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Abstract

Inspired by observations in neuro-control and various reproducibility issues in machine learn-
ing black-box optimization, we analyze the gap between real-world and artificial benchmarks.
We (i) compare real-world benchmarks vs artificial ones, emphasizing the success of Differen-
tial Evolution (DE) and Particle Swarm Optimization (PSO) in the former case (ii) propose
new artificial benchmarks including properties observed in the real world and in particular
in neural reinforcement learning, with a special emphasis on the scaling issues, where scale
refers to the unknown distance between the optimum and the origin (iii) observe the good
performance of quasi-opposite sampling and of Cobyla in some problems for which the scale
is critical (iv) observe a robust performance of discrete optimization methods focusing on
an optimized decreasing schedule of the mutation scale (v) design more efficient black-box
optimization algorithms that combine, sequentially, optimization algorithms with good scal-
ing properties in a first phase, then robust optimization algorithms for the middle phase,
followed by fast convergence techniques for the final optimization phase.

All methods are included in a public optimization wizard, namely NgIoh4 (without taking
into account the type of variables) and NgIohTuned (taking into account all conclusions of
the paper, including taking into account the real-world nature of a problem and/or that it
is neurocontrol).

1 Introduction

Black-box optimization is the optimization of functions on discrete or continuous domains without any
gradient or white-box information. Inspired by the Dagstuhl seminar 23251 Challenges in Benchmarking
Optimization Heuristics (July 2023), we develop additional benchmarks in a black-box optimization platform,
namely Nevergrad, which contains a large family of problems including reinforcement learning, tuning for
machine learning, planning and others.

The contributions of this paper are twofold. First, we analyze benchmarks. Following Meunier et al.
(2022), we observe that one can significantly modify the results of a benchmark by changing the distribution
of the optima, in particular by scaling its variables (e.g., by placing them closer to zero or closer to the
boundary of the domain). The distribution of the optima, typically induced by the random shifts used
in benchmarking platforms, importantly impacts the experimental results. We therefore include a set of
different benchmarks with different scaling, ensuring that the tested algorithms cannot be re-parametrized
for each specific benchmark. Likewise, we introduce multi-scale and parametric benchmarks for investi-
gating such scaling issues (Section 3.2.2) with the results described in Section 4.1. We also highlight that
real-world benchmarks bring new insights, including elements related to budget pointed out by (Ungredda
et al., 2022; Dagstuhl participants, 2023) , and showed by the results in the (non-Nevergrad) real-world
cases (Appendix G) and in the real-world part of the benchmarking suite of Nevergrad (Section 4.2), with
the success of PSO, DE and wizards using them. The diversity of benchmarks is important for making results
transferable to other problems (Section 3.1), so we increase the diversity of the distributions of optima over
many benchmarks, with a multi-scale approach, and the diversity of the budget/dimension ratio.
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Second, algorithm design. In Section 3.3, we focus on algorithms which perform well in a context of
unknown scale, in discrete, continuous domains, and real-world scenarios. These contributions are integrated
into a state-of-the-art wizard for black-box optimization which improves the state of the art on average in
many benchmarks (Section 4 and later): NgIoh4, which incorporates our improvements regarding scale
issues, and NgIohTuned, which incorporates all the modifications that we propose, including switching to
quasi-opposite PSO in neuro-control and to NGOptRW for other real-world problems.

2 State of the art

Black-box optimization is an important part of AI, with applications, among many others, in reinforcement
learning and planning. The scale, in the sense of the distance to the optimum, has been identified as a
key issue in many papers. After Rechenberg (1973) focusing on the adaptation of the scale, Rahnamayan
et al. (2007) focuses on initializing population-based methods for robustness to the scale in the continuous
context, and in the discrete case, Doerr et al. (2019); Einarsson et al. (2019); Doerr et al. (2017); Dang
& Lehre (2016) are entirely based on scheduling the scale of mutations. Methods focusing on a fixed
schedule are particularly robust in the discrete setting. In particular, our results confirm their robustness
compared to adaptive methods such as the one described in Kruisselbrink et al. (2011a). In terms of
continuous black-box optimization methods, Differential Evolution (DE) (Storn & Price, 1997) and Particle
Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) are well-known. Compared to CMA (Hansen
& Ostermeier, 2003), their focus on quickly approximating the right scale are compatible with very high
dimensional settings, where CMA is mainly robust to conditioning/rotation issues. Bayesian methods (Jones
et al., 1998) and methods based on machine learning are another branch of the state-of-the-art: among
them, SMAC3 (Lindauer et al., 2022) and HyperOpt (Bergstra et al., 2015) perform particularly well.
Cobyla (Powell, 1994) comes from the mathematical programming community, and it frequently performs
remarkably well in low budget cases (Raponi et al., 2023). Sequential Quadratic Programming is another
well known approach with an excellent local convergence rate. Recently, wizards (inspired by other areas
such as (Xu et al., 2008)) have become usual. These tools combine various base algorithms, for being
immediately (without tuning) reasonably effective on many benchmarks, independently of noise, parallelism,
budget, types of variables, and number of objectives. They typically use a lot of static portfolio choices (Liu
et al., 2020; Meunier et al., 2022) and of bet-and-run (Weise et al., 2019). We use chaining more intensively
than existing wizards. We note that the best performing method in the BBO challenge (AX-team, 2021) is
a wizard termed Squirrel (Awad et al., 2020) combining, among others, DE and SMAC3.

In terms of platforms, many libraries exist (e.g., (Johnson, 1994; FacebookResearch, 2020; Virtanen et al.,
2020)). Nevergrad (Rapin & Teytaud, 2018) imports these libraries and others. In terms of benchmark-
s/applications, the BBO Challenge (AX-team, 2021) (close to real-world, with best performance obtained
by a wizard including differential evolution, in Awad et al. (2020)), Keras (Chollet et al., 2015), scikit-
learn (Pedregosa et al., 2011), COCO/BBOB (Hansen et al., 2009a) (artificial, best performance by CMA
variantsHansen & Ostermeier (2003)), LSGO (Li et al., 2013), IOH (Doerr et al., 2018), OpenAI Gym (Brock-
man et al., 2016) are well known. Nevergrad includes them or some of their variants and many others, and,
with our present work, including quasi-opposite forms of DE, SQOPSOZhang et al. (2009), NgIoh wizards,
Carola algorithms (see Section 3.3 for these algorithms) and new benchmarks including benchmarks with
multiple scales (Section 3.2.2).

3 Experimental Setup

Motivated by recent warnings such as (Kapoor & Narayanan, 2023; Li & Talwalkar, 2019), we first take a
moment in Section 3.1 to reflect on reproducibility, before we present selected benchmark suites (Section 3.2)
and algorithms (Section 3.3). Concerning the suites and algorithms, we cannot provide here an exhaustive
presentation of all methods. Hence, we present the most relevant ones and refer interested readers to (Rapin
& Teytaud, 2018). Implemented in Python programming language, the Nevergrad platform can be considered
human-readable.
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3.1 Reproducibility

Reproducibility matters (López-Ibáñez et al., 2021). All our code is hence available in open access. It is now
part of the Nevergrad codebase (Rapin & Teytaud, 2018). A PDF with all experimental results is available
at tinyurl.com/dagstuhloid. Though our focus is on the ability to rerun everything, the entire data is
available at tinyurl.com/bigdagstuhloid1. As these URLs are automatically updated, they might differ
thanks to additional work by contributors and re-runs. Upon acceptance of this submission, we will make a
“frozen” version of code and data and store them into a permanent storage facilities such as Zenodo. In the
same vein, the version of (e.g., Pypi) packages can have an impact, but maybe results which are valid only
for a specific version of some packages might not be that valuable. As most platforms, Nevergrad requires
a minimum version number for each package, and not a fixed version number. Our modifications do not
change this. Details about reproducibility are mentioned in Appendix B.

3.2 Benchmark Suites (a.k.a. Problem Collections)

We seek to have a diverse set of benchmark suites, covering large ranges of problem settings encountered in
practice. This includes, for instance, diversity with respect to budget, performance measure, distribution of
the optima. Table 1 summarizes the diversity of our benchmarks and their parameters. For each benchmark
suite, the detailed setup is described at tinyurl.com/2p8xcdrb

3.2.1 Budgets

Ungredda et al. (2022); Dagstuhl participants (2023) showed that cases with budget with more than 100
times the dimension might be the exception rather than the norm. In real-world applications, we may even
face settings in which the total number of function evaluations may not exceed a fraction of the dimension.
We therefore consider a large variety of different scalings of the budget, including cases with budget far lower
than the dimension.

3.2.2 Scaling and Distribution of Optima in Continuous Domains

Throughout the discussion, we assume that the center of the domain is zero. This is not the case in all
benchmarks: this is just a simplification for shortening equations, so that we can use −x for symmetries
instead of c − (x − c) with c being the center, and ||x|| instead of ||x − c||. We observe that scaling is an
important issue in benchmarks. Typically, in real-world scenarios, we do not know in advance the norm of
the optimum (Meunier et al., 2021; Kumar, 2017). Assuming that the optimum has all coordinates randomly
independently drawn with center zero implies that the squared norm of the optimum is, nearly always, close
to the sum of variances: this is the case in many artificial benchmarks. Consequently, it reduces the generality
of the conclusions: conclusions drawn on such benchmarks are valid essentially on problems for which there
is a nearly constant norm of the optimum.

Different distributions of the optimum: MS-BBOB. MS-BBOB is quite similar to BBOB (Hansen
et al., 2009b) or YABBOB (Rapin & Teytaud, 2018). However, MS-BBOB (multi-scale black-box optimiza-
tion benchmark), has different scales for the distribution of optima. This is done by introducing a scaling
factor τ which varies in {0.01, 0.1, 1.0, 10.0}. This scaling factor is used as a factor for the random drawing
of optima. For example, in some benchmarks, Nevergrad uses a normal random variable for choosing the
optimum. Thus, we multiply this random variable by τ .

Zero-penalization: ZP-MS-BBOB. Many benchmarks, including our benchmarks in MS-BBOB are
symmetrical w.r.t. zero. The optimum might be translated, but that translation has zero mean. This special
role of the center might imply that the neighborhood of zero provides too much information. Actually,
many real-world problems have misleading values close to zero, in particular in control or neuro-control
(e.g., for neuro-control the control is just zero if all weights in a layer are zero). Therefore, we consider
zero-penalized problems, with a heavy penalty for candidates much closer to zero than the optimum. We
call this variant ZP-MS-BBOB (zero-penalized MS-BBOB). We note that PSO variants perform quite well
in these benchmarks, which coincides with the results described in Raponi et al. (2023).

1Warning: > 300MB, representing data from more than 20 million runs.
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Real-world benchmarks. “(RW)” means that the benchmark is a real-world problem. Note that the
definition of “real-world” is not so simple. We are entirely in silico, and in some cases the model has been
simplified. This just means that we consider this as sufficiently real-world for being tagged that way. Our
experiments include neuro-control with OpenAI Gym (Brockman et al., 2016), policy optimization with
Aquacrop (Raes et al., 2009), PCSE (de Wit, 2021), and hyperparameter tuning with Keras (Chollet et al.,
2015) and scikit-learn (Pedregosa et al., 2011). Note that an additional real-world benchmarking is performed
in appendix G, for checking the validity of our conclusions on completely distinct problems outside Nevergrad.

3.3 Key Algorithms for scaling issues

We highlight here only a few selected algorithms. All details and implementations of the algorithms discussed
here and many more are available at github.com/facebookresearch/nevergrad.

3.3.1 Opposite and quasi-opposite sampling

Rahnamayan et al. (2007) propose to initialize the population in DE as follows: (i) randomly draw half
the population as usual and (ii) for each point p in this half population, also add −p (opposite sampling)
or −r × p (quasi-opposite sampling, where r is chosen i.i.d. uniformly at random in the interval [0, 1]).
A key advantage of the quasi-opposite method is that the resulting population includes points with all
norms, which is beneficial for settings with unknown scaling. We use quasi-opposite sampling in DE and
PSO, with variants termed QODE, QNDE, SPQODE, LQODE, SODE, QOTPDE, QOPSO, SQOPSO, fully
described in Appendix C. SQOPSODCMA and SQOPSO are followed by diagonal CMA. We observe good
results, overall, for SQOPSO and various quasi-opposite tools (Section 5), in particular in the real-world
context (Section 4.2).

3.3.2 Other algorithms focusing on scaling in the continuous case

Cobyla is good when the scale of the optimum is unknown, as shown by later results, and quasi-opposite
sampling helps DE in the same context. Another solution for guessing the scaling of the optimum is to
assume that the scaling of the optimum x for different variables might be similar, i.e., log |xi| ≃ log |xj |
for i ̸= j. Inspired by this observation, we propose RotatedTwoPointsDE, a variant of DE using a 2-point
crossover (Holland, 1975), with the possibility of moving the cut part to other variables. Thus, more pre-
cisely, DE typically mixes the ith variable of an individual and the ith variable of another individual and

Algorithm 1 Three variants of Carola. MetaModel refers to the MetaModel implementation in (Rapin &
Teytaud, 2018), based on quadratic approximations built on the best points so far.
Carola1:
Require: Budget b

Apply Cobyla with budget
b/2.
Apply CMA with Meta-
Model with budget b/2 and
initial point the best point
so far.

Carola2:
Require: Budget b

Fast approximation: apply Cobyla
with budget b/3.
Robust local search: Apply CMA with
MetaModel with budget b/3 and initial
point the best point so far.
Fast local search: Apply SQP (Sequen-
tial Quadratic Programming) with initial
point the best point so far and budget
b/3.

Carola3:
Require: Budget b, number

w of workers
Apply w copies of Carola2
in parallel, with budget b/w

the child gets the result at the ith position (Alg. 3). This happens for several indices i, but the ith vari-
able has no impact on the jth variable if j ̸= i. TwoPointsDE uses the two-points crossover, which has a
similar property: the difference with the classical DE is that the impacted variables are in a segment of
consecutive variables. Both DE and TwoPointsDE find scales by working somehow separately on variables.
RotatedTwoPointsDE can move this segment of consecutive variables, and therefore it might combine the
ith variable of an individual and the ith variable of another individual and the child gets the result at the jth
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position where j = i + k (modulo the number of variables) for some k ̸= 0. The assumption behind Rotat-
edTwoPointsDE is that the scale is not totally different, at least in terms of order of magnitude, for different
variables: we can carry variables from a position to another. GeneticDE, then, uses RotatedTwoPointsDE
during 200 candidate generations (for finding the correct scale) before switching to TwoPointsDE. We ob-
serve an excellent performance of GeneticDE on specific problems, though this requires further investigation
as opposed to quasi-opposite sampling which performs very well on most real-world problems, or as opposed
to Carola2 and its integration in the NgIoh4 wizard defined in Section 3.3.4, which performs excellently on
many benchmarks as discussed later.

3.3.3 The scaling of mutations in the context of discrete optimization

In discrete optimization, the good old 1/d mutation consists in randomly mutating each variable with
probability 1/d in dimension d. Typically, a single variable is mutated; and it rarely includes more than
two variables. Some algorithms, in particular after the good results described in Dang & Lehre (2016),
use a fixed random distribution of mutation rates. The adaptation of FastGA (Doerr et al., 2017) in
Nevergrad consists in randomly drawing a probability p (instead of using p = 1/d) in [0, 1

2 ] (in [0, 1], if
the arity is greater than two). DiscreteLenglerOnePlusOne, inspired by Einarsson et al. (2019), consists in
using a schedule. In this case, the probability p decreases during the optimization run. We observe good
results for DiscreteLenglerOnePlusOne: for example for the Bonnans benchmark (Bonnans et al., 2023),
which is completely different from the functions used for testing and designing DiscreteLenglerOnePlusOne
that is mathematically derived on simpler functions. The results are presented in Figure 1. Results of

Figure 1: Various methods (86 algorithms run; only the best 12 ones are presented, and the single worst)
on the Bonnans (discrete) function. The Softmax representation (converting the problem to a continuous
one as optionally proposed in (Rapin & Teytaud, 2018)) performs poorly here compared to the standard
TransitionChoice. The DiscreteLenglerOnePlusOne method (and its variant with modified parameters, with
similar names) performs well on Bonnans functions (Bonnans et al., 2023).

DiscreteLenglerOnePlusOne are also good on InstrumDiscrete, SequentialInstrumDiscrete, and PBOReduced
problems. In terms of ablation, most of the variants with perturbed hyperparameters also perform well.

3.3.4 Chaining for the scale in the continuous case: Carola algorithms, and the NgIoh wizard
including them.

From observations on IOH (Doerr et al., 2018), we propose two new principles for the design of black-box
optimization wizards. NGOpt is the current wizard of Nevergrad, and NGOptRW is another wizard doing
a bet-and-run between DE, PSO and NGOpt during 33% of the budget before switching to the best of
them (unless the benchmark is noisy or discrete, in which case it simply uses NGOpt). First, whereas it
is classical (e.g., Memetic algorithms (Moscato, 1989)) to run evolution strategies first and local methods
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afterwards (as Nevergrad’s NGOpt frequently does), we observe that Cobyla is excellent for low budget.
We therefore consider Carola (Cost-effective Asymptotic Randomized Optimization with Limited Access), a
method running Cobyla first and then other methods, as presented in Algorithm 1. Second, our insights
are gathered in a new black-box optimization wizard, which we dub NgIoh. We demonstrate in this work
that this wizard performs well, on average, on many benchmarks. Overall, including the many benchmarks
on which NgIoh does not differ too much from NGOpt, NgIoh slightly outperforms the existing wizard
NGOpt from Nevergrad, with a clear gap specifically for problems such that the scale of the optimum cannot
be known in advance (Section 4.1). We build several variants, which perform similarly. NgIoh4 performs
slightly better overall. NgIoh4 is basically the same as NGOpt (Nevergrad’s wizard), except that it switches
to Carola2 depending on rules that prefer the Carola2 algorithm in case of moderate budget (Algorithm 2).
The constants in the rules were chosen based on the observations described in Doerr et al. (2018). The
different variants (performing similarly) are available in Rapin & Teytaud (2018). NgIoh4 is slightly better.

Algorithm 2 The NgIoh4 pseudocode, combining NGOpt and ideas extracted from results in IOH(Doerr
et al., 2018).
Require: Budget b, dimension d, domain D, number w of workers.

if w = 1 and D is continuous and (d < 100 and 20d ≤ b ≤ 1000d) or (d < 50 and b < 1000d). then
Apply Carola2

else
Apply NGOpt

end if

Ablation: Carola3 is an adaptation of Carola2 for the parallel case, so let us focus on the comparison
between Carola1, Carola2, and algorithms on which they are based, namely Cobyla, CMA and MetaModel.
We observe in Figure 2 better results for Carola2. MetaModel and several CMA variants are absent of the
figure because we keep only the 25 best of the 57 tested methods: CMA, OldCMA (before some tuning),
LargeCMA (with larger initialization scale) and MetaModel (CMA plus a quadratic surrogate model, as
used as a component of Carola2) are ranked 43, 29, 40 and 33 respectively (vs 3 for Carola2). We also
tested several variants of Carola (available in the codebase and visible in some of our plots), without much
difference.

3.4 Towards real-world wizards: taking into account high-level information

We also define the NgIohTuned wizard (full details in Section H.3). NgIohTuned is similar to NgIoh4, but with
tuned parameters and using high-level information such as “real-world problem” (for switching to NGOptRW)
and “neural control” (for switching to SQOPSO). Due to this, NgIohTuned uses more information than
other algorithms and can therefore not be compared to others in a fair manner, but we include the results in
appendix and in Figure 4 (right): NgIohTuned is basically the aggregation of all our conclusions in a single
wizard.

3.5 Performance Criteria

For each benchmark, we consider two figures. First, the Frequency of winning figure. A heatmap,
showing the frequency fm,m′ at which a method m (row) outperforms on average another method m′(column).
Frequencies are computed over all instances and all budgets. Methods are then ordered by the average scorem

of these frequencies fm,m′ over all other methods m′. The columns show the names of the methods, appended
with the number of settings they were able to tackle (for example, some methods have no parallel version
and therefore do not run on all settings).

Second, the Normalized simple regret figure. A convergence curve, with the budget on the x-axis and
the average (over all budgets) normalized (linearly, to [0, 1]) loss. Note that some benchmarks do not have
the same functions for the different values of the budget. Therefore, we might have a rugged curve, not
monotonous. This is even more the case for wizards such as NGOpt or NGOptRW, which make decisions
based on the budget. They might make a bad choice for some values of the budget, leading to irregular
curves.
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The complete archive (see Appendix B) shows many competence maps. Given the hyperparameters of a
benchmark (e.g., dimension, budget, level of noise, among others), the competence maps in the full archive
show, for a given pair of hyperparameter values, which algorithms performs the best on average.

4 Selected benchmarks

We cannot include here all benchmarks from the Nevergrad platform, including our additions. We present
only some of them. First, multiple scale benchmarks because we believe that Section 3.2.2 points out an
important issue for improving black-box optimization benchmarks. Second, real-world benchmarks, because
we need more benchmarks rooted in real-world problems. We refer to the automatically generated tinyurl.
com/dagstuhloid for further details and Section 5 for an aggregated view of all the results. In Appendix G,
we present external applications, so that more independent results (outside Nevergrad) are included. The
appendix contains additional figures for a more extensive view of our results.

4.1 Multi-scale black-box optimization benchmarks: dealing with the scaling issues

In the case of continuous optimization, we present new benchmarks, adapted from YABBOB (Rapin &
Teytaud, 2018) using comments from Section 3.2.2. While CMA variants dominate in BBOB Hansen et al.
(2009a) (small scale, large budget, focus on frequency of solving with a given precision) and DE variants
dominate in LSGO (Li et al., 2013) (larger scale, groups of variables), we propose a benchmark close to
BBOB or YABBOB, but with a specific effort to not make the scale of the norm of the optimum to be
known in advance (Section 3.2.2).

An important hyperparameter for the optimization methods, in particular when the budget is moderate, is
the scale. Sometimes the optimum is close to the center, sometimes it is far. The principle of our proposed
and open-sourced multi-scale BBOB (MS-BBOB) benchmark is that it contains four different scales, and the
algorithms are not informed of which scale is used for each instance. We also apply the zero-penalization, as
discussed in Section 3.2.2. The resulting benchmark is termed ZP-MS-BBOB, and experiments are presented
in Figure 2: they show the good performance of Carola/NgIoh. Fig. 3 also shows that we do not deteriorate
the performance too much on YABBOB (which does not have a multi-scaling) and Fig. 4 shows that we
improve results on the complete family of benchmarks (in particular with NgIohTuned, right of Fig. 4). It
is an artificial benchmark, but it is inspired by various existing benchmarks (Cotton, 2020a;b; Raponi et al.,
2023). The best methods are all based on Carola (Section 3.3.4) or NgIoh (which introduces Carola inside
NGOpt), or on quasi-opposite sampling. We conclude that the Carola method (using Cobyla first) and
quasi-opposite samplings are both good for adapting a method to the right scaling of variables. Figures 6
and 7 present the results on the variants of BBOB in Nevergrad, showing that results are not deteriorated,
compared to NGOpt, on these other benchmarks. Section 5 also shows that, on the wide complete family of
benchmarks in Nevergrad, NgIoh4 outperforms NGOpt.
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Figure 2: The best performing methods MS-BBOB (left) and for ZP-MS-BBOB (right) for normalized regret.
Both: we include the 12 best methods and the worst. NGOpt and CMA are not in the 12 best, e.g. on the
right NGOpt is ranked 15th and CMA is ranked 49th (more details in Fig. 17, and more complete results
including NgIohTuned in Fig. 16), and an ablation in Fig. 5. The good performances of Carola and NgIoh
variants (including Wiz, also based on Carola2) are visible in both. The quasi-opposite variant of PSO is
also good. Carola2 is slightly the best of the Carola variants for most budgets (see detailed curves above, or
the ranking for the average frequency of winning in Fig. 17).

Figure 3: YABBOB, original benchmark: our codes are less impressive on this initial benchmark not equipped
with multi-scaling, but they still perform well (though NGOpt is slightly better in particular for lower budget)
and in Fig. 4 we observe that on average on many benchmarks NgIoh4 outperforms NGOpt (just thanks
to a better scaling) and NgIohTuned outperforms all other methods (by incorporating NgIoh4 and all our
conclusions, including the real-world nature and/or neuro-control nature of problems).

4.2 Real world benchmarking in Nevergrad

We present in Fig. 4 (left) the number of times each algorithm was ranked best among the list of real-world
benchmarks in Nevergrad. Other real world tasks (external to the Nevergrad benchmarks) are available in
Appendix G and confirm our conclusions on separated benchmarks.

We note, in the real-world benchmarks of Nevergrad, that PSO and DE variants, in particular with quasi-
opposite sampling, perform better than in artificial benchmarks. The rankings below are obtained for a
different number of problems for which each algorithm is best in terms of normalized simple regret. We also
note that NGOptRW, designed by adapting NGOpt for real-world instances by bet-and-run (Weise et al.,
2019) PSO/DE/NGOpt, performs very well. NGOptRW runs these three algorithms for one third of the
budget, and keep the best of them for the rest. It vastly outperforms NGOpt and all others, though Carola3
(the possibly parallel adaptation of Carola2) is not bad.
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Figure 4: Statistics aggregated over many benchmarks. Left: number of times each algorithm is ranked
best, on the real-world part of the Nevergrad benchmarks (before adding NgIohTuned): NGOptRW clearly
dominates and NGOpt is not very good. Middle: number of times each algorithm is ranked best (limited
to algorithms ranked 1st at least 5 times), in the complete Nevergrad benchmarks: NgIoh4 performs best
(NgIohTuned is still excluded) and outperforms NGOpt, which is better than NGOptRW. Right: number
of time each algorithm is ranked best in the complete Nevergrad benchmarks, if we remove all our proposed
algorithms except NgIohTuned, i.e. we allow our method to use the knowledge “is real-world” or “is a
neurocontrol problem”: we see that NgIohTuned (combining, by design, the success of NgIoh4 in artificial
benchmarks and of NGOptRW in the real-world case or SQOPSO for neurocontrol) outperforms NGOpt
and all previous algorithms. Details: SODE, SQOPSO, QODE, QOPSO are defined in Section 3.3.1 and the
Appendix C. LargeCMA is CMA with greater initial variance. BAR is a bet-and-run of the (1+1) evolution
strategy and DiagonalCMA and OpoDE, where OpoDE runs the (1 + 1) strategy with one-fifth rule during
half the budget followed by differential evolution.

5 Statistics over all benchmarks

For shorts, we include below only the number of times each method was ranked first. NgIoh4 performs best
with 10 times the first position. Wiz is a variant of NgIoh so that we see a strong domination of NgIoh
variants. It is also the best for the number of times it is ranked in the top 2 and for the number of times it
is ranked in the top 3. Detailed results are presented in Figure 4.

The full details are reported in Appendix E. NgIoh4 performs even better if we remove the variants Wiz,
NgIoh6 and NgIoh5 (documented in Rapin & Teytaud (2018)) from the statistics because they are quite
similar.

6 Conclusions

Scale matters. We note that in both continuous and discrete benchmarks, the scale is important, even more
specifically in the black-box case. For the continuous case, besides previously discussed results in Figure 2
and global statistics (Section 5), Appendix H.1 presents detailed comparative results showing how much our
tools (Cobyla as a first step and quasi-opposite sampling mainly, and to a lower extent GeneticDE) dedicated
to scale work better than previous tools when the scale of the optimum is unknown. In spite of (actually,
even because of) the random shift method, many benchmarks have roughly the same norm
of the optimum for all instances. If we define the position of optima by e.g., a multivariate normal
distribution with mean zero and identity covariance matrix (or more generally, independent coordinates
with all roughly the same variance, so that variants of the central limit theorem can be applied), then in
large dimension the optimum has, almost always, a norm scaling as

√
dimension (see Section 3.2.2). This is

not observed in real-world benchmarks, hence the great real-world performance of the methods above (quasi-
opposite sampling) tackling such issues. We advocate MS-BBOB or ZP-MS-BBOB for designing continuous
artificial benchmarks close to scaling issues found in the real-world: their results are closer to real-world
results (Section 4.2) than other artificial continuous benchmarks in the sense that quasi-opposite sampling
or a warm-up by Cobyla are helpful in both cases. More precisely, compare Fig. 4, left and Fig. 2: in
both cases methods based on quasi-opposite sampling and warmup by Cobyla (such as Carol* and NgIoh*)
perform well, though we also note, independently (see Reality Gap below), good results for DE and PSO
and their combination for NGOptRW in real-world settings.
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In the discrete case, the best methods are frequently based on Lengler (Einarsson et al., 2019), which
is based on a predefined schedule of mutation scales. This schedule differs from the classical 1/d mutation,
in particular in early stages. We note that the mathematically derived Lengler method outperforms some
handcrafted methods in Nevergrad based on the same principle of a decreasing rate, and many methods
with adaptive mutation rates. It also outperforms mathematically derived methods such as (Doerr et al.,
2017; Dang & Lehre, 2016), which use a fixed probability distribution of the mutation rates. We see the
chaining of methods with different regimes in continuous domains as analogous to the predetermined schedule
of Einarsson et al. (2019) in the discrete case. In any case, both approaches perform well.

Quasi-opposite sampling. An unexpected result is the good performance of quasi-opposite sampling (Rah-
namayan et al., 2007) (see QODE, QNDE, QOPSO, SQOPSO in Section 5). We adapted it from DE to
PSO, with SQOPSO using, for each particle p with speed v, another particle with position −r × p and speed
−r × v (see Section 3.3.1). Equipped with quasi-opposite sampling, DE and PSO perform quite well in the
real-world part of our benchmarking suite (Section 4.2 and Appendix G), with particularly good results of
SQOPSO in the case of neurocontrollers for OpenAI Gym (confirmed in Appendix 19). A posteriori, this is
consistent with the importance of scale.

Optimization wizards. As in SAT competitions and as discussed in the Dagstuhl seminar (Hoos, 2023), we
observe excellent results for wizards. All methods performing well on a wide range of benchmarks (without
tuning for each benchmark separately) are wizards. NgIoh4 is based on NGOpt, a complex handcrafted
wizard based on experimental data, and adds insights from the present paper. It performs well on many
benchmarks (Section 5). NgIoh4 aggregates many base algorithms. We see in the detailed logs that it uses
CMA, DE, PSO, Holland crossover, bandit methods for handling noise, discrete (1+1) methods with mutation
rates schedules, meta-models, Cobyla, multi-objective adaptations of DE, the simple (1+1) evolution strategy
with one-fifth rule (Rechenberg, 1973) in some high-dimensional contexts, bet-and-run, and others. Our
guess is that it could still be improved by ideas from NGOptRW or quasi-opposite sampling, or by tuning
its rules in favor of Carola2 or Carola3 in more general cases. Appendix H.3 confirms that our NgIoh4
and other wizards, besides outperforming NGOpt and non-wizard methods on many Nevergrad benchmarks,
also outperform it on BBOB/COCO. NgIohTuned, using high-level information on the type of problem and
the types of variables, outperforms other wizards and aggregates in a single code all the conclusions in the
present section.

Low-budget optimization, and first part of a chaining in continuous domains. SMAC3 got better
results than other Bayesian Optimization methods. Bayesian Optimization methods are limited to low budget
/ dimension contexts, and a strong competitor for continuous optimization with low budget is Cobyla (Du-
fossé & Atamna, 2022; Raponi et al., 2023). We propose to use Cobyla as a warm-up before other methods,
because it is good at understanding the global shape of a problem (Sections 3.3.4 and 4.1). Carola2 is a
chaining of 3 stages: Cobyla for a fast first approximation, CMA with MetaModel for a robust optimization,
and SQP for a final fast local search. It performs very well as a component of NgIoh4, and its counter-
part Carola3 (compatible with parallel settings) performs well in many real-world benchmarks (Section 4.2).
Chaining was already present in Rapin & Teytaud (2018), with the classical fast local convergence at the
end in many cases, and also for noisy optimization, with a classical algorithm (not taking care of noise) as
a first step before switching to a real noisy optimization method in the wizard of Meunier et al. (2022): our
application for a first step for a mathematical programming algorithm as a first step is new. Appendix H.3
shows that it is also valid on the BBOB/COCO benchmarks.

Reality gap. The gap between real world and artificial benchmarks is still large, as shown by the different
best algorithms in real-world vs artificial contexts. In particular, in the continuous context, NGOpt/NgIoh
dominates the artificial benchmarks whereas a bet-and-run (termed NGOptRW) of DE, PSO, and NGOpt is
better in the real-world. Also, quasi-opposite sampling appears to be great for the real-world context, more
than for artificial benchmarks based on random shifts. Random shifts with all components of the shift being
independent (or other methods than random shifts provided that many coordinates are independent and have
roughly the same variance), lead to nearly the same norm of the optimum for all replicas. Our zero-penalized
and multi-scale variants of black-box optimization benchmarks (In Section 4.1, due to the random factor
applied to all coordinates, the central limit theorem does not apply) are a step in this direction and we plan
to add more of such benchmarks. Another element in terms of reality gap is that in the present paper (and
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in most works on wizards), we did not use in NgIoh4 information such that “this problem is real world” or
“these variables are weights of a neural net”, but NgIohTuned does it and performs quite well (Fig. 4, right,
and Appendix H). We note that in (AX-team, 2021; Awad et al., 2020), the best performing method was
using the names of variables for choosing between different options. Appendix H.2 presents results on real-
world benchmarks with more details, confirming the gap between the global statistics (Section 5, dominated
by NgIoh4) and the real world case (Sect. 4.2 and G, dominated by NgOptRW). The algorithm NgIohTuned
(the only one among our methods which uses high level information about the problem provided by the user,
such as “neurocontrol” or “real-world”), modified for switching to NGOptRW in the real world case and to
SQOPSO in the neurocontrol case, performs best overall: we include it in Appendix H. Another important
point in terms of bridging the reality gap is that including cases with budget far lower than the dimension
is also essential (Ungredda et al., 2022).

Good benchmarks exist, with a lot of diversity (including real-world and artificial, budget >>
dimension and budget << dimension, with and without noise, with applications from com-
pletely different fields, see Table 1): they should be used, in particular in machine learning
papers. Reproducibility is a growing concern in machine learning (Kapoor & Narayanan, 2022), specifically
in black-box optimization (Markov, 2023; Meunier et al., 2021). In spite of efforts in the 2000s for creating
better benchmarks, benchmarks with optimum at zero, or ad-hoc experiments with a heavily tuned method
with parameters optimized for each benchmark separately, or with completely different initialization distri-
bution for the baselines, are still published in many conferences. A related and slightly more subtle effect is
that the scaling of the initialization can easily make baselines pointless and create non-reproducible results.
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A Ablation regarding ZP and MS: the importance of scaling in continuous domains

Fig. 5 presents an ablation of results of Fig. 2.

(a) (b)

(c)

Figure 5: Ablation for Fig. 2 with the same functions and budgets in all 3 cases, and with a restricted set of
algorithms: (a), no ZP and no MS; second (b), we add MS; third (c), we add ZP. While ZP has less impact,
we observe that switching from vanilla (a) to MS (multi-scale, b) makes NgIohTuned or NgIoh4 vastly better
than NGOpt (still the case after adding ZP, bottom). We believe that such multiple scaling should be part
of artificial benchmarks for bridging a part of the gap with real-world benchmarks.

B Reproducibility

How to reproduce the results in the present paper:

• Install Nevergrad by cloning the git repository (see details at (Rapin & Teytaud, 2018)).

• Running:

– Without cluster: python -m nevergrad.benchmark yabbob --num\_workers=67 if you want
to run YABBOB on 67 cores.

– With cluster equipped with Slurm: Run “sbatch scripts/dagstuhloid.sh” script for launching
experiments with Slurm. It is written assuming that Slurm is installed: it should be feasible
to adapt it to other job scheduling tools. Running this script several times will increase the
number of replicas and increase precision.

• For plotting results, run “scripts/dagstuhloid_plot.sh”. Of course, some data might be missing if
not enough runs are complete.

• To modify the parallelism, dimension, budget, list of tested algorithms, you might edit nevergrad_
repository/nevergrad/benchmark/experiments.py.
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The present paper in LATEX is automatically generated by the commands above. Then, the authors have
edited the corresponding file for the text and rearranged sections, in particular, moving to the appendix or
to an URL many of the individual results on specific benchmarks. An example of the huge original PDF
file can be found at tinyurl.com/dagstuhloid. We emphasize that reproducibility is not limited to the
possibility of reproducing the exact same numbers. We consider results that can only be obtained by certain
random seeds uninteresting. We therefore do not fix the seeds.

C Additional information on algorithms

We use quasi-opposite DE, in several flavors:

Algorithm 3 The QODE algorithm, with Curr-to-best, F1 = F2 = .8, CR = .5.
Require: Budget b, population size p (p = 30 by default), dimension d, objective function l to be minimized

Randomly draw p/2 points (uniformly at random by default) x1, . . . , xp/2.
Define xp/2+i = −rixi, with ri randomly independently uniformly drawn in [0, 1].
Run differential evolution as usual:
while Budget not elapsed do

for each point x in the population, if the budget b is not elapsed do
Randomly draw a and b in the population, different from x
Let t be the best point so far
Define x′ = x + F1 ∗ (b − a) + F2 ∗ (t − x)
Define, for 1 ≤ i ≤ d, x′′

i = x′
i with probability CR and x′′

i = xi otherwise.
Enforce x′′

i = x′
i for some randomly drawn i ∈ {1, . . . , d}

If l(x′′) ≤ l(x), then replace x by x′′.
end for

end while

Algorithm 4 SQOPSO. By default, p = 40, ω = 0.5/ log(2), ϕp = 0.5 + log(2), ϕg = 0.5 + log(2).
Require: Budget b, population size p, dimension d, objective function l to be minimized

Randomly draw p/2 points (uniformly at random by default) x1, . . . , xp/2, and their speeds v1, . . . , vp/2..
Define xp/2+i = −rixi and vp/2+i = −rivi, with ri randomly independently uniformly drawn in [0, 1].
Initialize bi = xi for all i (bi is the best past position of the ith particle and g the best of the bi

Run particle swarm optimization as usual:
while Budget not elapsed do

for each point xi with speed vi in the population, if the budget b is not elapsed do
for each coordinate 1 ≤ j ≤ d do

Randomly draw rp and rg in [0, 1]
Update (vi)j = p × ω(vi)j + ϕprp(bij − xij) + ϕgrg(gij − xij)

end for
Update xi = xi + vi

If l(xi) < l(pi), then update pi = xi

If l(xi) < l(g), then update g = xi

end for
end while

• QODE, the classical quasi-opposite DE, presented in Algorithm 3.

• QNDE, which is QODE during half the budget and then BFGS with finite differences.

• SPQODE (SPecial QODE), which is QODE with population size 1 +
√

log(d + 3) in dimension d.

• LQODE (Large QODE), which is QODE with initialization range multiplied by 10 (each individual
is multiplied by 10).
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• SODE (Special Opposite DE), in which r is exp(−5×U(0, 1)) instead of U(0, 1) (with U(0, 1) uniform
in [0, 1]).

• QOTPDE combines TwoPointsDE (DE with Holland 2-points crossover) and QODE.

We also consider quasi-opposite sampling for PSO:

• Randomly draw half the population as usual.

• QOPSO (Quasi-Opposite PSO): for each point p with velocity v in this half population, also add
−r × p with a randomly drawn velocity, with r randomly drawn uniformly in [0, 1].

• SQOPSO (Special Quasi-Opposite PSO, defined in Algorithm 4): for each point p with velocity v
in this half population, also add −r × p with velocity −r × v, with r randomly drawn uniformly in
[0, 1].

D Additional information on benchmarks

Table 1: Diversity of our benchmarking platform in Nevergrad and of our automatic report.

(a)

Min Max

Dimension 1 20 × 103

Budget 10 3 × 106

# objectives 1 6
Noise dissymetries False True

Noise False True⋆

# blocks of variables♯ 1 16
# of workers 1 500

⋆many different levels of noise
♯with independent rotations

(b)

Category Benchmarks

Real-world, ML tuning Keras, Scikit-learn (SVM,
Decision Trees, Neural nets)

Real-world, not ML tuning Gym, rockets, energy, fishing,
photonics, games

Discrete PBO, Bonnans, others (in-
cludes: unordered variables)

Continuous, artificial LSGO, Deceptive, Ya*BBOB
Multiobjective Several problems with 2 to 7

objectives
and dim from 2 to 200.

E Statistics over all benchmarks: full details

We point out that NGOpt and its variants are wizards (automatic algorithm selectors and combinators)
created by the same authors as Nevergrad, and their (good) results might therefore be biased: we recognize
that common authorship for benchmarks and algorithms implies a bias, and, given that our tools are based
on NGOpt and other tools in Nevergrad, this applies to us as well. Another issue is that statistics based
on frequencies of performing in the top k are a risky thing: when two codes are very close to each other,
they are both penalized by each other: we must be careful with interpretations. Nonetheless, we provide
aggregated results for convenience.

E.1 NGOpt versus Base algorithms: validating wizards

Here base algorithms have no metamodel and no complex combinations: wizards are excluded, except
NGOpt. NGOpt is the only sophisticated combination: this is an analysis of NGOpt, and this validates that
NGOpt performs better than the base algorithms it is built on. We consider statistics on the top k methods,
for k = 1, k = 2, k = 3.

E.1.1 Number of times each algorithm was ranked first: NGOpt and base algorithms
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• 29 NGOpt

• 8 HyperOpt

• 8 Cobyla

• 7 QODE

• 6 OnePlusOne

• 5 SODE

• 4 SPQODE

• 4 QOTPDE

E.1.2 Number of times each algorithm was ranked among the 2 first: NGOpt and base algorithms

• 45 NGOpt

• 16 QODE

• 16 OnePlusOne

• 16 Cobyla

• 12 HyperOpt

• 10 QORealSpacePSO

• 9 SQOPSO

• 8 QOPSO

E.1.3 Number of times each algorithm was ranked among the 3 first: NGOpt and base algorithms

• 51 NGOpt

• 23 Cobyla

• 20 QODE

• 20 OnePlusOne

• 19 SQOPSO

• 15 HyperOpt

• 14 QORealSpacePSO

• 12 SODE

E.2 Comparing simple algorithms only: wizards, multilevels, specific standard deviations, and
combinations excluded

Simple algorithms might be less overfitted, more robust: we consider the same experiments, but with only
“simple” algorithms: no chaining, no metamodel, no tuned parameters, no bet-and-run, no wizard. The
success (robustness) of quasi-opposite sampling (for PSO or DE) is visible. in results below. We also note
the excellent performance of Cobyla, thanks to great results for moderate budget.

E.2.1 Number of times each algorithm was ranked first: no wizard, no combination

• 14 Cobyla

• 9 QODE

• 8 OnePlusOne

• 8 HyperOpt

• 6 QORealSpacePSO

• 5 SODE

• 5 QNDE

• 4 SPQODE

E.2.2 Number of times each algorithm was ranked among the 2 first: no wizard, no combination

• 17 QODE

• 17 OnePlusOne

• 17 Cobyla

• 13 QORealSpacePSO

• 12 SQOPSO

• 12 HyperOpt

• 10 GeneticDE

• 10 DiscreteLenglerOnePlusOneT

E.2.3 Number of times each algorithm was ranked among the 3 first: no wizard, no combination
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• 23 QODE

• 23 Cobyla

• 20 SQOPSO

• 20 OnePlusOne

• 16 QORealSpacePSO

• 15 HyperOpt

• 15 DiagonalCMA

• 13 OldCMA

E.3 Everything included

For the results of this section, we include all codes, wizards as well as base algorithms. All strong methods
are wizards, except tools based on quasi-opposite samplings. The only algorithms making it to the top are
(i) wizards (ii) bet and run / aggregations (such as SQPCMA) (iii) HyperOpt (iv) quasi-opposite tools (v)
Carola variants.

E.3.1 Number of times each algorithm was ranked first: everything included

• 10 NgIoh4

• 9 SQPCMA

• 7 NgIoh6

• 6 NGOptRW

• 6 NGOpt

• 6 Carola3

• 5 Wiz

• 5 NgIoh5

E.3.2 Number of times each algorithm was ranked among the two first: everything included

• 22 NgIoh4

• 14 NgIoh5

• 12 NgIoh6

• 11 SQPCMA

• 11 NGOpt

• 10 Shiwa (an old wizard, anterior to NGOpt,
designed in Liu et al. (2020))

• 8 QODE

• 8 NgIoh2

E.3.3 Number of times each algorithm was ranked among the three first: everything included

• 29 NgIoh4

• 27 NgIoh5

• 21 NgIoh6

• 16 Shiwa

• 14 NGOpt

• 12 HyperOpt

• 11 SQPCMA

• 11 QODE

F Additional experimental figures for artificial problems in Nevergrad
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Figure 6: Variants of YABBOB with small ratio budget/dimension and LSGO. Other variants of BBOB
in Figure 7. This is the average normalized loss (see details in Section 3.5), with only the best methods
(NgIoh4 is always there) and the single worst; see Figures 9 to 11 for more methods in the frequency of
winning figures. Right: name of benchmark and number of algorithms run.
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Figure 7: Variants of YABBOB with small ratio budget/dimension. The last one, YaBigBBOB, is the
opposite, with a large ratio budget/dimension. Only the 12 best methods and the worst are presented, all
benchmarks include several variants of CMA, DE, PSO and others (see referenced URLs or Fig. 11 for all
details and more algorithms). Overall, NgIoh variants are excellent.
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40 50

60 70

80

Figure 8: Photonics optimization (mirrors for various wavelengths) for 40, 50, 60, 70, 80 layers respectively:
sorted result of the 30 runs of each method (best run on the left and worst run on the right). The 27 best (for
the median) are presented (best at the end, right column, bottom), this extends Figure 14. For moderate
numbers of layers, comparisons are unclear, whereas for large-scale versions DE dominates.
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Figure 9: Variants of YABBOB with small ratio budget/dimension. Other variants of YABBOB in Figures 10
and 11. This is the frequency of winning figure (see details in Section 3.5, with the best methods on the left.
NgIoh variants dominate.
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Figure 10: Variants of YABBOB with small ratio budget/dimension and LSGO (Li et al., 2013). Other
variants of YABBOB in Fig. 9 and 11. This is the frequency of winning figure (see details in Section 3.5,
with the best methods on the left. Total number of methods run on the right.
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Figure 11: Top: 3 variants of YABBOB with small ratio budget/dimension. Bottom: YaBigBBOB, is the
opposite, with a large ratio budget/dimension. Frequency of winning figure as detailed in Section 3.5, with
the best methods on the left. NgIoh variants and (except for the last) Cobyla dominate.
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G Outside Nevergrad: application to external real-world problems

Finally, we include a few use cases by Nevergrad users. The benchmarks and setups have been developed
independently of the benchmarking platform included in Nevergrad. The plotting tools, functions, and
criteria, are frequently different from the rest of the paper. They, on purpose, quantify the robustness of the
conclusions drawn on our update of the Nevergrad benchmark, specifically for the real-world cases. Overall,
results in Appendices G.1, G.2 and G.4 confirm the conclusion, in Nevergrad benchmarks, that DE performs
well on many real-world problems; the discrete problem in Appendix G.3 confirms the good performance
of Lengler though FastGA (Doerr et al., 2017) is also good; Appendix G.5 confirms the performance of
SQOPSO when the scale of the optimum is unknown, in particular in the neuro-control case.

G.1 Infrastructure: optimizing a caching policy

In this application, Nevergrad is used to optimize a caching strategy. The problem comprises 84 decision
variables for the optimization. These variables encode the cache strategy. We run each method in several vari-
ants, with random parameters a, b, and c so that constraints are penalized by a × constraintV iolationb × ic,
with i being the iteration index. With this dynamical constraint penalization scheme, constraints viola-
tions are increasingly penalized so that eventually solutions without any violations are found. Compared
to artificial benchmarks above, the setting has been influenced by the computational cost. All methods
including GeneticDE, PSO, DE, TwoPointsDE, DiagonalCMA were run the same number of times, and the
11 best results are presented. We observe (Figure 15, left) that GeneticDE performs best and in general,
DE variants perform well. One of the conclusions from this experiment is how much most Bayesian methods
cannot be used for large budgets and dimension spaces larger than 84 (none of the methods available in
Nevergrad was usable here), and computing gradients by finite differences (introducing a factor 85 in the
computational cost) is also unfeasible. The results are consistent with the effectiveness, in our benchmarking
suite, of DE variants for real-world problems with similar size/budget (Section 4.2). However, we would
not have guessed the good performance of GeneticDE for this specific problem. Another observation is that
we get a strong improvement compared to the handcrafted heuristic implemented before using the standard
algorithm (+70%) and also better than the manually designed solution (initial point). The problem is re-
peated: there are frequently new versions to be solved, so that doing this experiment is useful for doing a
choice of algorithm for the future. We note (unpresented experiments) that Inoculation (Inoculation, here,
consists in adding in the population 8 points obtained in previous optimization runs) roughly reduces the
computational cost by a factor of five. We get roughly the same performance with 20% of the budget.

G.2 Crop optimization

This application combines Nevergrad, PCSE (de Wit, 2021), and NASA data (Sparks, 2018) for optimizing
the choice of crops in many countries. Figure 12 presents a specialization of the code to Kenya, including
choosing crops and their varieties, depending on climate. Compared to the original code in Nevergrad,
there are additional variables, for choosing the crop and the variety. After the present performance check
(confirming the good behaviour of NGOptRW), a forthcoming publication is under work for various crops
and continents.

G.3 Mobile Network Base Station Placement Optimization

Figure 13 presents the experimental results regarding the optimization of the placement of base stations
for a mobile network. An original ad-hoc implementation already existed before testing Nevergrad on this
problem. The method which typically performs best in our discrete benchmarks, namely Lengler (Doerr
et al., 2019; Einarsson et al., 2019), which uses a fixed, predefined mutation schedule and FastGA (Doerr
et al., 2017), which is also a method with a fixed mutation schedule, but here the schedule is a stationary
stochastic random variable. We observe that while methods in Nevergrad perform well for low budget and
outperform the original method by far, the original method performs best for greater budgets. Seemingly,
the key point is that it uses specific mutation operators, whereas Nevergrad focuses on lists of variables with
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Figure 12: Comparison between optimization methods for crop optimization in the case of Kenya (left:
2011, corresponding to a particularly dry year; right: 2006). Setup as in Section 3.5: the heatmap shows
the frequency at which method X (row) outperforms method Y (col). Rows and cols are ranked by average
frequency against all other methods: top/left is best. As in many real-world cases, NGOptRW is excellent.

Figure 13: Placement of base stations of a mobile network: optimization with budget 50 (left) and 400
(right): the greater, the better, average best score between parentheses. We observe that Nevergrad methods
performed quite well for the low budget case, but the specific method (Simulated Annealing with ad hoc
mutation operator, in orange) developed for the problem at hand is the best for budget 400. Between
parenthesis, the best obtained value. Llr is short for Lengler (Doerr et al., 2019; Einarsson et al., 2019).

generic operators. Nevergrad improves results on this 200-dimensional problem when the budget is 50, but
not with budget 400.

G.4 Robust topology optimization

Figure 14 presents the results for the optimization of mirrors smaller than a micron aimed at reflecting light
at wavelength between 400nm and 650nm using only two materials.

Only the 7 best performing methods are presented, but actually 30 methods are run: There are 5 algorithms:
DE, BFGS, Chain (a chaining of DE during half budget, followed by BFGS) from Nevergrad and the DE and
Chain from Pymoosh (Langevin et al., 2023). For differentiating methods from Nevergrad, we add a prefix
Ng for those methods. Each of them is run with a sampling parameter in {−100, −60, −20, 20, 60, 100},
hence 30 methods. This parameter specifies how robustness to wavelength is taken into account and has
little impact here. The detailed description is beyond the scope of this paper. Another sampling parameter is
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Figure 14: We perform photonics optimization (mirrors for various wavelengths) for 40, 50, 60, 70, 80 layers
respectively: we keep only 40 and 80 for short and refer to the appendix for more. For each algorithm, we
plot the results of 30 runs (best on the left, worst on the right): a horizontal curve means constant results,
whereas a sharp increase means variable results. Methods are ranked by median value. Only the few best
are presented for readability (legend: best at the end, i.e. bottom of the right column): extended version
with more algorithms in the ranking in appendix, Figure 8. For moderate numbers of layers, the ranking is
unclear (with Chaining of DE and BFGS frequently good), whereas for large-scale versions, DE dominates
(for 80 layers, the 6 codes based on DE corresponding to the 6 values of the sampling parameter dominate
all 24 other codes). The impact of the sampling parameter (suffix of the algorithm name) is unclear.

fixed at 316 (the square root of the budget) after preliminary experiments: it is actually the most important
choice in the optimization design, other values are removed from plots as this is not the point in the present
paper.

We observe that all strong methods, in the highest dimensional cases, are DE (either the one from Nevergrad,
which is quite standard, or the one in PyMoosh which has been optimized for the problem at hand). This
limited comparison validates the choice of DE in PyMoosh, though testing more algorithms could be possible.
In lower dimension, we observe that the chaining of DE and BFGS frequently performs better than DE or
BFGS alone.

G.5 Gym

Nevergrad contains OpenAI Gym problems, which were deprecated after the issues of Gym v0.24.0, so that
Gym was not included in recent exports of the Nevergrad benchmarks. We update the code importing Gym
and rerun the experiments. Our code is merged in the codebase. Results are presented in Figure 15 (right):
SQOPSO performs well.

H Additional results with more variants

Since the first version of the present paper, several new variants of NGOpt were added (by us) in the
Nevergrad platform, including

• variants of NgOpt based on new direct search methods in (Roberts & Royer, 2023), with NgDS in
the name. These variants derive from our NgIoh but use the stochastic direct search from Roberts
& Royer (2023) instead of CMA in sequential cases.

• variants of NgOpt based on LogNormal mutations, such as NgLn, which are based on NgIoh but
with Cobyla replaced by LogNormal mutations Kruisselbrink et al. (2011b) as a first step.
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Figure 15: Left: Comparison of various methods on the infrastructure problem. The upper the better, only
the 11 best results are presented: GeneticDE is frequently among the 11 best, whereas all methods were
run the same number of times. Right: Experiments on Gym (more algorithms and more benchmarks in
Section 19), confirming the good performance of SQOPSO (and existing wizards dedicated to reinforcement
learning, with RL in the name Rapin & Teytaud (2018)) for neurocontrol.

The present appendix presents results comparing our algorithms SQOPSO and NgIoh4, algorithms above,
and two more algorithms based on our proposals NgIoh and SQOPSO:

• NgIoh21 is NgIoh4 with constants within Carola2 modified (10% for Cobyla, 80% for the CMA with
MetaModel, 10% for the final convergence with SQP).

• NgIohTuned (available in Rapin & Teytaud (2018)) is similar to NgIoh21 but it uses (i) NgDS instead
of NGOpt in sequential cases (ii) VLPCMA (i.e. CMA with population size multiplied by 100)
instead of CMA when the budget is greater than 2000 times the dimension (iii) most importantly,
additional information provided by the user (if any) for switching to different algorithms: mostly, it
switches to SQOPSO for neural control and to NGOptRW for other real-world problems.

• SQOPSODCMA, a chaining of SQOPSO (half budget) and Diagonal CMA (second half of the
budget).

Basically we observe on results below that NGOptRW (using a lot of DE and PSO) is preferable to NGOpt
in many real-world contexts, that SQOPSO is better in the neuro-control case, and NGOpt variants using a
first exploration step by Cobyla or other methods (as our method NgIoh4 does) perform better than NGOpt
in particular for benchmarks such as MS-BBOB and ZP-MS-BBOB which carefully control for the norm of
the optimum.

H.1 Additional results: YABBOB, ZP-MS-BBOB, MS-BBOB

We observe in Fig. 16 and 3 that results on YABBOB are mixed, whereas for MS-BBOB and ZP-MSBBOB
all strong methods use either Cobyla or quasi-opposite sampling as a first step, validating our contributions:

• MS-BBOB: NgIoh4, SQOPSODCMA, NgIohTuned, NgIoh21, SQOPSO, all outperform all other
methods, including NGOpt.

• ZP-MS-BBOB: NGIoh4, SQOPSODCMA, NgIoh21, NgIohTuned, all outperform all other methods,
including NGOpt.

We note that the succesful codes (outperforming NGOpt) are exactly

• the codes using quasi-opposite sampling as a first stage (as SQOPSODCMA, in both benchmarks)
before using a local convergence method;
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Figure 16: Additional results on ZP-MS-BBOB, MS-BBOB with more algorithms (see Fig. 3 for the case of
YABBOB, i.e. without the multiscale approach of ZP-MS-BBOB and MS-BBOB). NGOpt is competitive on
YABBOB (and our methods are not always at the top, though they are good), but fail (and many methods
as well) compared to our methods in the cases of MS-BBOB and ZP-MS-BBOB. This shows how much
results are different when we consider multiple scales. Note that besides the good performance of NgIoh4
and NgIoh21 and NgIohTuned on ZP-MS-BBOB and MS-BBOB for the greatest budgets, the curves are
also lower than the NGOpt curve for the various budgets.

• and the codes which use our chaining initiated by Cobyla (NgIoh variants);

except, in one of the two benchmarks only, SQOPSO, which still has quasi-opposite sampling but no second
stage. By contrast, all other codes, except SQOPSO for one of the two benchmarks, perform worse than
NGOpt. These results confirm the relevance of quasi-opposite sampling or Cobyla as a first stage for problems
equipped with multiple-scale such as MS-BBOB or ZP-MS-BBOB.
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Figure 17: Counterpart of Fig. 2 for ZP-MS-BBOB with the frequency of winning (26 best, out of
58 methods) instead of the normalized average loss. This takes into account all budgets as detailed
in Section 3.5, hence the ranking is not the same as in Fig. 2 which ranks only based on the results
for the maximum budget, We note that many mathematical programming methods (using SQP, Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) with finite differences, BOBYQA or Cobyla) are excellent for low
budget (so that they get a good ranking on the right), which corroborates the idea of using Cobyla as a
first step in Carola2. 58 algorithms are run (the 26 best are presented), and the previous wizard, NGOpt,
is ranked 22 and CMA is ranked 38 (this differs from statistics on normalized average loss as in Fig. 2 but
we still observe a superiority of NgIoh methods compared to CMA or NGOpt, a conclusion which is not so
clear on e.g. YABBOB).

H.2 Additional results: real-world problems from Nevergrad

Figure 18 presents results of many algorithms on Aquacrop. We observe that on this real-world problem, all
successful algorithms use DE or PSO, confirming the excellent behaviour of these algorithms in such settings.
Also, the top algorithms frequently use either quasi-opposite sampling or GeneticDE (as in NoisyRL3, a
wizard specifically designed for reinforcement learning), both aimed at taking care of the scale (NoisyRL3
and NGDSRW use GeneticDE, LQODE is a DE with quasi-opposite sampling, SQOPSODCMA uses quasi-
opposite samping).
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Figure 18: NGOpt is outperformed on the Aquacrop problems by all algorithms based on DE or PSO, even
more when these algorithms use quasi-opposite sampling.

Fig. 19 confirms the good performance of SQOPSO for neural control in deterministic contexts, with the
application to Gym.
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Figure 19: In the case of neural control, NgIohTuned (which uses the knowledge that this is a neural problem)
switches to SQOPSO, hence its excellent performance. This figure confirms the excellent performance of
SQOPSO for neural control.

H.3 Additional results comparing NgIoh to NGOpt on the old BBOB/COCO

We compare

• NgIoh4,

• NgIoh21 which is a more recent version of NgIoh4 with a tuning of constants of the chaining (10%,
80% and 10% instead of three thirds in Carola2) and increasing the population of CMA by a factor
100 (compared to the default) for budget greater than 2000 times the dimension,

• NgIohTune, a more sophisticated improvement based on NgIoh21, but also high level information
such as “is a real-world problem” or “is a neuro-control problem” for selecting NGOptRW and
SQOPSO respectively.

• NGOpt,

• b-cmafmin2 (the baseline CMA included in the code of BBOB/COCO),

• u-CmaFmin2 and r-CmaFmin2 correspond to the same CMA but with different restart schemes
(the same restart as for Scipy methods for rCma and uniform random restarts for rCma, whereas
CmaFmin2 uses a proposal function “propose-x0” from the objective in Coco/Bbob), and other
variants of CMA found in Nevergrad.

We have 24 cases, corresponding to dimensions 2, 3, 5, 10, 20, 40 and budget/dimension 10, 100, 1000, 10000.
NgIoh4 and NgIoh21 both outperformed NGOpt in 19/24 cases, NgIohTuned outperformed NGOpt in 21/24
cases. NgIoh4 outperforms bCmaFmin2 in 14/24 cases. NgIoh21 outperforms bCmaFmin2 in 17/24 cases.
NgIohTuned outperforms bCmaFmin2 in 19/24 cases and is frequently the best overall. Overall, NgIoh4 and
all its variants outperform NGOpt on BBOB/COCO.

Results in low budget cases confirm the excellence of Cobyla already observed in Dufossé & Atamna (2022);
Raponi et al. (2023).

H.3.1 Additional results: BBOB with budget = 10× dimension
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Figure 20: BBOB with budget 10× dimension. The higher the better on these BBOB/COCO figures.

H.3.2 Additional results: BBOB with budget = 100× dimension
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Figure 21: BBOB with budget 100× dimension. The higher the better on these BBOB/COCO figures.

H.3.3 Additional results: BBOB with budget = 1000× dimension
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Figure 22: BBOB with budget 1000× dimension. The higher the better on these BBOB/COCO figures.

H.3.4 Additional results: BBOB with budget = 10000× dimension
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Figure 23: BBOB with budget 10000× dimension. The higher the better on these BBOB/COCO figures.
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