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Abstract001

Current Large Language Models (LLMs) for002
understanding proteins primarily treats amino003
acid sequences as a text modality. Meanwhile,004
Protein Language Models (PLMs), such as005
ESM-2, have learned massive sequential evo-006
lutionary knowledge from the universe of natu-007
ral protein sequences. Furthermore, structure-008
based encoders like ProteinMPNN learn the009
structural information of proteins through010
Graph Neural Networks. However, whether the011
incorporation of protein encoders can enhance012
the protein understanding of LLMs has not013
been explored. To bridge this gap, we propose014
EVOLLAMA, a multimodal framework that con-015
nects a structure-based encoder, a sequence-016
based protein encoder and an LLM for protein017
understanding. EVOLLAMA consists of a Pro-018
teinMPNN structure encoder, an ESM-2 pro-019
tein sequence encoder, a multimodal projector020
to align protein and text representations and a021
Llama-3 text decoder. To train EVOLLAMA,022
we fine-tune it on protein-oriented instructions023
and protein property prediction datasets verbal-024
ized via natural language instruction templates.025
Our experiments show that EVOLLAMA’s pro-026
tein understanding capabilities have been sig-027
nificantly enhanced, outperforming other fine-028
tuned protein-oriented LLMs in zero-shot set-029
tings by an average of 1%-8% and surpassing030
the state-of-the-art baseline with supervised031
fine-tuning by an average of 6%. On pro-032
tein property prediction datasets, our approach033
achieves promising results that are competitive034
with state-of-the-art task-specific baselines. We035
will release our code in a future version.036

1 Introduction037

The rapid advancements in Natural Language Pro-038

cessing (NLP) have led to the development of039

Large Language Models (LLMs) that are capable040

of understanding and generating human language.041

These models such as GPT-3.5 (OpenAI, 2022),042

GPT-4 (Achiam et al., 2023) and Llama (Touvron043

et al., 2023a,b; Dubey et al., 2024), inherently pos- 044

sess a certain level of world knowledge and have 045

demonstrated remarkable proficiency across a wide 046

range of tasks. Recently, the field of Bioinformat- 047

ics has seen the emergence of Transformer-based 048

(Vaswani et al., 2017) Protein Language Models 049

(PLMs) like ProtBert (Elnaggar et al., 2021) and 050

ESM (Rives et al., 2021; Lin et al., 2022). These 051

sequence-based encoders are pre-trained on a large 052

number of amino acid sequences to capture the 053

functional information embedded within proteins. 054

Moreover, structure-based encoders like Protein- 055

MPNN (Dauparas et al., 2022) and GearNet (Zhang 056

et al., 2022b) utilize Graph Neural Networks to 057

learn the structural information of proteins. 058

Despite the success of protein encoders and 059

LLMs in their respective domains, a significant gap 060

remains in integrating the knowledge from protein 061

encoders into LLMs to address biological prob- 062

lems by leveraging the parametric knowledge of 063

LLMs. Current LLMs treat amino acid sequences 064

as a text modality (Pei et al., 2023; Fang et al., 065

2023), potentially failing to leverage the rich struc- 066

tural and sequential information of proteins that 067

protein encoders are designed to capture. More- 068

over, protein encoders face challenges in multi-task 069

learning, making them unable to follow human 070

instructions. Besides, the gap between protein en- 071

coders and LLMs leads to significant challenges 072

in aligning different modalities, even between the 073

primary and tertiary structures of proteins (Zhang 074

et al., 2023). 075

To address the aforementioned challenges, we 076

introduce EVOLLAMA, a multimodal framework 077

designed to integrate the capabilities of protein en- 078

coders with an LLM. EVOLLAMA combines the 079

ESM-2 (Lin et al., 2022) protein sequence encoder, 080

which captures sequential evolutionary knowledge 081

from amino acid sequences, the ProteinMPNN 082

(Dauparas et al., 2022) structure encoder that learns 083

geometric features from 3D protein structures, a 084
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multimodal projector that aligns protein and text085

representations, and a Llama-3 (Dubey et al., 2024)086

text decoder for generating natural language out-087

puts.088

We propose a two-stage training approach, and089

the experimental results demonstrate that EVOL-090

LAMA with zero-shot outperforms the baselines091

fine-tuned on the Mol-Instructions (Fang et al.,092

2023) dataset by an average of 1%-8% and sur-093

passes the current state-of-the-art model with su-094

pervised fine-tuning by an average of 6%. Addi-095

tionally, on protein property prediction tasks based096

on the PEER benchmark (Xu et al., 2022), EVOL-097

LAMA shows promising results that are competitive098

with task-specific baselines.099

Our contributions are listed as follows:100

• Leverage multimodal representations of101

protein structures and sequences. We align102

protein structure and sequence representations103

with LLM text modalities, bridging the gap in104

limitations of protein encoders that are unable105

to directly exploit the advanced capabilities of106

LLMs. Our approach enhances LLMs’ under-107

standing of proteins, leveraging their paramet-108

ric knowledge to address biological problems109

and laying a foundation for future research on110

incorporating a broader range of biomolecular111

modalities.112

• Multi-task learning and instruction follow-113

ing capability. We implement a two-stage114

training approach. After projection tuning,115

EVOLLAMA can follow various human in-116

structions and solve downstream tasks in zero-117

shot settings. During the supervised fine-118

tuning stage, experiments demonstrate that119

tasks in the PEER benchmark have few interre-120

lations and do not negatively affect each other121

when multi-task fine-tuning is employed.122

• Plug-and-play architecture and efficient123

fine-tuning approach. Different protein en-124

coders and LLMs can be used in our plug-125

and-play architecture. Extensive experiments126

demonstrate that the projection tuning stage127

can be optional, with the frozen LLM pa-128

rameters during supervised fine-tuning signif-129

icantly reducing trainable parameters. Addi-130

tionally, we introduce a simple yet effective131

fusion method to align structure and sequence132

representations, improving efficiency during133

both training and inference.134

2 Related Work 135

Protein-oriented LLMs BioT5 (Pei et al., 2023) 136

and BioT5+ (Pei et al., 2024) captures the under- 137

lying relations and properties of bio-entities such 138

as molecules and proteins. ProLLaMA (Lv et al., 139

2024) introduces a training framework to transform 140

a LLM into a multi-task protein LLM, focusing on 141

protein sequence generation and superfamily pre- 142

diction tasks. InstructProtein (Wang et al., 2024b) 143

utilizes a knowledge graph based-generation frame- 144

work to construct instructions. These methods uti- 145

lize text-format protein sequences while EVOL- 146

LAMA focuses on leveraging multimodal represen- 147

tations of proteins. Prot2Text (Abdine et al., 2024) 148

directly fuses the structure and sequence represen- 149

tations as inputs into the multi-head cross-attention 150

module within the Transformer decoder. Compared 151

to Prot2Text, EVOLLAMA maps the structure and 152

sequence features into language embedding tokens, 153

enabling it to handle PPI prediction tasks, which 154

typically requires two proteins as inputs. Addi- 155

tionally, Prot2Text is designed to generate protein 156

descriptions rather than handle various protein- 157

oriented tasks, whereas EVOLLAMA can follow 158

human instructions, even in zero-shot settings. Fur- 159

ther related work is discussed in Appendix A. 160

Protein Representations BERT-based PLMs 161

such as ProtBert (Elnaggar et al., 2021), Protein- 162

BERT (Brandes et al., 2022) and ESM (Rives et al., 163

2021; Lin et al., 2022) learn protein sequence rep- 164

resentations through Masked Language Modeling 165

objective. Gligorijević et al. (2021) propose a 166

Graph Convolutional Network to encode protein 167

structures. Zhang et al. (2022b) present a protein 168

graph encoder to learn protein geometric features. 169

Apart from these sequence-based protein encoders, 170

some work employ Graph Neural Networks to learn 171

the geometric features of proteins. Dauparas et al. 172

(2022) introduce a protein sequence design method 173

based on Message Passing Neural Network with 174

3 encoder and 3 decoder layers. We adopt the en- 175

coder layers of ProteinMPNN as a structure-based 176

encoder in our approach. GearNet (Zhang et al., 177

2022b) performs relational message passing on 178

protein residue graphs for protein representation 179

learning. While these methods effectively learn 180

the protein representations through sequences or 181

structures, they do not utilize natural language with 182

knowledge of protein properties. Therefore, EVOL- 183

LAMA aligns protein and text representations to 184

enhance LLM’s understanding of proteins. 185
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3 Approach186

EVOLLAMA aims to align protein informa-187

tion from both pre-trained structure-based and188

sequence-based protein encoders with an advanced189

LLM. Both language and protein models are open-190

sourced. We target to bridge the gap between the191

protein encoders and LLM using MLP projection192

layers (Sec. 3.1), with an overview of our model193

displayed in Fig. 1. To achieve an effective EVOL-194

LAMA, we propose a two-stage training approach195

(Sec. 3.2). The initial stage involves pre-training196

the model on a large collection of aligned protein-197

text pairs to acquire protein language knowledge.198

In the second stage, we fine-tune the model with the199

high-quality protein-text dataset to enhance gener-200

ation reliability and usability.201

3.1 Architecture202

In this section, we will introduce the overall EVOL-203

LAMA in three parts: the protein encoders, the204

projection layer and the language decoder.205

Protein Encoders Given the input amino acid206

sequence Xseq, we consider the pre-trained protein207

encoder ESM-2 (Lin et al., 2022), which provides208

the protein feature Zseq = SeqEncoder(Xseq).209

The 3D structure of the given amino acid se-210

quence is predicted using AlphaFold-2 (Jumper211

et al., 2021) or ESMFold (Lin et al., 2022). A pro-212

tein structure encoder, such as ProteinMPNN and213

GearNet, is used to extract the feature Zstruct =214

StructEncoder(Xstruct).215

Projection Layer To map the outputs of the pro-
tein encoders into the same space as the text fea-
tures from word embedding, we apply an MLP to
convert Zseq and Zstruct into language embedding
tokens Hseq and Hstruct separately, which have the
same dimensionality of the word embedding space
in the language model:

Hseq = MLPseq(Zseq),

Zseq = SeqEncoder(Xseq),

Hstruct = MLPstruct(Zstruct),

Zstruct = StructEncoder(Xstruct)

Furthermore, since both structure-based and216

sequence-based protein encoders extract features217

based on residue positions, the lengths of their fea-218

ture representations are dependent solely on the219

length of the amino acid sequence. Therefore, we220

fuse the structure and sequence features by employ- 221

ing an element-wise addition of the correspond- 222

ing residue features. The fused protein represen- 223

tations Hp = Hseq ⊕ Hstruct reduces the protein 224

embedding tokens by half, significantly decreasing 225

the training and inference latency. Note that our 226

simple projection scheme is lightweight and cost- 227

effective, which allows us to iterate data centric 228

experiments quickly. We leave exploring possi- 229

bly more effective and sophisticated architecture 230

designs for EVOLLAMA as future work. 231

Language Decoder Given the protein structure
Xstruct, amino acid sequence Xseq and the fused
projected embeddings Hp, we have conversation
data (Xq,Xa), where Xq and Xa represent the
protein-related question and its corresponding an-
swer, respectively. We organize them as a sequence
and perform instruction-tuning of the LLM on the
prediction tokens, using its original auto-regressive
training objective. Specifically, we compute the
probability of generating target answers Xa by:

p(Xa|Xstruct,Xseq,Xq)

=

|Xa|∏
i=1

pθ(Xa,i|Xstruct,Xseq,Xq,Xa,<i) (1)

where θ is the trainable parameters. EVOLLAMA 232

model design is compatible with any off-the-shelf 233

GPT-style pre-trained LLM. EVOLLAMA adopts 234

Llama-3 8B (Dubey et al., 2024) for further train- 235

ing. A causal mask is applied to all the attention 236

operations, including the attention between protein 237

features Hp. 238

3.2 Training 239

As illustrated in Fig. 1, the training process of the 240

EVOLLAMA model consists of two stages: projec- 241

tion tuning and supervised fine-tuning, with the 242

first stage being optional. 243

Stage 1: Projection Tuning We keep both the 244

protein encoders and LLM weights frozen, and 245

maximize the likelihood of Eq. 1 with the param- 246

eters of projection MLP only (Fig. 1(a)). In this 247

way, the protein features Hp can be aligned with 248

the pre-trained LLM word embedding. This stage 249

can be understood as training a compatible protein 250

projector for the frozen LLM. 251

Stage 2: Supervised Fine-Tuning To efficiently 252

fine-tune EVOLLAMA and preserve the internal 253

knowledge of the LLM, its parameters are frozen 254
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Figure 1: Overall architecture and the training pipeline of the EVOLLAMA.

during this stage. Continuing to update the pre-255

trained weights of the projection layers and pro-256

tein encoders helps EVOLLAMA learn more protein257

knowledge and enhance its instruction following258

capability.259

4 Protein Instruction-Following Data260

In this section, we introduce the construction of261

protein instruction-following data. It consists of262

two sets, projection tuning and supervised fine-263

tuning, which are used at different training stages,264

described in Sec. 3. An example of the projec-265

tion tuning data and supervised fine-tuning data266

is illustrated in Fig. 2. Formally, for each exam-267

ple, we define Xp,Xq,Xa as the protein (fused268

protein representations, consisting of the 3D struc-269

ture Xstruct and the amino acid sequence Xseq), the270

protein-related natural language question, and the271

corresponding answer, respectively.272

Projection Tuning Data It consists of protein-273

text pairs originated from the Swiss-Prot (Consor-274

tium, 2023) database. Due to limited computational275

resources, we directly utilize the 3D structures pre-276

dicted by AlphaFold-2 (Jumper et al., 2021) from277

Swiss-Prot. The database contains 571K manually-278

annotated records, each containing information in-279

cluding protein name, subcellular location, func-280

tion and families. For Xq, we construct 10 tem-281

plates that ask the model to briefly describe the282

input protein Xp from various aspects. For Xa,283

information is extracted from the filtered Swiss-284

Prot annotation and constructed using a pre-defined285

template to ensure the consistency and clarity of286

protein descriptions. The question and answer tem-287

plates are listed in Fig. 4.288

Case #1:
Projection Tuning Data

Input 𝐗!"#$%": Input 𝐗!&': MLLPNILLTGTPGVGKTTLGKELASRSGLKYINVGDLAREGQLYD ...

Prompt 𝐗(: <protein> Examine the protein determined by the provided amino acid sequence, including

an in-depth look at its function, where it resides within the cell, and the broader family of proteins it is a

member of.

Response: The given protein Adenylate kinase isoenzyme 6 suggests its potential function as broad-

specificity nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal

phosphate group between nucleoside triphosphates and monophosphates. May have a role in nuclear

energy homeostasis. Has also ATPase activity. May be involved in regulation of Cajal body (CB) formation.

It belongs to the adenylate kinase family. AK6 subfamily.

Supervised Fine-Tuning Data

Case #2 (PEER):

Response: Yes.

Case #1 (PMol):

Response: Evaluation of the protein sequence indicates that the associated enzyme exhibits catalytic

activity in the form of this chemical reaction: acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + H(+)

+ N- acetyl-alpha-D-glucosamine 1-phosphate.

Input 𝐗!"#$%": Input 𝐗!&': MPAAVAIILAAGLGTRMRSSAPKALHPIAGRPMLGHLIAACEAVFD ...

Prompt 𝐗(: <protein> Examine the provided protein sequence and determine the catalytic activity of

the enzyme it represents, focusing on the chemical reaction it promotes.

Input 𝐗!"#$%": Input 𝐗!&': MPSGFQQIGSEDGEPPQQRVTGTLVLAVFSAVLGSLQFGYNIGVI ...

Input 𝐗!"#$%": Input 𝐗!&': MDELAGGGGGGPGMAAPPRQQQGPGGNLGLSPGGNGAAGGG ...

Prompt 𝐗( : <protein> <sep> <protein> Infer the interaction potential between the two human

protein sequences. Answer the question using a single word or phrase.

Figure 2: An example of the projection tuning data and
supervised fine-tuning data. Note that the special token
<protein> denotes the fused protein representations of
structural and sequential features.

Supervised Fine-tuning Data To align the 289

model to follow a variety of instructions, we 290

present and curate diverse instruction-following 291

data about the provided proteins, by verbalizing 292

protein-related tasks. It consists of 10 tasks includ- 293

ing Mol-Instructions (Fang et al., 2023) and PEER 294

benchmark (Xu et al., 2022). We use ESMFold 295

(Lin et al., 2022) to accelerate protein structure 296

prediction for sequences in these two datasets. 297

• Mol-Instructions is a comprehensive in- 298

struction dataset designed for the biomolec- 299

ular realm. It includes three compo- 300
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nents: molecule-oriented instructions, protein-301

oriented instructions and biomolecular text in-302

structions. We adopt protein-oriented instruc-303

tions in Mol-Instructions (named PMol) for304

the supervised fine-tuning stage. PMol details305

will be discussed in Sec. 5.1. For each task306

in Mol-Instructions, we make simple modifi-307

cations to the original prompts to fit our use308

cases and ensure coherence. Details are dis-309

cussed in Appendix B.2 and some modifica-310

tion cases are listed in Fig. 7.311

• PEER is a comprehensive benchmark for gen-312

eral protein sequence understanding tasks in-313

cluding protein localization prediction, pro-314

tein structure prediction and protein-protein315

interaction prediction. PEER benchmark de-316

tails will be discussed in Sec. 5.2. For each317

task in PEER benchmark, there are 10 ques-318

tion templates and 1 answer template, some319

of which are listed in Fig. 6. In response tem-320

plates for other tasks, categories are repre-321

sented by natural language. However, for fold322

classification, we use integers from 0 to 1,194323

due to the large number of categories.324

5 Experiments325

We evaluate EVOLLAMA1 on downstream tasks in-326

cluding protein understanding tasks based on Mol-327

Instructions (Sec. 5.1) and protein property predic-328

tion tasks based on PEER benchmark (Sec. 5.2).329

Additionally, the structure encoder in our approach330

is replaced with GearNet to construct EVOLLAMA331

(GearNet+ESM-2) for the experiments. Due to332

space constraints, additional comparative evalua-333

tions and ablation studies on protein sequence en-334

coders and LLMs are provided in Appendix E.1335

and E.2, respectively. We evaluate our approach336

in both zero-shot settings, where only the projec-337

tion layers are aligned during the projection tuning338

stage, and in supervised fine-tuning without the pro-339

jection tuning stage. Details of the experimental340

setups are discussed in Appendix C.341

5.1 Protein Understanding Tasks342

Task Descriptions Protein understanding tasks343

use PMol for fine-tuning and evaluation, which344

consist of four distinct tasks with datasets con-345

structed based on UniProtKB (Consortium, 2021).346

Protein function prediction outputs the function of347

1Unless specified otherwise, EVOLLAMA refers to EVOL-
LAMA (ProteinMPNN+ESM-2).

the given protein. Catalytic activity prediction out- 348

puts the catalytic activity of the input protein and 349

the chemical reactions it promotes. Domain/motif 350

prediction outputs the domains or motifs that the 351

given protein may contain. Functional description 352

generation outputs the description of the input pro- 353

tein’s function, subcellular localization, and any 354

biological processes it may be a part of. 355

Baselines We compare our approach with the 356

protein-oriented LLMs in Mol-Instructions includ- 357

ing LLaMA (Touvron et al., 2023a), Alpaca (Tloen, 358

2023), Baize (Xu et al., 2023a), ChatGLM (Zeng 359

et al., 2022), Galactica (Taylor et al., 2022) and 360

Vicuna. Apart from these LLMs, we use Prot2Text 361

(Abdine et al., 2024) and ProLLaMA (Lv et al., 362

2024) as our baseline models in zero-shot settings. 363

These models lack support for arbitrary prompts. 364

Prot2Text is designed to generate protein descrip- 365

tions, while ProLLaMA predicts protein superfam- 366

ilies. Therefore, we evaluate protein function pre- 367

diction for Prot2Text and domain/motif prediction 368

for ProLLaMA. For protein understanding tasks, 369

we follow Mol-Instructions, taking ROUGE-L (Lin, 370

2004) as the evaluation metric. Details of ROUGE- 371

L implementation are discussed in Appendix D. 372

Results As shown in Tab. 1, EVOLLAMA and 373

EVOLLAMA (GearNet+ESM-2) with zero-shot not 374

only handle all protein understanding tasks but 375

also outperform Prot2Text and ProLLaMA. Fur- 376

thermore, they surpass or approach ChatGLM, 377

Llama-2-7B-Chat and Vicuna fine-tuned on protein- 378

oriented instructions by 1%-8%, demonstrating that 379

during the projection tuning stage, EVOLLAMA 380

and EVOLLAMA (GearNet+ESM-2) learn protein 381

knowledge and can follow human instructions to 382

generalize their knowledge for various downstream 383

tasks. Additionally, EVOLLAMA outperforms all 384

baseline models, including Llama-2-7B-Chat fine- 385

tuned on the complete Mol-Instructions dataset 386

(Mol) after supervised fine-tuning, highlighting 387

the effectiveness of our approach. Notably, our 388

approach uses a relatively small amount of data 389

and has significantly fewer trainable parameters 390

than the baseline models using full-parameter fine- 391

tuning. The experimental results highlight the im- 392

portance of leveraging the multimodal structure and 393

sequence representations during training LLMs. 394

5.2 Protein Property Prediction Tasks 395

Task Descriptions Protein property prediction 396

tasks use PEER benchmark for fine-tuning and 397
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Models Data
Trainable/Total ROUGE-L(↑)

#Params. PF GF CA DP Avg.

Models in zero-shot settings
Galactica - - 0.12 0.12 0.13 0.09 0.1150
Prot2Text - - 0.14 - - - 0.1400
ProLLaMA - - - - - 0.02 0.0200
EVOLLAMA (GearNet+ESM-2) - - 0.16 0.16 0.21 0.15 0.1700
EVOLLAMA (ProteinMPNN+ESM-2) - - 0.16 0.14 0.15 0.11 0.1400

Fine-tuned models
ChatGLM PMol 6B/6B 0.15 0.14 0.13 0.10 0.1300
Llama-2-7B-Chat PMol 7B/7B 0.15 0.14 0.16 0.12 0.1425
Llama-2-7B-Chat Mol 7B/7B 0.42 0.44 0.52 0.46 0.4600
Vicuna PMol 7B/7B 0.07 0.08 0.08 0.06 0.0725
Alpaca PMol 7B/7B 0.2 0.1 0.23 0.12 0.1625
Baize PMol 7B/7B 0.2 0.15 0.22 0.13 0.1750
EVOLLAMA (GearNet+ESM-2) PMol, PEER 720M/8.8B (8.2%) 0.25 0.32 0.34 0.31 0.3050
EVOLLAMA (ProteinMPNN+ESM-2) PMol, PEER 690M/8.8B (7.9%) 0.48 0.50 0.60 0.50 0.5200

Table 1: Results of protein understanding tasks (Best, Second Best, Third Best). PF refers to protein function
prediction. GF refers to functional description generation. CA refers to catalytic activity prediction. DP refers
to domain/motif prediction. Note that Mol refers to the Mol-Instructions with 3 components: molecule-oriented
instructions, protein-oriented instructions (named PMol), and biomolecular text instructions. - indicates the data is
not applicable to the task.

evaluation, which consist of 6 tasks. Solubility398

prediction (Khurana et al., 2018), defined as a bi-399

nary classification task, aims to predict whether400

a given protein is soluble or not. Subcellular lo-401

calization prediction (Almagro Armenteros et al.,402

2017), defined as a ten-class classification task,403

aims to predict where a given protein locates in404

the cell. Binary localization prediction, a simpli-405

fied version of subcellular localization prediction,406

is defined as a binary classification task that aims407

to determine whether a given protein is soluble or408

membrane-bound. Fold classification (Fox et al.,409

2014; Hou et al., 2018) requires the model to clas-410

sify the global structural topology of a given protein411

into one of 1195 classes at the fold level. Yeast PPI412

prediction (Guo et al., 2008) and human PPI predic-413

tion (Peri et al., 2003; Pan et al., 2010) are defined414

as binary localization tasks, which aim to predict415

whether two given yeast or human proteins interact416

or not respectively. It is worth noting that for all417

tasks, protein sequences in the training set with418

high similarity to those in the test set are excluded419

based on the sequence identity. For example, se-420

quences with ≥ 30% identity are excluded in the421

solubility prediction task. Therefore, a key chal-422

lenge in protein property prediction tasks lies in423

evaluating a model’s ability to generalize across424

dissimilar protein sequences.425

Baselines We compare our approach with the 426

following baselines in PEER benchmark. Fea- 427

ture engineers include Dipeptide Deviation from 428

Expected Mean (DDE) (Saravanan and Gautham, 429

2015) and Moran correlation (Moran) (Feng and 430

Zhang, 2000). Protein sequence encoders in- 431

clude LSTM (Hochreiter and Schmidhuber, 1997), 432

Transformer (Vaswani et al., 2017), shallow CNN 433

(Shanehsazzadeh et al., 2020) and ResNet (He 434

et al., 2016). Pre-trained PLMs include ProtBert 435

(Elnaggar et al., 2021) and ESM-1b (Rives et al., 436

2021). Protein-oriented LLMs include Llama-3- 437

8B-Instruct (Dubey et al., 2024) and InstructProtein 438

(Wang et al., 2024b). For protein property predic- 439

tion tasks, we take accuracy (Acc) as the evaluation 440

metric. 441

Results As displayed in Tab. 2, EVOLLAMA with 442

zero-shot achieves a comparable performance with 443

both task-specific and single models across several 444

tasks including solubility prediction, binary local- 445

ization prediction and PPI prediction tasks. EVOL- 446

LAMA (GearNet+ESM-2) with zero-shot performs 447

relatively worse than EVOLLAMA due to its lower 448

capability to follow instructions. Besides, the su- 449

pervised fine-tuning stage significantly enhances 450

the performance of our approach, enabling it to out- 451

perform or approach the previous state-of-the-art 452

models including ProtBert, ESM-1b and Instruct- 453
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Models Sol Sub Bin Fold Yst Hum Avg.

Task-specific models
DDE 59.77±1.21 49.17±0.40 77.43±0.42 9.57±0.46 55.83±3.13 62.77±2.30 52.42
Moran 57.73±1.33 31.13±0.47 55.63±0.85 7.10±0.56 53.00±0.50 54.67±4.43 43.21

CNN 64.43±0.25 58.73±1.05 82.67±0.32 10.93±0.35 55.07±0.02 62.60±1.67 55.74
ResNet 67.33±1.46 52.30±3.51 78.99±4.41 8.89±1.45 48.91±1.78 68.61±3.78 54.17
LSTM 70.18±0.63 62.98±0.37 88.11±0.14 8.24±1.61 53.62±2.72 63.75±5.12 57.81
Transformer 70.12±0.31 56.02±0.82 75.74±0.74 8.52±0.63 54.12±1.27 59.58±2.09 54.02

ProtBert 68.15±0.92 76.53±0.93 91.32±0.89 16.94±0.42 63.72±2.80 77.32±1.10 65.66
ESM-1b 70.23±0.75 78.13±0.49 92.40±0.35 28.17±2.05 57.00±6.38 78.17±2.91 67.35

Single models in zero-shot settings
EVOLLAMA (GearNet+ESM-2) 34.65±0.48 - 50.89±0.88 - 2.52±0.11 3.70±0.10 22.94
EVOLLAMA (ProteinMPNN+ESM-2) 50.76±0.47 8.16±0.27 92.85±0.21 0.65±0.06 53.59±0.36 50.21±0.79 42.70

Single fine-tuned models
InstructProtein 69.08±0.00 70.79±0.00 85.19±0.00 10.86±0.00 - - 58.98
Llama-3-8B-Instruct 69.13±0.39 51.36±0.06 98.91±0.00 8.77±0.40 56.05±0.53 62.87±0.34 57.85
EVOLLAMA (GearNet+ESM-2) 61.13±0.15 42.27±0.23 85.21±0.34 3.11±0.36 50.42±0.57 67.72±1.08 51.64
EVOLLAMA (ProteinMPNN+ESM-2) 72.37±0.35 73.25±0.27 99.73±0.05 10.96±0.36 57.45±0.78 72.71±1.15 64.41

Table 2: Results (in %) of protein property prediction tasks (Best, Second Best, Third Best). Sol represents solubility
prediction. Sub represents subcellular localization prediction. Bin represents binary localization prediction. Fold
represents fold classification. Yst represents yeast PPI prediction. Hum represents human PPI prediction. - indicates
the data is not applicable to the task.

Protein across multiple tasks. Additionally, we add454

a linear classification head to ESM-2 and fine-tune455

it with full parameters for 1K steps per task. ESM-2456

achieves an average score of 67.10, demonstrating457

that ESM-2 is a competitive baseline compared458

to ESM-1b. Our approach surpasses ESM-2 on459

binary localization prediction and human PPI pre-460

diction tasks while approaching it on other tasks.461

We find that when jointly fine-tuning models on var-462

ious tasks through multi-task learning, the perfor-463

mance improves compared to task-specific models,464

demonstrating no negative impact between tasks.465

However, more interrelated downstream tasks or466

data could be introduced in future work to further467

enhance the model’s performance.468

In particular, compared to task-specific mod-469

els, EVOLLAMA outperforms or approaches them470

across several tasks, except for fold classification.471

A possible explanation for the promising results is472

that EVOLLAMA learns the properties of proteins473

through various tasks by leveraging multimodal474

structure and sequence representations. Notably,475

both EVOLLAMA and Llama-3-8B-Instruct achieve476

the best performance on binary localization task,477

demonstrating the significant potential of LLMs478

to understand proteins. Additionally, BioT5 and479

BioT5+ are trained to solve four tasks, excluding480

subcellular localization prediction and fold classifi-481

cation, achieving average accuracy scores of 79.36482

and 79.01, respectively, across these tasks. In com-483

parison, EVOLLAMA has an average score of 75.57, 484

showing comparable performance with these two 485

models. A possible explanation for the relatively 486

higher accuracy of these two models is that they 487

incorporate molecules as a new modality and lever- 488

age more molecule-related data, potentially yield- 489

ing positive effects, while we focus only on protein 490

structures and sequences. A similar result can be 491

observed in Tab. 1, where Llama-2-7B-Chat fine- 492

tuned on the complete Mol-Instructions dataset, 493

including molecule-related data, performs signifi- 494

cantly better than when fine-tuned only on protein- 495

oriented instructions. We leave the exploration of 496

incorporating more biomolecular modalities, such 497

as molecules and DNA, for future work. 498

Additionally, compared to Llama-3-8B-Instruct, 499

used as a text decoder in our approach, EVOLLAMA 500

improves performance on all tasks by incorporating 501

the multimodal structure and sequence representa- 502

tions of proteins. 503

5.3 Ablation Study 504

In this section, we conduct ablation studies to ex- 505

plore the effect of the projection tuning stage, struc- 506

ture and sequence representations, and the fusion 507

method. For a fair comparison, the baselines are 508

trained using the same experimental setups dis- 509

cussed in Appendix C with 10K steps. We conduct 510

more evaluations on protein property prediction 511

tasks in Appendix E.2. 512
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Effect of the projection tuning stage We com-513

pare the performance of EVOLLAMA with and514

without the projection tuning stage in Tab. 3.515

EVOLLAMA, when continued to be fine-tuned after516

the projection tuning stage, achieves lower perfor-517

mance compared to direct supervised fine-tuning.518

A possible reason is that we use protein structures519

predicted by AlphaFold-2 during the projection520

tuning stage, while structures predicted by ESM-521

Fold are used during the supervised fine-tuning522

stage. The zero-shot ability discussed in Sec. 5.1523

and Sec. 5.2 highlights the effectiveness of the pro-524

jection tuning stage, demonstrating that the model525

learns to generalize its structural knowledge from526

structures predicted by AlphaFold-2 to those pre-527

dicted by ESMFold during inference. However, it’s528

challenging for models to learn the gap between529

protein structures predicted by AlphaFold-2 and530

ESMFold when the structure encoder and projec-531

tion layer are updated simultaneously during the532

supervised fine-tuning stage.533

Models PF GF CA DP Avg.

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800
EVOLLAMA

w/ PT
0.28 0.34 0.40 0.34 0.3400

Table 3: Effect of the projection tuning stage. The
experiments are conducted on protein understanding
tasks. PT refers to the projection tuning stage.

Effect of structure and sequence representations534

As shown in Tab. 4, EVOLLAMA incorporating535

both structure and sequence representations outper-536

forms those utilizing either alone, demonstrating537

the effectiveness of integrating both protein rep-538

resentations. EVOLLAMA (GearNet+ESM-2) sig-539

nificantly enhances the performance by leveraging540

structure and sequence representations. Further-541

more, EVOLLAMA with only a sequence-based pro-542

tein encoder surpasses the one with only a structure-543

based protein encoder, regardless of the protein544

structure encoder chosen. A possible explanation545

is that the features extracted by ESM-2 implicitly546

contain structural information, indicating that se-547

quence representations are easier for LLMs to learn.548

Moreover, the parameters of the structure encoder549

are one to two orders of magnitude fewer than those550

of the sequence encoder, leading to a more limited551

extraction of structural features. A case study on552

the effect of structure and sequence representations553

is conducted in Appendix F.554

Models PF GF CA DP Avg.

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800
EVOLLAMA

w/o ProteinMPNN
0.39 0.46 0.54 0.48 0.4675

EVOLLAMA

w/o ESM-2
0.35 0.42 0.50 0.41 0.4200

EVOLLAMA (GearNet+ESM-2) 0.30 0.32 0.36 0.30 0.3200

EVOLLAMA (GearNet+ESM-2)
w/o ESM-2

0.20 0.28 0.31 0.29 0.2700

Table 4: Effect of structure and sequence representa-
tions. The experiments are conducted on protein under-
standing tasks. Note that EVOLLAMA (GearNet+ESM-
2) (w/o GearNet) is equivalent to EVOLLAMA (w/o
ProteinMPNN), as both only utilize the sequence repre-
sentations extracted by the protein sequence encoder.

Effect of the fusion method To evaluate the ef- 555

fect of the fusion method, we directly use the struc- 556

ture and sequence features instead of fusing their 557

representations. As shown in Tab. 5, EVOLLAMA 558

with fused representations surpass the one with- 559

out, demonstrating the effectiveness of our fusion 560

method. However, EVOLLAMA (GearNet+ESM- 561

2) without fused representations outperforms the 562

one with them, indicating that for different protein 563

structure encoders, different fusion methods may 564

be chosen. Furthermore, the fused representations 565

reduce the token cost of the LLM, resulting in ap- 566

proximately 20% lower inference latency. 567

Models PF GF CA DP Avg. Latency

EVOLLAMA 0.43 0.46 0.55 0.48 0.4800 ×1.0
EVOLLAMA

w/o fused representations
0.42 0.44 0.55 0.48 0.4725 ×1.17

EVOLLAMA (GearNet+ESM-2) 0.30 0.32 0.36 0.30 0.3200 ×0.8
EVOLLAMA (GearNet+ESM-2)

w/o fused representations
0.31 0.34 0.39 0.36 0.3500 ×1.0

Table 5: Effect of the fusion method. The experiments
are conducted on protein understanding tasks.

6 Conclusion 568

In this paper, we propose EVOLLAMA, a mul- 569

timodal framework that connects ProteinMPNN, 570

ESM-2 650M and Llama-3 8B for protein under- 571

standing through a two-stage training process. Ex- 572

periments demonstrate that after the projection tun- 573

ing stage, EVOLLAMA in zero-shot settings out- 574

performs the fine-tuned baselines with full parame- 575

ters, surpassing the current state-of-the-art model 576

with supervised fine-tuning on the Mol-Instructions. 577

Additionally, our approach achieves promising re- 578

sults that are competitive with state-of-the-art task- 579

specific baselines on the PEER benchmark. 580
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Limitations581

EVOLLAMA incorporates the structure and se-582

quence representations of proteins to enhance583

LLM’s understanding of proteins. Due to the lack584

of experimentally determined structures for many585

proteins in our experiments, we use 3D structures586

predicted by AlphaFold-2 and ESMFold to fully587

leverage the data. These computationally predicted588

structures generally have relatively lower accuracy589

compared to wet lab experiments. Besides, training590

a single model to predict various protein properties591

presents challenges, causing EVOLLAMA to only592

approach the state-of-the-art performance for some593

tasks in protein property prediction.594
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(Du et al., 2021), with 6B parameters. Galactica 874

(Taylor et al., 2022) is a large language model that 875

trained on an extensive scientific corpus of papers 876

and knowledge bases, capable of storing, combin- 877

ing and reasoning about scientific knowledge. 878

Vision Language Models Vision Language 879

Models (VLMs) such as LLaVA (Liu et al., 2024a) 880

and InstructBLIP (Dai et al., 2024) have demon- 881

strated their capability to understand visual con- 882

tent. LLaVA introduces an end-to-end LMM that 883

connects a visual encoder and a LLM for visual 884

and language understanding. InstructBLIP pro- 885

poses a instruction tuning framework towards gen- 886

eralized vision-language models. Geneverse (Liu 887

et al., 2024b) is a collection of fine-tuned LLMs 888

and VLMs for three novel tasks in genomic and pro- 889

teomic research. For the protein task, Geneverse 890

uses protein structure images with the fixed capture 891

angle. In contrast, our approach treats amino acid 892

sequences and 3D structures as distinct modalities. 893

Unlike the visual information provided by protein 894

structure images, EVOLLAMA captures sequential 895

and structural features from the primary and tertiary 896

structures of proteins, offering a complementary 897

perspective on multimodal protein representations. 898
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Protein-oriented LLMs OntoProtein (Zhang899

et al., 2022a) integrate external factual knowledge900

from gene ontology into PLMs to enhance protein901

representations. ProteinChat (Guo et al., 2023) uti-902

lizes a Graph Neural Network encoder block com-903

bined with a Transformer encoder block to extract904

features from protein structures. Instead of intro-905

ducing complex Transformer blocks, EVOLLAMA906

uses MLP as a lightweight and cost-effective ap-907

proach to align different modalities. ProtST (Xu908

et al., 2023b) is a framework to enhance protein se-909

quence understanding through biomedical texts by910

utilizing a Protein Language Model (PLM) and a911

Biomedical Language Model (BLM). The weights912

of BLM are initialized from PubMedBERT-abs913

(Gu et al., 2021), which is pre-trained on PubMed914

abstracts. ProtChatGPT (Wang et al., 2024a) is915

trained with sequence-text pairs using a Protein-916

Language Pretraining Transformer initialized with917

the pre-trained weights of PubMedBERT (Gu et al.,918

2021) to incorporate external knowledge. Com-919

pared to ProtST and ProtChatGPT, EVOLLAMA920

does not rely on LLMs specifically trained on ex-921

ternal biomedical domain knowledge. Instead, we922

tune the projection layers from scratch, highlight-923

ing the generalizability of our plug-and-play ar-924

chitecture. ProteinGPT (Xiao et al., 2024) is a925

multimodal protein chat system trained through a926

two-stage process: modality alignment and instruc-927

tion tuning. In contrast, our approach demonstrates928

that the initial alignment stage can be optional929

(Sec. 5.3), making our method more efficient and930

reducing training costs. Furthermore, EVOLLAMA931

employs a template-based strategy to construct the932

instruction-following dataset, avoiding the use of933

GPT-4o for generating the QA dataset as described934

in Xiao et al. (2024). This template-driven ap-935

proach not only enables zero-shot capability in936

handling unseen instructions during the projection937

tuning stage (Sec. 5.1 and Sec. 5.2), showcasing938

the generalization and robustness of our method,939

but also eliminates the API call costs. ProteinCLIP940

(Wu et al., 2024) performs contrastive learning be-941

tween protein sequences and texts by employing a942

frozen protein encoder and a frozen text embedding943

encoder. While ProteinCLIP is designed for protein944

function related tasks, our approach can be adapted945

to various downstream tasks including catalytic946

activity prediction and domain/motif prediction.947

ProtLLM (Zhuo et al., 2024) is a cross-modal LLM948

designed for protein-centric and protein-language949

tasks. Unlike ProtLLM, our approach integrates950

both structure and sequence representations of pro- 951

teins, rather than relying solely on the sequence 952

modality. This allows for a more comprehensive 953

understanding of protein features. 954

Protein Representations DDE (Saravanan and 955

Gautham, 2015), based on the dipeptide frequency 956

within the protein sequence, and Moran (Feng and 957

Zhang, 2000), which defines the distribution of 958

amino acid properties along a protein sequence, 959

are two typical protein sequence feature descrip- 960

tors. Shallow CNN (Shanehsazzadeh et al., 2020) 961

and ResNet (He et al., 2016) are protein sequence 962

encoders designed to capture the short-range inter- 963

actions within the protein sequence, while LSTM 964

(Hochreiter and Schmidhuber, 1997) and Trans- 965

former (Vaswani et al., 2017) aim to capture the 966

long-range interactions. The output layers of these 967

protein sequence encoders aggregate the represen- 968

tations of different residues into a protein-level 969

representation. Apart from these methods, some 970

recent work has focused on simultaneously encod- 971

ing protein sequences and structures. SaProt (Su 972

et al., 2023) integrates residue tokens with structure 973

tokens and is pre-trained on approximately 40M 974

sequences and structures. In contrast, EVOLLAMA 975

avoids the introduction of additional tokens and 976

instead aligns the structure and sequence represen- 977

tations of proteins with embeddings from natural 978

language prompts, achieving this with significantly 979

fewer sequences and structures. ESM-3 (Hayes 980

et al., 2024) is a generative language model that 981

reasons over the sequence, structure, and function 982

of proteins. Compared to ESM-3, our approach 983

treats arbitrary protein functions as natural lan- 984

guage rather than discrete function tokens or key- 985

words, showing flexibility in both understanding 986

and generating descriptive texts about protein func- 987

tions. 988

B Dataset Construction Details 989

B.1 Projection Tuning Data 990

Randomly select one from

10 prompt templates

Swiss-Prot Annotation

Protein name
Subcellular location
Function
Families Response

Template

The given protein ...

Prompt
Templates

<protein> Describe the properties of the protein that this

amino acid sequence constructs, ...

Prompt

Response

Figure 3: Overview of the projection tuning data con-
struction.
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<protein> Elaborate on the characteristics of the protein specified by this amino acid sequence, detailing its biological role, cellular 
compartmentalization, and its classification within protein families.

<protein> Provide a comprehensive analysis of the protein encoded by the given amino acid sequence, focusing on its physiological 
function, location within the cell, and the protein family it is associated with.

<protein> Examine the protein determined by the provided amino acid sequence, including an in-depth look at its function, where it resides 
within the cell, and the broader family of proteins it is a member of.

<protein> Offer a detailed account of the protein described by this sequence of amino acids addressing its functional significance, 
subcellular niche, and its familial lineage within the protein taxonomy.

<protein> Describe the properties of the protein that this amino acid sequence constructs, including its operational role in the cell, its 
intracellular positioning, and the protein family to which it pertains.

<protein> Furnish a detailed exposition of the protein that correlates with the specified amino acid sequence, highlighting its role within 
cellular processes, its subcellular habitat, and the family of proteins it integrates with.

<protein> Detail the profile of the protein corresponding to the listed amino acid sequence, encompassing its function within the organism, 
its cellular localization, and the protein family it is derived from.

<protein> Discuss the protein that this amino acid sequence forms, including an analysis of its functional role, subcellular distribution, and 
its affiliation with particular protein families.

<protein> Present a thorough description of the protein represented by the amino acid sequence given, considering its function in 
biological systems, its localization within the cell, and the family of proteins it belongs to.

<protein> Illustrate the features of the protein specified by this sequence of amino acids, with emphasis on its functional activity, place 
within the cell structure, and its classification among protein families.

{% if function is not none and similarity is not none %}
The given protein {{ protein_name }} suggests its potential function as {{ function }} It {{ similarity }}
{% elif function is none and similarity is not none %}
The given protein {{ protein_name }} {{ similarity }}
{% else %}
The given protein {{ protein_name }} suggests its potential function as {{ function }} 
{% endif %}

Prompt Template

Response Template

Figure 4: The prompt and response template of the projection tuning data. In the response template, similarity
refers to the families of the protein in Swiss-Prot.

As illustrated in Fig. 3, projection tuning data991

consists of sequence-description pairs originated992

from the Swiss-Prot (Consortium, 2023) database.993

The database contains 571K manually-annotated994

records, each containing information including pro-995

tein name, subcellular location, function and fam-996

ilies. To prevent from data leakage, we filter the997

Swiss-Prot annotation to 369K as our projection998

tuning data based on the downstream tasks.999

For prompts, we construct 10 templates that ask1000

the model to briefly describe the input protein from1001

various aspects. For responses, information is ex-1002

tracted from the filtered Swiss-Prot annotation and1003

constructed using a pre-defined template to ensure1004

the consistency and clarity of protein descriptions.1005

The prompt and response templates are listed in1006

Fig. 4.1007

B.2 Supervised Fine-Tuning Data1008

As shown in Fig. 5, fine-tuning dataset consists1009

of 10 tasks including PEER benchmark (Xu et al.,1010

2022) and Mol-Instructions (Fang et al., 2023). For1011

each task in PEER benchmark, there are 10 prompt1012

templates and 1 response template, some of which 1013

are listed in Fig. 6. Except for fold classification, 1014

the categories in the response templates for other 1015

tasks are represented by natural language. For fold 1016

classification, we use integers ranging from 0 to 1017

1194 to represent its categories due to the excessive 1018

number of categories. 1019

For each task
there are 10 templates

Randomly select one from
each set

PEER Benchmark
Solubility
Subcellular Localization
Binary Localization
Fold

Response
Template Soluble.

Prompt
Templates

<protein> Assess the solubility of the given protein:
soluble or not? Answer the question using a single
word or phrase.

Prompt

Response

Yeast PPI
Human PPI <protein> <sep> <protein> Predict if the two yeast

protein sequences interact with each other. Answer
the question using a single word or phrase.

Prompt

Protein Function
General Function
Catalytic Activity
Domain/motif Prediction

Mol-Instructions (PMol)

Make simple modifications to the original prompts

Keep the original responses unchanged

Prompt
<protein> Please evaluate the given protein 
sequence and provide an explanation ...

By examining the input protein sequence, 
the enzyme catalyzes the subsequent ...

Response

Figure 5: Overview of the supervised fine-tuning data
construction.

For each task in Mol-Instructions, we make sim- 1020

ple modifications to the original prompts to ensure 1021

that they are suitable for our use cases and main- 1022

tain coherence. First, we remove the appended 1023
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<protein> Is the given protein water-soluble? Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

Prompt Template Response Template

<protein> Identify the subcellular localization of the specified protein. Answer the question using a 

single word or phrase.

... (omit the other 9 prompt templates) ...

<protein> Is the given protein membrane-bound or soluble? Answer the question using a single 

word or phrase.

... (omit the other 9 prompt templates) ...

<protein> Analyze the global fold topology of the specified protein. Answer the question using an 

integer between 0 and 1194 as the classification label.

... (omit the other 9 prompt templates) ...

<protein> <sep> <protein> Analyze the potential interaction between the two protein human 

sequences. Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

<protein> <sep> <protein> Analyze the potential interaction between the two protein yeast 

sequences. Answer the question using a single word or phrase.

... (omit the other 9 prompt templates) ...

Not soluble./Soluble.

Cell membrane./Cytoplasm./

Endoplasmic reticulum./

... (omit the other 7 responses) ...

Membrane-bound./Soluble.

0./1./.../1194.

No./Yes.

No./Yes.

Figure 6: The prompt and response template of PEER benchmark in the supervised fine-tuning data.

Given the protein sequence below, please analyze and describe the catalytic activity of the corresponding enzyme, specifically the 
chemical reaction it catalyzes: 

Original prompt used in Mol-Instructions:

Modified prompt in our fine-tuning dataset:
<protein> Given the protein sequence above, please analyze and describe the catalytic activity of the corresponding enzyme, 
specifically the chemical reaction it catalyzes.

Given the following protein sequence, can you perform an analysis and identify any potential motifs or domains? Here is the 
sequence: 

Original prompt used in Mol-Instructions:

Modified prompt in our fine-tuning dataset:
<protein> Given the protein sequence, can you perform an analysis and identify any potential motifs or domains?

Figure 7: Examples of modifications to the original prompts in Mol-Instructions. Red expressions are highlighted
for modifications.

text-format FASTA sequences. Additionally, we1024

modify some expressions in the original prompts.1025

Some modification cases are listed in Fig. 7.1026

C Experimental Setups1027

For protein understanding tasks, we follow Mol-1028

Instructions to split the dataset into an 8:1:1 ra-1029

tio for training/validation/test, where the training1030

and validation sets are used for the supervised fine-1031

tuning stage, and the test set is used for assessing1032

model performance. For protein property predic-1033

tion tasks, we follow the PEER benchmark to split1034

the dataset for each task. The details of dataset1035

splits are listed in Tab. 6. The results are averaged1036

over three runs with different random seeds. Specif-1037

ically, we follow the PEER benchmark to report the1038

mean and standard deviation of three runs’ results. 1039

We conduct both the projection tuning stage and 1040

supervised fine-tuning stage on 80GB H800 GPUs. 1041

The experiments to evaluate the inference latency, 1042

reported in Tab. 5, are conducted on 24GB RTX 1043

3090 GPUs. The hyperparameters are listed in 1044

Tab. 7. 1045

D Evaluation Implementation Details 1046

For a fair comparison, we follow Mol-Instructions 1047

(Fang et al., 2023) to compute the ROUGE-L (Lin, 1048

2004) score. Specifically, we take the complete ref- 1049

erences and predicted answers as inputs. However, 1050

both the references and predictions contain some 1051

non-protein-related parts, which are non-critical. 1052

In Fig. 8, we show that the critical parts are re- 1053
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Tasks Sub-tasks Data Source #Training #Validation #Test

Protein
Understanding

Tasks

Solubility

PEER
Benchmark

62,478 6,942 1,999
Subcellular Localization 8,420 2,811 2,773

Binary Localization 5,184 1,749 1,749
Fold Classification 12,312 736 718

Yeast PPI 9,890 190 788
Human PPI 71,338 630 474

Protein Property
Prediction

Tasks

Protein Function
Mol-Instructions

(PMol)

110,689 3,494
Catalytic Activity 51,573 1,601

Domain/Motif 43,700 1,400
Functional Description 83,939 2,633

Table 6: Details of dataset splits for supervised fine-tuning data.

Stages lr Scheduler Optimizer #Batch Size #Epochs/#Steps

Projection Tuning 2× 10−4 cosine AdamW 64 2 epochs
Supervised Fine-tuning 2× 10−5 cosine AdamW 32 25,000 steps

Table 7: Hyperparameters for the projection tuning stage and supervised fine-tuning stage.

Domain/motif PredictionNon-criticalCritical

Ground Truth: The computational analysis of the sequence suggests the presence of the following protein domains or motifs:

Glutamine amidotransferase, CTP synthase N-terminal domains.

Prediction: Our predictive analysis of the given protein sequence reveals possible domains or motifs. These include: Glutamine

amidotransferase, CTP synthase N-terminal domains.

Catalytic Activity Prediction

Ground Truth: Based on the provided protein sequence, the enzyme appears to facilitate the chemical reaction: H2O + L-

glutamine = L-glutamate + NH4(+).

Prediction: Evaluation of the protein sequence indicates that the associated enzyme exhibits catalytic activity in the form of this

chemical reaction: H2O + L-glutamine = L-glutamate + NH4(+).

Functional Description Generation

Ground Truth: A summary of the protein's main attributes with the input amino acid sequence reveals: Mono-ADP-

ribosyltransferase that mediates mono-ADP- ribosylation of target proteins. Acts as a negative regulator of transcription.

Prediction: A short report on the protein with the given amino acid sequence highlights: Involved in the regulation of DNA repair.

Protein Function Prediction

Ground Truth: Based on the given amino acid sequence, the protein appears to have a primary function of ATP binding, DNA

replication origin binding. It is likely involved in the DNA replication initiation, regulation of DNA replication, and its subcellular

localization is within the cytoplasm.

Prediction: The protein with the amino acid sequence is expected to exhibit ATP binding, DNA replication origin binding, DNA

replication origin recognition activity, contributing to the DNA replication, DNA replication initiation, regulation of DNA replication.

It can be typically found in the cytoplasm of the cell.

Figure 8: Examples of computing ROUGE-L score on protein understanding tasks.

lated with the domains, catalytic activities, and1054

functions. To illustrate how the critical parts affect1055

the ROUGE-L score, we exclude the non-critical1056

parts, retaining only the domains/motifs, chemi- 1057

cal reactions, and functional descriptions in both 1058

the reference and prediction. Note that the mod- 1059
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ifications are applied to three sub-tasks, with the1060

exception of the protein function prediction task,1061

where every part of the generation is critical to the1062

protein functions.1063

The re-evaluation results are displayed in Tab. 8,1064

demonstrating that by excluding the non-critical1065

parts from both the references and predictions,1066

EVOLLAMA still outperforms the previous state-1067

of-the-art model by 5%. Compared to the 6% im-1068

provement discussed in Sec. 5.1, the impact of non-1069

critical parts is relatively minor.1070

Models PF GF CA DP Avg.

ROUGE-L

Llama-2-7B-Chat 0.42 0.44 0.52 0.46 0.4600
EVOLLAMA 0.48 0.50 0.60 0.50 0.5200

ROUGE-L (w/o non-critical parts)

Llama-2-7B-Chat 0.42 0.46 0.56 0.57 0.5025
EVOLLAMA 0.48 0.42 0.60 0.71 0.5525

Table 8: Re-evaluation on protein understanding tasks.
The ROUGE-L score is computed excluding the non-
critical parts from both the references and predictions.

E More Evaluations1071

E.1 Comparative Evaluations1072

For a fair comparison with other baselines in terms1073

of both modality and data, we conduct further ex-1074

periments on protein understanding tasks.1075

As shown in Tab. 9, compared to ProLLaMA,1076

which relies solely on sequential information,1077

EVOLLAMA achieves superior performance, sur-1078

passing it by an average of 13.75% without uti-1079

lizing structure representations. When integrating1080

both structure and sequence representations, EVOL-1081

LAMA outperforms Prot2Text by an average of 3%,1082

highlighting the effectiveness of our fusion method.1083

Furthermore, Prot2Text and ProLLaMA are lim-1084

ited to handling protein function prediction and1085

domain/motif prediction, respectively, indicating1086

that their zero-shot capabilities are constrained to1087

specific tasks. In contrast, our approach can accept1088

arbitrary prompts as inputs, resulting in a more1089

robust and general capability to handle various un-1090

seen downstream tasks.1091

The results of fine-tuning EVOLLAMA exclu-1092

sively on PMol are presented in Tab. 10, demon-1093

strating that EVOLLAMA (GearNet+ESM-2), when1094

trained solely on PMol, outperforms the baseline1095

model by an average of 16%. Additionally, the1096

model’s performance is comparable to that of the 1097

one trained on a mixed dataset comprising both the 1098

PMol and PEER datasets. This suggests that in- 1099

corporating the PEER benchmark during the super- 1100

vised fine-tuning stage does not negatively affect 1101

performance, highlighting the effectiveness of our 1102

multi-task learning approach. 1103

E.2 Ablation Study 1104

We conduct more evaluations on protein property 1105

prediction tasks for each ablation study introduced 1106

in Sec. 5.3. 1107

Effect of the projection tuning stage As shown 1108

in Tab. 11, EVOLLAMA with supervised fine- 1109

tuning fails to maintain performance after the pro- 1110

jection tuning stage, while EVOLLAMA in zero- 1111

shot settings remains competitive with the baselines 1112

fine-tuned on PMol (see Tab. 1). This indicates that 1113

bridging the gap between protein structures pre- 1114

dicted by AlphaFold-2 and ESMFold during the 1115

supervised fine-tuning stage is more challenging 1116

than inference. 1117

Effect of structure and sequence representations 1118

As shown in Tab. 12, EVOLLAMA and EVOLLAMA 1119

(GearNet+ESM-2) enhances the performance on 1120

protein understanding tasks by incorporating both 1121

structure and sequence representations, specifically 1122

on protein function prediction and catalytic activity 1123

prediction. To further investigate the effectiveness 1124

of the structure and sequence representations, we 1125

first add a linear classification head to the multi- 1126

modal protein encoder, which consists of a Protein- 1127

MPNN structure encoder and an ESM-2 sequence 1128

encoder, and fine-tune it with full parameters. Our 1129

multimodal protein encoder demonstrates competi- 1130

tive performance across several tasks. Compared 1131

to the standalone ESM-1b and ESM-2 models, the 1132

results suggest that aligning different modalities, 1133

even between the primary and tertiary structures of 1134

proteins, remains a challenging task. This finding 1135

aligns with the observations made in prior research 1136

(Zhang et al., 2023). However, EVOLLAMA nar- 1137

rows the gap in aligning different modalities by 1138

mapping structure and sequence representations 1139

into the language embedding space. We further 1140

improve the multimodal protein encoder’s perfor- 1141

mance by leveraging the parametric knowledge of 1142

Llama-3. Our approach not only outperforms the 1143

standalone multimodal protein encoder but also ef- 1144

fectively addresses PPI tasks, which are typically 1145

challenging for such models. 1146
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Models
Modality ROUGE-L(↑)

Struct Seq Text PF GF CA DP Avg.

Prot2Text ! ! ! 0.14 - - - 0.1400
ProLLaMA % ! ! - - - 0.02 0.0200

EVOLLAMA (w/o structure encoder) % ! ! 0.18 0.14 0.19 0.12 0.1575
EVOLLAMA (GearNet+ESM-2) ! ! ! 0.16 0.16 0.21 0.15 0.1700
EVOLLAMA (ProteinMPNN+ESM-2) ! ! ! 0.16 0.14 0.15 0.11 0.1400

Table 9: Comparative evaluations of modalities on protein understanding tasks. Note that models are evaluated in
zero-shot settings.

Models Data
ROUGE-L(↑)

PF GF CA DP Avg.

Llama-2-7B-Chat PMol 0.15 0.14 0.16 0.12 0.1425
Llama-2-7B-Chat Mol 0.42 0.44 0.52 0.46 0.4600

EVOLLAMA (GearNet+ESM-2) PMol 0.27 0.29 0.36 0.29 0.3025
EVOLLAMA (GearNet+ESM-2) PMol, PEER 0.25 0.32 0.34 0.31 0.3050
EVOLLAMA (ProteinMPNN+ESM-2) PMol, PEER 0.48 0.50 0.60 0.50 0.5200

Table 10: Comparative evaluations of data used for fine-tuning on protein understanding tasks.

Models Sol Sub Bin Fold Yst Hum Avg.

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/ PT
62.28±0.25 50.73±0.11 92.37±0.35 2.14±0.92 50.30±0.22 65.54±0.99 53.89

Table 11: More evaluations on the effect of the projection tuning stage. The experiments are conducted on protein
property prediction tasks.

Models Sol Sub Bin Fold Yst Hum Avg.

Multimodal Protein Encoder
(ProteinMPNN+ESM-2)

71.19±0.00 69.71±0.00 85.40±0.00 6.40±0.00 - - 58.18

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/o ProteinMPNN
70.91±0.10 68.63±0.21 99.73±0.03 7.94±0.11 54.48±0.60 65.12±2.76 61.14

EVOLLAMA

w/o ESM-2
63.06±0.24 40.56±0.56 99.41±0.03 6.78±0.36 53.34±0.61 52.74±0.60 52.65

EVOLLAMA (GearNet+ESM-2) 67.20±0.40 37.96±0.33 91.96±0.06 3.67±0.29 52.16±0.63 60.41±0.10 52.23
EVOLLAMA (GearNet+ESM-2)

w/o ESM-2
57.63±0.07 12.15±0.18 91.96±0.10 3.90±0.20 49.58±0.74 48.59±0.44 43.97

Table 12: More evaluations on the effect of structure and sequence representations. The experiments are conducted
on protein property prediction tasks.

Effect of the fusion method As shown in Tab. 13,1147

EVOLLAMA with fused representations outper-1148

forms the one without, particularly on subcellu-1149

lar localization prediction task, while EVOLLAMA1150

(GearNet+ESM-2) achieves better performance1151

when the structure and sequence representations 1152

are not fused. This demonstrates that the fusion 1153

method is more effective when ProteinMPNN is 1154

used as the structure encoder. 1155
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Models Sol Sub Bin Fold Yst Hum Avg.

EVOLLAMA 71.19±2.27 68.05±0.65 99.10±0.05 6.18±0.29 53.81±1.55 75.95±1.30 62.38
EVOLLAMA

w/o fused representations
69.53±0.87 59.29±2.35 99.16±0.50 10.91±0.37 56.26±1.09 74.40±0.70 61.59

EVOLLAMA (GearNet+ESM-2) 67.20±0.40 37.96±0.33 91.96±0.06 3.67±0.29 52.16±0.63 60.41±0.10 52.23
EVOLLAMA (GearNet+ESM-2)

w/o fused representations
64.33±0.00 47.66±0.87 91.90±0.27 6.59±0.23 56.56±1.72 70.04±0.86 56.18

Table 13: More evaluations on the effect of the fusion method. The experiments are conducted on protein property
prediction tasks.

Effect of protein sequence encoder sizes The1156

ESM-2 650M protein sequence encoder in EVOL-1157

LAMA is substituted with encoders of different1158

sizes to demonstrate that the scaling law observed1159

by Lin et al. (2022) extends to our multimodal1160

framework. The experimental results in Fig. 9(a)1161

indicate that performance on protein understanding1162

tasks improves as the size of the protein sequence1163

encoder increases. Furthermore, EVOLLAMA em-1164

ploying ESM-2 with only 8M parameters outper-1165

forms Llama-2-7B-Chat fine-tuned on PMol by an1166

average of 27%. This result highlights the effec-1167

tiveness of our approach, as the protein sequence1168

encoder effectively captures evolutionary knowl-1169

edge from amino acid sequences, substantially en-1170

hancing the LLM’s understanding of proteins. We1171

also conduct experiments on protein property pre-1172

diction tasks, as illustrated in Fig. 9(b). The results1173

show positive accuracy scaling across most tasks,1174

with the exception of fold classification. A possible1175

explanation is that the limited amount of training1176

data makes it challenging for our multimodal archi-1177

tecture to effectively learn the distinctions among1178

the 1,195 fold levels.1179

Effect of LLM sizes To further assess the gen-1180

eralizability and versatility of our approach, we1181

extend our experiments by evaluating the effect of1182

LLM sizes. Specifically, we replace the LLM in our1183

framework with Llama-3.2 1B 2 and Llama-3.2 3B1184
3. The results in Fig. 10(a) and Fig. 10(b) demon-1185

strate a significant improvement in the performance1186

of EVOLLAMA as the size of the LLMs increases.1187

The performance on subcellular localization pre-1188

diction and fold classification shows a more sig-1189

nificant improvement, particularly for these tasks,1190

which involve a large number of class labels. No-1191

tably, EVOLLAMA with Llama-3.2 1B utilizes only1192

2https://huggingface.co/meta-llama/Llama-3.
2-1B-Instruct

3https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct
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Figure 9: Effect of protein sequence encoder sizes. The
experiments are conducted on (a) protein understanding
tasks and (b) protein property prediction tasks.

30% of the parameters while achieving superior 1193

performance on protein understanding tasks, out- 1194

performing the Llama-2 7B baseline model by an 1195

average of 17%. This indicates that our plug-and- 1196

play architecture is lightweight and efficient. 1197

F Case Study 1198

As shown in Fig. 11, we compare the outputs of 1199

EVOLLAMA, EVOLLAMA (GearNet+ESM-2) and 1200

Mol-Instructions on domain/motif prediction task. 1201

Only EVOLLAMA correctly predicts all possible 1202

domains or motifs of the given protein, regardless 1203

of whether structure or sequence representations 1204

are incorporated. Compared to EVOLLAMA, Mol- 1205

Instructions fails to predict all the domains or mo- 1206

tifs while EVOLLAMA (GearNet+ESM-2) gener- 1207

ates incorrect ones, indicating that the structure 1208

representations extracted by GearNet fail to cap- 1209

ture domain- or motif-related information. 1210
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Figure 10: Effect of LLM sizes. The experiments are
conducted on (a) protein understanding tasks and (b)
protein property prediction tasks.

As shown in Fig. 12, we compare the outputs of1211

these models on catalytic activity prediction task.1212

Both EVOLLAMA, with fused structure and se-1213

quence representations, and Mol-Instructions gen-1214

erate the accurate and complete chemical reaction.1215

Furthermore, models with only structure or se-1216

quence representations fail to produce the correct1217

chemical reaction, demonstrating the significance1218

of fused representations.1219
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Output (EvoLlama (ProteinMPNN+ESM-2)): The computational analysis of the sequence suggests the presence of the 

following protein domains or motifs: Glutamine amidotransferase, CTP synthase N-terminal domains.

Domain/motif Prediction

Input 𝐗!"#$%":                    

Input 𝐗!&': 

MANTKYIFITGGVVSSLGKGIAAASIGALLESRGLSVSLIKVDPYINVDPGTMSPFQHGEVFVTEDGTETDLDLGHYERFVRFKASK

KNNFTAGKVYETVIRNERKGNYLGGTVQVIPHITNEIKKRIKKGGQNKDIAIVEVGGTVGDIESQPFVEALRQMALELPNSSWAFVH

LTLVPFINASGELKTKPTQHSVKELRSLGISPDVLVCRSEQELPKDEKNKIALFCSVPAKSVISMHDVDTVYSIPILLNKQKVDDTILK

KLNLKIKKPNLNDWKRVVKAKLLPEKEVNVSFVGKYTELKDSYKSINEALEHAGIQNKAKVNINFVEAEQITSQNVRKVLKKSDAILV

PGGFGERGIEGMILACKYARENNVPYLGICLGMQIAIIEYARNVLKLKSANSTEFDSSTKFPVIGLITEWSDISGKKEKRTKNSDLGG

TMRLGGQVCKLKKKSNSYKMYKKSEIIERHRHRYEVNPNYKDKMIEQGLDVVGTSIDGKLVEMIELPSHKWFLACQFHPEFTSNP

RDGHPIFNSYIKSTITK

 Instruction: Given this protein sequence, can you identify any common protein motifs or domains that it may contain?

Output (Mol-Instructions): Based on computational analysis, the provided sequence potentially contains the following protein 

domains or motifs: Glutamine amidotransferase type-1 domains.

Output (Ground Truth): Our predictive analysis of the given protein sequence reveals possible domains or motifs. These 

include: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (GearNet+ESM-2)): The sequence you provided suggests the presence of a protein with a significant 

chance of containing a helicase, Rosy domain, SDH C-terminal domain, 'Y' domain, 'Z' domain type of protein.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ProteinMPNN): Upon evaluating your submitted sequence, our predictive 

algorithms suggest the presence of: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ESM-2): After analyzing the given sequence, the following protein domains or 

motifs are predicted: Glutamine amidotransferase, CTP synthase N-terminal domains.

Output (EvoLlama (GearNet+ESM-2), w/o ESM-2): Our bioinformatics algorithm indicates that the protein with sequence has 

potentially significant domains or motifs. These include: Helical transmembrane domains (e.g., 4-alpha-helical, 7-transmembrane 

G-protein coupled receptors).

Correct Incorrect

Figure 11: Case study of performance on protein understanding tasks (Domain/motif prediction).
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Catalytic Activity Prediction

Input 𝐗!"#$%":                    

Input 𝐗!&': 

MDKVAVAGFLPEELCASLSLSPSFRGNQIFQWIGKGVDSFDAMTNLSAELRASLAEKAILRSTRVSDVLKADDGTVKLQIQTEDDL

AVETVLLTDKAARKTACVSCQAGCAMGCAFCKTGTLGLARNLSAAEIVEQFLYLEKHAGALDNIVFMGMGEPLLNLDALRKAIAVL

TDKRGRNLSSRRITVSTVGIVSGIYDLANNGPDVRLAVSLTTADETLRRELMPASLTNPLSDLRQAISYYIEKTGKRVTLEAVLLSGK

NTSEKNADSLIAFAKGLDVHVNLIPWNPVEGLSFVTPDPEETAQFVSRLEKGGLNVTLRMHRGKSISGACGQLGKTNPYA

Instruction: Please evaluate the following protein sequence and provide an explanation of the enzyme's catalytic activity, 

including the chemical reaction it facilitates:

Output (EvoLlama (GearNet+ESM-2)): A chemical reaction and its participating enzymes have been identified: S-adenosyl-L-

methionine tRNA (cytidine(34) 2'-O-)-methyltransferase [acetyl-CoA pathway].

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ProteinMPNN): By examining the input protein sequence, the enzyme 

catalyzes the hydrolytic removal of adenine (A) from tRNAs, resulting in 7,8-dihydro-8-oxo-A and 5,6-methyl-5,6-dihydro formyl-C.

Output (EvoLlama (GearNet+ESM-2), w/o ESM-2): The enzyme catalyzes the chemical reaction: 2 2-oxo-4-methyl-1,7-

diazabicyclo[3.3.0]octane + 2 H(+) + 2 H(2)O = 2 2-oxo-4-methyl-1,7-diazabicyclo[3.3.0]octan-7-ol + 2 H(+) + N(2),N(5)-

dimethyl-1,5-diaminopentane.

Output (Ground Truth): Based on the provided protein sequence, the enzyme appears to facilitate the chemical reaction: 

adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-methyladenosine(37) in tRNA + 5'-

deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-homocysteine.

Output (EvoLlama (ProteinMPNN+ESM-2)): By examining the input protein sequence, the enzyme catalyzes the subsequent

chemical reaction: adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-methyladenosine

(37) in tRNA + 5'-deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-homocysteine.

Output (EvoLlama (ProteinMPNN+ESM-2), w/o ESM-2): Based on the provided protein sequence, the enzyme appears to 

facilitate the chemical reaction: adenosine 5'-phosphosulfamidase + adenosine 5'-phosphosulfate = (R)-(+)- \u00a0 (S)-

methylmethionine + adenosine 5'-phosphate + sulfuric acid.

Output (Mol-Instructions): An analysis of the protein sequence reveals that the enzyme's catalytic function corresponds to the

chemical reaction: adenosine(37) in tRNA + 2 reduced [2Fe-2S]-[ferredoxin] + 2 S-adenosyl-L-methionine = 2-

methyladenosine(37) in tRNA + 5'-deoxyadenosine + L-methionine + 2 oxidized [2Fe-2S]-[ferredoxin] + S-adenosyl-L-

homocysteine.

Correct Incorrect

Figure 12: Case study of performance on protein understanding tasks (Catalytic activity prediction).
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