sub-Networks206

The role of the critic is to evaluate the quality of actions, with the detailed action generation method207

introduced in Section 3.3.2. We first define an action function A:208

A(wi,t) =
{
(wi,t, oj,t) if order j is assigned to worker i at time t
∅ if no order is assigned to worker i at time t

(4)

where wi,t and oj,t are the outputs of Actor-BERT, and (wi,t, oj,t) represents the combination209

of the two vectors into a single feature vector. We then construct a new sequence: Ṡt =210

[A(w1,t),A(w2,t), . . . ,A(wi,t)]. Another BERT network, referred to as "Critic-BERT", is used211

to further extract features from Ṡt, represented as S̈t = Critic-BERT(Ṡt). A self-attention mecha-212

nism and a linear layer (collectively named Critic-MLP) are then utilized to estimate the Q-value213

from S̈t (for detailed processing methods, refer to [17]). Furthermore, as TD3 [9] requires two critics,214

we employ two distinct Critic-BERT and Critic-MLP networks. These share the input features from215

Actor-BERT but process them separately.216

3.3 Training Process217

3.3.1 Stage 1: Decentralized IDDQN Training218

In this stage, we aim to first train the feature-extracting capacity of the worker encoder and order219

encoder using a substantial number of samples. To obtain sufficient samples, we view the dispatching220

problem as a multi-agent scenario, where at each time step, each agent can access its own record. We221

adopt the independent assumption that all agents share the same policy, allowing for the sharing of222

records between agents and leading to a large experience replay buffer.223

Since our goal in this stage is not to train a powerful model but rather to enable the feature extractor224

to learn its general feature-extracting capabilities, we select the simplest yet efficient method for225

order dispatching, namely, the IDDQN. Each worker is treated as an independent agent with the state226

defined as si,t = [wi,t, Ot] at time t. We employ a neural network to estimate the Q-value at each227

step as QDQN
πQ
Φ

(si,t, ai,t), where Φ represents the network parameters and πQΦ denotes the strategy.228

To construct the network, we utilize QK-attention to process the outputs of the worker en-229

coder and order encoders to estimate the Q-value for each worker-order pair, represented as230

QK-Attention-Norm(w̃i,t, õj,t) (denoted as yi,j,t). Although the state space encompasses the entire231

order state from o1,t to omt,t, we focus on a single order oj,t when computing the Q-value for choos-232

ing order j. This approach aligns with previous work such as [5; 18], as the entire order state can be233

excessively large for a simple network to learn (our Triple-BERT effectively addresses this issue) and234

many networks struggle to process variable dimensional inputs (with order amounts varying at each235

time step). Consequently, we can compute a Q-matrix Yt ∈ Rn,mt , where the element in the i-th row236

and j-th column, yi,j,t, represents the Q-value of assigning order j to worker i at time t. The core237

strategy of IDDQN is to maximize the global Q-value, expressed as Q(St, At) =
∑n
i=1 Q(si,t, ai,t)238

at each time step. To achieve this, we construct a bipartite graph where each worker and order is239

represented as a node. An arbitrary worker i and order j are linked by an edge weighted by the240

Q-value of this worker selecting this order at the current time, i.e., yi,j,t. We then utilize Integer241
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Linear Programming (ILP) to solve this maximizing bipartite matching problem. (To avoid assigning242

orders to unavailable workers—those at full capacity or on their way to pick up an assigned order—we243

set the Q-value of all actions for such workers in the Q-matrix Yt to −∞.) A detailed construction of244

the problem is provided in Appendix B.1. For the training of IDDQN, it follows the same process of245

previous work [5]. Due to page limitation, we detailed it in Appendix D.1.246

3.3.2 Stage 2: Centralized TD3 Training247

In the standard AC framework, the process can be summarized as follows: an actor network generates248

actions based on the current state, represented asAt = Actor(St; θA), while a critic network evaluates249

these actions using Q̂t = Critic(St, At; θC , πTθA). Here, θA and θC are the parameters of the actor250

and critic networks, respectively, and πAθA denotes the strategy of AC. During training, the critic251

network is updated using TD-error, similar to Q-learning, and the actor network is updated to252

maximize Q̂. However, a challenge mentioned in Section 2 is that the action space is too large for the253

order dispatching scenario. Additionally, the actions in order dispatching are discrete, complicating254

optimization using TD3. To address these issues, we propose an action decomposition method along255

with a policy gradient-style optimization method.256

Before delving into the details, we denote both θA and θC with the parameters Θ, as in our network257

(Fig. 2), the actor and critic share the same architecture. The trained network parameters from Stage258

1, Φ, are part of Θ. Moreover, the policy of TD3 is represented as πTΘ.259

(i) Actor: To address the large action space, we propose an action decomposition method that260

separates the probability of selecting each worker-order assignment combination into the probabilities261

of each worker choosing their respective orders. First, we expand the utility matrix Mt output262

by the Actor QK-Attention toMt = [Mt, Nt] ∈ Rn,mt+1, where Nt is an n-dimensional vector263

representing the utility of each worker choosing no order. This vector can be obtained by processing264

the output of Actor-BERT with a MLP, i.e., Nt = MLP([w1,t, w2,t, . . . , wn,t]). This allows us to265

compute the probability of each worker choosing each action using a logit model [19], if the actions266

among workers are independent, i.e., Pt = Softmax(Mt, dim=-1). According to this independent267

assumption, the joint action probability can be expressed as:
∏
i,j∈h(At)

Pi,j,t, where h() is defined268

as the function h(At) = {(i, j)|ai,j,t = 1}. Similar to stage 1, we set the probability of those269

unavailable workers choosing no order to 1 and all other actions to 0 in Pt. (Remark: We consider270

this independent assumption can be approximately realized after the network is well-trained, as BERT271

has already captured the relationships among workers, including their strategic interactions.)272

However, since an order cannot be assigned to different workers repeatedly, the actions among273

workers are actually not independent. Intuitively, if a worker is more willing to choose a particular274

action, this action should have a higher probability of being selected by this worker in the joint action.275

Based on this intuition, the action choosing probability can be defined as:276

πTΘ(At|St) = z(
∏

i,j∈h(At)

Pi,j,t) , (5)

where z(·) is an increasing function that also depends on the current state St (which we omit for277

simplicity). This equation implies that if an action At has a higher value of
∏
i,j∈h(At)

Pi,j,t, it will278

have a higher probability of being chosen.279

However, defining and computing such a function z(·) is challenging due to the vast action space,280

complicating the sampling of an action from the strategy πTΘ(At|St). We define an efficient approach281

to address this. First, during inference, we can greedily select the action with the maximum probability,282

as this action should theoretically have the highest utility:283

arg max
At∈ψ(St)

πTΘ(At|St) = arg max
At∈ψ(St)

z(
∏

i,j∈h(At)

Pi,j,t) = arg max
At∈ψ(St)

∑
i,j∈h(At)

logPi,j,t ,

(6)
where ψ(St) is the set of all possible actions under the current state St. This holds because both z(·)284

and log(·) are increasing functions. We can construct a bipartite graph similar to Stage 1, where each285

available worker and order is represented as a node, and the link between each worker i and order j at286

time t is weighted by their log probability logPi,j,t. By utilizing ILP, we can find the action At that287

maximizes πTΘ(At|St). The bipartite graph construction process is detailed in Appendix B.2. During288
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training, we introduce random noise to the probability matrix Pt and the model selects actions using289

the same method as in Eq. 6. When the noise is sufficiently large, the policy degrades to a totally290

random policy, and when the noise is zero, the policy converges to a greedy strategy. Although we291

cannot directly express the function z(·), it must ensure that the function is a increasing function292

(since the noise is totally random). More details about the noise can be found at Appendix C.293

Optimizing this probability using vanilla TD3 is challenging due to the variable action space and294

the gap between action probabilities and the selected action (the gradient cannot propagate through295

them). To address this, we employ an approximate policy gradient optimization method [10]:296

∇ΘJ(Θ) ∝ EπT
Θ

(QTD3
πT
Θ

(St, At)−B)∇Θ

∑
i,j∈h(At)

logPi,j,t

 , (7)

where J(Θ) is the optimization objective (long-term cumulative reward), B is a baseline independent297

of state (we simplify by setting it to 0), and QTD3
πT
Θ

(St, At) is the Q-value under the policy πTΘ,298

which can be estimated by QTD3
πT
Θ,i

(St, At; Θ) using our proposed network (i = 1, 2, as there are two299

estimated Q-values in TD3). Detailed derivations can be found in Appendix C. We then use gradient300

ascent to maximize J(Θ), thus the loss function for the actor can be expressed as LA = −∇J(Θ).301

(ii) Critic: For the critic, it can be updated in a manner similar to vanilla TD3, where the loss function302

can be expressed as:303

LC =
∑
i=1,2

EπT
Θ

[
QTD3
πT
Θ−

(St+1, Rt+1; Θ
−)− QTD3

πT
Θ,i

(St, At; Θ)
]
,

QTD3
πT
Θ−

(St+1, Rt+1; Θ
−) = Rt+1 + γ min

i=1,2
QTD3
πT
Θ− ,i

(St+1,Actor(St+1; Θ
−, ξ); Θ−) ,

(8)

where QTD3
πT
Θ−

is the learning target function, Θ− represents the parameters of the target network,304

which updates more slowly than the policy network Θ to provide a stable target, and ξ is a small305

random noise applied in the probability matrix P . More details can be viewed in Appendix D.2.306

4 Experiment307

Table 1: Comparison of Different Ride Sharing Methods
Method DeepPool [1] BMG-Q [5] HIVES [7] Enders et al. [20] CEVD [21] Triple-BERT
Type Independent CTDE Centralized

RL Algorithm IDDQN [22] IDDQN [22] QMIX [23] MASAC [24] VD1 [25] TD3 [9]
Multi-Agent ✓ ✓ ✓ ✓ ✓ ×
Network Backbone MLP GAT [26] GRU [27] MLP+Attention MLP BERT [11]

Model Size 20K 117K 16M 118K 23K 16M
GPU Occupation (GB) 3.97 4.28 6.01 8.19 21.45 8.03

Average Reward (103) 12.72 13.04 12.37 12.04 13.16 14.73

To validate the proposed method, we evaluate its performance in the ride sharing dispatching task308

using real-world yellow ride-hailing data from Manhattan, New York City2 [28]. To illustrate the309

efficiency and superiority of our proposed Triple-BERT, we compare it with several previous ride310

sharing methods of different types, including Independent MARL, CTDE MARL, and Centralized311

MARL, as shown in Table 1. Detailed information regarding our experiment configuration, simulator312

setup, and a comprehensive description of the comparative experiment can be found in Appendix E.313

As shown in Fig. 3, we first illustrate the training process of different models by evaluating their314

performance in the training scenario every 10 episodes. The six sub-figures depict the cumulative315

reward, the number of orders served, and the average delivery time, detour time, pickup time, and316

confirmation time for each order. Additionally, the Greedy method serves as a baseline, where orders317

1The original VD is a CTDE method. However, the CEVD variant modifies it to a centralized version.
2https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 3: Training Process: Each method is trained three times, and the curve is smoothed using
Exponential Moving Average (EMA) with α = 0.1. The shaded area represents the range of
fluctuations, while the solid line indicates the average value. (Here, for delivery time and detour time,
only completed orders are counted, as these metrics are uncertain for unfinished orders.)

are assigned to the nearest worker. It is evident that our method outperforms the other models in most318

metrics, with the cumulative reward exceeding that of the best alternative method by approximately319

15%. The highest number of served orders indicates that our method achieves better cooperation320

among workers. We then evaluate these methods over different periods, and the average rewards are321

shown in Table 1, where our method also demonstrates the best performance. More details about the322

experimental results can be found in Appendix E.4.323

To further demonstrate the model’s efficiency, we conduct a series of ablation studies. In terms of324

model training, we compare the performance of the model with and without stage 1 pre-training.325

Regarding the network structure, we primarily compare the QK-Attention mechanism with and326

without the proposed positive normalization module. The detailed results are shown in Fig. 3.327

We observe that without stage 1 pre-training, the model fails to converge and exhibits significant328

fluctuations. Particularly in the later stages, the reward begins to decrease, which can be attributed329

to the lack of samples. Additionally, without the proposed normalization in QK-Attention, the330

model performs poorly, underperforming compared to all other methods. This is due to parameter331

redundancy, which leads to substantial fluctuations and hinders efficient learning.332

5 Conclusion333

In this work, we propose the first centralized SARL method, Triple-BERT, for large-scale order334

dispatching in ride-hailing platforms. Our method successfully addresses the challenge of large335

action spaces through an action decomposition technique and tackles the issue of sample scarcity336

with a proposed two-stage training method. The novel network also addresses the large observation337

space challenge by leveraging the self-attention mechanism of BERT. Additionally, we introduce an338

improved QK-Attention mechanism to reduce the computational complexity of order dispatching.339

Through experiments on real-world ride sharing data, we demonstrate that our method significantly340

outperforms conventional MARL methods, achieving better cooperation among drivers.341
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A Action Space Size442

The action space in our order dispatching task is given by:443

|At| =
mt∑
k=0

C(mt, k)P(n, k) =
mt∑
k=0

mt!

k!(mt − k)!
n!

(n− k)!
, (9)

whereP(n, k) represents the permutations of assigning k orders to nworkers and C(mt, k) represents444

the combinations of selecting k orders from the total mt orders. This equation is based on two445

assumptions: (i) the platform will assign an arbitrary number of orders at each step (some orders446

yielding negative income will be declined by the platform) and (ii) the number of orders mt is less447

than the number of workers n, which can always be satisfied since mt represents the order count at448

only one timestep. Then we can derive the lower bound of |At| as:449

|At| =
mt∑
k=0

C(mt, k)
n!

(n− k)!
≥

mt∑
k=0

C(mt, k)(n− k + 1)k

≥
mt∑
k=0

C(mt, k)(n−mt + 1)k = (n−mt + 2)mt ≥ 2mt (n ≥ mt ≥ 0) .

(10)

As a result, the action space has a lower bound with the exponent to mt. Consider the example in450

Section 2 where the number of workers n is 1000 and the number of orders mt is 10. In this case, the451

expression (n−mt + 2)mt evaluates to 99210 ≈ 1030.452

B BiParite Graph Construction453

B.1 IDDQN Bipartite Graph454

The bipartite graph in the IDDQN-based order dispatching method is constructed as follows:455

max
At

∑
i∈I

ai,j,t · yi,j,t, (11a)

s.t.
∑
i∈I

ai,j,t ≤ 1, ∀j ∈ Jt, (11b)∑
j∈Jt

ai,j,t ≤ 1, ∀i ∈ I, (11c)

ai,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt, (11d)

where ai,j,t is the action representing whether worker i is assigned order j at time t (with 1 indicating456

assignment and 0 indicating no assignment), yi,j,t denotes the Q-value of worker i choosing order j457

at time t (with yi,j,t = −∞ for all unavailable workers at time t), I is defined as {1, 2, . . . , n}, and458

the set Jt is defined as {1, 2, . . . ,mt}. Constraint 11b ensures that an order can be assigned to at459

most one worker, while constraint 11c guarantees that each worker is assigned at most one order.460

B.2 TD3 Bipartite Graph461

The bipartite graph in our proposed TD3-based order dispatching method is constructed as follows:462

max
Xt

∑
i∈Iw

t

xi,j,t · logPi,j,t, (12a)

s.t.
∑
i∈I

xi,j,t ≤ 1, ∀j ∈ Jt, (12b)∑
j∈Jt

xi,j,t = 1, ∀i ∈ Iwt , (12c)

xi,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt ∪ {mt + 1}, (12d)
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where Iwt represents the set of available workers at time t. Here, constraint 12b does not apply in463

the last column, as it represents declining all orders, an action that can be chosen by any worker.464

Constraint 12c requires each row to equal 1, ensuring that each worker must either take an order or465

reject all, without other choices. We can then convert Xt to action At as follows:466

ai,t =

{
xi,j,t if i ∈ Iwt and xi,mt+1,t = 0

0 otherwise
(13)

C Policy Gradient Proof467

According to the policy gradient theory [10], we have:468

∇ΘJ(Θ)

∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ log πTΘ(At|St)

]
= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
∇Θ log z

 ∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
) dz(

∏
i,j∈h(At)

Pi,j,t)

d
∏
i,j∈h(At)

Pi,j,t

∏
i,j∈h(At)

Pi,j,t

z(
∏
i,j∈h(At)

Pi,j,t)
∇Θ log

∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
Ez(x),x|x=∏

i,j∈h(At)
Pi,j,t

∇Θ

∑
i,j∈h(At)

logPi,j,t

 ,

(14)
where E denotes elasticity, which measures the sensitivity of one variable to changes in another, and469

is defined as:470

Ey,x =
d log y

d log x
=
dy

dx

x

y
. (15)

Since z(x) is an increasing function, the elasticity is always non-negative. Here, we assume that the471

elasticity of z(x) with respect to x can be approximately viewed as a positive constant. Thus, we472

have: ∇ΘJ(Θ) ∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ

∑
i,j∈h(At)

logPi,j,t

]
, corresponding to Eq. 7.473

We acknowledge that the elasticity may not be a positive constant in practice (this requires that474

z(x) has the same form as axb (a, b > 0)). However, we consider this a reasonable approximation;475

otherwise, optimizing the actor would not be feasible, as obtaining a closed-form solution for z(x) is476

impossible. Additionally, the final form of the equation aligns with the intuition that if an action has a477

higher Q-value, we should increase its probability, whereas we should decrease its probability if the478

Q-value is lower. While this approach may impede the model’s convergence to the optimal solution,479

experimental results demonstrate the effectiveness of this formula, showing that it significantly480

outperforms other MARL methods.481

As mentioned in Section 3.3.2, during training, we add random noise to Pt and then choose the482

action that maximizes
∑
i,j∈h(At)

logPi,j,t. Currently, the mapping from
∑
i,j∈h(At)

logPi,j,t to483

the choosing probability πTΘ corresponds to z(·). To further illustrate the robustness of our method, we484

compare the performance of our model using Gaussian noise, uniform noise, and binary symmetric485

channel (BSC) noise, where the noise follows a Bernoulli distribution and has been widely utilized486

in previous work [5; 18]. During training, we gradually reduce the noise to make the policy more487

deterministic. The experimental results are shown in Fig. 4, where we observe that, despite certain488

performance differences between the various types of noise, they all outperform conventional MARL489

methods. This suggests the efficiency and high robustness of our proposed method, indicating that490

the detailed expression of z(x) does not significantly influence the validation of the method based491

on Eq. 7, even if it may cause some performance gaps. The optimal noise for our task may require492

further exploration. For fairness, we choose to use BSC noise when comparing with other methods,493

even though it appears to perform the worst among the three types of noise. We aim to demonstrate494

that our results are robust and superior, not relying on a particular choice of hyper-parameters or495

experiment scenarios.496
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Figure 4: Comparison Between Different Noise Methods

D Training Process497

D.1 Stage 1: IDDQN Algorithm498

Figure 5: Network Structure in Stage 1

In stage 1, the network structure is shown as Fig. 5, which is consisted by the encoders and the499

QK-Attention module of proposed network in Fig. 2. Remark: Although the model takes the500

entire worker and order sequence as input, it primarily aims to utilize parallel computation to501

enhance computational efficiency. In the encoders, each worker and order’s information is processed502

separately. Similarly, in the QK-Attention module, the Q-value for each worker-order pair is computed503
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independently. It is also feasible to input only a single worker-order pair into this network, computing504

the Q-value exclusively for that pair; however, this would increase the computation time.505

During IDDQN training, we need to introduce some noise into the Q-matrix Yt to facilitate sufficient506

exploration. Specifically, for the ϵ-greedy strategy, we randomly select a proportion ϵ of non-−∞507

elements in Yt and set them to a large positive number Y to enhance their likelihood of being selected.508

We then update the neural network by minimizing the TD-error, expressed as:509

LQ = EπQ
Φ

[
QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−)− QDQN
πQ
Φ

(si,t, ai,t; Φ)

]
,

QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−) = ri,t+1 + γQDQN
πQ

Φ−
(si,t+1, κi,t+1; Φ

−) ,

κi,t+1 = arg max
κi,t+1∈ψi,t+1

QDQN
πQ
Φ

(si,t+1, κi,t+1; Φ) ,

(16)

where QDQN
πQ

Φ−
is the learning target function, γ is the discount factor, ψi,t+1 is the possible action510

space for worker i at time t+ 1, and Φ− represents the parameters of the target network, which are511

updated at a slower pace compared to the policy network to provide a stable target for training. After512

each training iteration, the target network is updated in a soft manner: Φ− := τΦ + (1 − τ)Φ−,513

where τ is the update rate.514

The detailed process is illustrated in Algorithm 1, where 1j represents the vector that only the jth515

position is 1 and other positions are 0.516

Algorithm 1 IDDQN Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, target
update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, discount factor γ,
model parameters Φ

1: Initialize target networks Φ− ← Φ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Calculate Q-value matrix Yt: yi,j,t = QDQN

πQ
Φ

(si,t, 1j ; Φ)
6: Select action with exploration noise:At = ILP(Yt, ϵ)
7: Observe reward ri,t+1 and new state si,t+1 for each worker i
8: Store transition (si,t, ai,t, ri,t+1, si,t+1) in B
9: Sample mini-batch of m transitions (s, a, r, s′) from B

10: Compute target Q-value:
11: y ← r + γQDQN

πQ

Φ−
(si,t+1, argmaxκi,t+1∈ψi,t+1 QDQN

πQ
Φ

(si,t+1, κi,t+1; Φ); Φ
−)

12: Update critics: Φ← argminΦ
1
m

∑
(y − QDQN

πQ
Φ

(s, a; Φ))2

13: Update target networks: Φ− ← τΦ+ (1− τ)Φ−

14: end for
15: Decay exploration: ϵ← max(ϵf , ϵδ)
16: end for

D.2 Stage 2: TD3 Algorithm517

The process of our Stage 2 - TD3 training is illustrated in Algorithm 2. In experiment, we follow the518

vanilla TD3 approach of updating the actor once after updating the critic twice.519
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Algorithm 2 TD3 Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, policy
delay d, target update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, target
policy smoothing noise ξ, discount factor γ, model parameters Θ

1: Initialize target networks Θ− ← Θ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Select action with exploration noise:At = Actor(St; Θ, ϵ)
6: Observe reward Rt+1 and new state St+1

7: Store transition (St, At, Rt+1, St+1) in B
8: Sample mini-batch of N transitions (S,A,R, S′) from B
9: Compute target action with smoothing noise: A′ ← Actor(S; Θ−, ξ)

10: Compute target Q-value: y ← r + γmini=1,2 QTD3
πT
Θ− ,i

(S′, A′; Θ−)

11: Update critics: Θ← argminΘ
1
m

∑
[(y − QTD3

πT
Θ,1

(S,A; Θ))2 + (y − QTD3
πT
Θ,2

(S,A; Θ))2]

12: if t mod d == 0 then
13: Update actor using deterministic policy gradient:
14: ∇J(Θ) = 1

m

∑
(QTD3

πT
Θ,1

(S,A; Θ)−B)∇Θ log πTΘ(At|St), (A = Actor(S; Θ))

15: Update target networks: Θ− ← τΘ+ (1− τ)Θ−

16: end if
17: end for
18: Decay exploration: ϵ← max(ϵf , ϵδ)
19: end for

E Experiment Details520

E.1 Experiment Configurations521

Our model was trained using the PyTorch framework [29] on a workstation running Windows 11,522

equipped with an Intel(R) Core(TM) i7-14700KF processor and an NVIDIA RTX 4080 graphics card.523

The detailed model configurations are shown as Table 2. During the training phase, the model utilized524

approximately 8.03 GB of GPU memory. For optimization, we employed the Adam optimizer with525

an initial learning rate of 10−4 and a decay rate of 0.99. In Stage 1, the batch size was set to 256,526

while in Stage 2, it was reduced to 16, due to a sharp decrease in sample amount. Additionally,527

optimization was performed once every 4 time steps, and in Stage 2, the actor was updated once for528

every two updates of the critic.529

Table 2: Model Configurations
Configuration Our Setting
Hidden Dimension 64 (Actor) / 128 (Critic)
Attention Heads 4
BERT Layers 3 for Each
Dropout Rate 0.1

Optimizer Adam
Learning Rate 10−4

Scheduler ExponentialLR
Learning Rate Decay 0.99
Batch Size 256 (Stage 1) / 16 (Stage 2)

Exploration Rate 0.99→ 0.0005
Updating Rate of Target Network 0.005
Discount Factor 0.99
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E.2 Simulation Setup530

In the simulation, we set the total number of drivers to 1,000, with each car having a capacity of 3531

passengers. Each episode lasts 30 minutes, divided into 30 time steps, where each step determines532

the operations for the subsequent minute. For the TSP route optimization and time estimation, we533

utilize the OSRM simulator [30], with a default traveling speed of 60 km/h. We train the model534

using data from 19:00 to 19:30 on July 17, 2024, which includes 3,726 valid orders, and we test the535

trained model during other time periods on July 17, 2024, including 14:00-14:30 (2,850 valid orders),536

17:00-17:30 (3,577 valid orders), 20:00-20:30 (3,114 valid orders), 21:00-21:30 (4,264 valid orders),537

and 22:00-22:30 (4,910 valid orders), where the order amount range from 2,850 to 4,264.538

E.3 Introduction of Comparative Methods539

The methods using in our comparative experiment can be mainly divided into three categories:540

• Independent MARL: The DeepPool [1] and BMG-Q [5] utilize a similar IDDQN method as541

described in Section 3.3.1, with BMG-Q employing GAT [26] to capture the relationships among542

neighboring agents. Additionally,in the original paper fo DeepPool, the authors used CNN.543

However, due to differences in the observation space of our task, we replaced it with MLP.544

• Centralized Training Decentralized Execution (CTDE): The HIVES [23] framework introduces545

a QMIX [23] based method to address the shortcomings of IDDQN, specifically the inadequacy of546

treating the global Q-value as a simple summation of the individual Q-values of each agent. Enders547

et al. [20] propose a MASAC [24] based approach, allowing each driver to choose whether to548

accept an order, thereby preventing low-profit orders from negatively impacting the global income.549

• Centralized Training and Centralized Execution (CTCE): CEVD [21], based on VD [25],550

innovatively combines the Q-values of each agent with those of their neighbors to create a new551

type of Q-value, akin to the motivation behind BMG-Q.552

Overall, most of these methods attempt various strategies to enhance each agent’s awareness of553

the global state, facilitating better cooperation. In contrast, our method directly transforms the554

formulation into a centralized single-agent reinforcement learning approach.555

It is noteworthy that these Independent and CTDE MARL dispatching methods differ slightly from556

general MARL methods. In order dispatching, one order cannot be assigned to multiple workers,557

making it necessary to employ some centralized mechanism to achieve this. We refer to them as558

independent MARL and CTDE methods because they can directly calculate their own Q-values559

or action probabilities using their own or neighboring states. Conversely, CEVD must calculate560

the primary Q-value of each agent separately and then combine those primary Q-values with their561

neighbors to obtain a final Q-value for each agent.562

Through the experimental results in Fig. 3, we observe that DeepPool [1], serving as one of the563

earliest benchmarks, demonstrates relatively stable and good performance, suggesting the simplicity564

and effectiveness of IDDQN features. In contrast, BMG-Q [5] significantly improves performance by565

utilizing FAT to capture neighboring information. As for HIVES [23] and CEVD [21], while they566

exhibit relatively good performance in the early stages of training—likely due to their hierarchical567

structure and centralized training methods—their performance becomes unstable in later stages, with568

rewards even starting to decrease. This instability may stem from the hierarchical approach not569

adequately addressing the large network input of the mixture network in QMIX and the lazy agent570

problem in VD. Additionally, their centralized training approach faces the same data scarcity issues571

as our method, making convergence more challenging. For Enders et al. [20], we note that their572

method shows worse performance than others. This may be related to their state processing method573

during training, where they replace the next state in the replay buffer with the request state from the574

current state to maintain a consistent agent count across two successive time steps, which appears575

to be a strong assumption. Finally, for the last three methods, their original papers primarily focus576

their reward functions on the serving order amount, without incorporating additional terms like ours577

(which also considers income, outcome, and user satisfaction levels). This makes our scenario more578

complex and may further reduce the performance of their methods in our setting.579
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E.4 Additional Experiment Result580

The detailed experimental results across different time periods are shown in Fig. 6, while the weighted581

average numerical results are presented in Table 3. For each model in each scenario, we repeat the582

experiment three times, and the error bars in the figure represent the standard deviation. We observe583

that our Triple-BERT achieves the highest reward across all scenarios, with the advantage becoming584

more pronounced as the order volume increases. Triple-BERT primarily optimizes the service rate585

and pickup time, significantly outperforming other methods.586

For delivery time and detour time, the figures only account for completed orders, as the status of587

unfinished orders is uncertain, which may introduce some bias in the detailed values. In terms of588

these two metrics, Triple-BERT clearly performs better in high order volume scenarios, but not in low589

order volume scenarios. This may be due to the relatively low conflict caused by MARL in low order590

scenarios, while in high order scenarios, both the observation and action spaces increase sharply,591

making it challenging for MARL to find optimal solutions.592

Lastly, we note that our method and the approach by Enders et al. [20] exhibit higher confirmation593

times. This may be attributed to both methods having an explicit rejection action (i.e., choosing no594

order), unlike the other methods. While this mechanism can lead to higher confirmation times, it also595

enables the model to discard negative profit orders and reserve some orders for currently unavailable596

workers.597

Table 3: Average Performance under Multiple Periods
Method Reward Service Rate Delivery Time Detour Time Pickup Time Confirmation Time
DeepPool [1] 12723.85 0.91 11.53 2.47 7.77 0.06
BMG-Q [5] 13036.29 0.92 10.57 1.90 7.61 0.10
HIVES [7] 12365.11 0.89 11.04 2.28 7.99 0.03
Enders et al. [20] 12041.62 0.90 12.28 2.90 7.94 0.80
CEVD [21] 13157.96 0.94 11.36 2.31 7.37 0.06

Triple-BERT 14730.48 0.98 11.53 2.52 5.73 0.13
w/o stage 1 10665.02 0.87 11.92 2.72 9.36 0.68
w/o normalization 10839.33 0.88 12.50 2.85 9.10 0.24

F Discussions598

F.1 Limitations and Future Works599

The limitations of this paper can be mainly categorized into two parts.600

First, regarding the theoretical aspect, the current policy gradient formula is an approximation where601

we assume that the probability mapping function z(x) has a nearly constant elasticity with respect to602

the independent variable x. Since obtaining a closed-form solution or elasticity for z(x) is impossible,603

we must make certain assumptions for optimization. Although we have demonstrated the efficiency604

of Eq. 7 through intuition and experiments, there may still be a gap between the model’s performance605

and the optimal solution. In future work, it would be valuable to explore an action strategy that can606

be proven to have elasticity to z(x) close to a constant.607

Second, concerning the experimental aspect, due to limitations of the experimental setup, we currently608

train and evaluate the model within a 30-minute simulation window. For 1,000 episodes, we can609

collect only 30,000 samples in a single-agent setting, which takes about a whole day to train a single610

method. This is why we designed the two-stage training method; otherwise, the model would struggle611

to converge with the limited samples. Future exploration should address whether stage 1 training is612

still necessary when the sample size increases. We also intend to investigate the model’s performance613

in more diverse transportation scenarios, such as food delivery.614

Finally, to better align with practical application scenarios and conditions, we plan to further develop615

the method to jointly optimize repositioning, payment, and price-setting tasks, making it more feasible616

for real-world use.617
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F.2 Societal Impacts618

This work has potential value for both academic research and practical applications in the transporta-619

tion field, particularly for large-scale order dispatching tasks. By shifting from the conventional620

MARL paradigm to a SARL approach, we significantly improve model performance. This technology621

holds promise for enhancing daily travel and logistics transport.622

However, the issue of algorithmic discrimination has received widespread attention over time. Closed-623

box management algorithms, including those for order dispatching, have been shown to create624

discriminatory scenarios for workers, as reinforcement learning methods primarily aim to maximize625

rewards without considering ethical implications. For example, algorithms may set different payment626

structures or order assignment preferences based on individual features or geographical locations of627

workers.628

We hope that our method will not exacerbate these issues and can be further developed to include629

constraints that promote fairness. Our goal is to strike a balance between profit and ethics, fostering a630

win-win situation for platforms, workers, and customers.631

(a) Legend

(b) Accumulative Reward

Figure 6: Detailed Evaluation Results
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(c) Service Rate

(d) Delivery Time

(e) Detour Time

Figure 6: Detailed Evaluation Results
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(f) Pickup Time

(g) Confirmation Time

Figure 6: Detailed Evaluation Results
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non-standard component of the core methods in this research? Note that if the LLM is used953

only for writing, editing, or formatting purposes and does not impact the core methodology,954

scientific rigorousness, or originality of the research, declaration is not required.955

Answer: [NA]956

Justification: This paper uses LLMs solely to check grammar and spelling.957

Guidelines:958

• The answer NA means that the core method development in this research does not959

involve LLMs as any important, original, or non-standard components.960

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)961

for what should or should not be described.962
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