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Abstract

Proxy causal learning (PCL) is a method for estimating the causal effect of treat-
ments on outcomes in the presence of unobserved confounding, using proxies
(structured side information) for the confounder. This is achieved via two-stage
regression: in the first stage, we model relations among the treatment and proxies;
in the second stage, we use this model to learn the effect of treatment on the
outcome, given the context provided by the proxies. PCL guarantees recovery of
the true causal effect, subject to identifiability conditions. We propose a novel
method for PCL, the deep feature proxy variable method (DFPV), to address the
case where the proxies, treatments, and outcomes are high-dimensional and have
nonlinear complex relationships, as represented by deep neural network features.
We show that DFPV outperforms recent state-of-the-art PCL methods on challeng-
ing synthetic benchmarks, including settings involving high dimensional image
data. Furthermore, we show that PCL can be applied to off-policy evaluation
for the confounded bandit problem, in which DFPV also exhibits competitive
performance.

1 Introduction

In causal learning, we aim to estimate the effect of our actions on the world. For example, we may
be interested in measuring the impact of flight ticket prices on sales [2, 34], or the effect of grade
retention on cognitive development [4]. We refer to our action as a treatment, which results in a
particular outcome. It is often impossible to determine the effect of treatment on outcome from
observational data alone, since the observed joint distribution of treatment and outcome can depend
on a common confounder which influences both, and which might not be observed. In our example on
sales of plane tickets given a price, the two might even be positively correlated in some circumstances,
such as the simultaneous increase in sales and prices during the holiday season. This does not mean
that raising the price causes sales to increase. In this context, people’s desire to fly is a confounder,
since it affects both the number of ticket sales and the prices people are willing to accept. Thus, we
need to correct the bias caused by the confounder.

One common assumption to cope with confounding bias is to assume no unobserved confounders
exist [8], or more generally, the ignorable treatment assignment assumption [28], which states that
the treatment assignment is independent of the potential outcomes caused by the treatment, given the
background data available. Although a number of methods are proposed based on this assumption
[7, 9, 36], it can be too restrictive, since it is often difficult to determine how the confounder affects
treatment assignments and outcomes.
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A less restrictive assumption is that we have access to proxy variables, which contain relevant side
information on the confounder. In the flight tickets example, we can use the number of views of the
ticket reservation page as a proxy variable, which reflects peoples’ desire for flights. Note that if we
can completely recover the confounder from proxy variables, the ignorable treatment assignment
assumption can be satisfied. Motivated by this, Lee et al. [14] and Louizos et al. [17] aim to recover
the distribution of confounders from proxy variables using modern machine learning techniques
such as generative adversarial networks [5] or variational auto-encoders (VAE) [11]. Although these
methods exhibit powerful empirical performance, there is little theory that guarantees the correct
recovery of the causal effects.

Kuroki and Pearl [13] first considered the necessary conditions on proxy variables to provably recover
the underlying causal effect via direct recovery of the hidden confounder. This work was in turn
generalized by Miao et al. [20]. In their work, it is shown that two types of proxy variables are
sufficient to recover the true causal effects without explicitly recovering the confounder. One is an
outcome-inducing proxy, which correlates with confounders and causes the outcome, and the other
is a treatment-inducing proxy which is caused by confounders and correlates with the treatment.
In the flight ticket example, we can use the number of views of the ticket reservation page as the
outcome-inducing proxy, and the cost of fuel as the treatment-inducing proxy. Given these proxy
variables, Miao et al. [20] show that the true causal effect can be recovered by solving a Fredholm
integral equation, which is referred to as the proxy causal learning (PCL) problem. The PCL problem
is known to have an interesting relation to the causal inference with multiple treatments, which uses a
subset of treatments as proxy variables in PCL [22, 33].

Although the PCL problem has a solid theoretical grounding, the question of how to estimate
the causal effect remains a practical challenge, in particular when we consider nonlinear causal
relationships or high-dimensional treatments. In Miao et al. [20], the treatment and outcome are
assumed to be categorical variables. In a follow-up study, Miao et al. [21] show that we can learn
a linear causal effect by a method of moments. Deaner [3] models the causal effect as a linear
combination of nonlinear basis functions, which is learned by solving two stage regression. These
two methods are extended by Mastouri and Zhu et al. [18], who learn the causal effect in a predefined
reproducing kernel Hilbert space (RKHS). We provide an overview of the PCL problem and the
two-stage regression in Section 2. Although these methods enjoy desirable theoretical properties, the
flexibility of the model is limited, since all existing work uses pre-specified features.

In this paper, we propose a novel Deep Feature Proxy Variable (DFPV) method, which is the first
work to apply neural networks to the PCL problem. The technique we employ builds on earlier work
in instrumental variable (IV) regression, which is a related causal inference setting to PCL. A range
of deep learning methods has recently been introduced for IV regression [1, 6, 35]. We propose
to adopt the Deep Feature Instrumental Variable method [35], which learns deep adaptive features
within a two-stage regression framework. Details of DFPV are given in Section 3. In Section 4, we
empirically show that DFPV outperforms other PCL methods in several examples. We further apply
PCL methods to the off-policy evaluation problem in a confounded bandit setting, which aims to
estimate the average reward of a new policy given data with confounding bias. We discuss the setting
in Section 3, and show the superiority of DFPV in experiments in Section 4.

2 Preliminaries

In this section, we introduce the proxy causal learning (PCL) problem and describe the existing
two-stage regression methods to solve PCL.

Notation. Throughout the paper, a capital letter (e.g. A) denotes a random variable, and we denote
the set where a random variable takes values by the corresponding calligraphic letter (e.g. A).
The symbol P (·) denotes the probability distribution of a random variable (e.g. P (A)). We use a
lowercase letter to denote a realization of a random variable (e.g. a). We denote the expectation
over a random variable as E[·] and ‖f‖P(·) as the L2-norm of a function f with respect to P (·); i.e.
‖f‖P(A) =

√
EA [f2(A)].

2.1 Problem Setting for Proxy Causal Learning
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Figure 1: Causal Graph.

We begin with a description of the PCL setting. We observe a treatment
A ∈ A, whereA ⊂ RdA , and the corresponding outcome Y ∈ Y , where
Y ⊂ R. We assume that there exists an unobserved confounder U ∈ U
that affects both A and Y . The goal of PCL is to estimate the structural
function fstruct(X) defined as

fstruct(a) = EU [EY [Y |A = a,U ]] ,

which we assume to be continuous. This function is also known as the
Average Treatment Effect (ATE). The challenge of estimating fstruct
is that the confounder U is not observable — we cannot estimate the structural function from
observations A and Y alone. To deal with this, we assume access to a treatment-inducing proxy
variable Z, and an outcome-inducing proxy variable W , which satisfy the following structural
assumption and completeness assumption.

Assumption 1 (Structural Assumption [3, 18]). We assume Y ⊥⊥Z|A,U , and W ⊥⊥(A,Z)|U .

Assumption 2 (Completeness Assumption on Confounder [3, 18]). Let l : U → R be any square
integrable function ‖l‖P(U) <∞. The following conditions hold:

E [l(U) | A = a,W = w] = 0 ∀(a,w) ∈ A×W ⇔ l(u) = 0 P (U) -a.e.
E [l(U) | A = a,Z = z] = 0 ∀(a, z) ∈ A×Z ⇔ l(u) = 0 P (U) -a.e.

Figure 1 shows the causal graph describing these relationships. In our setting, we assume that there is
no observable confounder, though this may be easily included [18, 31] as presented in Appendix D.
Here, the bidirectional arrows mean that we allow both directions or even a common ancestor variable.
Given these assumptions, it is shown that the structural function can be expressed using a solution of
an integral equation.

Proposition 1 (Miao et al. [20]). Let Assumptions 1, 2 and Assumptions 4, 5, 6 in Appendix B hold.
Then there exists at least one solution to the functional equation

E [Y |A = a,Z = z] =

∫
h(a,W )ρW (w|A = a,Z = z)dw, (1)

which holds for any (a, z) ∈ A×Z . Here, we denote ρW (w|A = a,Z = z) as the density function
of the conditional probability P (W |A = a,Z = z). Let h∗ be a solution of (1). The structural
function fstruct is given as

fstruct(a) = EW [h∗(a,W )] . (2)

For completeness, we present a proof in Appendix B (Lemma 2 and Corollary 1), which is due to
Miao et al. [21] and Deaner [3]. Following Miao et al. [21], we call h∗ the bridge function. From
Proposition 1, we can see that the estimation of the structural function reduces to the estimation of
the bridge function, since once we obtain the bridge function, the structural function directly follows
from (2).

2.2 Two-stage Regression Scheme for Proximal Causal Learning with Fixed Features

To obtain the bridge function, we need to solve the functional equation (1). However, directly solving
(1) in a rich function space can be ill-posed (see discussion in Nashed and Wahba [25]). To address
this, recent works [3, 18] minimize the following regularized loss LPV to obtain an estimate of the
bridge function ĥ:

ĥ = arg min
h∈Hh

LPV(h), LPV(h) = EY,A,Z
[
(Y −EW |A,Z [h(A,W )])2

]
+ Ω(h), (3)

where Hh is an arbitrary space of continuous functions and Ω(h) is a regularizer on h. Note that
this loss can be interpreted as the deviation of the r.h.s and the l.h.s in (1) measured in L2-norm with
respect to the distribution P (Y,A,Z).

Deaner [3] and Mastouri and Zhu et al. [18]solve the minimization problem (3) by successively
solving two-stage regression problems. They model the bridge function as

h(a,w) = u>(ψA(a)⊗ψW (w)) (4)
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where u is a learnable weight vector, ψA(a),ψW (w) are vectors of fixed basis functions, and ⊗
is a Kronecker product, defined as a⊗ b = vec(ab>) for any finite dimensional vectors a,b.1 An
estimate û is obtained by solving the successive regression problems. In Stage 1, we estimate the
conditional expectation EW |A=a,Z=z [ψW (W )] as a function of a, z. In Stage 2, we substitute the
model (4) into the inner conditional expectation in LPV,

EW |A=a,Z=z [h(a,W )] = u>(ψA(a)⊗EW |A=a,Z=z [ψW (W )]),

and then minimize LPV with respect to u using the estimate of EW |A=a,Z=z [ψW (W ))] from Stage 1.

The above idea can be implemented as follows. We model the conditional expectation as
EW |A=a,Z=z [ψ(W )] = V (φA(a)⊗φZ(z)),

where φA(a),φZ(z) are another set of basis functions, and V is a matrix to be learned. Note that
we can use different basis functions for φA(a) and ψA(a). In Stage 1, the matrix V is learned by
minimizing the following loss,

L1(V ) = EW,A,Z
[
‖ψW (W )−V (φA(A)⊗φZ(Z))‖2

]
+ λ1‖V ‖2, (5)

where λ1 > 0 is a regularization parameter. This is a linear ridge regression problem with multiple
targets, which can be solved analytically. In Stage 2, given the minimizer V̂ = arg minV L1(V ), we
can obtain û by minimizing the loss

L2(u) = EY,A,Z
[
‖Y −u>(ψA(A)⊗ (V̂ (φA(A)⊗φZ(Z))))‖2

]
+ λ2‖u‖2, (6)

where λ2 > 0 is another regularization parameter. Stage 2 corresponds to another linear ridge re-
gression from input ψA(A)⊗ (V̂ (φA(A)⊗φZ(Z))) to target Y , and also enjoys a closed-form
solution. Given the learned weights û = arg minuL2(u), the estimated structural function is
f̂struct(a) = û>(ψA(a)⊗EW [ψW (W )]).

When fixed feature dictionaries are used, this two-stage regression benefits from strong theoretical
guarantees [3, 18]. The use of pre-specified feature maps, limits the scope and flexibility of the
method, however, especially if the treatment and proxies are high dimensional (e.g. images or
text), and the causal relations are nonlinear. To overcome this, we propose to use adaptive features,
expressed by neural nets, as described in the next section.

3 Deep Feature Proxy Causal Learning

In this section, we develop the DFPV algorithm, which learns adaptive features modeled by neural
nets using a technique similar to Xu et al. [35]. As in Mastouri and Zhu et al. [18], we assume that
we do not necessarily have access to observations from the joint distribution of (A,Y,Z,W ). Instead,
we are given m observations of (A,Z,W ) for Stage 1 and n observations of (A,Z,Y ) for Stage
2. We denote the stage 1 observations by (ai, zi,wi) and the stage 2 observations by (ãi, z̃i, ỹi). If
observations of (A,Y,Z,W ) are given for both stages, we can evaluate the out-of-sample loss of
Stage 1 using Stage 2 data and vice versa, and these losses can be used for hyper-parameter tuning of
λ1, λ2 (Appendix A). We first introduce two-stage regression with adaptive feature maps and then
describe the detailed learning procedure of DFPV.

3.1 Two-stage regression with adaptive features

In DFPV, we consider the following models of the bridge function h(a,w) and conditional feature
mean EW |A,Z [ψθW (W )]:

h(a,w) = u>(ψθA(2)
(a)⊗ψθW (w)), EW |A=a,Z=z [ψθW (W )] = V (φθA(1)

(a)⊗φθZ (z)),

where u and V are parameters, and φθA(1)
,φθZ ,ψθA(2)

,ψθW are neural nets parametrized by
θA(1), θZ , θA(2), θW , respectively. Again, we may use different neural nets in the treatment fea-
tures φθA(1)

and ψθA(2)
.

1Throughout this paper, we assume the number of basis functions to be finite. Mastouri and Zhu et al.
[18] consider an infinite number of basis function in a reproducing kernel Hilbert space, and use the definitions
of the inner and Kronecker products for that space.
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As in the existing work [3, 18], we learn EW |a,z [ψθW (w)] in Stage 1 and h(a,w) in Stage 2, but in
addition to the weights u and V , we also learn the parameters of the feature maps. Specifically, in
Stage 1, we learn V and parameters θA(1), θZ by minimizing the following empirical loss:

L̂1(V , θA(1), θZ) =
1

m

m∑
i=1

∥∥ψθW (wi)−V
(
φθA(1)

(ai)⊗φθZ (zi)
)∥∥2 + λ1‖V ‖2.

Note that L̂1 is an empirical estimate of L1 in (5) with adaptive feature maps. Although L̂1 depends
on θW , at this stage, we do not optimize θW with L̂1 as ψθW (w) is the “target variable” in Stage 1.
Given the minimizers (V̂ , θ̂A(1), θ̂Z) = arg min L̂1, we learn weights u and parameters θW , θA(2)

by minimizing the empirical stage 2 loss,

L̂2(u, θW , θA(2)) =
1

n

n∑
i=1

(
ỹi−u>

(
ψθA(2)

(ãi)⊗ V̂
(
φθ̂A(1)

(ãi)⊗φθ̂Z (z̃i)
)))2

+ λ2‖u‖2.

Again, the loss L̂2 is an empirical estimate of L2 in (6) with adaptive feature maps. Although the
expression of L̂2 does not explicitly contain θW , it implicitly depends on θW as (V̂ , θ̂A(1), θ̂Z) is the
solution of a minimization problem involving θW . This implicit dependency makes it challenging
to update θW , as we cannot directly obtain its gradient. One possible solution is to use the implicit
gradient method [16], but this approach might be too computationally expensive. Instead, we use
the method proposed in Xu et al. [35], in which we ignore the dependency of θW on parameters
θ̂A(1), θ̂Z , and compute the gradient via the closed-form solution of V̂ .

3.2 Deep Feature Proxy Variable Method

We now describe the learning procedure for DFPV. First, we fix parameters in the adaptive feature
maps (θA(1), θZ , θA(2), θW ). Given these parameters, optimal weights V̂ , û can be learned by mini-
mizing the empirical stage 1 loss L̂1 and empirical stage 2 loss L̂2, respectively. These minimizations
can be solved analytically, where the solutions are

V̂ (θ) = Ψ>1 Φ1(Φ>1 Φ1 +mλ1I)−1, û(θ) =
(
Φ>2 Φ2 +nλ2I

)−1
Φ>2 y2, (7)

where we denote θ = (θA(1), θZ , θA(2), θW ) and define matrices as follows:

Ψ1 = [ψθW (w1), . . . ,ψθW (wm)]
>
, Φ1 = [v1(a1, z1), . . . ,v1(am, zm)]>,

y2 = [ỹ1, . . . , ỹn]>, Φ2 = [v2(ã1, z̃1), . . . ,v2(ãn, z̃n)]>,

v1(a, z) = φθA(1)
(a)⊗φθZ (z), v2(a, z) = ψθA(2)

(a)⊗
(
V̂ (θ)

(
φθA(1)

(a)⊗φθZ (z)
))
.

Given these weights û(θ), V̂ (θ), we can update feature parameters by a gradient descent method
with respect to the residuals of the loss of each stage, while regrading V̂ and û as functions of
parameters. Specifically, we take the gradient of the losses

L̂DFPV
1 (θ) =

1

m

m∑
i=1

∥∥∥ψθW (wi)− V̂ (θ)
(
φθA(1)

(ai)⊗φθZ (zi)
)∥∥∥2 + λ1‖V̂ (θ)‖2,

L̂DFPV
2 (θ) =

1

n

n∑
i=1

(
ỹi− û(θ)>

(
ψθA(2)

(ãi)⊗ V̂ (θ)
(
φθA(1)

(ãi)⊗φθZ (z̃i)
)))2

+λ2‖û(θ)‖2,

where V̂ (θ), û(θ) are given in (7). Given these losses, (θA(1), θZ) are minimized with respect to
L̂DFPV
1 (θ), and (θA(2), θW ) are minimized with respect to L̂DFPV

2 (θ). Finally, we take the empirical
mean ofψ

θ
(t)
W

based on additional output-proxy data SW = {wextra
i }nWi=1, which is used for estimating

the structural function. Here, we assume access to SW for proving consistency results, but empirically,
we can use stage 1 data to compute this mean.

The complete procedure is presented in Algorithm 1. Note that we may use any sophisticated
gradient-based learning method to optimize, such as Adam [10]. As reported in Xu et al. [35], we
observe that the learning procedure is stabilized by running several gradient descent steps on the
stage 1 parameters (θA(1), θZ) before updating the stage 2 features (θA(2), θW ). Furthermore, we
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may use mini-batch updates, which sample subsets of the data at the beginning of each iteration and
only use these subsamples to update the parameters.

Algorithm 1 Deep Feature Proxy Causal Learning
Input: Stage 1 data S1 = {ai, zi,wi}, Stage 2 data S2 = {ãiz̃i, ỹi}, Additional outcome-

proxy data SW = {wextra
i }, Regularization parameters (λ1, λ2). Initial values θ(0) =

(θ
(0)
A(1), θ

(0)
Z , θ

(0)
A(2), θ

(0)
W ). Learning rate α.

Output: Estimated structural function f̂struct(a)
1: t← 0
2: repeat
3: Compute V̂ (θ(t)), û(θ(t)) in (7)
4: Update parameters in features θ(t+1) ← (θ

(t+1)
A(1) , θ

(t+1)
Z , θ

(t+1)
A(2) , θ

(t+1)
W ) as follows

θ
(t+1)
A(1) ← θ

(t)
A(1)−α∇θA(1)

L̂DFPV
1 (θ)|θ=θ(t) , θ

(t+1)
Z ← θ

(t)
Z −α∇θZ L̂

DFPV
1 (θ)|θ=θ(t)

θ
(t+1)
A(2) ← θ

(t)
A(2)−α∇θA(2)

L̂DFPV
2 (θ)|θ=θ(t) , θ

(t+1)
W ← θ

(t)
W −α∇θW L̂

DFPV
2 (θ)|θ=θ(t)

5: Increment counter t← t+ 1;
6: until convergence
7: Compute û(θ(t)) from (7)
8: Compute mean feature for W using stage 1 dataset: µθW ← 1

n

∑
ψ
θ
(t)
W

(wextra
i )

9: return f̂struct(a) = (û(t))>
(
ψ
θ̂
(t)

A(2)

(a)⊗µθW
)

3.3 Consistency of DFPV

In this section, we show that the DFPV method yields a consistent estimate of the bridge function.
Our approach differs from the consistency result of Deaner [3] and Mastouri and Zhu et al. [18],
which depend on the assumption that the true bridge function lies in a specific functional space (such
as an RKHS [18]) or satisfies certain smoothness properties [3]. Since our features are adaptive,
however, we instead build our result on a Rademacher complexity argument [24], which holds for a
wide variety of hypothesis spaces. Furthermore, we do not assume that our hypothesis space contains
the true bridge function, which makes this theory of independent interest.

To derive the excess risk bound, we need another completeness assumption.
Assumption 3 (Completeness Assumption on Outcome-Inducing Proxy [3, 18]). Let l :W → R be
any square integrable function ‖l‖P(W ) <∞, We assume the following condition:

E [l(W ) | A = a,Z = z] = 0 ∀(a, z) ∈ A×Z ⇔ l(w) = 0 P (W ) -a.e.

This assumption is not necessary for identification (Proposition 1), but we need it for connecting the
two-stage loss and the deviation of the bridge function. Given this assumption, we have the following
consistency result.
Proposition 2. Let Assumption 3 and Assumptions 7 and 8 in Appendix C hold. Given stage 1
data S1 = {(wi, ai, zi)}mi=1, stage 2 data S2 = {(ỹi, ãi, z̃i)}ni=1, and additional output-proxy data
SW = {wextra

i }nWi=1, then for the minimizer of L̂2 denoted as (û, θ̂A(2), θ̂Z), we have

‖fstruct− f̂struct‖P(A) ≤ Op

(√
κ1 + R̂S1

(H1) +
1√
m

+ κ2+

√
R̂S2

(H2) +
1√
n

+
1
√
nW

)
,

where H1,H2 are the functional classes that are considered in each stage, comprising both the
predictions and their associated losses, which are defined in (12) and (15), respectively; and
R̂S1(H1), R̂S2(H2) are their respective empirical Rademacher complexities; the quantities κ1, κ2
measure the misspecification in each regression, and are defined in (13) and (16), respectively.

We formally restate Proposition 2 in Appendix C (Theorem 3), in which the definitions of hypothesis
spaces and constants can be found. From this, we can see that if we correctly identify the hypoth-
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esis space (κ1, κ2 = 0) and have vanishing Rademacher complexities (R̂S1(H1), R̂S2(H2)→ 0 in
probability), then the estimated bridge function converges in probability to the true one. Note that
the Rademacher complexity of certain neural networks is known; e.g., ReLU two-layer networks are
known to have the complexity of order O(

√
1/n) [26]. However, it might be not straightforward to

derive the Rademacher complexities of the specific classes of neural networks we use, because we are
employing the outer product of two neural networks in (5) and (6), whose Rademacher complexity
remains a challenging open problem. The analysis in Proposition 2 is similar to Xu et al. [35],
with two important distinctions: first, the target fstruct is estimated using the bridge function h
marginalized over one of its arguments W , but PCL learns the bridge function itself. Second, our
result is more general and includes the misspecified case, which was not treated in the earlier work.

One limitation of our analysis is that we leave aside questions of optimization. As we previously
discussed, L̂2 does not explicitly include θW , thus it is difficult to develop a consistency result that
includes the optimization. We emphasize that Algorithm 1 does not guarantee to converge to the
global minimizer, since we ignore the implicit dependency of θW on θA(1), θZ when calculating the
gradient. As we will see in the Section 4, however, the proposed method outperforms competing
methods with fixed feature dictionaries, which do not have this issue.

3.4 DFPV for Policy Evaluation

PCL methods can estimate not only the structural function, but also other causal quantities, such as
Conditional Average Treatment Effect (CATE) [29] and Average Treatment Effect on Treated (ATT)
[3, 29]. Beyond the causal context, [32] uses a PCL method to conduct the off-policy evaluation in a
partially observable Markov decision process with discrete action-state spaces. Here, we present the
application of PCL methods to bandit off-policy evaluation with continuous actions, and propose a
method to leverage adaptive feature maps in this context.

In bandit off-policy evaluation, we regard the outcome Y as the reward and aim to evaluate the value
function of a given policy. Denote policy π : C → A and define the value function v(π) as

v(π) = EU,C [E [Y |A = π(C),U ]] ,

where C ∈ C is a variable on which the policy depends. In the flight ticket sales prediction example,
a company might be interested in predicting the effect of discount offers. This requires us to
solve the policy evaluation with C = A since a new price is determined based on the current price.
Alternatively, if the company is planning to introduce a new price policy that depends on the fuel
cost, we need to consider the policy evaluation with C = Z, since the fuel cost can be regarded as
the treatment-inducing proxy variable. Here, we assume the policy π to be deterministic, but this can
be easily generalized to a stochastic policy. Although the value function v contains the expectation
over the latent confounder U , it can be estimated through a bridge function.

Proposition 3. Assume that the true bridge function h∗(a,w) : A×W → R is jointly measurable.
Suppose C⊥⊥W |U . Under Assumptions 1, 2 and Assumptions 4, 5, 6 in Appendix B, we have

v(π) = EC,W [h∗(π(C),W )] .

The proof can be found in Appendix B (Corollary 2). From Proposition 3, we can obtain the
value function by taking the empirical average over the bridge function h(π(C),W ). In DFPV, we
estimate the bridge function as h(a,w) = (û)>(ψθ̂A(2)

(a)⊗ψθ̂W (w)) where û, θ̂A(2), θ̂W minimize

L̂2. Hence, given n′ observation of (C,W ) denoted as {či, w̌i}n
′

i=1, we can estimate the value function
v(π) as

v̂(π) =
1

nC

n′∑
i=1

û>
(
ψθ̂A(2)

(π(či))⊗ψθ̂W (w̌i))
)
.

We derive the following consistency result for policy value evaluation in a bandit with confounding
bias.

Proposition 4. Let Assumption 3 and Assumptions 7, 8, 9 in Appendix C hold. Denote the
minimizers of L̂2 as (û, θ̂A(2), θ̂Z). Given stage 1 data S1 = {(wi, ai, zi)}mi=1, stage 2 data
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S2 = {(ỹi, ãi, z̃i)}ni=1, and data for policy evaluation S3 = {(či, w̌i)}n
′

i=1, we have

|v(π)− v̂(π)| ≤ Op

(√
κ1 + R̂S1(H1) +

1√
m

+ κ2+

√
R̂S2(H2) +

1√
n

+
1√
n′

)
where H1,H2 are the function classes that are considered in each stage, comprising both the
predictions and their associated losses, which are defined in (12) and (15), respectively; and their
empirical Rademacher complexities are given by R̂S1

(H1), R̂S2
(H2); the quantities κ1, κ2 measure

the misspecification in each regression, which are defined in (13) and (16), respectively.

The formal statement of Proposition 4 can be found in Appendix C (Theorem 3). As in the structural
function case, we can see that estimated value function converges in probability to the true one,
provided that we have vanishing Rademacher complexities and there is no misspecification.

4 Experiments

In this section, we report the empirical performance of the DFPV method. First, we present the
results of estimating structural functions; we design two experimental settings for low-dimensional
treatments and high-dimensional treatments, respectively. Then, we show the result of applying PCL
methods to the bandit off-policy evaluation problem with confounding. We include the results for
problems considered in prior work in Appendix E. The experiments are implemented using PyTorch
[27]. The code is included in the supplemental material. All experiments can be run in a few minutes
on Intel(R) Xeon(R) CPU E5-2698 v4 2.20GHz.

Experiments for Structural Function We present two structural function estimation experiments.
One is a demand design experiment based on a synthetic dataset introduced by Hartford et al. [6],
which is a standard benchmark for the instrumental variable regression. Here, we modify the data
generating process to provide a benchmark for PCL methods. We consider the problem of predicting
sales Y from ticket price P , where these are confounded by a potential demandD ∈ [0,10]. To correct
this confounding bias, we use the fuel price (C1,C2) as the treatment-inducing proxy, which has an
impact on price P , and the number of views of the ticket reservation page V as the outcome-inducing
proxy. Details of the data generation process can be found in Appendix F.1.

Our second structural function estimation experiment considers high-dimensional treatment variables.
We test this using the dSprite dataset [19], which is an image dataset described by five latent parame-
ters (shape, scale, rotation, posX and posY). The images are 64× 64 = 4096-dimensional.
Based on this, Xu et al. [35] introduced the causal experiment, where the treatment is each figure, and
the confounder is posY. Inspired by this, we consider the PCL setting that learns the same structural
functions with nonlinear confounding, which is not possible to handle in the instrumental variable
setting. Specifically, the structural function fstruct and outcome Y are defined as

fstruct(a) =
‖Ba‖22− 5000

1000
, Y =

1

12
(posY− 0.5)fstruct(A) + ε, ε ∼ N (0,0.5),

where each element of the matrix B ∈ R10×4096 was generated from Unif(0.0,1.0) and fixed
throughout the experiment. We fixed the shape parameter to heart and used other parameters as
the treatment-inducing proxy Z. We sampled another image that shared the same posY as treatment
A, which is used as output-inducing proxy W . Details of data generation process can be found in
Appendix F.2.

A Y

Q

U

Figure 2: Causal
Graph in CEVAE

We compare the DFPV method to three competing methods, namely KPV
[18], PMMR [18], and an autoencoder approach derived from the CEVAE
method [17]. In KPV, the bridge function is estimated through the two-
stage regression as described in Section 2, where feature functions are fixed
via their kernel functions. PMMR also models the bridge function using
kernel functions, but parameters are learned by moment matching. CEVAE
is not a PCL method, however, it represents a state-of-the-art approach
in correcting for hidden confounders using observed proxies. The causal
graph for CEVAE is shown in Figure 2, and CEVAE uses a VAE [11] to
recover the distribution of confounder U from the “proxy” Q. We make
two modifications to CEVAE to apply it in our setting. First, we include
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both the treatment-inducing proxy Z and output-inducing proxy W as Q
in CEVAE (we emphasize that this does not follow the causal graph in Figure 2, since there exist
arrows from Q to A,Y ). Second, CEVAE is originally used in the setting where Q is conditioned
on a particular value, whereas we marginalize Q. See Appendix F.4 for the choice of the network
structure and hyper-parameters. We tuned the regularizers λ1, λ2 as discussed in Appendix A, with
the data evenly split for Stage 1 and Stage 2. We varied the dataset size and ran 20 simulations for
each setting. Results are summarized in Figure 3.

In both experiments, DFPV consistently outperforms existing methods. This suggests that DFPV is
capable of learning complex structural functions by taking the advantage of the flexibility of neural
networks. KPV and PMMR perform similarly in all settings, but KPV tends to perform slightly better
when the data size is large. This might be because KPV expresses its solution using a larger number
of parameters than PMMR. Although CEVAE also learns a flexible model with a neural network, it’s
highly unstable in the demand design experiment and underperforms kernel methods in the dSprite
experiment. This is because CEVAE does not take advantage of the relations between proxy variables
and the structural function.

Experiments for Offline Policy Evaluation We now describe the offline policy evaluation experi-
ment based on the demand design data. We set up synthetic experiments to evaluate two types of
policy. In the first case, a policy depends on costs C = (C1,C2), to address the question How much
would we gain if we decide the price based on the fuel costs. In the second case, the policy depends
on current action C = P , which addresses How much would we gain if we cut the price by 30 percent.
The detailed policies can be found in Appendix F.3.

We only compare PCL methods here, as it is not straightforward to apply CEVAE to the off-policy
evaluation problem. We evenly split the data for Stage 1, Stage 2, and policy evaluation (i.e we set
n = m = n′).We ran 20 simulations for each setting. Results are summarized in Figure 4, in which
DFPV performs better than existing PCL methods. This is not surprising since, as demonstrated in
the structural function experiments, DFPV can estimate complex bridge functions, which results in a
more accurate estimation of the value function.

5 Conclusion

We have proposed a novel approach for proxy causal learning, the Deep Feature Proxy Variable
(DFPV) method, which performs two-stage least squares regression on flexible and expressive
features. Motivated by the literature on the instrumental variable problem, we showed how to learn
these feature maps adaptively with deep neural networks. We also showed that PCL learning can
be used for off-policy evaluation in the bandit setting with confounding, and that DFIV performs
competitively in this domain. This work thus brings together research from the worlds of deep offline
RL and causality from observational data.
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In future work, it would be interesting to explore different approaches to learning deep models in the
PCL problem. One direction would be to adapt the method of moment matching, which has been
studied extensively in the instrumental variable literature [1]. Moreover, Liao et al. [15] recently
developed a novel adversarial method to solve a class of functional equations, which would be also
a promising approach in the PCL problem. In the RL context, Tennenholtz et al. [32] shows an
interesting connection between PCL learning and off-policy evaluation in a partially observable
Markov decision process, and we believe that adapting DFPV to this setting will be of value.
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