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Abstract 
 
AlphaFold has revolutionized structural biology with accurate protein predictions, yet challenges remain due to the 
dynamic nature of proteins. Over 40% of human proteins have flexible regions crucial in diseases like Alzheimer's and 
COVID-19. To overcome AlphaFold's limitations, we integrated small-angle X-ray scattering (SAXS) data, leveraging its 
ability to provide structural insights on flexible macromolecules. Using computationally generated SAXS data to inform 
network inputs during fine-tuning and inference, we enhanced AlphaFold to integrate SAXS data to guide conformation 
predictions for flexible protein regions. This approach can advance our understanding of experimentally guided structural 
prediction and provides a potential solution for improving computational prediction of physiologically relevant 
conformations. 

Introduction 

Despite the accomplishment of AlphaFold1, protein structure prediction remains a challenge for proteins with multiple 
conformations. One limitation of AlphaFold stems from its training dataset, as flexible protein regions are missing from 
X-ray crystallography and cryo-EM within the RCSB Protein Data Bank (PDB). To address this limitation, we adapted 
AlphaFold’s architecture to integrate small-angle X-ray scattering (SAXS) data to enhance the prediction of conformations 
of flexible regions using experimental data. SAXS is a solution-based technique that measures the scattering of X-rays to 
provide information on the shape, size, and structural characteristics of macromolecules in solution. Similar to X-ray 
crystallography, the scattering intensity of SAXS can be mapped from reciprocal space to real space to obtain a pairwise 
distance distribution of the protein residues. Here we report a model that modifies AlphaFold architecture to incorporate 
SAXS pairwise distance distributions and uses this physiologically relevant conformational data to guide inference. We 
observed that our model results in improved accuracy and improvement in the conformational flexibility of predicted 
structures, proving the strategy's success.  

Methods 

SAXS-guided Attention Modules. To integrate SAXS data while leveraging the existing AlphaFold architecture, we 
introduced SAXS experimental data into the two key inputs to the network, the pair representation and multiple sequence 
alignment (MSA). We targeted the pair representation because SAXS data reflects pairwise distances between residues, 
and similarly, the pair representation encodes information about the relationship between pairs of residues. We also 
targeted the MSA representation because experimental SAXS data often contains information from a mixture of multiple 
conformations in solution, and previous work has demonstrated that modifying the MSA during inference can be used to 
sample alternative conformational states.2,3 To incorporate SAXS information with these inputs, we added two 
multi-headed cross-attention modules, the SAXS-MSA-Attention and SAXS-Pair-Attention modules, to perform attention 
between the MSA and pair input embeddings and the p(r) probability distribution from the SAXS profiles (Figure 1). 
Specifically, the pair and msa representations are used to form the queries for the SAXS profile, and the attention weights 
are calculated to determine how each SAXS bin might influence each msa cluster and residue or residue pair, allowing 
these input embeddings to be updated based on relevant SAXS profile features. In the SAXS-MSA-Attention block, the 
number of heads was Nheads=8, and the dimension of the keys, queries, and values was c=32, and in the 
SAXS-Pair-Attention block the dimensions were Nheads=4, c=32. The output of these modules was added to the MSA and 
pair representational inputs to the Evoformer. 

Training Data. We trained this network using training data with structures with multiple conformations. We fine-tuned the 
weights of our AlphaSAXS model starting with the publicly available pre-trained weights from AlphaFold1 and used 
OpenFold6 for the architecture implementation and training pipeline. We used two datasets to train two versions of our 
AlphaSAXS model. For our nuclear magnetic resonance (NMR) dataset, we obtained over 12,000 samples of NMR data 
from the Protein Data Bank (PDB). We removed any sequences with more than 70% similarity to the test dataset. We 
separated the conformations for NMR data with the BioPython library. For our synthetic normal mode analysis (NMA) 
dataset, we first obtained over 80,000 samples from the PDB70 (PDBs that have a similarity lower than 70%) training 
dataset. We fixed the flexible loops with BioPython and pdbfixer. To introduce extra flexibility and additional training data 
exemplifying multiple conformations and SAXS profiles for the same sequence, we then generated 6 additional 
conformations for each protein using the ProDY Python package. These synthetic structures were generated using an 
anisotropic network model and following a linear trajectory along the first normal mode with a maximum RMSD value of 3 
with respect to the initial conformation. For initial training, we filtered out recordings with a number of residues > 256 since 



during training the residue dimension is randomly cropped to length Nres = 256, and we wanted to ensure our SAXS 
distributions corresponded to the cropped structures without recalculating during training. We used ColabFold search with 
the MMSeqs2 clustering suite to generate the MSAs used in training. 

SAXS profile generation. For effective training of our model on a larger training dataset, we decided to computationally 
generate SAXS profiles based on existing algorithms. We calculated the distance between each atom of the given PDB 
and then converted it into a pairwise distance distribution of electrons as provided in SAXS data. The algorithm has been 
tested against widely used SAXS software, including FOXS, GNOM, and RAW. The SAXS profiles for both the training 
dataset and the test dataset are prepared ahead of time using GNU parallel for each PDB. The SAXS profile of the 
predicted structure is calculated during training using an embedded version of the same algorithm. 

Figure 1. AlphaSAXS modifies AlphaFold2’s architecture to integrate SAXS data. SAXS information is integrated into MSA and 
pair embeddings via cross-attention modules prior to the Evoformer. Additions to the AlphaFold2 model are indicated in purple. We 
increased the number of recycling iterations since it has been shown that more recycling can improve the prediction quality at the cost 
of higher runtimes.7 The same number of recycling iterations were used for all models, including predictions using the original 
AlphaFold 2 weights.   

Target Dataset. For model evaluation, we used a subset of the curated collection of apo-holo pairs of protein conformers 
by Saldaño et al., 2022, which provides two unique conformations for the same protein under different physiological 
processes. The initial collection of 91 pairs was filtered to exclude sequences with a Nres > 256. To focus our analysis on 
proteins that did not already have highly accurate predictions by the original AlphaFold, we selected protein pairs with a 
total pair RMSD > 4Å and an individual conformer RMSD > 2.5Å, resulting in an evaluation dataset of 40 proteins. We 
calculated the average Cα-RMSD change of the conformation unfavoured by AlphaFold for all protein sequences in the 
target dataset. Compared to the AlphaFold and MSA-subsampling strategy (implemented with the AlphaFlow5 network), 
our model generally shows an improvement in average RMSD and lower standard deviation (Figure A1, Appendix). 

Results 

Alphafold fails to predict the different conformations of the same protein during binding with ligands, different solution 
conditions, or inherent flexibility. Here we test over pairs of protein conformations that have the same sequence to 
evaluate how our SAXS-guided model can predict different protein conformations with a given simulated experimental 
data. This demonstrates real-world use cases with our model under different biological problems. 

AlphaSAXS-NMR improves prediction accuracy while matching the SAXS input data. One biological example we 
observed in our test dataset is β-Phosphoglucomutase (β-PGM PDB: 1ZOL/1O03). β-PGM functions rely on the 
conformational change of the protein, but AlphaFold can only predict one conformation. With our model, we predict the 
correct conformation of β-PGM with a 1.28Å RMSD that reached the original experimental accuracy of 1.9Å (Figure 3). 
We also observed that our prediction shows a significant change in the SAXS P(r) that matched the reference structure.   



Figure 2. AlphaSAXS improves structural and SAXS prediction accuracy. Left: AlphaFold prediction vs. target structure. Middle: 
AlphaSAXS prediction vs. target structure. Right: Theoretical SAXS p(r) distributions calculated from the target.  

AlphaSAXS trained with synthetically generated data increases the conformational diversity. To further improve the 
conformational diversity of our model’s predictions, we trained the model with a synthetic dataset of conformations 
generated using normal mode analysis (NMA) to introduce information about potential movements of flexible protein 
regions. Using this approach, we observed larger conformational changes, e.g., the calcium-binding protein from 
Entamoeba histolytica (EhCaBP, PDB: 1JFJ/1JFK). Similar to β-PGM, this protein relies on conformational diversity for its 
signal transduction mechanism. However, AlphaFold cannot predict two distinct conformations of the protein and instead 
generates overly compact models. Our NMR model can reproduce a conformation similar to that of 1JFK but fails to 
capture the more flexible conformation observed in 1JFJ. In contrast, the NMA model produces a more extended 
conformation with enhanced flexibility but with some incorrect secondary structures. To determine how our AlphaSAXS 
model and framework impact the overall diversity of conformational predictions, we compared the variation in prediction 
outputs in the test set, providing the same sequence and distinct SAXS data for each conformation in an apo-holo pair. 
We found that both AlphaSAXS models demonstrated larger differences in the predicted structures compared to 
AlphaFold2, 3.6x larger median RMSD in the NMA model and 3.1x larger median RMSD in the NMR model (Figure 3, 
Figure A1). 

Figure 3. The NMA training dataset enables AlphaSAXS to predict highly flexible open protein conformations. Left: AlphaFold 
predicts highly compact incorrect structures for both conformations. Middle Left: The two ground truth structures. Middle Right: 
AlphaSAXS generated more flexible structures. Right: RMSD shows the diversity of each pair of proteins with the same sequence. The 
left axis shows the RMSD values for the predicted outputs from the AlphaSAXS models vs. the target structures and the bottom axis 
shows the RMSD values for the predicted outputs from AlphaFold vs. the target structures. Compared to the AlphaFold model, 
AlphaSAXS demonstrates an improvement of conformational diversity while increasing the diversity.  

Discussion 
 
In this year’s critical assessment of structure prediction (CASP16), we and our collaborators organized an ensemble 
prediction competition to evaluate the performance of ML models for flexible protein regions with experimental data. None 
of the ML models generated a close prediction that matched the experimental data. Our AlphaSAXS approach is our initial 
effort to combine the biophysical experimental knowledge to drive the prediction of flexible proteins and demonstrates 
promising new directions to explore structural prediction with SAXS data. Despite this initial success in the improvement 
of structural RMSD and conformational diversity, there remain several areas we wish to improve upon. First, the 
conformational diversity is still relatively small, and future work will explore approaches to increase the variation in the 
prediction. Second, our work thus far has demonstrated how theoretical SAXS data can improve AlphaFold predictions, 
and our end goal is to apply AlphaSAXS to experimental SAXS data, generating multiple conformational predictions that 
reflect the underlying data distribution. Overall, our model suggests a novel strategy to integrate AlphaFold constraints 
with low-resolution experimental results to generate physiologically relevant protein structures. 
 



 
Appendix 

 

Figure A1. AlphaSAXS improves the average RMSD of the test dataset. Left: Average barplot shows the comparison of RMSD of 
prediction vs. target for different models. This represents the improvement of the model accuracy. Middle: Compare RMSD change 
between AlphaFold and AlphaSAXS for 40 data points. Right: Pairwise RMSD between protein pairs that have the same sequence. 
This RMSD shows the diversity of predictions across different models.  

 

Table A1. Training Strategy 

 Normal Mode Analysis with PDB70 NMR dataset with PDB 

Hardware per GPU nodes 1x AMD EPYC 7763  
4x NVIDIA A100 (40GB) 

1x AMD EPYC 7763  
4x NVIDIA A100 (40GB) 

Nodes used for training 64 64 

Size of Training Dataset 298,025 214,973 

Effective Epochs 37 13 

Total GPU Hours 7,680 3072 
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