Published as a conference paper at ICLR 2025

RTDIFF: REVERSE TRAJECTORY SYNTHESIS VIA DIF-
FUSION FOR OFFLINE REINFORCEMENT LEARNING

Qianlan Yang Yu-Xiong Wang
University of Illinois Urbana Champaign
{gianlan2,yxw}@illinois.edu

ABSTRACT

In offline reinforcement learning (RL), managing the distribution shift between the
learned policy and the static offline dataset is a persistent challenge that can result
in overestimated values and suboptimal policies. Traditional offline RL meth-
ods address this by introducing conservative biases that limit exploration to well-
understood regions, but they often overly restrict the agent’s generalization capa-
bilities. Recent work has sought to generate trajectories using generative models
to augment the offline dataset, yet these methods still struggle with overestimat-
ing synthesized data, especially when out-of-distribution samples are produced.
To overcome this issue, we propose RTDiff, a novel diffusion-based data augmen-
tation technique that synthesizes trajectories in reverse, moving from unknown to
known states. Such reverse generation naturally mitigates the risk of overestima-
tion by ensuring that the agent avoids planning through unknown states. Addition-
ally, reverse trajectory synthesis allows us to generate longer, more informative
trajectories that take full advantage of diffusion models’ generative strengths while
ensuring reliability. We further enhance RTDiff by introducing flexible trajec-
tory length control and improving the efficiency of the generation process through
noise management. Our empirical results show that RTDiff significantly improves
the performance of several state-of-the-art offline RL algorithms across diverse
environments, achieving consistent and superior results by effectively overcom-
ing distribution shift. Our code can be found at https://yanqval.github.io/RTDiff.

1 INTRODUCTION

Deep reinforcement learning (RL) has become a powerful tool for tackling complex challenges
across a wide array of fields, including mastering board games (Silver et al., 2016), achieving su-
perhuman performance in video games (Mnih et al., 2015), and improving continuous control in
robotics (Lillicrap et al., 2016). The success of deep RL algorithms is primarily due to their abil-
ity to interact with and learn from extensive datasets generated through environmental interactions.
However, in real-world applications, accumulating such a vast amount of exploratory data is often
impractical and costly. In critical domains like healthcare (Gottesman et al., 2019) and autonomous
driving (Yu et al., 2018), every interaction carries significant costs or risks, making online data col-
lection infeasible and unsafe. Offline RL (Lange et al., 2012; Levine et al., 2020) offers a solution
by training agents on pre-existing datasets, thereby avoiding the risks and costs of online data gener-
ation. Nevertheless, the transition from online to offline RL is challenging. Directly applying online
RL techniques to offline RL tasks usually results in poor performance (Fujimoto et al., 2019; Wu
et al., 2019). This is mainly due to the distribution shift between the policy derived from the offline
data and the policy that originally generated the data. Such a shift can lead to overestimation of the
unseen data in the offline dataset, producing inaccurate value estimates and suboptimal policies.

A typical solution is to develop advanced offline RL algorithms that incorporate a conservative bias
into the learning process. These algorithms limit the policy search to regions within the offline
dataset where there is high confidence. Model-free offline RL approaches, such as those proposed
by Fujimoto et al. (2019) and Wu et al. (2019), embed this bias directly into their policy or value
functions through conservative regularizations or specialized network architectures. Although these
strategies effectively mitigate the problems associated with distribution shift, they may overly restrict
the policy search, limiting the agent’s ability to generalize beyond the specific confines of the offline

https://yanqval.github.io/RTDiff

Published as a conference paper at ICLR 2025

Initial State s

@) Agent
’ ‘ K | States in
)\ \ offline dataset
. Offline a / Goal!
RTDiff 1 *
Dataset D \
[* Dangerous area

Known area
Synthetic Real ' J /'
e | L > '/ rjctres i
E \ T offline dataset
\ :) > Reverse synthesis
—~——"" —> Forward synthesis
(a) The main paradigm of RTDiff. (b) Nlustrative example.
Figure 1: Illustration of RTDiff. (a) RTDiff is used to augment the training dataset for reinforce-
ment learning agents. It receives initial states s from the offline dataset D and synthesizes reverse
trajectories. Both real and synthesized trajectories are utilized to train the RL agent. (b) An illustra-
tive example is shown. In this figure, blue arrows represent trajectories inside the offline dataset, red
arrows represent trajectories synthesized in the forward direction, and green arrows represent tra-
jectories synthesized in the reverse direction. Forward trajectories include paths from known areas
to dangerous areas, which might hinder performance. In contrast, reverse trajectories only include
paths from dangerous areas to known areas, which do not adversely affect the agent.

dataset. Conversely, model-based offline RL methods (Kidambi & Rajeswaran, 2020; Yu et al.,
2020; Lee et al., 2021; Yu et al., 2021) adopt a different strategy. These methods begin by learning
a forward dynamics model that integrates conservative estimates from the offline dataset. They
then use this model to generate imaginary trajectories, thereby expanding the dataset with high-
confidence synthetic data.

Inspired by the promise of data synthesis, we turn our focus to state-of-the-art generative models.
Diffusion models, known for their generative capabilities in computer vision and natural language
processing, have been noticed by the RL researchers. Janner et al. (2022) and Ajay et al. (2023)
introduce a foundational approach for decision-making in RL by generating full trajectories through
a single denoising process. Building on the use of diffusion models in planning, Lu et al. (2023) pro-
pose synthesizing transitions using diffusion models trained on offline datasets to augment available
data. More recent work (Yang & Wang, 2024; He et al., 2023) has expanded these ideas, applying
diffusion models to generate trajectories that accelerate RL training. However, these approaches
face the persistent challenge of distribution shift in data synthesis, which can lead to overestimation
of values when out-of-distribution data are synthesized relative to the offline dataset.

To address this issue, in this paper, we propose a simple yet effective strategy overlooked by the
community: generating reverse trajectories instead of forward ones. Our key insight lies in the
intuition that overestimating a trajectory that begins from an unknown state and moves to a known
state does not affect performance, as the agent will not pass through the unknown state during plan-
ning. Here, known states refer to states that are close to the distribution of states in the offline dataset,
while unknown states are relatively far from this data distribution. During the planning phase, the
agent always starts from a known state, where an overestimated trajectory originating from such
states may risk leading the agent to unknown states, ultimately harming performance. However, by
replacing such trajectories with those starting from unknown states and moving to known states, these
risks are naturally reduced. Therefore, reverse synthesis directly addresses the issue of distribution
shift. Additionally, by eliminating concerns about overestimating out-of-distribution trajectories,
we can generate longer trajectories, providing the agent with more information and leveraging the
ability of diffusion models to produce long, reliable trajectories.

Based on this insight, our work introduces a novel paradigm in offline RL by incorporating a dif-
fusion model with reverse synthesis, termed Reverse Trajectory Diffuser (RTDiff). As illustrated
in Fig. 1, our approach generates trajectories that converge towards target states already present in
the offline dataset. By incorporating flexible generation length control, we can extend the trajectory
length as much as possible to maximize the benefits of the diffusion model while ensuring the reli-
ability of the generated data. Furthermore, by controlling the initial noise received by the diffusion
model, we enhance the generation efficiency of our model.

Published as a conference paper at ICLR 2025

Our contributions are three-fold. (i) We propose RTDiff, a novel diffusion-based approach that
synthesizes reverse trajectories to address distribution shifts in offline reinforcement learning, which
is general and can be integrated into a variety of offline reinforcement learning algorithms to improve
their performance. (ii) We develop an out-of-distribution detector-based method that automatically
adjusts the length of the generated trajectories. (iii) We reduce the number of generated samples by
improving the generation efficiency through noise control. Empirical evaluation shows that RTDiff
consistently achieves state-of-the-art performance across a variety of offline reinforcement learning
environments.

2 RELATED WORK

Offline RL. In the realm of offline reinforcement learning, researchers focus on generalizing to out-
of-distribution (OOD) data and avoiding the overestimation bias. These methods can be categorized
into two main types: model-free and model-based algorithms. Model-free offline RL methods typ-
ically restrict their policy search to the offline dataset. This can be achieved through various ways,
such as explicitly constraining the learning policy to remain close to the dataset (Fujimoto et al.,
2019; Liu et al., 2020b), learning a conservative value function (Kumar et al., 2020), and applying
importance sampling-based algorithms (Precup et al., 2001; Liu et al., 2020a). Additionally, they
may estimate uncertainty quantification for the value function (Levine et al., 2020; Agarwal et al.,
2020).

On the other hand, model-based offline RL methods have explored several different strategies. These
include model-uncertainty quantification (Kidambi & Rajeswaran, 2020; Yu et al., 2020; Ovadia
et al., 2019), representation learning (Lee et al., 2021), and constraining the policy to imitate the
behavioral policy (Matsushima et al., 2020). They also use conservative estimation of the value
function to enhance performance (Yu et al., 2021). Recently, new strategies have emerged for solving
offline RL, such as treating RL problems as a sequence generation problem (Chen et al., 2021; Janner
et al., 2021) or repurposing diffusion models for planning (Janner et al., 2022; Ajay et al., 2023).

Diffusion Models in RL. Diffusion models have demonstrated impressive capabilities in rein-
forcement learning, particularly in enhancing long-term planning and policy expressiveness. Prior
work (Janner et al., 2022; Ajay et al., 2023) introduces a paradigm where diffusion models are used
to construct full trajectories through conditioned sampling, guided by various criteria such as re-
wards, goal-oriented navigation, and skill deployment. These methods exploit the unique ability of
diffusion models to generate extensive trajectories, effectively addressing challenges like long hori-
zons and sparse rewards in RL. Other work (Du et al., 2023; He et al., 2023) extends this paradigm
to generate visual-based data using diffusion models. Lu et al. (2023) employs a diffusion model
to generate transitions that supplement the replay buffer, offering a distinctive strategy compared to
earlier approaches. He et al. (2023) further positioned diffusion models as data synthesizers for gen-
erating trajectories to solve multi-task RL problems. More recently, ATraDiff (Yang & Wang, 2024)
introduces a general framework that leverages offline data to generate full synthetic trajectories,
improving the performance of online RL methods.

Data Augmentation in RL. Data augmentation has become a key technique for improving RL
performance. Traditional methods (Yarats et al., 2021; Laskin et al., 2020; Sinha et al., 2021) in-
corporate various data augmentations like adding noise or random translation on observations for
visual-based RL. Such approaches aim to help the agent to learn on multiple views of the same ob-
servation to improve the robustness. Some other works focus on generating synthetic data based on
the models learned from the offline dataset (Yu et al., 2020; Wang et al., 2021). Recently, different
from disturbing existing data points, researchers have focused on generating new data points from
models learned from the original dataset and upsampling the original dataset. Representative work
includes using diffusion models to generate data (Lu et al., 2023; Ajay et al., 2023; Du et al., 2023;
He et al., 2023; Yang & Wang, 2024).

3 BACKGROUND

Markov Decision Process. In this paper, we explore sequential decision-making tasks that can be
represented as a Markov Decision Process (MDP), denoted by M = (S, A, T, R,). In this frame-
work, S denotes the set of states, A denotes the set of actions, and y € [0, 1) is the discount factor.

Published as a conference paper at ICLR 2025

The functions T'(s’|s, a) and R(s, a) describe the transition dynamics and reward structure, respec-
tively. At each time step ¢, the agent selects an action a € A, resulting in a new state s’ based on the
transition function T'(s|s, a) and receives an immediate reward R(s, a). A trajectory in this context
is a sequence of states and actions, expressed as (s1,a1,71, S2, 02,72, . .., St, G, Tt), Where s;, a
and r; represent the state, action, and reward at time step [, respectively. Similarly,we define the re-
verse trajectory starting from the state s; is the sequence (S;, aj, 71, Sj—1,@1—1,71—1, - - -, S1,01,71)-

Diffusion Models. Diffusion probabilistic models conceptualize the process of generating data
as an iterative denoising sequence, represented by pp(7¢~1|7%). This sequence reverses a forward
diffusion mechanism, q(Ti|Ti’1), which incrementally adds noise to the data over N steps, thus
degrading its structure. The resulting data distribution is described by:

N
po(a®@) = [™) [[e (Ol ()™,
i=1

where p(7V) acts as a standard Gaussian prior, and p(7°) corresponds to the original noiseless
data. The model parameters, 6, are optimized by minimizing a variational bound on the negative
log-likelihood of the denoising process: §* = argming —E o[log pg(7°)]. This reverse process is
typically modeled as a Gaussian distribution with fixed, timestep-specific covariances:

po(a'H(7)|2* (7)) = N (&'~ (7) o (2 (7)), 7).

Offline RL. Offline RL is a type of reinforcement learning algorithm where the agent will be offered
with an offline dataset D = {(s,a,r, s')} and try to learn a policy 7p from the offline dataset D. In
offline RL, the agent will not be allowed to interact with the environment for online data collecting.
The offline dataset is usually collected through multi-source policies.

4 METHOD

We now present our approach to augmenting the offline dataset by training our generative model
RTDiff on the offline dataset to synthesize trajectories reversely. We begin by introducing how we
design and train RTDiff (Sec. 4.1) and then decide the length of the generated trajectories to support
flexible generation space (Sec. 4.2). Finally, we introduce how to further improve the generation
efficiency by adjusting the input noise of the diffusion model (Sec. 4.3).

4.1 TRAJECTORY GENERATOR

To capture the trajectory data distribution of the offline dataset, we train a diffusion model to solve
a conditional generation problem:

mguxEmD[logpe(fﬂo(Tﬂy(T))L (1

where z°(7) is the final generated reverse trajectory and y(7) is the generation condition. In the
experiments our paper focuses on, we use proprioceptive information as the state. So, the gener-
ated trajectories should be relatively low-dimensional. Specifically, we define the generated reverse
trajectory at ¢-th diffusion step with length L as the following 2D array:

t ot t t
) S St1 Sy ... Sy

' (r)=|af o'y at, ... d'|.)
e rty b rt

In Eqn. 2, the 7 4 1-th column of It(T) is a concatenation of state s_;, action a_; and reward r_;,
in which index 0 means the current step, —: means the ¢-th last step. The generation condition is set
to be the initial state y(7) = sq.

Training. To obtain the training dataset of the diffusion model, we first sample trajectories with
fixed length L from the offline dataset. For a trajectory with length n in the offline dataset, we
divide it into n — L + 1 trajectories with length L so that the whole dataset becomes a larger dataset
with fixed length L. For the training of the diffusion model with N denoising steps, we use the

following loss:
L(0) = Etmu(ny,enno,n) [ll€ = €o(a (7), 5(7), O)I1?] 3)

Published as a conference paper at ICLR 2025

Algorithm 1 Augment Offline Dataset D with RTDiff

Require: Offline dataset D, augmentation size M

. Initialize the synthesized dataset D, = ()

. Train RTDiff py with the dataset D

while |D,| < M do
Sample state sg € D from the offline dataset
Generate the trajectory 7 = (8o, @g, 70, S—1,@—1,T—1, - - -, S—L, @, T—r,) with RTDiff
Cut the trajectory with the OOD detector 7 = (Sg, @0, 10y S—1, @1, T—1y -+, S, A, T—])
Add all the transitions of the trajectory 7 to the synthesized dataset Dy = D, U T

end while

: Combine the synthesized dataset to the original dataset D = D U Dy

WRe AN R

where u (V) is the uniform distribution on {1,2,..., N}.

Architecture. Since our experimental tasks focus on proprioceptive environments, the generation
content is relatively low-dimensional compared with pixel-based generation, and we thus do not use
a similar U-Net architecture as image works. We parameterize eg with an MLP with skip connections
from the previous layer followed as (Lu et al., 2023) but increase the network width to 4096. For
the sampling process, we use EDM (Karras et al., 2022) as the sampling method and we set the
diffusion steps to 128.

Deployment. As stated in Algorithm 1, to augment the given offline dataset, we first train our
RTDiff on the given offline dataset. Then we repeatedly sample a state s as the initial state from
the original dataset D, and synthesize a reverse trajectory from the initial state so. After that, we
will cut the trajectory by an out-of-distribution (OOD) detector which will be introduced in the next
section, and add all the transitions in the trajectory to the synthesized dataset. We repeat this process
until the size of the synthesized dataset reaches our expected size M.

4.2 GENERATION LENGTH CONTROL

RTDiff is limited to generating fixed-length trajectories due to the inherent characteristics of diffu-
sion models. Our investigation indicates that the quality of the augmented dataset is sensitive to the
length of these trajectories. When the generated trajectories are too short, the agent gains limited
benefit from the diffusion model’s capacity to produce extended, reliable trajectories, thereby re-
stricting RTDiff’s performance enhancement. Conversely, if the generated trajectories are too long,
they will go into out-of-distribution regions, causing hallucinations. An excess of these unrealistic
generations can significantly decrease performance. For a deeper empirical analysis of the perfor-
mance of different generation lengths, please refer to Sec. 5.2.

Therefore, we aim to design a flexible length control mechanism that can automatically adjust the
generation length. This mechanism will ensure that each generated trajectory is as long as possible
without excessively entering out-of-distribution regions.

We train an out-of-distribution detector d(s) on the state space with the offline dataset, where it
measures the distance of a state s to the distribution of the given offline dataset. Ideally, we con-
sider d(s) > 1 to represent that s is an out-of-distribution state. To cut the generated trajectory
(80,a0,70,5-1,a-1,7—1,...,5_1,a_r,7_1), we find the smallest [+ 1 that d(s_;4.1)) > disns,
then we drop the trajectory after s_;. Here disy; is a hyperparameter of our method, the details
about how we choose this hyperparameter are included in Appendix C.3

Out-of-Distribution Detector. We train the OOD detector only by using the data points in the
offline dataset. We design the OOD detector following the classic OOD work SSD (Sehwag et al.,
2021). The main training scheme is: we first train a feature representation method to get the features
of the states. Then, we partition the offline dataset into m clusters based on the trained features,
denoting each cluster as Z,,,. Finally, the distance of a state is defined as d’(s) = min D,, (s, Z,,)

where D,,(,) is the Mahalanobis distance. We normalize the distance by dividing the maximum
distance of states in the offline dataset D, d(s) = ﬁ
s'eD s)

to all the environments.

to make this threshold generalizable

Published as a conference paper at ICLR 2025

4.3 IMPROVING GENERATION EFFICIENCY

Although RTDiff can enhance the performance of offline RL by augmenting the dataset, the number
of generated samples can still be quite large, resulting in increased time and cost. To address this,
we propose a technique aimed at improving the generation quality of RTDiff, thereby reducing the
number of samples required in the data augmentation process and increasing sample efficiency.

Intuitively, if we generate two similar trajectories from the same initial state, the information car-
ried by the two trajectories will be less than two independent trajectories. Therefore, we need to
maximize the dissimilarity between all generated trajectories, which means reducing the correlation
between the generated trajectories.

To this end, we propose a simple strategy that controls the noise 2% (7) we choose for the diffusion

model. Instead of separately generating the noises x1¥ (7), 20 (7), ...,z (1) for one single initial
state, we generate these noises together so that they will be evenly located within the space. That is
we generate the noises by minimizing:

o iy YY)))

73771(7')1 1j=1

which repulses noise vectors from each other.

Conceptually, this strategy is effective. As the diffusion model itself has the ability to generate
diversified trajectories at a sufficiently high probability (this means the diffusion model will not
always generate the same trajectory for all noises), we can assume that: for a trajectory 74 generated
by noise xg (1), with high probability, another trajectory 7p generated from a randomly sampled
noise x5 (1) ~ N(0,1) is sufficiently different from trajectory 74, say d(74,7p) > do, where dy
is a constant. We can regard the full sampling process as a function from noise to trajectory. As the
diffusion model’s network and noise samplers are continuous, such sampling process is a continuous
function. Using such continuity, we reach the conclusion that if we sample noise ¥ () only from
the neighborhood of noise 2 (7), with a high probability the generated trajectory 75 from z¥ (7)
will be close to trajectory 74. Therefore, intuitively if we choose 2 () which is located far from
o (), we can avoid the neighborhood region (that fails at high probability) and have a higher
probability to get a different trajectory.

5 EXPERIMENTS

We conduct a variety of experiments to verify the effectiveness of RTDiff. First, we validate that
our approach can improve the performance of state-of-the-art offline RL algorithms in various envi-
ronments (Sec. 5.1). Moreover, we conduct ablation studies to validate the effectiveness of different
components in our approach (Sec. 5.2). Finally, we conduct additional experiments on visual RL
tasks to show that our method can be extended to visual-based methods (Sec. 5.3). For evaluation,
all results in this section are presented with the median performance over 5 random seeds.

5.1 MAIN RESULTS

We first show the overall performance of RTDiff, validating that RTDiff can improve the perfor-
mance of state-of-the-art offline RL algorithms. We conduct experiments on 4 different environ-
ments from D4RL (Fu et al., 2020): Maze2d, AntMaze, Locomotion, and Kitchen. For comparison,
we selected IQL (Kostrikov et al., 2022) and TD3+BC (Fujimoto & Gu, 2021) as benchmark of-
fline RL algorithms, both widely regarded as state-of-the-art baselines. Additionally, we include
experimental results for CQL (Kumar et al., 2020) and Decision Transformer (Chen et al., 2021),
though these are omitted in the main paper due to space constraints; full results can be found in
Appendix C.1. We select several data augmentation methods as baselines, including SynthER (Lu
et al., 2023) and ATraDiff (Yang & Wang, 2024).

As illustrated by the results shown in Tables 1 and 2, our RTDiff consistently improves the per-
formance of the offline RL algorithms in a wide range of environments. Meanwhile, our method
outperforms the other data augmentation baselines including SynthER (Lu et al., 2023) and ATraD-

Published as a conference paper at ICLR 2025

Table 1: Overall results of D4RL Maze, Antmaze, and Kitchen environments. The number de-
notes the performance increase by the data augmentation method compared to the original
result. RTDiff consistently enhances the performance of offline reinforcement learning algorithms
in all these environments. In particular, RTDiff significantly improves the performance in maze and
kitchen environments.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff
umaze 8.3%3.5 4 3+41 5.6%5-0 10.2%47 g.3*43 9.3%0:5
maze2d medium 3-3:|:2.7 0.8i3'2 2_1:(:56 9.8i2'5 6.3i2'5 7.4j:3.3
large 14.3:|:3.3 11.4:{:2.8 12_4i448 7_7:|:4.5 4.8i3'6 4.3i3.7
Antmaze-umaze fixed 5.2:|:3.3 4.9i3.7 4.4i4.0 5.7:|:3.5 5.4i3.8 2.5i4.6
diverse 4.3%27 4331 g 7E49 4 o¥31 328 3.5+44
d‘ play 7.9:|:4.2 7.5:‘:3.6 6.6i3'5 8.3i3'2 8-4i2'7 7.6i5'5
antmaze-medium i orse 92438 g5i36 ggEA6 ggEk2d g3Ed6 g rsl
) play 6.5:|:3'5 5.412.8 577i4A0 5.4:|:2.5 4.8i2'0 5.0i4A5
antmaze-large . erse 6.3£34 5 7E25 4 yFA5 g oEBS 4 7H62 4 gET1
complete 6.6i7‘4 3.4i8.3 5.4i9.2 5.3i7.2 3.6i6.5 5.6i7‘5
kitchen partial 13.6%6:3 8372 11 3ET9 142E78 468 19 3+91
mixed 11.3%85 g o*91 8.4%94 10.8%75 7.9ETT 9.3+8.6

Table 2: Overall results of D4RL Locomotion environment. The number denotes the performance
increased by the data augmentation method compared to the original result. RTDiff improves
the performance of various offline RL methods in different tasks, achieving the state of the art
performance.

IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

Environment Data Type

random 0.8+13 0.1%19 0.3*13 0.0*02 .1%03 0.0%93

Iker2d mixed 1.3i2.3 O.7i4'3 O_4i5.1 4_3i2.5 4.212.6 3.7i2.3
watker medium L1777 0gER0 3qE26 9622 g2
medexp 0'2i0A4 0'0i0.4 0_4i0.3 0_2i02 0‘3i0.3 O'IiOAl

random 1.2%02 (503 0.6+05 53+04 3+05 1.5+0-8

hopper mixed 17.2%F17 18.4%24 13 5+59 7 4E95 5 4F49 3.6+6:3
PP medium 10760 ggEis 7gEhd goEs9 4T3 g 5Es3
medexp 3.6i4'4 2.415.2 3_8i7.3 7_2i1.7 5.8i1‘3 2.9i6.7

random 3'5i12 2'1i2.1 2'712.3 1.6i1A5 1‘8i2'0 1'2i28

halfch h mixed 4.2:5:0.5 3.3:|:0.4 3.8i1'7 4.2:|:1.2 3.7:5:1.7 2.4:5:1.9
GICCA medium 24702 1 5E03 92 401 901 603
medexp O.6i0'2 O.Q:I:O.l 0.5:&0.3 0_5:(:0.4 0.1:&0.3 00:[:0.4

iff (Yang & Wang, 2024), which shows that RTDiff could generate data with the higher quality to
enhance the offline dataset.

In particular, RTDiff significantly enhances the performance of offline RL algorithms in the Maze2D
and Kitchen environments. We hypothesize two main reasons for this improvement. First, for tasks
with long horizons, RTDiff leverages diffusion models to generate extended yet reliable trajecto-
ries, which are crucial for performance gains. Second, in environments where the state space is
large relative to the states covered by the offline dataset—resulting in a sparsely populated offline
dataset—RTDiff can more effectively utilize reverse synthesis to fill in the gaps, thus providing
greater benefits.

5.2 ABLATION STUDIES

To verify the effect of different components in our RTDiff, we conduct several ablation studies.

Published as a conference paper at ICLR 2025

Is reverse synthesis important to the performance? The key contribution of our work is to syn-
thesize trajectories reversely. We argue that reverse synthesis is better than normal synthesis for
data augmentation. To show the importance of reverse synthesis, we conduct an ablation study com-
paring our method with a normal synthesis algorithm. Here the method ‘Normal’ represents the
algorithm that synthesizes trajectories in the forward order, with all other details the same with RT-
Diff. And the method ‘Short’ represents the algorithm synthesizing trajectories in the forward order,
but the generation length has been set to be 3, which we found to be the best choice in forward
synthesis. The results shown in Table 3 illustrate that reverse synthesis significantly outperforms
normal synthesis. Meanwhile, we found that if we perform normal synthesis, we cannot benefit
from long trajectory generation, as the performance of synthesizing ‘Short’ trajectories outperforms
synthesizing ‘Normal’ trajectories.

Table 3: Ablation study on reverse synthesis and normal synthesis with different generation lengths.
The results indicate that reverse synthesis significantly outperforms normal synthesis. Additionally,
increasing the generation length in normal synthesis leads to a decrease in performance.

IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff Normal Short RTDiff Normal Short

Environment Data Type

umaze 8.3%3:5 43+40 5838 10,2%47 3p5Eel g 5E39
maze2d medium 3.312.7 9432 gl g gE25 3430 g 1E36
large 14,3433 32#35 7gHd0 g yEd5s g gE3T g a2
complete 6.6T74 1.5%70 31*72 5 3E7T2 (gE68 9 69
kitchen partial 13.6%6:3 3065 go*68 14.2%78 351 5 gET4
mixed 11.3%8:5 1.9%80 54+83 10,375 32%77 7 7ETI

Effect of the generation length. The flexible generation length control is also an important com-
ponent of our method. We found that the quality of the generated data is very sensitive to the length
of the trajectories. Here we conduct an ablation study to show the performance of RTDiff with
different fixed generation lengths. From the experimental results in Table 4, we can see that the
performance of different generation lengths varies significantly and our generation length control
strategy outperforms every fixed generation length setting.

The effect of noise control. We conduct an ablation study on the noise control component of
RTDiff. We test RTDiff with and without the noise control part, using three different quantities
of generated samples. The results, shown in Table 5, indicate that the noise control component
enhances overall performance. Notably, as the number of generated samples decreases, the perfor-
mance improvement due to noise control becomes more noticeable.

Is RTDiff better than model-based methods? We include more results of baselines including
model-based RL methods MOPO (Yu et al., 2020) and model-based reverse imagination method
ROMI (Wang et al., 2021). The results shown in Table 6 illustrate that RTDiff still outperforms
those model-based baselines.

5.3 VISUAL REINFORCEMENT LEARNING

Finally, we demonstrate the applicability of RTDiff to visual reinforcement learning tasks, using
Meta-World (Yu et al., 2019) as the benchmark. We selected tasks with varying difficulty levels,
ranging from easy to hard. To adapt RTDiff for image-based inputs, we employed different ar-
chitectures to generate visual trajectories. Building on the general pipeline from ATraDiff (Yang
& Wang, 2024), which synthesizes pixel-based trajectories, we used Stable Diffusion to directly
generate trajectory images. Actions and rewards were then predicted from these generated images
using diffusion layers as the feature map. In addition, we modified the training images used in
ATraDiff to synthesize reverse trajectories by training in reverse order. For evaluation, we applied
offline RL algorithms, including CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021), and
IQL (Kostrikov et al., 2022). We directly compare RTDiff with ATraDiff for the Visual RL setting.
The results, summarized in Table 7, demonstrate that RTDiff generalizes well to visual reinforce-
ment learning, consistently enhancing the performance of offline RL methods.

Published as a conference paper at ICLR 2025

Table 4: Ablation study on the effect of generation lengths. Our method significantly outperforms
approaches using fixed generation lengths. We observed that as the generation length increases,
performance improves as well. However, if the generation length becomes too long, performance
begins to decline.

ar et al.. 202
Environment Data Type CQL (Kumar et al., 2020)

RTDiff L=1 L=3 L=5§ L=10

umaze 12.3i3.5 8.3i3'0 9.4i3.2 10.4i3.4 6.4i2'8

maze2d medium 8.3+27 g.2%25 get26 72%27 5 3E24
large 11.3i3A3 8.3i3A0 9.2i3A1 10.4i32 7.2i2.9

complete 6.6t74 3.8%65 4568 5 gET1 4 3463
kitchen partial 13.6%63 9.4%55 10.3%58 114%6.0 10.5%53
mixed 11.3i&5 7.4i7A5 8.5i7A8 9.3i8A0 8.4i7'2

Table 5: Ablation study on the effect of noise control. The noise control component indeed improves
the overall performance of RTDiff, especially when the number of generation samples is smaller.

IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)

Environment Noise Control
0.5M 1M M 0.5M 1M M
mazed-umaze Yes 4.1i1.2 6.7i2A0 8.3i3A5 7.2i2A1 10‘3i3A0 10_2i4.7
No 2.3:‘:140 3.1:(:148 6.3i4'1 4.8i1'5 8.6i2'8 &3:!:4.3
maze2d-medium Yes 4.3:(:143 5.8:‘:1‘9 3.312.7 3.5:l:1.1 8.5i2'7 9.8i2'5
No 1_4i1.0 2.9i1.8 2.8i3'2 3.4i1.0 6.1i2'0 6.3i2'5
Yes 4.6i1A4 7.3i2A2 14.3i3A3 5‘2i1A6 9_4i2A9 7‘7i4A5
maze2d-large No 34EL1 o2l 114428 4 3El3 g k26 4.8%36

Table 6: Overall results of D4RL Maze2D environments. The number denotes the performance
increase by the data augmentation method compared to the original result.

IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff MOPO ROMI RTDiff MOPO ROMI

Environment Data Type

umaze 8.3%135 51%28 54*24 10,2147 ggte0 g 6E33
maze2d medium 3.3%t2.7 1 7¥l9 9 *l8 g g¥25 ggF20 g 4FLT
large 14.3%53:3 59%25 g E22 g yEas 9638 3 5%

Table 7: Results of the offline experiments on Meta-World (Yu et al., 2019). The number denotes
the success rate of completing the task. RTDiff consistently improves the performance of various
offline reinforcement learning algorithms in different tasks and outperforms ATraDiff.

TD3+BC CQL IQL
Task Name
Original RTDiff ATraDiff Original RTDiff ATraDiff Orignal RTDiff ATraDiff

Basketball 0.13 0.21 0.16 0.02 0.05 0.04 0.16 0.24 0.18
Box Close 0.03 0.07 0.04 0.00 0.01 0.00 0.08 0.12 0.09
Push Wall 0.06 0.12 0.08 0.02 0.03 0.02 0.09 0.14 0.12
Coffee Push 0.53 0.62 0.54 0.46 0.58 0.51 0.61 0.72 0.63
Sweep 0.19 0.24 0.22 0.16 0.21 0.17 0.24 0.26 0.24

6 VISUALIZATION AND ANALYSIS

To better understand why RTDiff improves the performance of offline reinforcement learning algo-
rithms and why reverse synthesis avoids issues present in normal synthesis, we conduct an analysis
using an illustrative environment. We design a task similar to Maze2D but simpler and cleaner for
better analysis. In this task, the agent starts from the bottom-left corner and aims to reach the target
in the top-left corner of the map. The agent receives a reward of 1 for approaching the goal. The left
part of the map contains a dangerous area; if the agent enters this area, the episode ends immediately,
and the agent receives a reward of —10. The offline dataset does not contain a full trajectory from
the start to the end. Instead, there is a small area in the middle of the map that is not covered by any
trajectories in the dataset.

Published as a conference paper at ICLR 2025

1)

(a) () (©)

Figure 2: Left: The visualization of the illustrative environment. Middle: The trajectory of the
offline RL agent with normal synthesis. Right: The trajectory of the offline RL agent with reverse
synthesis. Normal synthesis will lead to a trajectory going across the dangerous area, while Reverse
synthesize can help the agent to remain in the known area and reach the goal.

We test both reverse synthesis and n20ut Outzln In2In _ Out20ut
normal synthesis in this environment. Roverse 7% 216% 480% 273%
As illustrated in Fig. 3, normal syn- Normal (w/o OOD) ~ 11.2% 58% 71.8% 112%

thesis generates trajectories that start Normal (w/OOD) 182% 62% S21% 23.5%

from the lower area and enter the
middle dangerous area. If these
hallucinated trajectories are assigned
relatively higher rewards, they can
mislead the agent into the dangerous
area, ultimately resulting in failed ex-
ecution. Conversely, reverse synthesis generates trajectories that move from the dangerous area to
the upper or lower areas. Although these trajectories are also hallucinations, they do not impact the
decision-making process because the agent will never make decisions from within the dangerous
area. Consequently, the agent can successfully navigate to the goal location.

Table 8: Ratios of different types of transitions generated
by reverse synthesis and normal synthesis on the Maze2D-
large environment. Normal synthesis generates much more
In20ut transitions than reverse synthesis.

To further analyze this phenomenon in larger environments, we evaluated the ratio of four types
of transitions: In2In, Out2Out, In20ut, and Out2In. In particular, In2Qut transitions, which
move from an in-distribution state to an out-of-distribution (OOD) state, are especially risky, as they
may mislead the agent and degrade performance. In contrast, Qut2In transitions, where the agent
moves back from an OOD state to an in-distribution state, are less risky. We measure these ratios
in the Maze2D-large environment for both reverse and normal synthesis methods, with and without
an OOD detector. As shown in Table 8, normal synthesis produces significantly more In20ut
transitions compared to reverse synthesis, even when an OOD detector is applied. This finding
underscores the robustness of reverse synthesis in avoiding risky transitions, ultimately improving
the performance of RL agents.

7 CONCLUSION

We introduce RTDIff, a diffusion-based offline reinforcement learning data augmentation method
that synthesizes reverse trajectories. By incorporating the diffusion models to generate trajectories,
we reversely generate long trajectories to augment the dataset. By using an out-of-distribution detec-
tor, we automatically adapt the length of the generated trajectories, improving the generation quality.
By controlling the noise of the diffusion model, we remove redundant generations and improve the
efficiency of generation. We test RTDiff in various environments and found that RTDiff consistently
improves offline reinforcement learning algorithms, especially in some long-horizon, complicated
environments.

Limitation and Future Work. Our work introduces a novel reinforcement learning data augmen-
tation method that mitigates the issue of distributional shifts. However, our method still necessitates
generating a large number of samples to achieve optimal performance, which results in extended in-
ference running time. In future work, we aim to enhance the noise control component and improve
sample efficiency, enabling us to achieve comparable results with significantly fewer samples.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant 2106825, NIFA Award 2020-67021-32799, the
Toyota Research Institute, the IBM-Illinois Discovery Accelerator Institute, the Amazon-Illinois
Center on Al for Interactive Conversational Experiences, Snap Inc., and the Jump ARCHES en-
dowment through the Health Care Engineering Systems Center at Illinois and the OSF Foundation.
This work used computational resources, including the NCSA Delta and DeltaAl supercomputers
through allocations CIS220014 and CIS230012 from the Advanced Cyberinfrastructure Coordina-
tion Ecosystem: Services & Support (ACCESS) program, as well as the TACC Frontera super-
computer and Amazon Web Services (AWS) through the National Artificial Intelligence Research
Resource (NAIRR) Pilot.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In /ICML, 2020.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? In /CLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. 2021.

Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schu-
urmans, and Pieter Abbeel. Learning universal policies via text-guided video generation. In
NeurIPS, 2023.

E. C. Fieller, H. O. Hartley, and E. S. Pearson. Tests for rank correlation coefficients. Biometrika,
1957.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv: 2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurlIPS, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16-18, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In CoRL, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. In NeurlPS, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS, 2021.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurlIPS, 2022.

11

Published as a conference paper at ICLR 2025

Rahul Kidambi and Aravind Rajeswaran. MORel: Model-based offline reinforcement learning. In
NeurlPS, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. In ICLR, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurlIPS, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45-73. Springer, 2012.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. In NeurIPS, 2020.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In /CLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In /CLR,
2016.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with stationary distribution correction. In Uncertainty in Artificial Intelligence, pp. 1180-1190.
PMLR, 2020a.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv:2007.08202, 2020b.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. In
NeurlPS, 2023.

Frank J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
Statistical Association, 1951.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv:2006.03647, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. arXiv:1906.02530, 2019.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In /ICML, 2001.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. SSD: A unified framework for self-supervised
outlier detection. In /CLR, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4RL: surprisingly simple self-supervision for
offline reinforcement learning in robotics. In CoRL, 2021.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. In NeurIPS, 2021.

12

Published as a conference paper at ICLR 2025

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv:1911.11361, 2019.

Qianlan Yang and Yuxiong Wang. Atradiff: Accelerating online reinforcement learning with imag-
inary trajectories. In ICML, 2024.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In /CLR, 2021.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv:1805.04687, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In CoRL, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv:2102.08363, 2021.

13

Published as a conference paper at ICLR 2025

Appendices

A ENVIRONMENTS TESTED

Following are the environments we evaluated in Sec. 5:

D4RL Maze2d (Fu et al., 2020). The maze2d task is a navigation task that requires a 2D agent
to reach a fixed goal location in the maze. This task jusitifies the ability of offline RL algorithms
to stitch previously collected subtrajectories to get the shortest path to the goal location. There are
three layouts in this task, including umaze, medium and large. The dataset of this environment is
generated by selecting waypoints randomly and using a planner which could generate subtrajectories
among the waypoints.

D4RL AntMaze (Fu et al., 2020). The Antmaze task is a navigation task that replaces the 2D ball
from Maze2D with a §-Dof Ant quadraped robot. This task combines the challenges of controlling
the robot and navigting the robot to the goal location. There are three different layouts in this
environment, including umaze, medium, and large. The environment also contains3 three flavors of
datasets, including fixed, diverse, and play, wich differs in the chosen of the start and goal locations.

D4RL Locomotion (Fu et al., 2020). The Locomotion environment contains three different types of
tasks (walker2d, hopper, and halfcheetah), including 12 different offline data with varying levels of
expertise (random, medium, medium-replay, and medium-expert). The medium datasets are gener-
ated by a policy trained with a early-stopping SAC (Haarnoja et al., 2018). The random datasets are
generated by a random initilized policy. The medium-replay datasets consist of samples in the re-
play buffer during the training until the policy reaches the medium performance. The medium-expert
dataset contains part of the expert demonstrations and part of the suboptimal trajectories.

D4RL Kitchen (Fu et al., 2020). The Kitchen task involves a simulated environment where a
9-DoF robot manipulates various objects, such as sliding a cabinet door, switching an overhead
light, and opening a microwave. Initially introduced by (Gupta et al., 2019), this task requires the
robot to complete a sequence of multiple subtasks, each rewarded with a sparse, binary reward
upon successful completion. The offline dataset provided includes only portions of the complete
sequence, necessitating that the agent learn to assemble these sub-trajectories effectively.

Meta-World (Yu et al., 2019). Meta-World is an extensive platform created to assess and enhance
algorithms in both reinforcement learning and multi-task learning. With 50 unique robotic manip-
ulation tasks, it provides a varied and demanding setting for evaluating how well algorithms can
generalize and rapidly learn new skills.

B HYPERPARAMETERS

We list all the hyperparameters here, which are applied to all the environments. In addition, we will
release our code upon acceptance.

Hyperparameter Value
Batch Size 16
Training Steps 108
Optimizer Adam
Learning Rate 2x 1074
Trajectory Length 10
Distance Threshold 1.5
Diffusion Steps 128
Number of Generations | 5 x 10°

Table 9: Hyperparameter settings used in our experiments.

14

Published as a conference paper at ICLR 2025

Table 10: Results of CQL and Decision Transformer on the D4RL Maze, Antmaze, and Kitchen en-
vironments. The numbers denote the performance increase by the data augmentation method
compared to the original result. RTDiff consistently improves the performance of offline rein-
forcement learning algorithms in all these environments.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

umaze 12_3:|:3.5 6.3%t41 7.1%4.0 17_2:|:4.7 g.3%4.3 9.0%41
maze2d medium 8.3:|:2'7 5.8%3-2 6.2%3-1 9.8i2'5 6.3%2:5 5.9%2.6
large 11.3:|:3.3 7.4%28 7.8%2.9 12.7:i:4.5 7.8%3.6 7.5%3.7
fixed 5‘2:|:3.3 4.9i3A7 4.8i3A6 5.7:|:3.5 5.4i3.8 5.5i3A7
AnMMaze-Umaze g verse 4.3%27 4 gE31 4300 4 oE81 ggEas g (E29
di play 7'9:|:4.2 7.5i3A6 7.4i3A5 8.3i3‘2 8.4:|:2'7 8.2i2‘8
antmaze-medium g erse 9.2438 g5i36 ggisT goE24 g3EI6 g 5Edd
play 6.5:|:3'5 5.4%28 5.6E3-0 5‘4:|:2.5 4.8%2.0 4.6+21
antmaze-large diverse 6.3:|:3'4 5.7%2.5 5.9+2.7 5.8i5'5 4.7%6.2 5.0%6-0
complete 6.6T74 34F83 4080 53ET2 36E65 4 9%67
kitchen partial 13.616:3 8372 970 14.2E78 (468 769
mixed 11.3%85 62%91 6,090 10.3%75 72#7T 75ETO

Table 11: Results of CQL and DT on the D4RL Locomotion environment. The numbers denote
the performance increase by the data augmentation method compared to the original result.
RTDiff improves the performance of these reinforcement learning methods in different tasks.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff
mixed 5.2+2.3 4.9+4.3 5.1%38 2.9*1.3 9. 4%24 9 9%2.0
walker2d medium 2,647 9 3E37 25%41 g gE21 9 +28 2.2%2:5
medexp 0'1:|:0.4 0.0:|:0.4 0.1:|:0.4 O.G:I:O.S 0.4:5:0.7 0.5:t0.7
mixed 16.4%17 18.4%24 176%21 11.9%53 13,6147 13.2%45
hopper medium 6.3:l:6'0 5.8i4‘8 6.1i5'4 4'3:&1.5 3.5i23 4.0i2A0
medexp 5.3F44 3652 49+48 q gF12 p 3+22 1.5+19
mixed 2.4:|:0.8 1.9:|:O.5 2.3:|:O,6 2‘4:|:0.8 1.9:5:0.5 2.3i0.6
halfcheetah ~ medium 0.9£0-3 604 g*04 .9F03 (04 (g0
medexp 1.3:|:0.8 0.0iO.G 1.0i0,7 1'3:l:0.8 0.0i0.6 1.0i0.7

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show more experimental results to support the conclusion of our paper.

C.1 RESULTS WITH DIFFERENT BASIC RL ALGORITHMS

To illustrate that our RTDiff indeed improves the performance of general offline RL methods, here
we include more experiments involving Decision Transformer (Chen et al., 2021) and CQL (Kumar
et al., 2020), which are representative sequence modeling baseline and model-free baseline. The
results shown in Tables 10 and 11 illustrate that our method consistently improves the performance
of different offline RL methods.

C.2 ORIGINAL PERFORMANCE REPORT
The performance increase reported in Section 5.1 is measured by the difference between the normal-

ized score with data augmentation and the original normalized score without any data augmentation
methods. The original results are shown in Table 12.

15

Published as a conference paper at ICLR 2025

Table 12: Original normalized return of the methods we used in our paper on the D4RL Locomotion
environment.

Environment Data Type CQL TD3+BC DT IQL
mixed 73.1+£13.2 85.6+£4.0 81.8+6.9 82.2+3.0
walker2d medium 80.8 £3.3 82.7+4.8 65.1+1.6 80.9 £ 3.2
medexp 109.6 £0.4 110.0x+04 1104403 111.7+£0.9
mixed 95.1+£5.3 644+£21.5 59.9+2.7 97.4+6.4
hopper medium 59.1 £3.8 60.4 £ 3.5 67.6 2.5 67.5 4+ 3.8
medexp 95.1+£5.3 101.24+9.1 107.1£1.0 1074+7.8
mixed 45.0£0.3 44.8 £0.6 38.9£0.5 44.5+0.2
halfcheetah medium 47.0+0.2 48.1 £0.2 42.2+0.3 48.3 £0.2
medexp 95.6 £0.4 90.8 £6.0 91.6 £1.0 94.7 £ 0.5

C.3 MORE ABLATION STUDIES

Threshold of the OOD detector. We select the value of this threshold with the following method,
using D4RL Locomotion environment as the representative environment: We use grid search to
find the best choice of the hyperparameter, and then do a cross-validation of the representative
environment to ensure its robustness. After selecting the threshold, we directly apply this threshold
to all the environments we used, without any further tuning. To demonstrate the robustness of our
threshold, we conduct a further ablation study on the environment maze2d. The results shown in
Table 13 illustrate that this threshold dis,; = 1.5 is reasonable across different environments.

Table 13: Performance of maze2d environments under different thresholds. disy; = 1.5 achieves
the overall best performance compared with other threshold choices.

Threshold 1.0 1.3 1.5 2.0
maze2d-umaze 72 125 123 4.1
maze2d-medium | 5.7 7.9 83 28
maze2d-large 7.1 9.6 113 3.7

C.4 RESULTS OF OTHER BASELINES WITH OOD DETECTOR AND NOISE CONTROL

To verify the effectiveness of different components in RTDiff, we incorporate them with other base-
lines to show the results.

Specifically, in our method, the OOD detector is used to control the length of the generated trajec-
tories. This is crucial because we aim to generate trajectories that extend beyond the offline data
distribution to provide new information to the agent, while ensuring they do not deviate too far,
which could reduce their usefulness and increase risk. The effectiveness of our OOD detector is
demonstrated in Tables 4 and 13. Our results show that the OOD detector outperforms any fixed-
length generation strategy. Additionally, we observed that setting the threshold too high or too low
negatively impacts performance.

To better understand why reverse synthesis is useful, we want to further show that this OOD detec-
tor is not useful for other synthesis methods. First of all, SynthER only performs transition-level
synthesis, which inherently does not need to control the generation length. Also we want to em-
phasize that with forward synthesis like ATraDiff, generating trajectories going out of the offline
data distribution is more risky, as transitions going from inside to outside may lead to performance
degradation. To validate this, we show the results of combining ATraDiff with an OOD detector
of different thresholds. From the results shown in Table 14, we found that those forward synthesis
methods derive limited benefits from the OOD detector, which validated the unique effectiveness of
reverse synthesis in our framework.

Our proposed noise control is largely independent of the specific generation method and can be
applied to any data augmentation approach using a diffusion-based framework. It demonstrates par-
ticularly effective when the number of examples is limited. Notably, this technique is also applicable
to SynthER and ATraDiff, as demonstrated by the results shown in Table 15. We use SynthER and

16

Published as a conference paper at ICLR 2025

ATraDiff to generate both 1M data with and without the random generation.The results in Table 15
illustrate that the noise control can consistently improve the performance.

Table 14: Performance of ATraDiff with the OOD detector across different thresholds in the Maze2D
environments. Forward synthesis cannot benefit from the OOD detector.

Method RTDiff | ATraDiff dispy; = 1.0 dispy; = 1.3 disyy = 1.5 dispy = 2.0
maze2d-umaze 12.3 7.1 7.4 7.0 6.3 6.0
maze2d-medium 8.3 6.2 6.6 6.3 5.6 5.4

maze2d-large 11.3 7.8 7.7 7.8 7.4 7.1

Table 15: Performance of different baselines with and without noise control in the Maze2D envi-
ronments. The number of generated samples is 1M. The noise control technique can consistently
improve the performance of different data augmentation methods.

SynthER w/ SynthER w/o ATraDiff w/ ATraDiff w/o
Noise control Noise control Noise control Noise control

maze2d-umaze 2.3 1.7 3.1 2.8
maze2d-medium 0.6 0.3 1.6 1.2
maze2d-large 7.3 6.3 8.1 52

C.5 QUANTITATIVE EVALUATION OF THE GENERATED SAMPLES

In this section, we conduct a quantitative evaluation of the generated samples of RTDiff. To
measure the fidelity of the generated samples, we follow the previous works using two statistics:
Marginal: Mean Kolmogorov-Smirnov (Massey Jr., 1951) and Correlation: Mean Correlation Sim-
ilarity (Fieller et al., 1957). To measure the model error of the generated samples, we calculate the
normalized error of the synthesized states and the real states after transition, which is (7'(s, a) — s’)?
for a transition (s, a, s’). The results are presented in Tables 16 and 17.

As expected, the results show that RTDiff does not aim to generate more realistic trajectories, but
rather to produce more diverse samples that lie outside the distribution, thereby benefiting the RL
performance. This is because RTDiff generates adaptive, longer trajectories compared with other
baselines, attributed to our proposed OOD detector and reverse synthesis model.

Therefore, while fidelity is an important factor in assessing data generation in general, our focus
in this paper is more on the “usefulness” of the generated data, specifically how it improves RL
performance.

Table 16: Performance comparison across different datasets for RTDiff, SynthER, and ATraDiff in
terms of Marginal and Correlation metrics.

Dataset RTDiff SynthER ATraDiff
Marginal Correlation T Marginal T Correlation T Marginal T Correlation T
hopper-medium 0.932 0.983 0.985 0.998 0.967 0.994
hopper-medexp 0.953 0.989 0.958 0.992 0.963 0.994
hopper-expert 0.941 0.985 0.934 0.982 0.953 0.991

C.6 COMPARISON WITH VANILLA DIFFUSION MODEL

To clarify that vanilla diffusion models alone cannot match the performance of our RTDiff, we
conducted an additional ablation study. This study involved using diffusion models to generate re-
verse trajectories without incorporating the other components of our method. The results, presented
in Table 18, show that naive diffusion models significantly underperform compared to our RTDiff.

17

Published as a conference paper at ICLR 2025

Table 17: Model errors for RTDiff, SynthER, and ATraDiff across different Maze2D environments.

RTDiff SynthER ATraDiff

maze2d-umaze 0.05 0.02 0.03
maze2d-medium 0.06 0.03 0.03
maze2d-large 0.11 0.07 0.08

Table 18: Overall results of DARL Maze2D environments with vanilla diffusion models. The num-
ber denotes the performance increase by the data augmentation method compared to the orig-
inal result.

strikov et al.. 2022 e Y

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff DM(vanilla) ROMI RTDiff DM(vanilla) ROMI
umaze 8.3%3:5 4.3%26 5424 q0.2447 934 g 6ESS
maze2d medium 3.3+27 2.3%+16 2.1%18 9 .g+25 8914 9.4+17
large 14.3:ﬁ:3.3 9‘0:l:341 81:‘:2.2 7.714.5 4_3:&2.6 3_513.1

Furthermore, when comparing the performance of vanilla diffusion models with ROMI, the improve-
ments, if any, are inconsistent and relatively minor. Therefore, the results validate our contribution,
demonstrating that it extends beyond the straightforward application of diffusion models.

D ADDITIONAL VISUALIZATIONS

In this section, we show some additional visualization results in the D4RL (Fu et al., 2020) Maze2D-
umaze environment. We collect offline data consisting of trajectories going from green ball to red
ball and use it to train the data synthesizer. The normal synthesis will generate trajectories entering
the obstacle area, while reverse synthesis can avoid this problem.

18

Published as a conference paper at ICLR 2025

(a)

(b)

©

Figure 3: Top: The trajectory in the offline dataset. Middle: The trajectory of the offline RL agent
with normal synthesis. Bottom: The trajectory of the offline RL agent with reverse synthesis.

19

	Introduction
	Related work
	Background
	Method
	Trajectory Generator
	Generation Length Control
	Improving generation efficiency

	Experiments
	Main results
	Ablation Studies
	Visual Reinforcement Learning

	Visualization and Analysis
	Conclusion
	Environments Tested
	Hyperparameters
	Additional experimental results
	Results with different basic RL algorithms
	Original performance report
	More ablation studies
	Results of other baselines with OOD detector and noise control
	Quantitative evaluation of the generated samples
	Comparison with vanilla diffusion model

	Additional Visualizations

