
Triple-BERT: Do We Really Need MARL for Order
Dispatch on Ride-Sharing Platforms?

Anonymous Author(s)
Affiliation
Address
email

Abstract

On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-1

time challenge of bundling and matching passengers—each with distinct origins2

and destinations—to available vehicles, all while navigating significant system3

uncertainties. Due to the extensive observation space arising from the large number4

of drivers and orders, order dispatching, though fundamentally a centralized task,5

is often addressed using Multi-Agent Reinforcement Learning (MARL). How-6

ever, independent MARL methods fail to capture global information and exhibit7

poor cooperation among workers, while Centralized Training Decentralized Ex-8

ecution (CTDE) MARL methods suffer from the curse of dimensionality. To9

overcome these challenges, we propose Triple-BERT, a centralized method de-10

signed specifically for large-scale order dispatching on ride-sharing platforms.11

Built on TD3, our approach addresses the vast action space through an action12

decomposition strategy that breaks down the joint action probability into indi-13

vidual driver action probabilities. To handle the extensive observation space,14

we introduce a novel BERT-based network, where parameter reuse mitigates pa-15

rameter growth as the number of drivers and orders increases, and the attention16

mechanism effectively captures the complex relationships among the large pool17

of driver and orders. We validate our method using a real-world ride-hailing18

dataset from Manhattan. Triple-BERT achieves approximately an 11.95% im-19

provement over current state-of-the-art methods, with a 4.26% increase in served20

orders and a 22.25% reduction in pickup times. Our code, trained model pa-21

rameters, and processed data are publicly available at the anonymous repository22

https://anonymous.4open.science/r/Triple-BERT.23

1 Introduction24

Ride-sharing platforms, such as Uber and Lyft, face the complex challenge of dynamically matching25

passengers with distinct origins and destinations to available vehicles in real time. This task must26

account for significant system uncertainties, including fluctuating demand, varying traffic conditions,27

and the availability of drivers. As the volume of concurrent ride requests increases, these platforms28

must efficiently allocate resources to minimize detours, reduce waiting times, and maximize customer29

satisfaction and platform revenue. However, the inherently large and dynamically changing action and30

observation spaces make this problem highly challenging for the operation of ride-sharing platforms.31

Recently, Reinforcement Learning (RL) methods have shown great potential in addressing the32

order dispatching problem in ride-sharing platforms. Model-free RL, in particular, enables agents33

to autonomously learn optimal dispatching policies by interacting with the environment, without34

requiring complex system modeling. This approach allows platforms to optimize multiple objectives,35

including platform income, driver payments, and customer satisfaction. Despite these advantages,36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/Triple-BERT

applying RL to large-scale order dispatching introduces significant challenges. The vast action37

and observation spaces, stemming from the large number of drivers and orders, make sufficient38

exploration and efficient training difficult. Multi-Agent Reinforcement Learning (MARL) methods39

have been widely adopted to address these challenges by decomposing the problem into smaller40

subproblems for individual agents (drivers). Independent MARL methods, such as IDDQN [1; 2; 3]41

and ISAC [4], are computationally efficient but fail to capture global information and exhibit limited42

cooperation among agents. Graph Neural Networks (GNNs) have been introduced to enable the43

network to capture neighboring information for each agent, alleviating this issue to certain extent44

[5; 6]. Meanwhile, Centralized Training with Decentralized Execution (CTDE) methods, such as45

QMIX [7] and CoPO [8], struggle with the curse of dimensionality when applied to large-scale46

scenarios with thousands of agents, resulting in slow convergence and suboptimal performance.47

To address these limitations, this paper proposes a centralized Single-Agent Reinforcement Learning48

(SARL) method, named Triple-BERT, tailored for large-scale order dispatching in ride-sharing49

platforms. Triple-BERT introduces an action decomposition method that simplifies the joint action50

probability into individual driver action probabilities, enabling each driver to make independent51

decisions while maintaining global coordination. The method leverages TD3 [9] for optimization,52

with modifications to the actor optimization process via policy gradient [10] to better suit the ride-53

sharing context. To handle the extensive observation space, we design a novel BERT-based [11]54

neural network architecture. This network employs bi-directional self-attention to effectively capture55

complex relationships between drivers and orders, while its parameter reuse mechanism prevents56

parameter explosion as the number of drivers and orders increases. Additionally, compared to MARL,57

SARL faces a unique challenge of sample scarcity, as the records of multiple agents are merged into58

a single training stream. To address this, we propose a two-stage training strategy, where feature59

extractors are pre-trained using a MARL approach to learn general embedding capabilities, followed60

by centralized fine-tuning. The main contributions of this paper can be summarized as follows:61

• We introduce Triple-BERT, which is the first centralized SARL framework for large-scale order62

dispatching on ride-sharing platforms. This approach addresses the limitations of the observation63

space and the inefficiencies in cooperation among agents present in MARL methods. To tackle64

the large action space inherent in the matching problem of order dispatching tasks, we propose an65

action decomposition method that breaks down the joint action probability into individual driver66

action probabilities. Additionally, we propose a two-stage training method to address the sample67

scarcity issue in SARL, where the feature extractors are first trained using a MARL approach.68

• To support the proposed RL framework in a large observation space, we develop a novel neural69

network architecture based on BERT. This design leverages self-attention mechanisms to effectively70

capture the relationships between drivers and orders. Furthermore, we incorporate a QK-attention71

module to reduce computational complexity from multiplication to addition in the order dispatching72

task, along with a positive normalization method to mitigate parameter redundancy issues.73

• We validate the proposed method in the ride sharing scenario, using a real-world dataset of ride-74

hailing trip records from Manhattan. Our method outperforms the MARL methods reported in75

previous works, demonstrating approximately a 11.95% improvement over current state-of-the-art76

methods, with a 4.26% increase in served orders and reductions of about 22.25% in pickup time.77

2 Problem Setup78

In this paper, we address the order dispatching task within on-demand logistic systems, such as ride79

hailing, food delivery, and express delivery. We consider a platform managing n drivers (hereafter80

referred to as workers), represented by the state Wt = {w1,t, w2,t, . . . , wn,t}, where wi,t denotes81

the state of worker i at time t. At each time step, the platform processes a set of orders, including82

newly arrived orders and any previously unassigned orders, denoted as Ot = {o1,t, o2,t, . . . , omt,t},83

where mt is the total number of orders at time t. Since real-time performance is crucial in on-demand84

systems, the platform aims to bundle and assign orders in a way that minimizes delivery time while85

maximizing the number of served orders. Customers are assumed to be impatient; if an order is not86

acknowledged within a specified time frame, workers will decline it. Moreover, late deliveries beyond87

the scheduled time may result in customer complaints, potentially causing losses for the platform.88

The overall workflow is illustrated in Fig. 1, and the Markov Decision Problem (MDP) is formulated89

as < S,A,R, P >, encompassing the state, action, reward, and transition function, which will be90

detailed below:91

2

Figure 1: Workflow: At each time step, the worker and order pools update their states based on the
assignments made in the previous time step. Specifically, the order pool adds newly arrived orders
and removes overdue ones. For IDDQN, the Q-value of each worker-order pair is calculated, and
ILP is applied to maximize the global Q-value. For TD3, the probability of each worker-order pair is
computed, followed by the application of ILP to maximize the global assignment probability.

(i) State: At timestep t, the state or observation can be represented as St = [Wt, Ot], consisting of92

the states of workers and orders. For the order j to be assigned, the state oi,j includes the order’s93

origin and destination, pickup time, and scheduled arrival time. For each worker i, the state wi,t94

consists of the onboard orders Hi,t that are still unfinished, the current location, the residual capacity,95

and the estimated time when he/she will be available to accept a new order. (Note that we assume if96

a worker is en route to pick up a new order or if his/her capacity is full, he/she cannot serve a new97

order.) Specifically, Hi,t is a sequence of orders Hi,t = {hi,1,t, hi,2,t, . . . , hi,ki,t,t}, where ki,t is the98

number of onboard orders for worker i at time t and each order hi,k,t contains the same information99

as the orders to be assigned oj,t.100

(ii) Action: At each time t, the action can be represented as At = {a1,t, a2,t, . . . , an,t}, where each101

ai,t is an mt-dimensional vector with at most one element set to 1, indicating which order is assigned102

to worker i. The order dispatching task is particularly challenging due to two main factors: (i) the size103

of the action space keeps changing over time because the number of orders mt varies dynamically104

as new orders arrive and old orders are completed or canceled; (ii) the size of the action space is105

extremely large for real systems. For instance, considering n = 1000 workers and mt = 10 orders,106

the action space can reach approximately 1030. (A detailed proof is provided in Appendix A.) This107

combination of an enormous action space and its continuously changing size significantly complicates108

sufficient exploration and stable network convergence for standard RL methods.109

(iii) Reward Function: We split the reward function for each worker, meaning each worker will110

receive a reward ri,t+1 at time step t, and the global reward is the sum of each worker’s reward:111

Rt+1 =
∑n
i=1 ri,t+1. The reward ri,t+1 can be calculated according to the following function:112

ri,t+1 = R(si,t, ai,t) =
{
β1 + β2p

in
i,t − β3pouti,t − β4χi,t − β5ρi,t , |ai,t| = 1

0 , |ai,t| = 0
(1)

where β1 to β5 are non-negative weights representing the platform’s valuation of each term, pini,t and113

pouti,t represent the income from customers and the payout to workers, respectively. The variables114

χi,t and ρi,t represent the number of en-route orders that will exceed their scheduled time and the115

additional travel time of all en-route orders when the assigned order is added to the scheduled route116

of worker i at time t, respectively. This reward function is designed to comprehensively consider117

the interests of the platform, workers, and customers, mimicking the operation of a real-world food118

delivery platform. It is important to emphasize that pini,t and pouti,t are calculated based on the order119

3

distance and the additional travel distance for the worker, respectively. When calculating travel time,120

we will utilize the Traveling Salesman Problem (TSP) to optimize the worker’s route.121

(iv) Transition Function: In our system, the reward is deterministic given the current state and action.122

Therefore, the transition function is represented by P (St+1|St, At). In this study, the transition123

probabilities are not explicitly modeled; instead, they are inferred through the model-free RL.124

3 Methodology125

Figure 2: Proposed Network Architecture: In this figure, the fused sequence (input to Critic-BERT)
represents workers 1, 3, 6, and n selecting orders 2, 3, 4, and m, respectively.

3.1 Overview126

In this work, we aim to utilize centralized SARL to address the large-scale order dispatching task,127

with the goal of enabling the model to fully leverage global information to enhance cooperation128

among workers. To tackle the challenges of large action and observation spaces, we propose a novel129

network architecture, as illustrated in Fig. 2. This architecture employs the BERT model [11] to130

effectively extract the relationships between workers and orders using the self-attention mechanism.131

Additionally, an improved QK-attention [12] is implemented to reduce the computational complexity132

associated with the order dispatching task. Furthermore, we introduce an action decomposition133

method that breaks down the choice probability of each action within the vast action space into134

individual action probabilities for each worker selecting each order. Finally, to address the data135

scarcity challenge in MARL, we propose a two-stage training method, as shown in Fig. 1. In the136

first stage, we train the upstream layers of the network using the IDDQN approach, allowing them137

to develop general feature extraction capabilities. Subsequently, we train the entire neural network138

using centralized TD3 to realize better cooperation between workers.139

3.2 Network Architecture140

The proposed network structure is shown as Fig. 2, which constists of three parts: encoders (embed141

the worker and order information to a common feature space), actor sub-network (a BERT to142

extract the relationship between different workers and orders and a QK-Attention to generate the143

utility/probability of each worker-order pair), and critic sub-network (two BERT taking output of144

actor BERT as input and output the Q-value respectively).145

4

3.2.1 Feature Extractors146

At each time step, the network takes the entire state St = [Wt, Ot] as input. We consider this as a147

combination of two sequences: Wt and Ot. For each element wi,t and oj,t, we employ two distinct148

encoders, referred to as the "Worker Encoder" and the "Order Encoder", to embed them separately149

into a feature space of the same dimension, allowing them to be input into a single BERT model.150

Each worker state wi,t consists of two parts: an on-board order sequence and other non-sequence151

information. For the order sequence, a bi-directional LSTM [13] is utilized to extract its features.152

This approach effectively encodes variable-length sequences into a uniform dimensional feature153

space, addressing the curse of dimensionality associated with conventional MLP encoders, where154

the number of parameters increases with sequence length. For non-sequence information, an MLP155

is employed for feature extraction. Finally, the two features are combined into a primary feature156

w̃i,t. For the orders to be assigned oj,t, an MLP is also used to extract the feature õj,t. Notably,157

the dimensions of w̃i,t and õj,t are identical, and their information is concatenated into a sequence158

represented as S̃t = [w̃1,t, w̃2,t, . . . , w̃n,t, õ1,t, õ2,t, . . . , õmt,t].159

Additionally, to facilitate network convergence and enhance the extraction of input features, we160

incorporate a normalization layer and an Adaptive Re-weighting Layer (ARL) [14]. Given that161

different parts of the input may have varying magnitudes, which can impede model training, the162

normalization layer effectively addresses this issue. Furthermore, since different parts of the input163

carry different levels of importance, we utilize the ARL to enable the model to learn these variations,164

represented as: y = x ◦ Ω, where x denotes the input, Ω represents the weight vector, calculated by165

Ω = MLP(x), and ◦ indicates the element-wise product.166

3.2.2 Actor Sub-Networks167

The Actor sub-network consists of a BERT [11] model for feature extraction and a QK-attention168

module [12] for action decomposition and generation, which we will introduce in turn. In the169

feature extractors, we have already extracted the primary features from each worker and order170

state separately. To further explore the relationships between workers and orders, we utilize the171

BERT model, where the self-attention mechanism can effectively capture these relationships: St =172

[w1,t, w2,t, . . . , wn,t, o1,t, o2,t, . . . , omt,t] = Actor-BERT(S̃t). Specifically, due to the permutation173

invariance of our input sequence, we omit the positional embedding in BERT, ensuring that the order174

in S does not influence the encoding result. In contrast to conventional MARL methods like [5; 7],175

which encode each worker with its neighboring states to gain a broader perspective, our Actor-BERT176

directly aggregates global worker information, facilitating more effective cooperative dispatching177

between workers.178

In conventional order dispatching tasks, the typical approach to address the dynamic action space179

(related to the number of orders) involves evaluating each worker-order pair separately and finding the180

optimal dispatching solution based on these evaluations. However, this approach has two significant181

shortcomings. First, it neglects the relationships between orders, which we address through the182

self-attention mechanism in BERT, capturing not only the relationships between workers but also183

between orders and between orders and workers. Second, evaluating each worker-order pair is184

time-consuming and resource-intensive: F(wi,t, oj,t; θF) ∈ R1, where F is the network and θF185

represents its parameters. The complexity can be represented as O(|F| · n ·mt), where |F| denotes186

the complexity of the neural network. To mitigate this issue, we employ a QK-attention module [12],187

represented as:188

QK-Attention(wi,t, oj,t) := f(wi,t; θf) · g(oj,t; θg)T ≈ F(wi,t, oj,t; θF) , (2)

where f and g are two smaller networks, and θf and θg are their parameters. The intuition behind QK-189

attention is to use two smaller networks to approximate a larger network, similar to the motivation190

behind LoRA [15]. In this way, the complexity of computing all worker-order pairs becomes191

O(|f| · n+ |g| ·mt + d · n ·mt), where |f| and |g| are the complexities of the two neural networks,192

d is their output dimension, and d · n ·mt is the complexity of matrix multiplication. Here, d is193

very small, making d · n ·mt much smaller than the neural network computation complexity, i.e.,194

d · n ·mt ≪ |f| ≈ |g| < |F|. Thus, we have O(|f| · n+ |g| ·mt + d · n ·mt) < O(|F| · (n+mt)) <195

O(|F| ·n ·mt), indicating that the QK-attention successfully transforms the multiplication complexity196

of evaluating each worker-order pair into addition complexity.197

5

However, we observe a parameter redundancy issue in Equation 2, which can lead to potential198

instability during training. This redundancy arises because there are actually infinite solutions for f199

and g, as f ′ = αf and g′ = g
α is also a valid solution for any non-zero real vector α. Inspired by200

Dueling DQN [16], we propose a positive normalization method:201

QK-Attention-Norm(wi,t, oj,t) := f(wi,t; θf) ·
Softplus(g(oj,t; θg))T

||Softplus(g(oj,t; θg))||2
. (3)

This normalization ensures that the elements in Softplus(g(oj,t;θg)T)
||Softplus(g(oj,t;θg)T)||2 are always non-negative, with202

an L2 norm of 1. This guarantees a unique solution. In our task, the output of the QK-attention is203

a matrix Mt ∈ Rn,mt , representing the utility of each worker choosing each order, which will be204

detailed in Section 3.3.2.205

3.2.3 Critic Sub-Networks206

The role of the critic is to evaluate the quality of actions, with the detailed action generation method207

introduced in Section 3.3.2. We first define an action function A:208

A(wi,t) =
{
(wi,t, oj,t) if order j is assigned to worker i at time t
∅ if no order is assigned to worker i at time t

(4)

where wi,t and oj,t are the outputs of Actor-BERT, and (wi,t, oj,t) represents the combination209

of the two vectors into a single feature vector. We then construct a new sequence: Ṡt =210

[A(w1,t),A(w2,t), . . . ,A(wi,t)]. Another BERT network, referred to as "Critic-BERT", is used211

to further extract features from Ṡt, represented as S̈t = Critic-BERT(Ṡt). A self-attention mecha-212

nism and a linear layer (collectively named Critic-MLP) are then utilized to estimate the Q-value213

from S̈t (for detailed processing methods, refer to [17]). Furthermore, as TD3 [9] requires two critics,214

we employ two distinct Critic-BERT and Critic-MLP networks. These share the input features from215

Actor-BERT but process them separately.216

3.3 Training Process217

3.3.1 Stage 1: Decentralized IDDQN Training218

In this stage, we aim to first train the feature-extracting capacity of the worker encoder and order219

encoder using a substantial number of samples. To obtain sufficient samples, we view the dispatching220

problem as a multi-agent scenario, where at each time step, each agent can access its own record. We221

adopt the independent assumption that all agents share the same policy, allowing for the sharing of222

records between agents and leading to a large experience replay buffer.223

Since our goal in this stage is not to train a powerful model but rather to enable the feature extractor224

to learn its general feature-extracting capabilities, we select the simplest yet efficient method for225

order dispatching, namely, the IDDQN. Each worker is treated as an independent agent with the state226

defined as si,t = [wi,t, Ot] at time t. We employ a neural network to estimate the Q-value at each227

step as QDQN
πQ
Φ

(si,t, ai,t), where Φ represents the network parameters and πQΦ denotes the strategy.228

To construct the network, we utilize QK-attention to process the outputs of the worker en-229

coder and order encoders to estimate the Q-value for each worker-order pair, represented as230

QK-Attention-Norm(w̃i,t, õj,t) (denoted as yi,j,t). Although the state space encompasses the entire231

order state from o1,t to omt,t, we focus on a single order oj,t when computing the Q-value for choos-232

ing order j. This approach aligns with previous work such as [5; 18], as the entire order state can be233

excessively large for a simple network to learn (our Triple-BERT effectively addresses this issue) and234

many networks struggle to process variable dimensional inputs (with order amounts varying at each235

time step). Consequently, we can compute a Q-matrix Yt ∈ Rn,mt , where the element in the i-th row236

and j-th column, yi,j,t, represents the Q-value of assigning order j to worker i at time t. The core237

strategy of IDDQN is to maximize the global Q-value, expressed as Q(St, At) =
∑n
i=1 Q(si,t, ai,t)238

at each time step. To achieve this, we construct a bipartite graph where each worker and order is239

represented as a node. An arbitrary worker i and order j are linked by an edge weighted by the240

Q-value of this worker selecting this order at the current time, i.e., yi,j,t. We then utilize Integer241

6

Linear Programming (ILP) to solve this maximizing bipartite matching problem. (To avoid assigning242

orders to unavailable workers—those at full capacity or on their way to pick up an assigned order—we243

set the Q-value of all actions for such workers in the Q-matrix Yt to −∞.) A detailed construction of244

the problem is provided in Appendix B.1. For the training of IDDQN, it follows the same process of245

previous work [5]. Due to page limitation, we detailed it in Appendix D.1.246

3.3.2 Stage 2: Centralized TD3 Training247

In the standard AC framework, the process can be summarized as follows: an actor network generates248

actions based on the current state, represented asAt = Actor(St; θA), while a critic network evaluates249

these actions using Q̂t = Critic(St, At; θC , πTθA). Here, θA and θC are the parameters of the actor250

and critic networks, respectively, and πAθA denotes the strategy of AC. During training, the critic251

network is updated using TD-error, similar to Q-learning, and the actor network is updated to252

maximize Q̂. However, a challenge mentioned in Section 2 is that the action space is too large for the253

order dispatching scenario. Additionally, the actions in order dispatching are discrete, complicating254

optimization using TD3. To address these issues, we propose an action decomposition method along255

with a policy gradient-style optimization method.256

Before delving into the details, we denote both θA and θC with the parameters Θ, as in our network257

(Fig. 2), the actor and critic share the same architecture. The trained network parameters from Stage258

1, Φ, are part of Θ. Moreover, the policy of TD3 is represented as πTΘ.259

(i) Actor: To address the large action space, we propose an action decomposition method that260

separates the probability of selecting each worker-order assignment combination into the probabilities261

of each worker choosing their respective orders. First, we expand the utility matrix Mt output262

by the Actor QK-Attention toMt = [Mt, Nt] ∈ Rn,mt+1, where Nt is an n-dimensional vector263

representing the utility of each worker choosing no order. This vector can be obtained by processing264

the output of Actor-BERT with a MLP, i.e., Nt = MLP([w1,t, w2,t, . . . , wn,t]). This allows us to265

compute the probability of each worker choosing each action using a logit model [19], if the actions266

among workers are independent, i.e., Pt = Softmax(Mt, dim=-1). According to this independent267

assumption, the joint action probability can be expressed as:
∏
i,j∈h(At)

Pi,j,t, where h() is defined268

as the function h(At) = {(i, j)|ai,j,t = 1}. Similar to stage 1, we set the probability of those269

unavailable workers choosing no order to 1 and all other actions to 0 in Pt. (Remark: We consider270

this independent assumption can be approximately realized after the network is well-trained, as BERT271

has already captured the relationships among workers, including their strategic interactions.)272

However, since an order cannot be assigned to different workers repeatedly, the actions among273

workers are actually not independent. Intuitively, if a worker is more willing to choose a particular274

action, this action should have a higher probability of being selected by this worker in the joint action.275

Based on this intuition, the action choosing probability can be defined as:276

πTΘ(At|St) = z(
∏

i,j∈h(At)

Pi,j,t) , (5)

where z(·) is an increasing function that also depends on the current state St (which we omit for277

simplicity). This equation implies that if an action At has a higher value of
∏
i,j∈h(At)

Pi,j,t, it will278

have a higher probability of being chosen.279

However, defining and computing such a function z(·) is challenging due to the vast action space,280

complicating the sampling of an action from the strategy πTΘ(At|St). We define an efficient approach281

to address this. First, during inference, we can greedily select the action with the maximum probability,282

as this action should theoretically have the highest utility:283

arg max
At∈ψ(St)

πTΘ(At|St) = arg max
At∈ψ(St)

z(
∏

i,j∈h(At)

Pi,j,t) = arg max
At∈ψ(St)

∑
i,j∈h(At)

logPi,j,t ,

(6)
where ψ(St) is the set of all possible actions under the current state St. This holds because both z(·)284

and log(·) are increasing functions. We can construct a bipartite graph similar to Stage 1, where each285

available worker and order is represented as a node, and the link between each worker i and order j at286

time t is weighted by their log probability logPi,j,t. By utilizing ILP, we can find the action At that287

maximizes πTΘ(At|St). The bipartite graph construction process is detailed in Appendix B.2. During288

7

training, we introduce random noise to the probability matrix Pt and the model selects actions using289

the same method as in Eq. 6. When the noise is sufficiently large, the policy degrades to a totally290

random policy, and when the noise is zero, the policy converges to a greedy strategy. Although we291

cannot directly express the function z(·), it must ensure that the function is a increasing function292

(since the noise is totally random). More details about the noise can be found at Appendix C.293

Optimizing this probability using vanilla TD3 is challenging due to the variable action space and294

the gap between action probabilities and the selected action (the gradient cannot propagate through295

them). To address this, we employ an approximate policy gradient optimization method [10]:296

∇ΘJ(Θ) ∝ EπT
Θ

(QTD3
πT
Θ

(St, At)−B)∇Θ

∑
i,j∈h(At)

logPi,j,t

 , (7)

where J(Θ) is the optimization objective (long-term cumulative reward), B is a baseline independent297

of state (we simplify by setting it to 0), and QTD3
πT
Θ

(St, At) is the Q-value under the policy πTΘ,298

which can be estimated by QTD3
πT
Θ,i

(St, At; Θ) using our proposed network (i = 1, 2, as there are two299

estimated Q-values in TD3). Detailed derivations can be found in Appendix C. We then use gradient300

ascent to maximize J(Θ), thus the loss function for the actor can be expressed as LA = −∇J(Θ).301

(ii) Critic: For the critic, it can be updated in a manner similar to vanilla TD3, where the loss function302

can be expressed as:303

LC =
∑
i=1,2

EπT
Θ

[
QTD3
πT
Θ−

(St+1, Rt+1; Θ
−)− QTD3

πT
Θ,i

(St, At; Θ)
]
,

QTD3
πT
Θ−

(St+1, Rt+1; Θ
−) = Rt+1 + γ min

i=1,2
QTD3
πT
Θ− ,i

(St+1,Actor(St+1; Θ
−, ξ); Θ−) ,

(8)

where QTD3
πT
Θ−

is the learning target function, Θ− represents the parameters of the target network,304

which updates more slowly than the policy network Θ to provide a stable target, and ξ is a small305

random noise applied in the probability matrix P . More details can be viewed in Appendix D.2.306

4 Experiment307

Table 1: Comparison of Different Ride Sharing Methods
Method DeepPool [1] BMG-Q [5] HIVES [7] Enders et al. [20] CEVD [21] Triple-BERT
Type Independent CTDE Centralized

RL Algorithm IDDQN [22] IDDQN [22] QMIX [23] MASAC [24] VD1 [25] TD3 [9]
Multi-Agent ✓ ✓ ✓ ✓ ✓ ×
Network Backbone MLP GAT [26] GRU [27] MLP+Attention MLP BERT [11]

Model Size 20K 117K 16M 118K 23K 16M
GPU Occupation (GB) 3.97 4.28 6.01 8.19 21.45 8.03

Average Reward (103) 12.72 13.04 12.37 12.04 13.16 14.73

To validate the proposed method, we evaluate its performance in the ride sharing dispatching task308

using real-world yellow ride-hailing data from Manhattan, New York City2 [28]. To illustrate the309

efficiency and superiority of our proposed Triple-BERT, we compare it with several previous ride310

sharing methods of different types, including Independent MARL, CTDE MARL, and Centralized311

MARL, as shown in Table 1. Detailed information regarding our experiment configuration, simulator312

setup, and a comprehensive description of the comparative experiment can be found in Appendix E.313

As shown in Fig. 3, we first illustrate the training process of different models by evaluating their314

performance in the training scenario every 10 episodes. The six sub-figures depict the cumulative315

reward, the number of orders served, and the average delivery time, detour time, pickup time, and316

confirmation time for each order. Additionally, the Greedy method serves as a baseline, where orders317

1The original VD is a CTDE method. However, the CEVD variant modifies it to a centralized version.
2https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

8

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Figure 3: Training Process: Each method is trained three times, and the curve is smoothed using
Exponential Moving Average (EMA) with α = 0.1. The shaded area represents the range of
fluctuations, while the solid line indicates the average value. (Here, for delivery time and detour time,
only completed orders are counted, as these metrics are uncertain for unfinished orders.)

are assigned to the nearest worker. It is evident that our method outperforms the other models in most318

metrics, with the cumulative reward exceeding that of the best alternative method by approximately319

15%. The highest number of served orders indicates that our method achieves better cooperation320

among workers. We then evaluate these methods over different periods, and the average rewards are321

shown in Table 1, where our method also demonstrates the best performance. More details about the322

experimental results can be found in Appendix E.4.323

To further demonstrate the model’s efficiency, we conduct a series of ablation studies. In terms of324

model training, we compare the performance of the model with and without stage 1 pre-training.325

Regarding the network structure, we primarily compare the QK-Attention mechanism with and326

without the proposed positive normalization module. The detailed results are shown in Fig. 3.327

We observe that without stage 1 pre-training, the model fails to converge and exhibits significant328

fluctuations. Particularly in the later stages, the reward begins to decrease, which can be attributed329

to the lack of samples. Additionally, without the proposed normalization in QK-Attention, the330

model performs poorly, underperforming compared to all other methods. This is due to parameter331

redundancy, which leads to substantial fluctuations and hinders efficient learning.332

5 Conclusion333

In this work, we propose the first centralized SARL method, Triple-BERT, for large-scale order334

dispatching in ride-hailing platforms. Our method successfully addresses the challenge of large335

action spaces through an action decomposition technique and tackles the issue of sample scarcity336

with a proposed two-stage training method. The novel network also addresses the large observation337

space challenge by leveraging the self-attention mechanism of BERT. Additionally, we introduce an338

improved QK-Attention mechanism to reduce the computational complexity of order dispatching.339

Through experiments on real-world ride sharing data, we demonstrate that our method significantly340

outperforms conventional MARL methods, achieving better cooperation among drivers.341

9

References342

[1] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “Deeppool: Distributed model-free algorithm for343

ride-sharing using deep reinforcement learning,” IEEE Transactions on Intelligent Transporta-344

tion Systems, vol. 20, no. 12, pp. 4714–4727, 2019.345

[2] Y. Liu, F. Wu, C. Lyu, S. Li, J. Ye, and X. Qu, “Deep dispatching: A deep reinforcement learning346

approach for vehicle dispatching on online ride-hailing platform,” Transportation Research Part347

E: Logistics and Transportation Review, vol. 161, p. 102694, 2022.348

[3] D. Wang, Q. Wang, Y. Yin, and T. Cheng, “Optimization of ride-sharing with passenger transfer349

via deep reinforcement learning,” Transportation Research Part E: Logistics and Transportation350

Review, vol. 172, p. 103080, 2023.351

[4] Z. Zhang, L. Yang, J. Yao, C. Ma, and J. Wang, “Joint optimization of pricing, dispatching and352

repositioning in ride-hailing with multiple models interplayed reinforcement learning,” IEEE353

Transactions on Knowledge and Data Engineering, 2024.354

[5] Y. Hu, S. Feng, and S. Li, “Bmg-q: Localized bipartite match graph attention q-learning for355

ride-pooling order dispatch,” arXiv preprint arXiv:2501.13448, 2025.356

[6] Y. Wang, J. Wu, H. Sun, Y. Lv, and J. Zhang, “Promoting collaborative dispatching in the ride-357

sourcing market with a third-party integrator,” IEEE Transactions on Intelligent Transportation358

Systems, vol. 25, no. 7, pp. 6889–6901, 2024.359

[7] J. Hao and P. Varakantham, “Hierarchical value decomposition for effective on-demand ride-360

pooling,” in Proceedings of the 21st International Conference on Autonomous Agents and361

Multiagent Systems, pp. 580–587, 2022.362

[8] J. Wang, Q. Hao, W. Huang, X. Fan, Z. Tang, B. Wang, J. Hao, and Y. Li, “Dyps: Dynamic363

parameter sharing in multi-agent reinforcement learning for spatio-temporal resource allocation,”364

in Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data365

Mining, pp. 3128–3139, 2024.366

[9] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic367

methods,” in International conference on machine learning, pp. 1587–1596, PMLR, 2018.368

[10] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-369

forcement learning with function approximation,” Advances in neural information processing370

systems, vol. 12, 1999.371

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional372

transformers for language understanding,” in Proceedings of the 2019 conference of the North373

American chapter of the association for computational linguistics: human language technolo-374

gies, volume 1 (long and short papers), pp. 4171–4186, 2019.375

[12] Z. Zhao, T. Chen, Z. Cai, X. Li, H. Li, Q. Chen, and G. Zhu, “Crossfi: A cross domain wi-fi376

sensing framework based on siamese network,” IEEE Internet of Things Journal, 2025.377

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,378

no. 8, pp. 1735–1780, 1997.379

[14] T. Chen, Y. Wang, H. Chen, Z. Zhao, X. Li, N. Piovesan, G. Zhu, and Q. Shi, “Modelling the 5g380

energy consumption using real-world data: Energy fingerprint is all you need,” arXiv preprint381

arXiv:2406.16929, 2024.382

[15] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al., “Lora: Low-rank383

adaptation of large language models,” in International Conference on Learning Representations,384

vol. 1, p. 3, 2022.385

[16] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network386

architectures for deep reinforcement learning,” in International conference on machine learning,387

pp. 1995–2003, PMLR, 2016.388

10

[17] Y.-H. Chou, I.-C. Chen, J. Ching, C.-J. Chang, and Y.-H. Yang, “Midibert-piano: Large-scale389

pre-training for symbolic music classification tasks,” Journal of Creative Music Systems, vol. 8,390

no. 1, 2024.391

[18] Y. Hu, T. Dong, and S. Li, “Coordinating ride-pooling with public transit using reward-guided392

conservative q-learning: An offline training and online fine-tuning reinforcement learning393

framework,” arXiv preprint arXiv:2501.14199, 2025.394

[19] D. McFadden, “Conditional logit analysis of qualitative choice behavior,” 1972.395

[20] T. Enders, J. Harrison, M. Pavone, and M. Schiffer, “Hybrid multi-agent deep reinforcement396

learning for autonomous mobility on demand systems,” in Learning for Dynamics and Control397

Conference, pp. 1284–1296, PMLR, 2023.398

[21] A. Bose, H. Jiang, P. Varakantham, and Z. Ge, “On sustainable ride pooling through conditional399

expected value decomposition,” in ECAI 2023, pp. 295–302, IOS Press, 2023.400

[22] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”401

in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.402

[23] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “Monotonic403

value function factorisation for deep multi-agent reinforcement learning,” Journal of Machine404

Learning Research, vol. 21, no. 178, pp. 1–51, 2020.405

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy406

deep reinforcement learning with a stochastic actor,” in International conference on machine407

learning, pp. 1861–1870, Pmlr, 2018.408

[25] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,409

N. Sonnerat, J. Z. Leibo, K. Tuyls, et al., “Value-decomposition networks for cooperative multi-410

agent learning based on team reward,” in Proceedings of the 17th International Conference on411

Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.412

[26] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et al., “Graph attention413

networks,” stat, vol. 1050, no. 20, pp. 10–48550, 2017.414

[27] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-415

ing phrase representations using rnn encoder-decoder for statistical machine translation,” in416

Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.417

[28] N. Y. C. Taxi and L. Commission, “Nyc taxi and limousine commission-trip record data nyc..”418

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,419

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep learning420

library,” Advances in Neural Information Processing Systems, vol. 32, 2019.421

[30] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,” in Proceedings of the 19th422

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,423

GIS ’11, (New York, NY, USA), pp. 513–516, ACM, 2011.424

11

Appendix Contents425

A Action Space Size 13426

B BiParite Graph Construction 13427

B.1 IDDQN Bipartite Graph . 13428

B.2 TD3 Bipartite Graph . 13429

C Policy Gradient Proof 14430

D Training Process 15431

D.1 Stage 1: IDDQN Algorithm . 15432

D.2 Stage 2: TD3 Algorithm . 16433

E Experiment Details 17434

E.1 Experiment Configurations . 17435

E.2 Simulation Setup . 18436

E.3 Introduction of Comparative Methods . 18437

E.4 Additional Experiment Result . 19438

F Discussions 19439

F.1 Limitations and Future Works . 19440

F.2 Societal Impacts . 20441

12

A Action Space Size442

The action space in our order dispatching task is given by:443

|At| =
mt∑
k=0

C(mt, k)P(n, k) =
mt∑
k=0

mt!

k!(mt − k)!
n!

(n− k)!
, (9)

whereP(n, k) represents the permutations of assigning k orders to nworkers and C(mt, k) represents444

the combinations of selecting k orders from the total mt orders. This equation is based on two445

assumptions: (i) the platform will assign an arbitrary number of orders at each step (some orders446

yielding negative income will be declined by the platform) and (ii) the number of orders mt is less447

than the number of workers n, which can always be satisfied since mt represents the order count at448

only one timestep. Then we can derive the lower bound of |At| as:449

|At| =
mt∑
k=0

C(mt, k)
n!

(n− k)!
≥

mt∑
k=0

C(mt, k)(n− k + 1)k

≥
mt∑
k=0

C(mt, k)(n−mt + 1)k = (n−mt + 2)mt ≥ 2mt (n ≥ mt ≥ 0) .

(10)

As a result, the action space has a lower bound with the exponent to mt. Consider the example in450

Section 2 where the number of workers n is 1000 and the number of orders mt is 10. In this case, the451

expression (n−mt + 2)mt evaluates to 99210 ≈ 1030.452

B BiParite Graph Construction453

B.1 IDDQN Bipartite Graph454

The bipartite graph in the IDDQN-based order dispatching method is constructed as follows:455

max
At

∑
i∈I

ai,j,t · yi,j,t, (11a)

s.t.
∑
i∈I

ai,j,t ≤ 1, ∀j ∈ Jt, (11b)∑
j∈Jt

ai,j,t ≤ 1, ∀i ∈ I, (11c)

ai,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt, (11d)

where ai,j,t is the action representing whether worker i is assigned order j at time t (with 1 indicating456

assignment and 0 indicating no assignment), yi,j,t denotes the Q-value of worker i choosing order j457

at time t (with yi,j,t = −∞ for all unavailable workers at time t), I is defined as {1, 2, . . . , n}, and458

the set Jt is defined as {1, 2, . . . ,mt}. Constraint 11b ensures that an order can be assigned to at459

most one worker, while constraint 11c guarantees that each worker is assigned at most one order.460

B.2 TD3 Bipartite Graph461

The bipartite graph in our proposed TD3-based order dispatching method is constructed as follows:462

max
Xt

∑
i∈Iw

t

xi,j,t · logPi,j,t, (12a)

s.t.
∑
i∈I

xi,j,t ≤ 1, ∀j ∈ Jt, (12b)∑
j∈Jt

xi,j,t = 1, ∀i ∈ Iwt , (12c)

xi,j,t ∈ {0, 1}, ∀i ∈ I, j ∈ Jt ∪ {mt + 1}, (12d)

13

where Iwt represents the set of available workers at time t. Here, constraint 12b does not apply in463

the last column, as it represents declining all orders, an action that can be chosen by any worker.464

Constraint 12c requires each row to equal 1, ensuring that each worker must either take an order or465

reject all, without other choices. We can then convert Xt to action At as follows:466

ai,t =

{
xi,j,t if i ∈ Iwt and xi,mt+1,t = 0

0 otherwise
(13)

C Policy Gradient Proof467

According to the policy gradient theory [10], we have:468

∇ΘJ(Θ)

∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ log πTΘ(At|St)

]
= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
∇Θ log z

 ∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
) dz(

∏
i,j∈h(At)

Pi,j,t)

d
∏
i,j∈h(At)

Pi,j,t

∏
i,j∈h(At)

Pi,j,t

z(
∏
i,j∈h(At)

Pi,j,t)
∇Θ log

∏
i,j∈h(At)

Pi,j,t


= EπT

Θ

(QTD3
πT
Θ

(St, At)−B
)
Ez(x),x|x=∏

i,j∈h(At)
Pi,j,t

∇Θ

∑
i,j∈h(At)

logPi,j,t

 ,

(14)
where E denotes elasticity, which measures the sensitivity of one variable to changes in another, and469

is defined as:470

Ey,x =
d log y

d log x
=
dy

dx

x

y
. (15)

Since z(x) is an increasing function, the elasticity is always non-negative. Here, we assume that the471

elasticity of z(x) with respect to x can be approximately viewed as a positive constant. Thus, we472

have: ∇ΘJ(Θ) ∝ EπT
Θ

[(
QTD3
πT
Θ

(St, At)−B
)
∇Θ

∑
i,j∈h(At)

logPi,j,t

]
, corresponding to Eq. 7.473

We acknowledge that the elasticity may not be a positive constant in practice (this requires that474

z(x) has the same form as axb (a, b > 0)). However, we consider this a reasonable approximation;475

otherwise, optimizing the actor would not be feasible, as obtaining a closed-form solution for z(x) is476

impossible. Additionally, the final form of the equation aligns with the intuition that if an action has a477

higher Q-value, we should increase its probability, whereas we should decrease its probability if the478

Q-value is lower. While this approach may impede the model’s convergence to the optimal solution,479

experimental results demonstrate the effectiveness of this formula, showing that it significantly480

outperforms other MARL methods.481

As mentioned in Section 3.3.2, during training, we add random noise to Pt and then choose the482

action that maximizes
∑
i,j∈h(At)

logPi,j,t. Currently, the mapping from
∑
i,j∈h(At)

logPi,j,t to483

the choosing probability πTΘ corresponds to z(·). To further illustrate the robustness of our method, we484

compare the performance of our model using Gaussian noise, uniform noise, and binary symmetric485

channel (BSC) noise, where the noise follows a Bernoulli distribution and has been widely utilized486

in previous work [5; 18]. During training, we gradually reduce the noise to make the policy more487

deterministic. The experimental results are shown in Fig. 4, where we observe that, despite certain488

performance differences between the various types of noise, they all outperform conventional MARL489

methods. This suggests the efficiency and high robustness of our proposed method, indicating that490

the detailed expression of z(x) does not significantly influence the validation of the method based491

on Eq. 7, even if it may cause some performance gaps. The optimal noise for our task may require492

further exploration. For fairness, we choose to use BSC noise when comparing with other methods,493

even though it appears to perform the worst among the three types of noise. We aim to demonstrate494

that our results are robust and superior, not relying on a particular choice of hyper-parameters or495

experiment scenarios.496

14

Figure 4: Comparison Between Different Noise Methods

D Training Process497

D.1 Stage 1: IDDQN Algorithm498

Figure 5: Network Structure in Stage 1

In stage 1, the network structure is shown as Fig. 5, which is consisted by the encoders and the499

QK-Attention module of proposed network in Fig. 2. Remark: Although the model takes the500

entire worker and order sequence as input, it primarily aims to utilize parallel computation to501

enhance computational efficiency. In the encoders, each worker and order’s information is processed502

separately. Similarly, in the QK-Attention module, the Q-value for each worker-order pair is computed503

15

independently. It is also feasible to input only a single worker-order pair into this network, computing504

the Q-value exclusively for that pair; however, this would increase the computation time.505

During IDDQN training, we need to introduce some noise into the Q-matrix Yt to facilitate sufficient506

exploration. Specifically, for the ϵ-greedy strategy, we randomly select a proportion ϵ of non-−∞507

elements in Yt and set them to a large positive number Y to enhance their likelihood of being selected.508

We then update the neural network by minimizing the TD-error, expressed as:509

LQ = EπQ
Φ

[
QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−)− QDQN
πQ
Φ

(si,t, ai,t; Φ)

]
,

QDQN
πQ

Φ−
(si,t+1, ri,t+1; Φ

−) = ri,t+1 + γQDQN
πQ

Φ−
(si,t+1, κi,t+1; Φ

−) ,

κi,t+1 = arg max
κi,t+1∈ψi,t+1

QDQN
πQ
Φ

(si,t+1, κi,t+1; Φ) ,

(16)

where QDQN
πQ

Φ−
is the learning target function, γ is the discount factor, ψi,t+1 is the possible action510

space for worker i at time t+ 1, and Φ− represents the parameters of the target network, which are511

updated at a slower pace compared to the policy network to provide a stable target for training. After512

each training iteration, the target network is updated in a soft manner: Φ− := τΦ + (1 − τ)Φ−,513

where τ is the update rate.514

The detailed process is illustrated in Algorithm 1, where 1j represents the vector that only the jth515

position is 1 and other positions are 0.516

Algorithm 1 IDDQN Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, target
update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, discount factor γ,
model parameters Φ

1: Initialize target networks Φ− ← Φ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Calculate Q-value matrix Yt: yi,j,t = QDQN

πQ
Φ

(si,t, 1j ; Φ)
6: Select action with exploration noise:At = ILP(Yt, ϵ)
7: Observe reward ri,t+1 and new state si,t+1 for each worker i
8: Store transition (si,t, ai,t, ri,t+1, si,t+1) in B
9: Sample mini-batch of m transitions (s, a, r, s′) from B

10: Compute target Q-value:
11: y ← r + γQDQN

πQ

Φ−
(si,t+1, argmaxκi,t+1∈ψi,t+1 QDQN

πQ
Φ

(si,t+1, κi,t+1; Φ); Φ
−)

12: Update critics: Φ← argminΦ
1
m

∑
(y − QDQN

πQ
Φ

(s, a; Φ))2

13: Update target networks: Φ− ← τΦ+ (1− τ)Φ−

14: end for
15: Decay exploration: ϵ← max(ϵf , ϵδ)
16: end for

D.2 Stage 2: TD3 Algorithm517

The process of our Stage 2 - TD3 training is illustrated in Algorithm 2. In experiment, we follow the518

vanilla TD3 approach of updating the actor once after updating the critic twice.519

16

Algorithm 2 TD3 Training Process

Require: Number of training episodes E, number of training steps T , mini-batch size m, policy
delay d, target update rate τ , exploration noise ϵ, final exploration ϵf , exploration decay δ, target
policy smoothing noise ξ, discount factor γ, model parameters Θ

1: Initialize target networks Θ− ← Θ
2: Initialize replay buffer B
3: for k = 1 to E do
4: for t = 1 to T do
5: Select action with exploration noise:At = Actor(St; Θ, ϵ)
6: Observe reward Rt+1 and new state St+1

7: Store transition (St, At, Rt+1, St+1) in B
8: Sample mini-batch of N transitions (S,A,R, S′) from B
9: Compute target action with smoothing noise: A′ ← Actor(S; Θ−, ξ)

10: Compute target Q-value: y ← r + γmini=1,2 QTD3
πT
Θ− ,i

(S′, A′; Θ−)

11: Update critics: Θ← argminΘ
1
m

∑
[(y − QTD3

πT
Θ,1

(S,A; Θ))2 + (y − QTD3
πT
Θ,2

(S,A; Θ))2]

12: if t mod d == 0 then
13: Update actor using deterministic policy gradient:
14: ∇J(Θ) = 1

m

∑
(QTD3

πT
Θ,1

(S,A; Θ)−B)∇Θ log πTΘ(At|St), (A = Actor(S; Θ))

15: Update target networks: Θ− ← τΘ+ (1− τ)Θ−

16: end if
17: end for
18: Decay exploration: ϵ← max(ϵf , ϵδ)
19: end for

E Experiment Details520

E.1 Experiment Configurations521

Our model was trained using the PyTorch framework [29] on a workstation running Windows 11,522

equipped with an Intel(R) Core(TM) i7-14700KF processor and an NVIDIA RTX 4080 graphics card.523

The detailed model configurations are shown as Table 2. During the training phase, the model utilized524

approximately 8.03 GB of GPU memory. For optimization, we employed the Adam optimizer with525

an initial learning rate of 10−4 and a decay rate of 0.99. In Stage 1, the batch size was set to 256,526

while in Stage 2, it was reduced to 16, due to a sharp decrease in sample amount. Additionally,527

optimization was performed once every 4 time steps, and in Stage 2, the actor was updated once for528

every two updates of the critic.529

Table 2: Model Configurations
Configuration Our Setting
Hidden Dimension 64 (Actor) / 128 (Critic)
Attention Heads 4
BERT Layers 3 for Each
Dropout Rate 0.1

Optimizer Adam
Learning Rate 10−4

Scheduler ExponentialLR
Learning Rate Decay 0.99
Batch Size 256 (Stage 1) / 16 (Stage 2)

Exploration Rate 0.99→ 0.0005
Updating Rate of Target Network 0.005
Discount Factor 0.99

17

E.2 Simulation Setup530

In the simulation, we set the total number of drivers to 1,000, with each car having a capacity of 3531

passengers. Each episode lasts 30 minutes, divided into 30 time steps, where each step determines532

the operations for the subsequent minute. For the TSP route optimization and time estimation, we533

utilize the OSRM simulator [30], with a default traveling speed of 60 km/h. We train the model534

using data from 19:00 to 19:30 on July 17, 2024, which includes 3,726 valid orders, and we test the535

trained model during other time periods on July 17, 2024, including 14:00-14:30 (2,850 valid orders),536

17:00-17:30 (3,577 valid orders), 20:00-20:30 (3,114 valid orders), 21:00-21:30 (4,264 valid orders),537

and 22:00-22:30 (4,910 valid orders), where the order amount range from 2,850 to 4,264.538

E.3 Introduction of Comparative Methods539

The methods using in our comparative experiment can be mainly divided into three categories:540

• Independent MARL: The DeepPool [1] and BMG-Q [5] utilize a similar IDDQN method as541

described in Section 3.3.1, with BMG-Q employing GAT [26] to capture the relationships among542

neighboring agents. Additionally,in the original paper fo DeepPool, the authors used CNN.543

However, due to differences in the observation space of our task, we replaced it with MLP.544

• Centralized Training Decentralized Execution (CTDE): The HIVES [23] framework introduces545

a QMIX [23] based method to address the shortcomings of IDDQN, specifically the inadequacy of546

treating the global Q-value as a simple summation of the individual Q-values of each agent. Enders547

et al. [20] propose a MASAC [24] based approach, allowing each driver to choose whether to548

accept an order, thereby preventing low-profit orders from negatively impacting the global income.549

• Centralized Training and Centralized Execution (CTCE): CEVD [21], based on VD [25],550

innovatively combines the Q-values of each agent with those of their neighbors to create a new551

type of Q-value, akin to the motivation behind BMG-Q.552

Overall, most of these methods attempt various strategies to enhance each agent’s awareness of553

the global state, facilitating better cooperation. In contrast, our method directly transforms the554

formulation into a centralized single-agent reinforcement learning approach.555

It is noteworthy that these Independent and CTDE MARL dispatching methods differ slightly from556

general MARL methods. In order dispatching, one order cannot be assigned to multiple workers,557

making it necessary to employ some centralized mechanism to achieve this. We refer to them as558

independent MARL and CTDE methods because they can directly calculate their own Q-values559

or action probabilities using their own or neighboring states. Conversely, CEVD must calculate560

the primary Q-value of each agent separately and then combine those primary Q-values with their561

neighbors to obtain a final Q-value for each agent.562

Through the experimental results in Fig. 3, we observe that DeepPool [1], serving as one of the563

earliest benchmarks, demonstrates relatively stable and good performance, suggesting the simplicity564

and effectiveness of IDDQN features. In contrast, BMG-Q [5] significantly improves performance by565

utilizing FAT to capture neighboring information. As for HIVES [23] and CEVD [21], while they566

exhibit relatively good performance in the early stages of training—likely due to their hierarchical567

structure and centralized training methods—their performance becomes unstable in later stages, with568

rewards even starting to decrease. This instability may stem from the hierarchical approach not569

adequately addressing the large network input of the mixture network in QMIX and the lazy agent570

problem in VD. Additionally, their centralized training approach faces the same data scarcity issues571

as our method, making convergence more challenging. For Enders et al. [20], we note that their572

method shows worse performance than others. This may be related to their state processing method573

during training, where they replace the next state in the replay buffer with the request state from the574

current state to maintain a consistent agent count across two successive time steps, which appears575

to be a strong assumption. Finally, for the last three methods, their original papers primarily focus576

their reward functions on the serving order amount, without incorporating additional terms like ours577

(which also considers income, outcome, and user satisfaction levels). This makes our scenario more578

complex and may further reduce the performance of their methods in our setting.579

18

E.4 Additional Experiment Result580

The detailed experimental results across different time periods are shown in Fig. 6, while the weighted581

average numerical results are presented in Table 3. For each model in each scenario, we repeat the582

experiment three times, and the error bars in the figure represent the standard deviation. We observe583

that our Triple-BERT achieves the highest reward across all scenarios, with the advantage becoming584

more pronounced as the order volume increases. Triple-BERT primarily optimizes the service rate585

and pickup time, significantly outperforming other methods.586

For delivery time and detour time, the figures only account for completed orders, as the status of587

unfinished orders is uncertain, which may introduce some bias in the detailed values. In terms of588

these two metrics, Triple-BERT clearly performs better in high order volume scenarios, but not in low589

order volume scenarios. This may be due to the relatively low conflict caused by MARL in low order590

scenarios, while in high order scenarios, both the observation and action spaces increase sharply,591

making it challenging for MARL to find optimal solutions.592

Lastly, we note that our method and the approach by Enders et al. [20] exhibit higher confirmation593

times. This may be attributed to both methods having an explicit rejection action (i.e., choosing no594

order), unlike the other methods. While this mechanism can lead to higher confirmation times, it also595

enables the model to discard negative profit orders and reserve some orders for currently unavailable596

workers.597

Table 3: Average Performance under Multiple Periods
Method Reward Service Rate Delivery Time Detour Time Pickup Time Confirmation Time
DeepPool [1] 12723.85 0.91 11.53 2.47 7.77 0.06
BMG-Q [5] 13036.29 0.92 10.57 1.90 7.61 0.10
HIVES [7] 12365.11 0.89 11.04 2.28 7.99 0.03
Enders et al. [20] 12041.62 0.90 12.28 2.90 7.94 0.80
CEVD [21] 13157.96 0.94 11.36 2.31 7.37 0.06

Triple-BERT 14730.48 0.98 11.53 2.52 5.73 0.13
w/o stage 1 10665.02 0.87 11.92 2.72 9.36 0.68
w/o normalization 10839.33 0.88 12.50 2.85 9.10 0.24

F Discussions598

F.1 Limitations and Future Works599

The limitations of this paper can be mainly categorized into two parts.600

First, regarding the theoretical aspect, the current policy gradient formula is an approximation where601

we assume that the probability mapping function z(x) has a nearly constant elasticity with respect to602

the independent variable x. Since obtaining a closed-form solution or elasticity for z(x) is impossible,603

we must make certain assumptions for optimization. Although we have demonstrated the efficiency604

of Eq. 7 through intuition and experiments, there may still be a gap between the model’s performance605

and the optimal solution. In future work, it would be valuable to explore an action strategy that can606

be proven to have elasticity to z(x) close to a constant.607

Second, concerning the experimental aspect, due to limitations of the experimental setup, we currently608

train and evaluate the model within a 30-minute simulation window. For 1,000 episodes, we can609

collect only 30,000 samples in a single-agent setting, which takes about a whole day to train a single610

method. This is why we designed the two-stage training method; otherwise, the model would struggle611

to converge with the limited samples. Future exploration should address whether stage 1 training is612

still necessary when the sample size increases. We also intend to investigate the model’s performance613

in more diverse transportation scenarios, such as food delivery.614

Finally, to better align with practical application scenarios and conditions, we plan to further develop615

the method to jointly optimize repositioning, payment, and price-setting tasks, making it more feasible616

for real-world use.617

19

F.2 Societal Impacts618

This work has potential value for both academic research and practical applications in the transporta-619

tion field, particularly for large-scale order dispatching tasks. By shifting from the conventional620

MARL paradigm to a SARL approach, we significantly improve model performance. This technology621

holds promise for enhancing daily travel and logistics transport.622

However, the issue of algorithmic discrimination has received widespread attention over time. Closed-623

box management algorithms, including those for order dispatching, have been shown to create624

discriminatory scenarios for workers, as reinforcement learning methods primarily aim to maximize625

rewards without considering ethical implications. For example, algorithms may set different payment626

structures or order assignment preferences based on individual features or geographical locations of627

workers.628

We hope that our method will not exacerbate these issues and can be further developed to include629

constraints that promote fairness. Our goal is to strike a balance between profit and ethics, fostering a630

win-win situation for platforms, workers, and customers.631

(a) Legend

(b) Accumulative Reward

Figure 6: Detailed Evaluation Results

20

(c) Service Rate

(d) Delivery Time

(e) Detour Time

Figure 6: Detailed Evaluation Results

21

(f) Pickup Time

(g) Confirmation Time

Figure 6: Detailed Evaluation Results

NeurIPS Paper Checklist632

1. Claims633

Question: Do the main claims made in the abstract and introduction accurately reflect the634

paper’s contributions and scope?635

Answer: [Yes]636

Justification: The abstract and introduction accurately reflect the paper’s contributions by637

proposing a novel centralized single-agent reinforcement learning framework for large-638

scale order dispatching (Section 3). The claims of its superior performance compared to639

conventional multi-agent methods are substantiated by the experimental results presented in640

Section 4.641

Guidelines:642

• The answer NA means that the abstract and introduction do not include the claims643

made in the paper.644

• The abstract and/or introduction should clearly state the claims made, including the645

contributions made in the paper and important assumptions and limitations. A No or646

NA answer to this question will not be perceived well by the reviewers.647

• The claims made should match theoretical and experimental results, and reflect how648

much the results can be expected to generalize to other settings.649

22

• It is fine to include aspirational goals as motivation as long as it is clear that these goals650

are not attained by the paper.651

2. Limitations652

Question: Does the paper discuss the limitations of the work performed by the authors?653

Answer: [Yes]654

Justification: Please refer to Appendix F.1.655

Guidelines:656

• The answer NA means that the paper has no limitation while the answer No means that657

the paper has limitations, but those are not discussed in the paper.658

• The authors are encouraged to create a separate "Limitations" section in their paper.659

• The paper should point out any strong assumptions and how robust the results are to660

violations of these assumptions (e.g., independence assumptions, noiseless settings,661

model well-specification, asymptotic approximations only holding locally). The authors662

should reflect on how these assumptions might be violated in practice and what the663

implications would be.664

• The authors should reflect on the scope of the claims made, e.g., if the approach was665

only tested on a few datasets or with a few runs. In general, empirical results often666

depend on implicit assumptions, which should be articulated.667

• The authors should reflect on the factors that influence the performance of the approach.668

For example, a facial recognition algorithm may perform poorly when image resolution669

is low or images are taken in low lighting. Or a speech-to-text system might not be670

used reliably to provide closed captions for online lectures because it fails to handle671

technical jargon.672

• The authors should discuss the computational efficiency of the proposed algorithms673

and how they scale with dataset size.674

• If applicable, the authors should discuss possible limitations of their approach to675

address problems of privacy and fairness.676

• While the authors might fear that complete honesty about limitations might be used by677

reviewers as grounds for rejection, a worse outcome might be that reviewers discover678

limitations that aren’t acknowledged in the paper. The authors should use their best679

judgment and recognize that individual actions in favor of transparency play an impor-680

tant role in developing norms that preserve the integrity of the community. Reviewers681

will be specifically instructed to not penalize honesty concerning limitations.682

3. Theory assumptions and proofs683

Question: For each theoretical result, does the paper provide the full set of assumptions and684

a complete (and correct) proof?685

Answer: [Yes]686

Justification: All assumptions and proofs are included in Appendix A and Appendix C.687

Guidelines:688

• The answer NA means that the paper does not include theoretical results.689

• All the theorems, formulas, and proofs in the paper should be numbered and cross-690

referenced.691

• All assumptions should be clearly stated or referenced in the statement of any theorems.692

• The proofs can either appear in the main paper or the supplemental material, but if693

they appear in the supplemental material, the authors are encouraged to provide a short694

proof sketch to provide intuition.695

• Inversely, any informal proof provided in the core of the paper should be complemented696

by formal proofs provided in appendix or supplemental material.697

• Theorems and Lemmas that the proof relies upon should be properly referenced.698

4. Experimental result reproducibility699

Question: Does the paper fully disclose all the information needed to reproduce the main ex-700

perimental results of the paper to the extent that it affects the main claims and/or conclusions701

of the paper (regardless of whether the code and data are provided or not)?702

Answer: [Yes]703

23

Justification: The method and implementation details are provided in Section 3, as well704

as in Appendix B and Appendix D. The experimental settings and environment details are705

described in Appendix E.1 and Appendix E.2.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• If the paper includes experiments, a No answer to this question will not be perceived709

well by the reviewers: Making the paper reproducible is important, regardless of710

whether the code and data are provided or not.711

• If the contribution is a dataset and/or model, the authors should describe the steps taken712

to make their results reproducible or verifiable.713

• Depending on the contribution, reproducibility can be accomplished in various ways.714

For example, if the contribution is a novel architecture, describing the architecture fully715

might suffice, or if the contribution is a specific model and empirical evaluation, it may716

be necessary to either make it possible for others to replicate the model with the same717

dataset, or provide access to the model. In general. releasing code and data is often718

one good way to accomplish this, but reproducibility can also be provided via detailed719

instructions for how to replicate the results, access to a hosted model (e.g., in the case720

of a large language model), releasing of a model checkpoint, or other means that are721

appropriate to the research performed.722

• While NeurIPS does not require releasing code, the conference does require all submis-723

sions to provide some reasonable avenue for reproducibility, which may depend on the724

nature of the contribution. For example725

(a) If the contribution is primarily a new algorithm, the paper should make it clear how726

to reproduce that algorithm.727

(b) If the contribution is primarily a new model architecture, the paper should describe728

the architecture clearly and fully.729

(c) If the contribution is a new model (e.g., a large language model), then there should730

either be a way to access this model for reproducing the results or a way to reproduce731

the model (e.g., with an open-source dataset or instructions for how to construct732

the dataset).733

(d) We recognize that reproducibility may be tricky in some cases, in which case734

authors are welcome to describe the particular way they provide for reproducibility.735

In the case of closed-source models, it may be that access to the model is limited in736

some way (e.g., to registered users), but it should be possible for other researchers737

to have some path to reproducing or verifying the results.738

5. Open access to data and code739

Question: Does the paper provide open access to the data and code, with sufficient instruc-740

tions to faithfully reproduce the main experimental results, as described in supplemental741

material?742

Answer: [Yes]743

Justification: The code and trained model parameters are provided in an anonymous reposi-744

tory at https://anonymous.4open.science/r/Triple-BERT. The data used is from745

the public New York taxi dataset, available at https://www.nyc.gov/site/tlc/about/746

tlc-trip-record-data.page.747

Guidelines:748

• The answer NA means that paper does not include experiments requiring code.749

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/750

public/guides/CodeSubmissionPolicy) for more details.751

• While we encourage the release of code and data, we understand that this might not be752

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not753

including code, unless this is central to the contribution (e.g., for a new open-source754

benchmark).755

• The instructions should contain the exact command and environment needed to run to756

reproduce the results. See the NeurIPS code and data submission guidelines (https:757

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.758

• The authors should provide instructions on data access and preparation, including how759

to access the raw data, preprocessed data, intermediate data, and generated data, etc.760

24

https://anonymous.4open.science/r/Triple-BERT
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new761

proposed method and baselines. If only a subset of experiments are reproducible, they762

should state which ones are omitted from the script and why.763

• At submission time, to preserve anonymity, the authors should release anonymized764

versions (if applicable).765

• Providing as much information as possible in supplemental material (appended to the766

paper) is recommended, but including URLs to data and code is permitted.767

6. Experimental setting/details768

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-769

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the770

results?771

Answer: [Yes]772

Justification: The experimental settings and environment details are described in Appendix773

E.1 and Appendix E.2.774

Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The experimental setting should be presented in the core of the paper to a level of detail777

that is necessary to appreciate the results and make sense of them.778

• The full details can be provided either with the code, in appendix, or as supplemental779

material.780

7. Experiment statistical significance781

Question: Does the paper report error bars suitably and correctly defined or other appropriate782

information about the statistical significance of the experiments?783

Answer: [Yes]784

Justification: We repeat the experiment 3 times and report the fluctuations using shadows in785

Fig. 3 and Fig. 4, and the error bars in Fig. 6.786

Guidelines:787

• The answer NA means that the paper does not include experiments.788

• The authors should answer "Yes" if the results are accompanied by error bars, confi-789

dence intervals, or statistical significance tests, at least for the experiments that support790

the main claims of the paper.791

• The factors of variability that the error bars are capturing should be clearly stated (for792

example, train/test split, initialization, random drawing of some parameter, or overall793

run with given experimental conditions).794

• The method for calculating the error bars should be explained (closed form formula,795

call to a library function, bootstrap, etc.)796

• The assumptions made should be given (e.g., Normally distributed errors).797

• It should be clear whether the error bar is the standard deviation or the standard error798

of the mean.799

• It is OK to report 1-sigma error bars, but one should state it. The authors should800

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis801

of Normality of errors is not verified.802

• For asymmetric distributions, the authors should be careful not to show in tables or803

figures symmetric error bars that would yield results that are out of range (e.g. negative804

error rates).805

• If error bars are reported in tables or plots, The authors should explain in the text how806

they were calculated and reference the corresponding figures or tables in the text.807

8. Experiments compute resources808

Question: For each experiment, does the paper provide sufficient information on the com-809

puter resources (type of compute workers, memory, time of execution) needed to reproduce810

the experiments?811

Answer: [Yes]812

Justification: The compute resources are described in Appendix E.1, and the computation813

time and GPU usage are provided in Table 1.814

25

Guidelines:815

• The answer NA means that the paper does not include experiments.816

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,817

or cloud provider, including relevant memory and storage.818

• The paper should provide the amount of compute required for each of the individual819

experimental runs as well as estimate the total compute.820

• The paper should disclose whether the full research project required more compute821

than the experiments reported in the paper (e.g., preliminary or failed experiments that822

didn’t make it into the paper).823

9. Code of ethics824

Question: Does the research conducted in the paper conform, in every respect, with the825

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?826

Answer: [Yes]827

Justification: [NA]828

Guidelines:829

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.830

• If the authors answer No, they should explain the special circumstances that require a831

deviation from the Code of Ethics.832

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-833

eration due to laws or regulations in their jurisdiction).834

10. Broader impacts835

Question: Does the paper discuss both potential positive societal impacts and negative836

societal impacts of the work performed?837

Answer: [Yes]838

Justification: Please refer to Appendix F.2.839

Guidelines:840

• The answer NA means that there is no societal impact of the work performed.841

• If the authors answer NA or No, they should explain why their work has no societal842

impact or why the paper does not address societal impact.843

• Examples of negative societal impacts include potential malicious or unintended uses844

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations845

(e.g., deployment of technologies that could make decisions that unfairly impact specific846

groups), privacy considerations, and security considerations.847

• The conference expects that many papers will be foundational research and not tied848

to particular applications, let alone deployments. However, if there is a direct path to849

any negative applications, the authors should point it out. For example, it is legitimate850

to point out that an improvement in the quality of generative models could be used to851

generate deepfakes for disinformation. On the other hand, it is not needed to point out852

that a generic algorithm for optimizing neural networks could enable people to train853

models that generate Deepfakes faster.854

• The authors should consider possible harms that could arise when the technology is855

being used as intended and functioning correctly, harms that could arise when the856

technology is being used as intended but gives incorrect results, and harms following857

from (intentional or unintentional) misuse of the technology.858

• If there are negative societal impacts, the authors could also discuss possible mitigation859

strategies (e.g., gated release of models, providing defenses in addition to attacks,860

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from861

feedback over time, improving the efficiency and accessibility of ML).862

11. Safeguards863

Question: Does the paper describe safeguards that have been put in place for responsible864

release of data or models that have a high risk for misuse (e.g., pretrained language models,865

image generators, or scraped datasets)?866

Answer: [NA]867

Justification: [NA]868

26

https://neurips.cc/public/EthicsGuidelines

Guidelines:869

• The answer NA means that the paper poses no such risks.870

• Released models that have a high risk for misuse or dual-use should be released with871

necessary safeguards to allow for controlled use of the model, for example by requiring872

that users adhere to usage guidelines or restrictions to access the model or implementing873

safety filters.874

• Datasets that have been scraped from the Internet could pose safety risks. The authors875

should describe how they avoided releasing unsafe images.876

• We recognize that providing effective safeguards is challenging, and many papers do877

not require this, but we encourage authors to take this into account and make a best878

faith effort.879

12. Licenses for existing assets880

Question: Are the creators or original owners of assets (e.g., code, data, models), used in881

the paper, properly credited and are the license and terms of use explicitly mentioned and882

properly respected?883

Answer: [Yes]884

Justification: The papers corresponding to the environments used are cited in Section 4, and885

the toolkit employed is cited in Appendix E.1 and Appendix E.2.886

Guidelines:887

• The answer NA means that the paper does not use existing assets.888

• The authors should cite the original paper that produced the code package or dataset.889

• The authors should state which version of the asset is used and, if possible, include a890

URL.891

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.892

• For scraped data from a particular source (e.g., website), the copyright and terms of893

service of that source should be provided.894

• If assets are released, the license, copyright information, and terms of use in the895

package should be provided. For popular datasets, paperswithcode.com/datasets896

has curated licenses for some datasets. Their licensing guide can help determine the897

license of a dataset.898

• For existing datasets that are re-packaged, both the original license and the license of899

the derived asset (if it has changed) should be provided.900

• If this information is not available online, the authors are encouraged to reach out to901

the asset’s creators.902

13. New assets903

Question: Are new assets introduced in the paper well documented and is the documentation904

provided alongside the assets?905

Answer: [NA]906

Justification: [NA]907

Guidelines:908

• The answer NA means that the paper does not release new assets.909

• Researchers should communicate the details of the dataset/code/model as part of their910

submissions via structured templates. This includes details about training, license,911

limitations, etc.912

• The paper should discuss whether and how consent was obtained from people whose913

asset is used.914

• At submission time, remember to anonymize your assets (if applicable). You can either915

create an anonymized URL or include an anonymized zip file.916

14. Crowdsourcing and research with human subjects917

Question: For crowdsourcing experiments and research with human subjects, does the paper918

include the full text of instructions given to participants and screenshots, if applicable, as919

well as details about compensation (if any)?920

Answer: [NA]921

Justification: [NA]922

27

paperswithcode.com/datasets

Guidelines:923

• The answer NA means that the paper does not involve crowdsourcing nor research with924

human subjects.925

• Including this information in the supplemental material is fine, but if the main contribu-926

tion of the paper involves human subjects, then as much detail as possible should be927

included in the main paper.928

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,929

or other labor should be paid at least the minimum wage in the country of the data930

collector.931

15. Institutional review board (IRB) approvals or equivalent for research with human932

subjects933

Question: Does the paper describe potential risks incurred by study participants, whether934

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)935

approvals (or an equivalent approval/review based on the requirements of your country or936

institution) were obtained?937

Answer: [NA]938

Justification: [NA]939

Guidelines:940

• The answer NA means that the paper does not involve crowdsourcing nor research with941

human subjects.942

• Depending on the country in which research is conducted, IRB approval (or equivalent)943

may be required for any human subjects research. If you obtained IRB approval, you944

should clearly state this in the paper.945

• We recognize that the procedures for this may vary significantly between institutions946

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the947

guidelines for their institution.948

• For initial submissions, do not include any information that would break anonymity (if949

applicable), such as the institution conducting the review.950

16. Declaration of LLM usage951

Question: Does the paper describe the usage of LLMs if it is an important, original, or952

non-standard component of the core methods in this research? Note that if the LLM is used953

only for writing, editing, or formatting purposes and does not impact the core methodology,954

scientific rigorousness, or originality of the research, declaration is not required.955

Answer: [NA]956

Justification: This paper uses LLMs solely to check grammar and spelling.957

Guidelines:958

• The answer NA means that the core method development in this research does not959

involve LLMs as any important, original, or non-standard components.960

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)961

for what should or should not be described.962

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Setup
	Methodology
	Overview
	Network Architecture
	Feature Extractors
	Actor Sub-Networks
	Critic Sub-Networks

	Training Process
	Stage 1: Decentralized IDDQN Training
	Stage 2: Centralized TD3 Training

	Experiment
	Conclusion
	Action Space Size
	BiParite Graph Construction
	IDDQN Bipartite Graph
	TD3 Bipartite Graph

	Policy Gradient Proof
	Training Process
	Stage 1: IDDQN Algorithm
	Stage 2: TD3 Algorithm

	Experiment Details
	Experiment Configurations
	Simulation Setup
	Introduction of Comparative Methods
	Additional Experiment Result

	Discussions
	Limitations and Future Works
	Societal Impacts

