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ABSTRACT

Deciphering the function of unseen protein sequences is a fundamental chal-
lenge with broad scientific impact, yet most existing methods depend on task-
specific adapters or large-scale supervised fine-tuning. We introduce the “Protein-
as-Second-Language” framework, which reformulates amino-acid sequences as
sentences in a novel symbolic language that large language models can in-
terpret through contextual exemplars. Our approach adaptively constructs se-
quence—question—answer triples that reveal functional cues without any param-
eter updates. To support this process we curate a bilingual corpus of 79,926 pro-
tein—QA instances spanning attribute prediction, descriptive understanding, and
extended reasoning. Empirically, our method delivers consistent gains across di-
verse open-source LLMs and GPT-4o, achieving up to 15% ROUGE-L improve-
ment (average +6.14%) and even surpassing fine-tuned protein-specific language
models. These results highlight that generic LLMs, when guided with protein-
as-language cues, can outperform domain-specialized models, offering a scalable
pathway for protein understanding in foundation models.

1 INTRODUCTION

Proteins are indispensable molecular machines of life, driving key functions such as maintaining
cell structure and enabling cell communication. Their three-dimensional architectures, catalytic ac-
tivities, interaction networks, and evolutionary trajectories are all encoded within a linear sequence
composed of twenty amino-acid characters (26} [72)). Therefore, the core of understanding protein
function lies in accurately “reading” and “translating” the biological meaning contained within these
amino-acid sequences (L1, 27). However, this task is fraught with challenges. Although the amino
acid sequence is formally like a language—possessing a fixed character set (over 20 genetically
encoded amino acids) and potential grammatical rules (physicochemical laws)—the mapping re-
lationship from the one-dimensional sequence to the three-dimensional structure and function is
extremely complex and highly context-dependent (49, 165). Consequently, the central challenge of
“what cellular function does an unknown amino acid sequence encode?” still lacks a comprehensive
solution.

To address this challenge, research efforts on protein understanding can be broadly categorized into
two dominant paradigms: protein representation learning and protein—language alignment model-
ing. Protein representation learning sees amino-acid sequences as a standalone modality like lan-
guage and visual, acquires universal protein representations through self-supervised pre-training
on large-scale amino-acid sequences, and then attaches lightweight decoders to predict structure
or function (77, 5, 30} 154, 9l 168}, |67). While this paradigm excels in the universality of its em-
beddings and in mining deep sequential patterns, these embeddings still rely on additional “inter-
preters”, i.e., post-processing adapters, to be converted into human-understandable explanations.
Protein—language alignment modeling, in contrast, co-trains on paired protein sequences and their
textual descriptions, establishing a bidirectional mapping within a shared latent space that enables
end-to-end text-based question answering (73145,118}11,163.[71). Although this route bypasses down-
stream adapters, it is intrinsically bound to large-scale paired data and often requires re-fine-tuning
whenever the output format or downstream objective shifts. In summary, both of these approaches
face bottlenecks of large training data requirements, high computational costs, and limited general-
ization ability.

Protein as Second Language. Reflecting on the human cognitive process, we observe that hu-
mans exhibit remarkable efficiency and generalization ability when learning a brand-new symbolic
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system (i.e., a new language). The key lies in their ability to rely on and transfer their existing
native language knowledge system (16, 23)). Given the aforementioned “linguistic” properties of
protein sequences—possessing a compositional structure and contextual semantics—and our goal
of understanding their function using natural language, we propose a novel perspective: to treat pro-
tein sequences as a symbolic system that can be learned and interpreted by large language models
(LLMs) as a “second language”.

Analogous to how humans acquire a second language, i.e., by encountering new words in con-
text and inferring their meaning and usage, we propose a protein language learning framework in
which an LLM acquires protein semantics and reasoning ability through context-driven exposure
that grounds sequence patterns in functional and structural examples. This framework adaptively
constructs learning contexts for a given protein understanding goal, enabling rapid acquisition of tar-
get protein knowledge without additional training or sacrificing generalization. To support effective
learning, we constructed a “bilingual” dataset of 79,926 protein-sequence—question—answer triples
covering functional, descriptive, and extended-information queries. Across Protein2Text (75)), Mol-
Instructions(14) and ProtDescribe-QA (22)), our framework raises the average ROUGE-L by 6.14%
across diverse open-source models and GPT-40, with a maximum gain of 15%, without any task-
specific fine-tuning. Our contributions are as follows:

¢ We introduce the “Protein-as-Second-Language” conceptual framework, which recasts amino-
acid sequences as a second language that can be acquired via in-context learning, enabling
efficient and generalized protein understanding.

¢ We construct a protein-natural language bilingual dataset that spans four task families:
attribute-based QA, True or False QA, descriptive-text QA, and extended-information QA, to
support effective protein language learning and benchmarking.

* We present a protein language learning framework that adaptively constructs learning contexts
for protein understanding, yielding significant gains for both open-source models and GPT-4o,
enabling them to outperform domain-specialized models without additional training.

2 RELATED WORK

2.1 LANGUAGE MODELS IN PROTEIN

Protein representation learning with protein language models (PLMs) extends the Transformer to
amino-acid strings, producing dense embeddings for property prediction (19, IS} 13} 20, [7, 19} [10)
or generative design (38, 41}, 34, [15)). Because these models are trained exclusively on amino acid
sequences, their outputs remain latent vectors that external classifiers must translate into human-
readable function. To obviate this indirection, protein—language alignment modeling has emerged,
which jointly connects sequences with textual descriptions via (i) contrastive objectives mapping
proteins and sentences into a shared space (74, 167), (ii) bioknowledge-augmented pre-training on
curated protein—text corpora (L5, 157, 134, 44, [79, 31)), or (iii) multi-modal LLMs that graft protein
encoders onto frozen language backbones (32, |1} 63 [10} 37, [70). While effective, these approaches
entail costly retraining or gradient updates and risk catastrophic forgetting when scaled to larger
LLMs (25, 166), prompting a shift toward parameter-efficient adaptation.

2.2 PROTEIN QA DATESETS

Datasets that couple proteins with natural-language annotations have become the empirical bedrock
for developing protein—text hybrid systems. At present, two complementary families of corpora
dominate the landscape. The first centers on protein captioning: given an amino-acid sequence
alone, the objective is to generate a concise textual description. Representative instances include
the richly annotated Swiss-Prot collection (4)), the ProteinKG resource (77) and ProtDescribe (75)).
The second family targets protein question answering: here, both a sequence and a natural-language
query are supplied, and the model is required to synthesize an answer grounded in the provided
protein. Curated examples span Mol-Instructions (14), UniProtQA (33), ProteinLMBench (52),
VenusX (56) and Protein2Text-QA (22).
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2.3 IN-CONTEXT PROTEIN LEARNING

In-context learning provides a training-free paradigm for cross-modal reasoning (39), mirroring the
exemplar-based inference long used in protein science, where sequence—sequence (3,6, 153, 162) and
multiple-sequence alignments (48| [24) derive function from homology. Building on this exemplar-
driven paradigm, recent protein—LLM methods such as ProtEx (51)) condition models on biologically
similar proteins identified from sequence or embedding space (53} 150, 28} 136} |61} 166). However,
these exemplar-selection strategies remain grounded entirely in the protein modality and therefore
cannot retrieve exemplars with respect to the content of the natural-language query.

3 PROTEIN AS SECOND LANGUAGE

We introduce “Protein-as-Second-Language”, a framework that treats amino-acid sequences as a
new symbolic system to be learned much like humans acquire a foreign language. Just as learners
infer the meaning of unfamiliar words by repeatedly encountering them in context, we construct a
protein—natural language bilingual dataset (Sec. and design an adaptive context construction
mechanism (Sec. [3.2)) to provide such contextual exposure. In this way, our framework enables
LLMs to acquire protein semantics through exemplars rather than through extensive re-training.

3.1 BILINGUAL DATASET CONSTRUCTION

We curate our bilingual dataset in three steps (Figure [I). Starting from 573,661 Swiss-Prot (4)
entries with gene ontology (GO) annotations, we avoid directly converting all annotations, as this
would introduce heavy redundancy; instead, we construct a balanced sample. Specifically, (i) we
prune the GO-directed acyclic graph (GO-DAG) to obtain representative functional categories and
group proteins accordingly (Sec.[3.1.1)), (ii) perform bilingual deduplication by clustering sequences
within each protein group and sampling proteins with diverse functional annotation (Sec.[3.1.2)), and
(iii) use DeepSeek-R1 (17) to generate attribute, knowledge, descriptive, and true/false QA pairs,
yielding 79,926 high-quality protein—QA triples (Sec. [3.1.3).
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Figure 1: The overview of data construction of our bilingual protein—QA dataset.

3.1.1 FUNCTION-BASED GROUPING

To enable representative sampling across functional categories, the dataset is partitioned according
to the GO hierarchy. Directly using the raw directed acyclic graph (DAG) risks over-fragmentation
from overly fine, sparsely populated terms, and excessive generalization near the root. To address
this, we adapt a pruning strategy inspired by decision tree simplification (40), where complexity is
managed through a penalty to avoid overfitting. This strategy aims to retain an optimal set of GO
terms as functional grouping nodes. It balances granularity and coverage, ensuring that the retained
nodes represent biologically diverse yet statistically well-supported categories for downstream sam-
pling.
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The pruning process is driven by two main criteria: (1) A node is retained if it meets the minimum
support threshold, which ensures that the node has a sufficient number of associated proteins, and
does not exhibit significant child imbalance. (2) If the child-imbalance ratio is high, meaning the
protein distribution among a node’s child terms is uneven, the parent node is retained, even if the
child nodes fail to meet the minimum support threshold.

Minimum Support Threshold A node is retained only if the number of associated proteins meets
a depth-adjusted threshold m(d), which adapts based on the node’s depth in the GO hierarchy. The
threshold is calculated as:

m(d) = A Cror - (1 + Bd) (1)
where C,; is the total protein count, d is the node depth, and A and 3 are constants. This dynamic
threshold is designed to prevents deep nodes from splitting infinitely due to overly small absolute
values.

Child-Imbalance Ratio The child-imbalance ratio is applied to assess whether the child nodes of
a given term are too imbalanced. The imbalance ratio p(v) is computed as the ratio of the largest to
the smallest protein count among the child nodes:

max C(u)
ueCt(v)
min  C(u)
ueC*(v)

p(u) = 2)

where CT (v) represents the set of valid child nodes with non-zero protein counts. If the imbalance
ratio p(v) exceeds a specified threshold 7(d), the parent node v is retained to preserve the biological
diversity. This threshold is adjusted dynamically with the depth d to allow for greater flexibility at
deeper levels of the hierarchy:

7(d) = 10 - o? (3)
where 79 is the base threshold, and « is a scaling factor.

By applying these two criteria, the pruning process is carried out recursively, allowing the algorithm
to adaptively prune the GO DAG and identify the most relevant, biologically diverse functional
groups.

3.1.2 BILINGUAL DEDUPLICATION

After grouping by GO term, proteins within the same node often exhibit high similarity, as they
represent homologous proteins. To address this, we use MMseqs2 (53) for sequence clustering
within each GO node, applying a 70% amino acid sequence similarity threshold. From each cluster,
a single representative sequence is selected. This threshold efficiently removes redundant sequences
with minimal functional variation while preserving functional diversity.

While sequence similarity-based redundancy removal effectively reduces sequence-level redun-
dancy, it does not necessarily capture functional divergence. Specifically, sequence similarity below
70% does not imply functional divergence, and substantial functional redundancy may still exist
within the set (12). To address this, we focus on annotation semantic similarity, quantifying the
functional relationships between proteins based on their GO annotations. Inspired by the simGIC
method (46)) for calculating GO terms semantic similarity, we calculate the Protein Functional In-
formation Content ICrocin funciion fOr €ach protein, which is the sum of the Information Content (IC)
of all associated GO terms and their ancestral terms. The IC of each GO term is calculated based
on its frequency in the dataset, using the total protein set after sequence redundancy removal. The
ICprotein funciion Value for each Protein ID is computed as:

ICpmtein function — Z IC (g) + Z IC (gl ) . (4)

g€GO terms of p g’ €ancestors of GO terms of p

This provides a quantitative measure of each protein’s functional information, capturing both di-
rect and indirect annotations. For each GO term, proteins are sampled based on their unique
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ICprotein function Values (rounded to 3 decimal places). To ensure balanced species representation,
a species quota strategy is applied based on the proportions of Eukaryota, Bacteria, Archaea, and
Viruses in the dataset after sequence redundancy removal. This ensures an unbiased species distri-
bution in the final sample. The bilingual deduplication process reduces redundancy in two aspects,
amino acid sequence and annotation semantics, ensuring a balanced and diverse protein corpus.

3.1.3 LLM-BASED QA CONSTRUCTION

To transform curated protein annotations into natural-language question—answer pairs, we prompt
the DeepSeek-R1 (17) model to generate biologically grounded QA texts that reflect both func-
tional attributes and contextual knowledge (the prompts used for each QA type are provided in
Appendix . The resulting QA corpus covers four complementary types: @ Attribute-based QA
captures factual properties directly associated with a protein, such as molecular function, cellular
component, or family. @ Knowledge-based QA comprises concise, annotation-driven questions and
answers that involve in multiple biological aspects of a protein, such as expression, localization,
mechanism, and interactions. @ Descriptive Text QA produces longer natural-language explana-
tions that integrate multiple annotations into coherent functional summaries. @ True or False QA
consists of single statements that integrate multiple biological aspects of a protein, accompanied by
a True/False answer and a brief explanation.

These four types yield a rich and varied bilingual dataset, ensuring that models are exposed to both
concise factual knowledge and more detailed contextual explanations, supporting their ability to
understand and reason about protein functions.

3.2 BILINGUAL CONTEXTUAL LEARNING

2, User Query Q_ Adaptive Contextualization PN Bilingual contextual learning
52,
> @ Context Provider Please extract and integrate relevant information from the CONTEXT to accurately
"What types of cells does this protein seem : [ answer the USER QUERY question.
to target in the retina?" . Bilingual Context
MFRQFYLWTCLASGIILGSL.. S MATSASSHLSKAIKHMYMKLPQGEKVQAMYIWIDGTGE...
GSLNNIVEGTEKQSHSQSTSL -——  cooocoooa) YFEDRGPSANCDPYAVTEALVRTCLLNETGDEPFEYKN
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photoreception, though the underlying mechanism remains unclear.
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Figure 2: Process of Query-Adaptive Context Construction.

In practical scenarios, questions concerning protein sequences are often highly flexible and complex:
they require not only analogous proteins with similar sequence patterns to capture potential struc-
tural or functional signals, but also complementary descriptive knowledge and QA pairs to provide
semantic grounding. As shown in Figure[2] we propose an adaptive context construction mechanism,
for bilingual contextual learning, designed to selectively build bilingual learning contexts for each
query. Instead of brute-force mixing of amino acid sequences and descriptive texts, the mechanism
follows the principle of second language acquisition—exposing learners to new words in context
so that meaning and usage can be inferred (21). By analogy, LLMs acquire protein semantics and
reasoning ability through context-driven exposure that grounds sequence patterns in functional and
structural exemplars.

The mechanism operates in three stages. First, the adaptive context provider selects candidate con-
texts from the protein—natural language corpus using a dual-similarity scoring scheme, For each
user query (), which contains both a protein sequence and a natural-language question, we compute
for every candidate protein—text pair ¢;: (i) Amino acid sequence homology, using MMseqs2 (53),
which provides a percent identity score Sim; * € [0, 1] between the query sequence and the candi-
date sequence. (ii) Textual similarity, using TF-IDF representations of the candidate’s descriptive
text or QA pair and the query question. The final similarity score for candidate c; is a weighted
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seq

combination: S; = ASim; " + (1 — X)Sim™, with X = 0.5 by default. In all experiments, can-
didates with sequence-identity scores Sim; ' > 0.9999 are explicitly masked before computing S,
to avoid trivial self-matches and potential data leakage from nearly identical sequences. Second, the
contextual integration module structures the top-k selected examples into a coherent bilingual con-
text. Given the selected index set C, we represent each exemplar as a triple (seq;, ¢;, a;), ordered by
decreasing .S;. Finally, the constructed bilingual context is combined with the query and presented to
the LLM as in-context examples, enabling context-grounded interpretation and evidence integration
to produce biologically meaningful responses.

4 EXPERIMENTS

4.1 SETUP

Evaluation Datasets We comprehensively evaluated our method using 3 text-based protein under-
standing datasets: @ ProtDescribe (75) comprises 553,052 high-quality protein—text pairs extracted
from Swiss-Prot. Each instance pairs an amino-acid sequence with a single textual description ob-
tained by concatenating four annotation fields in a fixed order: protein name, function, subcellular
location, and similarity. The resulting descriptions average 40-60 tokens. @ Protein2Text-QA (22)
comprises 209,847 open-ended question—answer pairs covering 5,574 unique proteins. Each in-
stance consists of an amino-acid sequence, a free-form question, and a concise answer; all QAs are
automatically generated from PubMed abstracts/discussion/introduction sections and presented as
conversational natural-language text without fixed templates. € Mol-Instructions (14) comprises
2.04 M instruction instances divided into three major sections: molecule-oriented, protein-oriented,
and biomolecular-text. The protein-oriented section alone contributes 505 K instructions covering
diverse tasks. Each sample is formatted as a natural-language “instruction—input—output” triplet: the
input is a UniProt amino-acid sequence, and the output is a free-text answer tailored to the specific
task.

Models All experiments are conducted under identical prompting protocols and follow the
leakage-controlled setting described in Sec[3.2] We first evaluate the proposed adaptive context
construction method on frozen LLMs, including Qwen2.5-3B (59), Mistral-7B-Instruct-v0.3 (8)),
Qwen3-14B (60), Kimi-k2 (58), and GPT-40 (42), to test few-shot and compositional reasoning
capabilities, thereby mimicking the dynamics of second language acquisition. In addition, we also
evaluate fine-tuned protein-oriented LLMs, including Galactica-6.7b (S7), BioT5-plus-base (45),
InstructProtein (64) and ProLLaMA (35)), which have been explicitly trained on large-scale protein
corpora. These models serve as a baseline for comparison, allowing us to examine the performance
gains of our method in general-purpose frozen LLMs relative to specialized protein LLMs.

4.2 QUALITY OF DATASET

Figure[3](a-f) provides a multidimensional analysis of the protein sequences included in our dataset.
The collection spans a wide range of sequence lengths, from short peptides to large multi-domain
proteins, and covers proteins from 4,135 species across diverse evolutionary lineages. At the family
level, the dataset comprises 63,749 families and 1,115 superfamilies, ensuring representation of both
well-studied proteins and rare functional groups. Additional annotations capture domain composi-
tion, catalytic activity classes, and gene ontology categories, collectively highlighting the long-tail
distribution across sequence space and functional categories. This diversity ensures broad biolog-
ical coverage while posing realistic challenges in inferring functions for proteins, particularly for
infrequent families and underexplored functions.

Figure [3| (g,h) summarizes the distribution of tasks and token composition within the dataset.
The corpus encompasses four distinct protein-QA types, with sample counts ranging from 11,693
(attribute-based QA) to 32,444 (true/false QA), thereby providing balanced coverage across multi-
ple functional perspectives. In terms of token composition, amino-acid sequences constitute nearly
70 % of the corpus, reflecting the sequence-centric nature of protein understanding tasks and high-
lighting the need for models to align symbolic sequence information with natural-language context
effectively.



Under review as a conference paper at ICLR 2026

Bos taurus_=—— 0.20 500
Escherichia coli ——— Tue or False OA Atribute-based QA
Dictyostelium discoideum _——— 015k 400(- u or False Q. 11,693
Rattus norvegicus -——— g 32,444
Drosophila melanogaster -———— 300 \
Caenorhabditis elegans -———1 0.10- ‘ Knowledge-based QA
pombe ——1 200 108
cerevisiae -——————"
‘Mus museulus -———————1 0.05 100
s
 Homo sapiens Descriptive Text
thaliana —!
2000 4000 6000 8000 256 512 768 1024 1280 100 300 500 700 23,681
(a) Taxonomy (c) Sequence length (e) Catalytic activity (g) Sample counts across the four QA task types
UGT == 500 2500 I
ALDHi ——— Text tokens
. 2000
g'(b — 400 30.90%
ab —————] \
AMP-binding enzyme F——1 300 1500
C2H2-ZFPs ———— \
) — 200 1000 =
P4s0 ————————1 \
. 100 - PN
Ser/Thr kinase T 00 — Protein sequence tokens
GPERl ———————— E— 69.10%
150 300 450 600 100 300 500 700 100 300 500 700
(b) Protein family (d) Domain (f) Gene Ontology (h) Proportion of text tokens versus amino-

acid sequence tokens

Figure 3: Dataset statistics. Left: Multidimensional analysis of protein amino-acid sequences, in-
cluding length, domain composition, and catalytic activity. Right: Sample sizes for the four protein-
QA types and the ratio of textual to amino-acid sequence tokens.

Table 1: Comparison of different approaches on descriptive protein QA datasets A Gain
shows the percentage performance increase. <> indicates LLMs augmented with our adaptive context
construction method. Metric: ROUGE-L (R-L), BLEU-2 (B-2), BERTScore (BS).

ProtDescribe Protein2Text-QA Mol-Instructions

Model
R-L B-2 BS R-L B-2 BS R-L B-2 BS

Fine-tuned LLM

Galactica-6.7b (57) 8.08 1.72 4931 | 9.67 3.04 5557 | 9.07 1.55 50.04
BioT5+ (43) 9.97 1.96 5354 | 696 124 5553 | 3.55 1.15 38.53
InstructProtein (64) 2.11 0.84 41.04| 289 0.63 4203 | 489 124 3948
ProLLaMA-7B 1277 3.26 5549 | 10.09 2.02 5798 |16.89 7.07 62.71
Frozen LLM

Qwen2.5-3B (39) 1845 735 58.05 | 2321 8.64 6894|1854 696 60091
Qwen2.5-3B (39) & 26.17 8.02 61.37 | 27.19 12.84 72.11 | 22.72 10.65 64.89
A Gain +7.72  +0.67 +3.32 | +3.98 +4.20 +3.17 | +4.18 +3.69 +3.98

Mistral-7B-Instruct-v0.3 (8) 1490 570 5843|2097 9.12 6601 | 17.16 633 59.83
Mistral-7B-Instruct-v0.3 (8) ¢ | 26.35 10.23 62.66 | 22.06 9.88 69.64 | 19.40 7.25 63.60

A Gain +11.45 +4.53 +4.23 | +1.09 +0.76 +3.63 | +2.24 +0.92 +3.77
Qwen3-14B (60) 2320 447 60.06 | 21.02 825 6944 | 14.60 3.68 60.36
Qwen3-14B (60) < 3237 5.68 6357|2549 12.65 71.53 2096 7.53 65.00
A Gain +9.17 +1.21 +3.51 | +4.47 +4.40 +2.09 | +6.36 +3.85 +4.64
kimi-k2 (58) 25.16 9.07 6190|1733 573 66.54 | 12.81 3.26 55.63
kimi-k2 (38) & 3286 9.12 64.68 | 19.10 696 68.16 | 1835 6.04 64.91
A Gain +7.70 +0.05 +2.78 | +1.77 +1.23 +1.62 | +5.54 +2.78 +9.28
GPT-40 (42) 1829  8.07 60.31 | 20.84 832 69.52|17.03 5.62 61.76
GPT-40 (42) & 33.29 12.86 6391 | 2643 12.86 72.05| 2290 8.87 66.31
A Gain +15.00 +4.79 +3.60 | +5.59 +4.54 +2.53 | +5.87 +3.25 +4.55

4.3 MAIN RESULTS

Accuracy gains from context-driven exposure We evaluate our method on both descriptive QA
and True/False QA protein understanding tasks. On descriptive QA datasets, our approach improves
the average ROUGE-L by 6.14% across diverse open-source models and GPT-40 (42)), as shown
in Table[T], and human evaluation further confirms higher perceived answer quality (Figure[d). On
True/False QA datasets, our method yields an additional 22.5% average accuracy improvement, as
reported in Table[5] While fine-tuned protein LLMs such as InstructProtein may perform strongly on
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datasets closely aligned with their training distribution, frozen general-purpose LLMs enhanced with
our method remain broadly competitive across benchmarks, with performance that is comparable or
superior depending on the model-task combination.
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Figure 4: Comparison of human evaluation results. Left: Absolute human rating scores (0-5)
for zero-shot model outputs (dark bars) and model outputs with adaptive context exposure (light
bars) on three datasets. Right: Pairwise win/lose proportions comparing outputs with and without
adaptive context exposure. Each comparison is based on 8 randomly selected cases per subset (48
cases in total across six subsets). Detailed scoring rubrics are provided in Appendix E|
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Figure 5: Performance on True/False protein QA datasets. Dark blue bars denote the zero-
shot baseline, and light blue bars denote the corresponding models augmented with our method.
The True/False QA data is directly adapted from the publicly released downstream evaluation tasks
provided in InstructProtein (64).

Performance on proteins out-of-distribution On proteins with low similarity to the QA corpus
(sequence identity <40%), our method achieves a 7.12% ROUGE-L gain over the zero-shot baseline
(Table2). Zero-shot performance in this subset is on average 1.66% lower than on the full test set,
likely reflecting the presence of rare or underrepresented proteins that increase task difficulty. The
consistent improvement in this harder setting shows that our approach remains effective even when
close homologs are absent.

Contextual exposure vs. fine-tuned adaptation Our contextual exposure approach surpasses
fine-tuned baselines. As shown in Figure[7} it achieves an average ROUGE-L of 21.39%, outper-
forming the LoRA-fine-tuned (69) model (17.91%). We further compare with an analogy-based
contextual-exposure method (ANALOGYKB (76)), which performs below the fine-tuned baseline
in this setting. Implementation details for both methods are provided in the Appendix [C} In terms
of inference cost, Table [3]shows that context construction adds only 0.05 s per query, which is small
relative to the 4-5 s decoding time across models.

Varying exemplar number (k) Figure [] shows that increasing the number of exemplars & im-
proves performance up to a task-dependent optimum, after which gains diminish or reverse. The
optimal k differs by task. For ProtDescribe (73), which involves fixed attribute-centric questions, a
larger set of bilingual exemplars from related proteins helps the model capture recurring patterns,
with performance peaking at k = 10-11. In contrast, Protein2Text-QA requires open-ended and
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Table 2: Performance on proteins out-of-distribution in sequence space.

Test proteins were

selected by using MMseqs2 to identify sequences with <40% identity to all entries in the three

evaluation datasets.

Model ProtDescribe Protein2Text-QA Mol-Instructions
R-L B-2 BS R-L B-2 BS R-L B-2 BS
Qwen2.5-3B (39) 18.61 7.55 5827 | 18.60 6.63 6742 18.65 7.25 60.97
Qwen2.5-3B (39) < 26.16  9.67 64.03 | 21.44 8.60 68.05 | 22.61 10.30 64.25
A Gain +7.55 +42.12 +5.76 | +2.84 +1.97 +0.63 | +3.96 +3.05 +3.28
Mistral-7B-Instruct-v0.3 (8) 17.04 6.84 60.08 | 16.28 589 65.08 | 11.44 3.83 55.44
Mistral-7B-Instruct-v0.3 (8) <> | 30.19 11.34 64.63 | 19.09 7.46 68.61 | 20.57 7.70  64.89
A Gain +13.15 +4.50 +4.55 | +2.81 +1.58 +3.53 | +9.13 +3.87 +9.45
Qwen3-14B (60) 23.72 1052 6324 | 17.84 623 68.31 | 13.53 356 53.18
Qwen3-14B (60) < 36.12  11.09 65.51 | 22.51 10.19 70.28 | 1573 590 60.19
A Gain +12.40 +0.57 +2.27 | +4.67 +3.96 +1.97 | +2.20 +2.34 +7.01
kimi-k2 (38) 2441 998 62.79 | 13.20 3.22 64.17 | 1274 3.60  55.05
kimi-k2 (38) & 35.68 10.56 6599 | 17.09 5.15 67.59 | 18.77 5.53  65.30
A Gain +11.27 +0.58 +3.20 | +3.89 +1.93 +3.42 | +6.03 +1.93 +10.25
GPT-4o (42) 1991 10.32 59.80 | 16.94 6.71 67.45| 1561 6.06 59.16
GPT-40 (42) & 34.08 11.00 63.40 | 23.38 10.02 70.93 | 21.70 8.14  65.32
A Gain +14.17 +0.68 +3.60 | +6.44 +3.31 +3.48 | +6.09 +2.08 +6.16

integrative reasoning, where fewer but relevant exemplars are beneficial; here, performance peaks
earlier at k = 3-4. Accordingly, we adopt the task-specific optimal settings in our experiments:
k = 11 for ProtDescribe (73)), k = 4 for Protein2Text-QA (22)), and k = 4 for Mol-Instructions (14).

ProtDescribe Protein2Text-QA

0.35 0.30
o 0.30 0.25 1
m
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Figure 6: Effect of varying exemplar number (k) on model performance. We explored k£ €
[1,12] as the search space; the upper bound was set after a coarse scan up to k& = 50 showed
performance saturation around 2-12 exemplars. Metric: ROUGE-L.
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Figure 7: Comparison of analogy-based, fine-tuned,
and our methods on Mol-Instructions subtasks. All
methods are evaluated using Qwen2.5-7B (59).

Table 3: Comparison of inference ef-
ficiency. Times are reported in seconds

(s).
Method Model Context
Inference Overhead
Zero-shot 4.15 -
LoRA-FT 2.89 -
ANALOGYKB (76)| 4.94 0.07
Our Method 4.87 0.05
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Table 4: Ablation study of different matching strategies for exemplar selection. Metric:
BERTScore.

Qwen2.5-3B  Mistral-7B-Instruct-v0.3 Qwen3-14B Kimi-k2 GPT-40
59 @) (60) (58) “2)

Exemplar Selection

TF-IDF-only 61.60 60.64 61.69 60.63 61.76
MMseqs2-only 64.45 62.84 64.88 64.82 66.12
ESM2 +TF-IDF 62.18 61.40 61.69 60.63 61.76
MMseqs2 + TF-IDF 64.89 63.60 65.00 64.91 66.31

Ablation on dual-criterion context selection As shown in Table[d}, TF-IDF-only yields the low-
est scores, while MMseqs2-only performs better, indicating the usefulness of sequence-level match-
ing. The ESM2 (30) + TF-IDF variant improves over TF-IDF but remains below MMseqs2 + TF-
IDF. Overall, combining MMseqs2 with TF-IDF achieves the best performance across models.

Case studies and qualitative evaluation Figure [§] illustrates that context-driven exposure pro-
duces concise, function-specific descriptions consistent with UniProt annotations. In the two exam-
ples shown, the model correctly identifies “intrinsically disordered regions”, and “[4Fe-4S] RNA
methyltransferase activity”, whereas zero-shot outputs remain generic.

Qualitative examples of Protein2Text-QA question answering task

User Query

Amino acid sequence to analyze:<seqg> M CTK TKEECEKHYMKHFINNPLFASTLLNLKQAEEAKTADTAIPFHSTDDPPRPTEDSLLSRDMAGYMPARADFI
EEFDNYAEWDLRDIDFVEDDSDILHALKMAVVDIYHSRLKERQRRKKIIRDHGLINLRKFQLMERRYPKEVQDLYETMRRFARIVGPVEHD

KFIESHALEFELRREIKRLQEYRTAGITNFCSARTYDHLKKTREEERLKRTMLSEVLQYIQDSSACQQWLRRQADIDSGLSPSIPMASNSGRR

SAPPLNLTGLPGTEKLNEKEKELCQMVRLVPGAYLEYKSALLNECNKQGGLRLAQARALIKIDVNKTRKIYDFLIREGYITK G </seq>

What is unique about the structure of the transcriptional adapter?

Model Answers

without Context with Context
The transcriptional adapter protein sequence contains multiple lysine (K) and The transcriptional adapter has a unique structure characterized by multiple
arginine (R) residues, indicating potential nuclear localization and involvement ROUGE-L: 11.76  low-complexity and disordered regions, which likely facilitate dynamic ROUGE-L: 22.22
in DNA binding. The presence of acidic residues (E, D) suggests roles in Human Rating: 2 interactions with other transcription factors and regulatory proteins, Human Rating: 4
protein-protein interactions, crucial for transcriptional regulation. enhancing its role in transcriptional regulation

Ground Truth

‘The transcriptional adapter is intrinsically disordered, meaning its structure is not fixed.

Qualitative of Mol ructi ion answering task

User Query

Amino acid sequence to analyze: <se¢> M TPTAPITQDMLTITRKLPDGPTNLVGLTRDGLRDVLIAAGTPEKQAKMRVGQIWQWIYQKGVRDFDAMTNLS
KSYRAELAEKFVIEVPEVVSRQVSADGTRKYLVRIAGGHEVETVYIPEESRGTLCISSQVGCTLTCSFCHTGTQKLVRNLTAGEIIGQVMIARD
DLGEWPEPGRAPKDETRLLSNIVLMGMGEPLYNFEGVRDAMKIAMDGEGISLSRRRITLSTSGVVPEIARTAEEIGCLLAVSFHGTTDEIRDK
LVPINKKWNIAALLNALREYPRLSNSERITFEYVMLKGVNDSDEDARRLVKLIKGIPAKINLIPFNEWPGAPYERSDWDRIESFANIIYKAGYA
SPIRTPRGEDIMAACGQLKSETERARKSRKVIAAEAGLT </seq>

Please examine the protein encoded by the amino acid sequence and describe its functional role, potential involvement in cellular processes, and its subcellular location.

Model Answers

without Context with Context
The protein encoded by the provided amino acid sequence appears to be a
member of the GTPase family, characterized by motifs involved in The protein encoded by the given amino acid sequence functions as a dual-
binding and hydrolyzing GTP. These proteins often function as molecular specificity RNA methyltransferase, similar to RImN_AZOCS. It catalyzes
switches in various cellular processes, including signal transduction, cell ROUGE-L: 19.20  methylation of adenosine at specific positions in 23S rRNA and tRNA, ROUGE-L: 28.83
division, and vesicle trafficking. The presence of sequences such as "GTP" ~ Human Rating: 1 aiding in ribosomal fidelity and (RNA stability. It relies on a [4Fe-4S] cluster  Human Rating: 4
and "Ras-like" motifs suggest a role in regulating pathways like the Ras- ixnd S-adenosyl-L-methionine (SAM) for its activity. The protein is localized
MAPK signaling cascade, which is crucial for cell proliferation and in the cytoplasm.

differentiation.
Ground Truth

The protein characterized by the amino acid sequence demonstrates 4 iron, 4 sulfur cluster binding, metal ion binding, rRNA (adenine-C2-)-methyltransferase activity, rRNA binding, tRNA
(adenine-C2-)-methyltransferase activity, tRNA binding and is implicated in the rRNA base methylation. Its locali is primarily within the cytoplasm.

Figure 8: Qualitative examples of protein question answering. We present two examples with
answers generated by GPT-40 (42)) along with the target ground truth. The green color highlights
accurate keywords, while the red color indicates prediction errors.

5 CONCLUSION

We have proposed the “Protein-as-Second-Language” framework, which leverages adaptive con-
text construction to enhance bilingual protein understanding by dynamically integrating sequence
homology and textual similarity. Supported by a dedicated protein—-natural language bilingual
dataset, our method allows LLMs to acquire protein semantics without task-specific parameter up-
dates. Experiments on multiple protein-language datasets demonstrate that our framework consis-
tently outperforms zero-shot baselines, highlighting the effectiveness of context-driven learning in
bridging protein sequences with functional descriptions.
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6 ETHICS STATEMENT

This work complies with ethical standards and established research practices. All protein data were
sourced from publicly available databases, with no proprietary or confidential information involved.
Quality assurance and safety checks were applied to minimize harmful or inappropriate content.
We acknowledge the broader risks of combining LLMs with biomolecular knowledge, including
potential misuse for harmful purposes, and therefore emphasize responsible use guided by fairness,
transparency, and accountability. Any harmful or unsafe applications of this dataset are strictly
prohibited.

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the protein—natural language bilingual dataset (Sec. [3.1) Ap-
pendix D)), the adaptive context construction mechanism (Sec. [3.2). Data processing steps and QA
generation prompts for all four question types are included in Sec. and Appendix [E] Code im-
plementing the framework and instructions for reproducing experiments on both frozen and protein-
adapted LLMs will be provided as supplementary material upon acceptance.
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A EVALUATION METRICS

We use the automatic metric ROUGE-L (29)), BLEU-2 (43)), BERTScore (78) to assess the quality
of the generated text by comparing it with reference answers. For semantic similarity, we compute
BERTScore (78) using SciBERT as the backbone to better capture biomedical terminology. In
addition to automatic metrics, we incorporate manual checking into the evaluation pipeline and
compute a human-rating score. Five evaluators with biological-research experience were asked to
rate each generated answer on a 0-5 scale (the integer score corresponds to the category number
minus one). All evaluators have at least two years of research experience in bioinformatics or related
biological fields. The six ordinal categories they used are:

1. Garbled - the text is incomprehensible and lacks any readability.

2. Inaccurate — the text is readable but entirely incorrect and devoid of meaningful informa-
tion.

3. Partially informative — the text offers some reference value, yet its factual correctness is
poor.

4. Moderately accurate —roughly half of the information is correct, but several errors remain.

5. Mostly accurate — the content is almost entirely correct, with only minor omissions or
erTors.

6. Completely correct — the content is accurate in its entirety, without any mistakes.

B ADDITIONAL RESULTS

Effect of context format On Protein2Text (22), we compare zero context, annotation-based con-
text, and QA-based context. As shown in Table[5] using raw annotations reduces ROUGE-L by an
average of 11.96% compared with the zero-context setting, indicating that unstructured annotations
introduce noise rather than help.

Inference efficiency and scalability As shown in Table [6] frozen LLMs between 3B and 14B
parameters exhibit inference times of roughly 5 seconds with context, indicating limited sensitivity
to model size in this range. Larger models such as Kimi-k2 (58) and GPT-40 (42) even generate
slightly faster with context, likely due to decoding differences. For fine-tuned LLMs, the measured
inference time appears to increase with parameter count.
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Table 5: Comparison of annotation-based and QA-based context formats. Metric: ROUGE-L

(R-L), BLEU-2 (B-2), BERTScore (BS).

Context Format Mistral-7B-Instruct-v0.3 (8) | Qwen3-14B (60) Kimi-k2 (58)
R-L B-2 BS R-L B2 BS | R-L B-2 BS
Zero-shot 20.97 9.12 66.01 21.02 824 69.44|17.33 5.73 66.54
Annotation-Based Context | 7.83 3.05 69.64 21.02 3.06 57.64| 7.08 191 57.24
QA-Based Context (ours) |22.06 9.88 56.71 2549 12.65 71.53]19.10 691 68.16

Table 6: Comparison of inference latency across model sizes with and without context (k = 4).

Inference without  Inference With

Model Params.
Context (s) Context (s)

Fine-tuned LLM
InstructProtein 1.3B 1.89 -
Galactica 6.7B 2.51 -
ProLLaMA (33) 7B 8.35 -
Frozen LLM
Qwen2.5-3b (39) 3B 1.36 4.92
Qwen2.5-7b (39) 3B 4.15 4.94
Qwen3-14b (60) 14B 1.96 5.09
Kimi-k2 1T 8.17 4.65
GPT-40 - 2.34 1.98

Structure-Level validation of LLM predictions To determine whether model improvements ex-
tend beyond text and reflect meaningful structural reasoning, we conducted structure validation on
GPT-40’s structural descriptions for several proteins. Across the four cases shown in Figure [0]
descriptions generated with contextual examples showed markedly better agreement with the struc-
tural organization predicted by AlphaFold 3 (2)), including correct identification of catalytic cores,
cofactor-binding regions, and multi-domain architectures. In contrast, zero-shot predictions fre-
quently missed key structural elements, highlighting that contextual examples are essential for guid-
ing the model toward biologically coherent structural reasoning.

Evaluation on real-world protein scenarios To examine the applicability of our framework be-
yond benchmark datasets, we evaluated it on biologically relevant queries involving uncharacterized
Homo sapiens proteins. For each case, a current biologically relevant question of research interest
was paired with the corresponding protein amino acid sequence and input to representative LLMs
guided by our framework. As illustrated in Figure [I2] the models produced plausible hypotheses
aligned with biological knowledge. These results demonstrate that our framework can extend to
real-world scenarios, offering interpretable preliminary insights into proteins lacking experimental
annotation and potentially guiding future biological investigations.

Failure-mode analysis KDE comparisons of the top and bottom 25% ROUGE-L outputs show
that low-performing generations are associated with lower sequence similarity Simg.q, and slightly
lower text similarity Sim.,. to their exemplars (Figure@). The gap is most pronounced in Simgeq,
indicating that failures mainly occur when the retrieved exemplars provide insufficient semantic
coverage.

C EXPERIMENTAL DETAILS

C.1 FINE-TUNING SETTINGS
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Protein: AOA0OS9CIS2
Zero-shot I N-terminal TPP subdomain
The sequence contains potential ATP/GTP binding motifs (GxGxxG), (4-115)
Kinase-like domains, and a possible helical region. The presence of
y residues suggests domains, and the high
frequency of proline and glycine may indicate flexible regions

M C-terminal TPP subdomain

(381-527)

Our method

‘The given protein sequence suggests potential motifs and domains typical
of flavoprotein oxidoreductases. It ikely includes an FAD-binding
domain. indicative of its role in electron transfer, and a thiamine
diphosphate (TPP) binding domain. These features are common in
enzymes involved in oxidative decarboxylation processes

[ Central TPP subdomain
(192-317)

Protein: UPI0007D7B5F6
Zero-shot

The sequence may contain motifs or domains such as ATP/GTP-binding
site motifs, kinase domains, or helix-loop-helix motifs, indicated by
patterns like GXGxxG and conserved regions common in enzymatic or
signaling proteins.

I CTP synthase N-terminal
domains (2-265)

Our method

The protein sequence likely contains common motifs and domains such as
the amidoligase domain and glu tamine amidotransferase domain,
typical of CTP synthase enzymes. These domains are involved in ATP
binding and glutamine hydrolysis, respectively, crucial for pyrimidine
biosynthesis

[ GATase domain (289-332)

Protein: AOAOBOI2S4
Zero-shot Globin domain (1-120)
The sequence contains potential motifs such as kinase domains and ATP-
binding sites, indicated by patterns like "GxGxxG" and "HxD" motifs.
These features suggest the presence of protein kinase activity, commonly
involved in phosphorylation processes. .
FAD domain (148-246)
Our method
The provided sequence is indicative of a flavohemoprotein, likely
functioning as a nitric oxide dioxygenase. Key motifs include an N-
terminal globin domain for oxygen binding and a C-terminal reductase
domain with FAD/NAD(P)H-binding sites_It likely binds heme b and
FAD, participating in nitric oxide detoxification.

Protein: AOA533Y8MO

Zero-shot GATase domain (1-179)

The sequence may contain motifs such as ATP/GTP-binding (G-x(4)-G-
K-[ST]), kinase domains, and helix-turn-helix motifs Additionally,
leucine-rich repeats (LxxLXLxxN/C) and zinc finger motifs (C-x(2)-C-

X(12)-H-x(3)-H) could potentially be present. .

( ( = Lo CTP synthase N-terminal
domains (191-315)

Our method
The sequence likely contains domains or motifs characteristic of CTP
synthase, such as an amidoligase domain and a glutamine Model Confidence
amidotransferase type-1 domain, given the similarities with the K
sequence in Document 2 M Very high Confident Low I Very low
(pLDDT > 90) (90>pLDDT>70) (70> pLDDT >50) (pLDDT <50)

Figure 9: Comparison of LLM structural descriptions and structure-level validation. For each
protein, the left panel shows structural descriptions generated by GPT-40 (42) with and without
contextual examples. The right panel shows two AlphaFold 3 (2) visualizations of the same pro-
tein: one colored by residue-level confidence (pLDDT), and one colored by domain assignments
obtained from InterProScan (47). The first two proteins (AOAOS9CI52 and UPI0007D7B5F6) have
existing structural annotations in UniProt but are not included in our dataset, while the latter two
(AOAOBOI2S4 and AOAS533Y8MO) do not have experimentally determined or database-provided
structural annotation in UniProt.

We fine-tune Qwen2.5-7B (59) on our protein—text bilingual corpus using LoRA with standard low-
rank settings (rank = 8, a = 32, dropout = 0.05). Training is conducted on a single GPU with
DeepSpeed ZeRO-2 and bf16 mixed precision. We adopt a cosine learning-rate schedule with warm-
up ratio 0.01, a global learning rate of 3 x 104, gradient accumulation 32, and batch size 1 per
device. We fine-tune the model for 2 epochs, which provides an efficient but effective adaptation of
the base model to protein-aware instruction following.

C.2 ANALOGYKB SETUP

To mimic the relational structure used by ANALOGYKB (76), we convert each SwissProt entry
into triples (sequence, relation, annotation) and group triples sharing the same annotation type into
same-relation sets. Two annotation relations are considered analogous when their triples consistently
express parallel biological structures across proteins—mirroring ANALOGYKB (76)’s criterion that
analogous relations must support valid cross-relation analogies. This procedure yields 71 same-
relation categories and 47 analogous-relation pairs, from which we sample two exemplars per query
to form the analogy-driven context.
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Figure 10: KDE Distributions of Exemplar Similarity on Protein2Text. Kernel density estimates
were computed using Gaussian kernels.
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Figure 11: Human Evaluation Score Distributions Across Models and Tasks.

D BILINGUAL DATASET AND QUALITY VERIFICATION

All protein entries originate from the manually curated SwissProt section of UniProt, which
provides high-quality annotations of protein sequences and functional descriptions. After dedupli-
cation, four types of bilingual QA pairs were generated from these entries using large language
models. Examples of the four QA types are shown in Figure [I4] and Figure [T5] To assess the re-
liability of the automatically constructed corpus, we conducted a manual audit on 500 randomly
sampled QA pairs from the full set of 79,926 examples. Each pair was independently reviewed by
two domain experts (each with over two years of research experience in bioinformatics or related
areas) along three criteria:

1. Semantic Fidelity — The QA must faithfully reflect the information contained in the corre-
sponding Swiss-Prot entry without introducing unsupported claims.
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Exploratory evaluation on real-world protein scenarios
Protein id: AOAIBOGW 15
Open Research Question
Does it function intracellularly (as a regulatory microprotein) rather than as a secreted signaling peptide, and what cellular process might it influence?
Uncharacterized protein (LOC122394732) [Homo sapiens) : <seg>M GF VTNKSAFKAGDSLYLRRAFVNNLGEERRTRIQIQSIQKALDIQIREIDREKAALKRFLVK
LHKTTGYFPQKPLW</seq>

Model Answers
Qwen3-14B: No, it does not function intracellularly as a regulatory microprotein but rather as a secreted signaling peptide. The cellular process it might influence could involve signaling pathways
related to extracellular communication, such as immune responses, synaptic plasticity, or vasoconstriction, depending on its specific interactions and ligands.
Kimi-k2: No. The sequence contains a predicted signal peptide (MGFVTNKSAF) and lacks known nuclear localization or other intracellular retention motifs. It is most likely secreted and, based on its
length and basic charge, may act as an extracellular signaling peptide i ing cellcell ication or recept diated processes rather than intracellular regulation.
GPT-40: The sequence does not appear to be a secreted signaling peptide based on its length and composition. Secreted peptides are typically shorter and contain signal sequences that facilitate their
export out of the cell. This protein sequence is relatively long and lacks obvious signal peptide motifs.

Protein id: PODMB2
Open Research Question
Is the protein involved in cellular stress or growth signaling pathways, adjusting protein synthesis in response to conditions?
Uncharacterized protein C80rf88 [Homo sapiens): <se¢>M ETK KLIGKPLQPARPVRHLTSPPGAVFPFNFQNEYPCNTQCIQSGVSRCKTNGMQAFSQGLNEQQ
QQQSPVKKERIKYSRDFLLKLSSVSICRKKPDFLPDHPIVLQKPENN QS F K</seq>

Model Answers
Qwen3-14B: There is no evidence to suggest that the uncharacterized protein C80rf88 is directly involved in cellular stress or growth signaling pathways that adjust protein synthesis. in response to
conditions.
Kimi-k2: No.
GPT-40: Based on the information given, there is no direct indication that this protein is involved in cellular stress or growth signaling pathways, or in adjusting protein synthesis in response to
conditions.

Figure 12: Exploratory evaluation of our framework on real-world protein scenarios.

2. Biological Correctness — Functional, structural, and localization statements must be bio-
logically plausible and consistent with established knowledge.

3. Linguistic Accuracy — The question and answer must be grammatically correct, unam-
biguous, and fluent in natural language.

A QA pair was labeled pass only if it met all three criteria. Under this rubric, 95% of the sampled
items passed, indicating that the bilingual dataset maintains high semantic coherence and biological
reliability. Representative failure cases are shown in Figure[T3]

E LLM STATEMENT

We acknowledge the use of LLMs in this work. Specifically, DeepSeek-R1 (17) was employed for
two purposes: (i) polishing the English presentation of the manuscript, and (ii) generating bilingual
dataset entries from curated protein annotations, where the prompts were carefully designed to en-
sure scientific accuracy and linguistic quality. Below we provide the exact prompts used for each
bilingual QA type in the dataset construction process.

Prompt for Attribute-based Answer generation is following:

"Based on the provided annotations, compose a concise protein information description in the
following fixed format:

PROTEIN NAME:

FUNCTION:

SUBCELLULAR LOCATION:

FAMILY:

KEY SEQUENCE MOTIF: ... (write N/A if none).

After the fixed fields, leave one blank line and proceed to the ‘Extended Information’
paragraph. In fluent, professional English, supply any additional details essential for
understanding the protein, integrating all relevant annotation content in a coherent
narrative. Maintain brevity and avoid redundancy."

Prompt for True or False QA generation is following:

"You are a protein science expert. Please read the UniProt entry above and design 1 True/False
question that meets all of the following rules:

(1) The stem must weave together diverse distinct knowledge dimensions from the entry (e.g.,
catalytic chemistry, structural biology, disease relevance, evolutionary conservation, PTM,
mutational effect, regulatory mechanism, substrate selectivity, experimental evidence,

GO term, PDB ID, cofactor, physiological pathway, drug-target potential).

(2) Do not include the words ‘True/False’ in the stem; hide the decisive technical point
within the details.

(3) Give True or False, followed by an explanation.

Use this exact output template: Stem: ...; Answer: ...; Explanation: ..."

Prompt for Descriptive Text generation is following:

"Based on the given annotation information of the protein, describe the given amino-acid
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(a) Semantic Fidelity Error
Protein id: Q06200

Annotation
Protein names: Protein ECM? (Extracellular mutant protein 7) (Zinc-regulated gene 15 protein); Gene Names: ECM7 ZRG15 YLR443W; Organism: Saccharomyces cerevisiae (strain ATCC 204508 /
$288¢) (Baker's yeasy); Function [CCJ: FUNCTION: May be involved in cell wall i and ion: 3.0; Keywords: Cell wall

T Ty helix;Zinc; Comments: FUNCTION (1); INDUCTION (1); SUBCELLULAR LOCATION (1); Features: Chain (1); Compositional bias (2); Region (2);
T ical domain (5); T ) ion: INDUCTION: Repressed by zinc.; Gene Ontology (biological process): calcium ion transport [GO: 16]; fungal-type cell wall
[GO:0031505]; Gene Ontology (cellular wmpunml) cell cortex of cell tip [GO: 0051285] fungal-type vacuole [GO:0000324]; plasma membrane [GO:0005886]; Subcellular location [CC]:
SUBCELLULAR LOCATION: pass protein.; T domain: TOPO_DOM 1..28; /note=\"Cytoplasmic\"; /evidence=\"EC0:0000255\"; TOPO_DOM 50..204;

/mote=\"Extracellular\"; /ev|dencef\"FC0.0000ZSS\", TOPO_DOM 226..246; /note=\"Cytoplasmic\"; /evidenct C0:0000255\"; TOPO_DOM 268..287; /note=\"Extracellular\";
/evidence=\"EC0:0000255\"; TOPO_DOM 309..448; /note=\"Cytoplasmic\"; /evidence=\"ECO:0000255\"; Transmembrane: TRANSMEM 29..49; /note=\"Helical\"; /evidence=\"ECO:0000255\";
TRANSMEM 205..225; /note=\"Helical\"; /evidence=\"ECO0:0000255\"; TRANSMEM 247..267; /note=\"Helical\"; /evidence=\"EC0:0000255\"; TRANSMEM 288..308; /note=\"Helical\";
/evidence=\"EC0:0000255\"; Chain: CHAIN 1..448; /note=\"Protein ECM7\"; /id=\"PRO_0000086923\"; Compositional bias: COMPBIAS 351..363; /note=\"Polar residues\";
/evidence=\"ECO:0000256/SAM:MobiDB-lite\"; COMPBIAS 383..406; /note=\"Polar residues\"; /evidence=\"ECO:0000256/SAM:MobiDB-lite\"; Region: REGION 351..411; /note=\"Disordered\";
/evidence=\"EC0:0000256/SAM:MobiDB-lite\"; REGION 427..448; /note=\"Disordered\"; /evidence=\"EC0O:0000256/]SAM:MobiDB-lite\"

Question
In one coherent paragraph, describe the protein represented by the given amino-acid sequence, covering: (1) its main function and any bound cofactors/ligands, (2) ization and the
biological process involved, (3) key domains or motifs, and (4) the specific reaction catalyzed if it is an enzyme.

Answer
A concise description of the protein represented by the sequence (ECM7_YEAST) is as follows: This multi-pass membrane protein contributes to fungal-type cell wall organization and is positioned at the
plasma membrane-vacuole interface, where it helps coordinate calcium-dependent signaling events that regulate cell-wall remodeling. Its activity is repressed by zinc. The protein features four
transmembrane helical domains, creating distinct cytoplasmic and Ilul logical regions, along with intrinsically disordered segments enriched in polar residues. While not enzymatic, it serves a
structural role in membrane-associated processes critical for cellular integrity, particularly at the cell cortex tip.

Evaluation Report

@® Semantic Fidelity: The QA elevates the GO term “calcium ion transport” into an unsupported regulatory role (“calcium-dependent signaling”).
@ Biological correctness: No explicit factual contradictions.
@ Linguistic clarity: The paragraph is fluent and coherent.

(b) Biological Correctness Error
Protein id: 002765

Annotation

Protein names: Tumor necrosis factor ligand superfamily member 4 (ox40 ligand) (OX40L) (CD antigen CD252); Gene Names: TNFSF4 TXGP1; Organism: Oryctolagus cuniculus (Rabbit); Function

[CC]: FUNCTION: Cylokme that binds to TNFRSF4. Co-sti Tecel and cytokine ion: 4.0; Keywords: Cytokine;Disulfide bond;Glycoprotein;Membrane;Reference
3T Ti helix; Comments: FUNCTION (1); SIMILARITY (1); SUBCELLULAR LOCATION (1); SUBUNIT (1); Features: Chain (1); Disulfide bond

(2); Domain (1); Gl ion (2); ical domain (2); Ti (1); Subunit structure: SUBUNIT: Homotrimer. {EC0:0000305}.; Gene Ontology (biological process): immune response

[GO:0006955]; inflammatory response [GO:0006954]; positive regulation of cytokine production [GO:0001819]; positive regulation of T cell proliferation [GO:0042102]; Gene Ontology (cellular
component): extracellular space [GO:0005615]; membrane [GO:0016020]; Gene Ontology (molecular function): cytokine activity [GO:0005125]; tumor necrosis factor receptor binding [GO:0005164];
Subcellular location [CC]: SUBCELLULAR LOCATION: le-pass type I1 logical domain: TOPO_DOM 1..23; /note=\"Cytoplasmic\";
Jevidence=\"EC0:0000255\"; TOPO_DOM 45..187; /note=\"Extracellular\"; /evidence=\"EC0:0000255\"; Transmembrane: TRANSMEM 24..44; /note=\"Helical; Signal-anchor for type Il membrane
protein\"; /evidence=\"ECO:0000255\"; Chain: CHAIN 1..187; /note=\"Tumor necrosis factor ligand superfamily member 4\"; /id=\"PRO_0000185495\"; Disulfide bond: DISULFID 74..164;
Jevidence=\"EC0:0000255PROSITE-ProRule:PRU01387\"; DISULFID 101..185; /evidence=\"EC0:0000250\"; Glycosylation: CARBOHYD 94; /note=\"N-linked (GIcNAc...) asparagine\";
Jevidence=\"EC0:0000255\"; CARBOHYD 156; /note=\"N-linked (GIcNAc...) asparagine\"; /evidence=\"EC0:0000255\"; Domain [FT]: DOMAIN 58..177; /note=\"THD\";
Jevidence=\"EC0:0000255|PROSITE-ProRule:PRU0I387\"; Protein families: Tumor necrosis factor family; Sequence similarities: SIMILARITY: Belongs to the tumor necrosis factor family.
{EC0:0000305}.

Question
You are a molecular biology professor writing a protein description for undergrad Based on the istics of the given protein amino acid sequence, briefly answer the following questions: 1.
What is the primary function of this protein in immune response? 2. Where is this protein localized within the cell? 3. How does it interact with other proteins to exert its effects? 4. What structural features
enable its cytokine activity? 5. How is its activity regulated at the molecular level? 6. What role does it play in T-cell proliferation and cytokine production? 7. Are there any known disease associations
linked to its dysfunction? 8. How does its structure compare to other members of the tumor necrosis factor family? 9. What post-translational modifications does it undergo?

Answer
1. It co-sti T-cell proliferation and cytokine ion by binding to TNFRSF4. 2. It is localized to the as a single-pass type 11 protein, with a cytoplasmic domain (residues
1-23) and an extracellular domain (residues 45-187). 3. It forms a heterotrimeric complex with other TNF family nds to enhance receptor activation. 4. Its cytokine activity is enabled by the TNF
homology domain (THD, residues 58-177) and disulfide bonds (Cys74-Cys164, Cys101-Cys185). 5. Is activityis regulated by its transmembrane domain (residues 24-44) and glycosylation at Asn94 and
Asnl156. 6. It positively regulates T-cell proliferation and cytokine prodi ing immune and i responses. 7. No disease associations are mentioned in the provided annotations. 8. It
belongs to the tumor necrosis factor family and shares structural similarities with other members, including the THD domain. 9. It undergoes N-linked glycosylation at Asn94 and Asn156 and forms
disulfide bonds at Cys74-Cys164 and Cys101-Cys185.

Evaluation Report

© semantic Fidelity: Aside from the incorrect oligomerization state, the remaining statements are consistent with the annotation.

@® Biological correctness: The answer incorrectly states that OX40L forms a heterotrimeric complex with other TNF ligands, and heterotrimer formation
is structurally incompatible with TNF superfamily ligands.

@ Linguistic clarity: The paragraph is fluent and coherent.

Figure 13: Examples of Quality Issues in LLM Generated Protein QA.

sequence in one coherent paragraph that covers:

(1) its main function and any bound cofactors/ligands,

(2) subcellular localization and the biological process involved,

(3) key domains or motifs, and

(4) the specific reaction catalyzed if it is an enzyme. The description begins with A
sentence pattern like

‘A short report on the protein with the given amino acid sequence highlights:’

or ‘A brief overview of the protein with the provided amino acid sequence is as follows:’
or ‘A concise description of the protein with the specified amino acid sequence includes:’
or ‘An outline of the key aspects of the protein with the corresponding amino acid sequence
is as follows:’

or ‘A summary of the protein’s main attributes with the input amino acid sequence reveals:’
(uses similar synonymous sentences to avoid uniformity)."

Prompt for Knowledge-based QA generation is following:

"Based on the provided annotations, generate exactly 1-9 distinct, single-sentence questions
that a researcher would naturally ask to fully interrogate this protein. Guidelines:

(1) Each question must probe a different biological dimension (expression, localization,
mechanism, regulation, phenotype, disease, evolution, interaction, structure/properties).

(2) Keep questions concise, fluent.

(3) One per line, numbering, and the corresponding answers to these questions are concise and
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of attribute-based protein-QA

Protein id: Q29DY1
Protein
Kinesin-like protein KIp68D: <seg>M SAKSRRPGTASSQTPNECVQVVVRCRPMSNRERSEGSPEVVNVYPNRGVVELQNVVDANKEQRKVFTYDAAYD
ASASQTTLYHEVVFPLVSSVLEGFNGCIFAYGQTGTGKTFTMEGVRGNDDLMGIIPRTFEQIWLHINRTENFQFLVDVSYLEIYMEELRDLLK
PNSKHLEVRERGSGVYVPNLHAINCKSVDDMIRVMKVGNKNRTVGFTNMNEHSSRSHAIFMIKIEMCDTETNTIKVGKLNLIDLAGSERQSK
TGASAERLKEASKINLALSSLGNVISALAESSPHVPYRDSKLTRLLQDSLGGNSKTIMIANIGPSNYNYNETLTTLRYASRAKSIQNQPIKNEDP
QDAKLKEYQEEIERLKRLIAPQQQQRSEKQGTIKKQRVKKPKKEPISQELIGSALQASSADLQVDEDRDSDGDGAESESDKENEAEVAKSNE
ELERERVENAKLAAKLAELEGQLVRGGKNLLDTYSERQIELEKKLVEIAERKKREIEIQQQLELQEETTLEIRERNVSLEQEVELKKRKLSKC
YAKYLALQQELNDCKHDHNQDLRELEMAQNELVKELKRQLLIIDNFVPIEVKQRLYTQAKYDEEQEEWKFSSFPLPLPPSGGDGRQGYRRP
VSHPQRRRPTSEHALQEAKSNAPSSLRFKSENIVSYELEMPCRTTQEYRTPKVSASLQAVLAQAMQTGGDDIDIVDSHTNSLRSRLENIINAN
SSSNGGPGSGAGPLAANTAGSGVGSMPNVRNIKSSRGLPSAGTALDSNRRPPTGRIPAKKPASAYPKARGLVNK</seq>

Question

Analyze the provided protein amino acid sequence, accurately predict and describe its function, subcellular_location, family, key_sequence_motif.\nResponse in the following exact format:\nFUNCTION:
- \nSUBCELLULAR LOCATION: .. \nFAMILY: ...\nKEY SEQUENCE MOTIF: ...\nDetailed Analysis (<300 words): [in one brief paragraph of < 300 words, describe potential catalytic mechanisms,

key domains, post i fations with discases, ctc. JnKeep the tone professional et fluent; let every word cam its place.

Answer

FUNCTION: Plus-end directed microtubule motor involved in anterograde axonal transport, potentially moving distinct cargos in fly neurons compared to other kinesin motors \nSUBCELLULAR
LOCATION: Cytoplasm, cytoskeleton (microtubule-associated)\nFAMILY: TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin I subfamily\nKEY SEQUENCE MOTIF: ATP-
binding site (106-113)\n\n**Extended Information**\n\nKIp68D is a microtubule-associated motor protein that utilizes ATP hydrolysis to drive anterograde transport along microtubules, likely facilitating
cargo movement in *Drosophila* neurons. It contains a conserved kinesin motor domain (19-344) responsible for ATP binding and microtubule interaction, along with two coiled-coil regions (350-384,
432-580) that may mediate dimerization or cargo binding. The protein exhibits multiple disordered regions and compositional biases, including basic and acidic residue clusters, which may regulate its
function or interactions. KIp68D belongs to the Kinesin II subfamily, suggesting specialized roles distinet from conventional kinesin heavy chains. Its ion to the its
involvement in microtubule-based motility processes.

Protein id: Q29190

Protein

G-protein coupled receptor moody: <seg>M SDETTGSLGDAFSPMDTPTTTIMPPPADVDESGFSHSLLTFAAVMTFLIMIVGICGNLLTVVALLKCPKVRNV
AAAFIISLCIADLLFCALVLPFQGLRFVQGTWRHGEVLCRLIPFIQYGNIGVSLLCIAMITINRYVMITHYSLYNRIYKRHWIAIMIAACWLESY
GMQLPTLLGAWGRFGYDARLQTCSIMSDRHGHSSKTTLFITAFVIPCLVIIACYAKIFWVVHKSEQRLKRHATKQNSIPNNLRPLAAATSMPS
GDGANPSQVPAGCRVSSDSSSNYSTDVPDTTPGGAGGGAGVKQQPSRVKDQREVRAKRNEWRITKMVLAIFLSFVICYLPITIVKVADKDVE
HPSLHIFSYIMLYLSACINPIIYVIMNKQYRKAYKTVVFCQPAARLLMPFGKGNGASSAAEKWKDTGLSNNHSRTIVSQMSAGATATATATAA
AGTQPQSTSTQGPVQALELTARVPDLISKSSNLPLPQPLPQIPPAGARPSLTPPPPPSVLTATHSNGSGSQRLPLKKNNHSYTNSGFNSSVISAN
PSSSPSPSSSGGGIYRPGIGSMGNGSASIRRITMVGDDIILEEEELPPTPTASSPPQMQAPPPPPSSSRQTTMNALNTTPKTPIYMNVDSPKRNQ
SYSERNIPVPAREGHDQGVKDSQGLPSKLMDKKKF PK D</seq>

Question
Analyze the provided protein amino acid sequence, accurately predict and describe its function, subcellular_location, family, key_sequence_motif.\nResponse in the following exact format:\nNFUNCTION:

..\nSUBCELLULAR LOCAT]ON . \nFAMILY: ...\nKEY SEQUENCE MOTIF: ...\nDetailed Analysis (<300 words): [in one brief paragraph of < 300 words, describe potential catalytic mechanisms,
key domains, ps i iations with diseases, etc.]\nKeep the tone professional yet fluent; let every word earn its place."

Answer

FUNCTION: Plus-end directed microtubule motor involved in anterograde axonal transport, potentially moving distinct cargos in fly neurons compared to other kinesin motors.\nSUBCELLULAR
LOCATION: Cytoplasm, cytoskeleton (microtubule-associated)\nFAMILY: TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin II subfamily\nKEY SEQUENCE MOTIF: ATP-
binding site (106-113)\n\n**Extended Information**\n\nKIp68D is a microtubule-associated motor protein that utilizes ATP hydrolysis to drive anterograde transport along microtubules, likely facilitating
cargo movement in *Drosophila* neurons. It contains a conserved kinesin motor domain (19-344) responsible for ATP binding and microtubule interaction, along with two coiled-coil regions (350-384,
432-580) that may mediate dimerization or cargo binding. The protein exhibits multiple disordered regions and compositional biases, including basic and acidic residu clusters, which may regulate its
function o interactions. KIp68D belongs to the Kinesin II subfamily, suggesting specialized roles distinct from conventional kinesin heavy chains. Its to the its
involvement in microtubule-based motility processes.

of true or false protein-QA

Protein id: 043374
Protein
<se¢>MAKRSSLYIRIVEGKNLPAKDITGSSDPYCIVKVDNEPIIRTATVWKTLCPFWGEEYQVHLPPTFHAVAFYVMDEDALSRDDVIGKVCLT
RDTIASHPKGFSGWAHLTEVDPDEEVQGEIHLRLEVWPGARACRLRCSVLEARDLAPKDRNGTSDPFVRVRYKGRTRETSIVKKSCYPRWNE
TFEFELQEGAMEALCVEAWDWDLVSRNDFLGKVVIDVQRLRVVQQEEGWFRLQPDQSKSRRHDEGNLGSLQLEVRLRDETVLPSSYYQPL
VHLLCHEVKLGMQGPGQLIPLIEETTSTECRQDVATNLLKLFLGQGLAKDFLDLLFQLELSRTSETNTLFRSNSLASKSMESFLKVAGMQYL
HGVLGPIINKVFEEKKYVELDPSKVEVKDVGCSGLHRPQTEAEVLEQSAQTLRAHLGALLSALSRSVRACPAVVRATFRQLFRRVRERFPGA
QHENVPFIAVTSFLCLRFFSPAIMSPKLFHLRERHADARTSRTLLLLAKAVQNVGNMDTPASRAKEAWMEPLQPTVRQGVAQLKDFITKLVDI
EEKDELDLQRTLSLQAPPVKEGPLFIHRTKGKGPLMSSSFKKLYFSLTTEALSFAKTPSSKKSALIKLANIRAAEKVEEKSFGGSHVMQVIYTD
DAGRPQTAYLQCKCVNELNQWLSALRKVSINNTGLLGSYHPGVFRGDKWSCCHQKEKTGQGCDKTRSRVTLQEWNDPLDHDLEAQLIYRH
LLGVEAMLWERHRELSGGAEAGTVPTSPGKVPEDSLARLLRVLQDLREAHSSSPAGSPPSEPNCLLELQT</seq>

Question
Determine whether this statement about the given protein is true or false: although this calcium-binding protein to the plasma membrane upon i calcium elevation to inactivate Ras
signaling, its pleckstrin homology domain mediates this membrane association through specific phosphoinositide interactions, which is essential for its GTPase-activating function.

Answer
False. The PH domain lacks phosphoinositide binding activity due to a leucine substitution at position 592, preventing it from mediating ion; calci binding
occurs through its C2 domains instead.

Protein id: 043390
Protein
<seg>MANQVNGNAVQLKEEEEPMDTSSVTHTEHYKTLIEAGLPQKVAERLDEIFQTGLVAYVDLDERAIDALREFNEEGALSVLQQFKESDLS
HVQNKSAFLCGVMKTYRQREKQGSKVQESTKGPDEAKIKALLERTGYTLDVTTGQRKYGGPPPDSVYSGVQPGIGTEVFVGKIPRDLYEDE
LVPLFEKAGPIWDLRLMMDPLSGQNRGYAFITFCGKEAAQEAVKLCDSYEIRPGKHLGVCISVANNRLFVGSIPKNKTKENIL SKVTEGL
VDVILYHQPDDKKKNRGFCFLEYEDHKSAAQARRRLMSGKVKVWGNVVTVEWADPVEEPDPEVMAKVKVLFVRNLATTVTEEILEKSFSEF
GKLERVKKLKDYAFVHFEDRGAAVKAMDEMNGKEIEGEEIEIVLAKPPDKKRKERQAARQASRSTAYEDYYYHPPPRMPPPIRGRGRGGGR
GGYGYPPDYYGYEDYYDDYYGYDYHDYRGGYEDPYYGYDDGYAVRGRGGGRGGRGAPPPPRGRGAPPPRGRAGYSQRGAPLGPPRGSRGG
RGGPAQQQRGRGSRGSRGNRGGNVGGKRKADGYNQPDSKRRQTNNQQNWGSQPIAQQPLQQGGDYSGNYGYNNDNQEFYQDTYGQQW
K</seq>

Question
Determine whether this statement about the given protein is true o false: although this protein's SUMOylation at specific ysine residues supports it role in mRNA processing complexes, and mutations
causing an recessive d 1 disorder implicate its functional importance, structural studies reveal that these covalent modifications occur exclusively at lysine-359 within its third
RNA recognition motif domain

Answer
False; Explanation: SUMOylation occurs at Lys-13, Lys-171, and Lys-359, not exclusively at Lys-359, and the i disorder is dominant, not recessive.

Figure 14: Illustrative examples of the four bilingual QA types (Part 1).
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E: of descriptive text protein-QA

Protein id: Q2V4L8
Protein
<se¢>MASPFFFVFLLSALSLENTYASPNYREALSKSLLFFQGQRSGRLPSDQQLSWRSSSGLSDGSSAHVDLTGGYYDAGDNVKFNFPMAFTTT
MLSWSSLEYGKKMGPELQNSRVAIRWATDYLLKCARATPGKLYVGVGDPNGDHKCWERPEDMDTPRTVYSVSPSNPGSDVAAETAAALAAS
SMVFRKVDPKYSRLLLATAKKVMQFAIQYRGAYSNSLSSSVCPFYCSYSGYKDELLWGAAWLHRATNDPYYTNFIKSLGGGDQPDIFSWDN
KYAGAYVLLSRRAVLNKDNNFELYKQAAENFMCKILPNSPSSSTKYTKGGLMYKLPQSNLQYVTSITFLLTTYAKYMKSTKQTFNCGNSLIV
PNALINLSKRQVDYVLGVNPMKMSYMVGFSSNFPKRIHHRGSSLPSRAVRSNSLGCNGGFQSFRTQNPNPNILTGAIVGGPNQNDEYPDQRD
DYTRSEPATYINAAFVGPLAYFAASRSP</seq>

Question
In one coherent paragraph, describe the protein represented by the given amino-acid sequence, covering: (1) its main function and any bound s/ligands, (2) ization and the
biological process involved, (3) key domains or motifs, and (4) the specific reaction catalyzed if it is an enzyme.

Answer
A brief overview of the protein with the provided amino acid sequence (Q2V4L8, GUN3_ARATH) is as follows: This enzyme, an endoglucanase 3 (EC 3.2.1.4) from *Arabidopsis thaliana*, catalyzes the
endohydrolysis of (1—»4)-B-D-glucosidic linkages in cellulose, lichenin, and cereal B-D-glucans, facilitating polysaccharide degradation without requiring bound cofactors. It is secreted to the extracellular
region, particularly localized to the plant-type cell wall and Golgi apparatus, where it participates in cell wall organization and cellulose catabolic processes. Key features include its classification within
the glycosyl hydrolase 9 family, a catalytic nucleophile at position 77, additional active sites at residues 402, 453, and 462, an N-linked glycosylation site at Asn-370, and an N-terminal signal peptide
(residues 1-21) for secretion. Functionally, it mediates root cap cell sloughing through cell wall breakdown, is specifically expressed in oot cap cells, and is down-regulated by auxin and abscisic acid.
The mature chain spans residues 22-484 and may undergo alternative splicing.

Protein id: Q39056
Protein
<se¢>MISTLRRAVFLRRFPAVVSPIKRAFSSRIDDEFDPQIMNINELNQEMQSIFGQEPSPDGPGTMDFSELKSSKIEPLRSKNIDFRQQIEYHKS
THSSKNDSQAIEQYAKVASDMSKLTHVGIAGEAQMVDVSSKDNSKRTALACCKVILGKRVFDLVLANQMGKGDVLGVAKIAGINGAKQTSS
LIPLCHNIALTHVRVDLRLNPEDFSVDIEGEASCTGKTGVEMEAMTAVSVAGLTVYDMCKAASKDISITDVRLERKTGGKSGSW SR L</seq>

Question

Determine whether this statement about the given protein is true or false: although this protein's SUMOylation at specific lysine residues supports its role in mRNA processing complexes, and mutations
causing an recessive disorder implicate its functional importance, structural studies reveal that these covalent modifications occur exclusively at lysine-359 within its third
RNA recognition motif domain

Answer
A concise description of the protein with the specified amino acid sequence (Q39056, CNX3_ARATH) is as follows:\n\nThis mitochondrial protein, localized specifically within the mitochondrial matrix
via an N-terminal transit peptide (residues 1-32), functions as a cyclic pyranopterin monophosphate synthase (EC 4.6.1.17). It is essential for cofactor bi ing the specific
lyase reaction that converts (8S)-3',8-cyclo-7.8-di 5-tri into cyclic (cPMP) and di (RHEA:49580). Key residues form an active site
(including residue 240) and substrate binding sites (residues 187-189 and 225-226). Belonging o the MoaC protein family, it asa and is inantly expressed in the roots of
*Arabidopsis thaliana*. Its primary biological role is in the \"M dopterin cofactor t hetic process\" (GO:0006777).

ples of ledge-based protein-QA

Protein id: 035854
Protein
<se>M SAAILGQVWTRKLLPIPWRLCVPGRCVSSNFKAADLQVQVTREPQKKPAPSQPLLFGKTFTDHMLMVEWNSKTGWGPPRIQPFQNLTL
HPACSGLHYSLQLFEGLKAYKGRDKQVRLFRPWLNMDRMLRSARRLCLPDFDKQELLECIRQLIEVDKDWVPDGNGTSLYVRPVLIGNEPS
LGVGMVTQALLFVILCPVGSYFPGDSMTPVSLLADPSFVRAWIGGVGDCKLGGNYGPTVAVQQEAQKKGCEQVLWLYGPDHQLTEVGTMNI
FVYWTHEDGELELATPPLDGIILPGVVRQSLLDLARTWGEFRVAERKVTMKELKRALEEGRVREVFGSGTACQVCPVHQILYEGKQLHIPTM
ENGPELILRFQKELKAIQYGTSAHDWMLRYV </seq>

Question
You are a molecular biology professor writing a protein description for Based on the istics of the given protein amino acid sequence, briefly answer the following questions: 1.
What is the primary catalytic function of this protein in branched-chain amino acid ism?\n2. Where is this protein localized within the cell?\n3. What cofactor is essential for its enzymatic activity?

\nd. How does its substrate affinity (KM) vary among the branched-chain amino acids?\n5. What is the quaternary structure of this protein?\n6. Which post-translational modifications are known to occur
on this protein?\n7. What is the physiological direction of its catalytic reactions?\n8. In which tissues is this protein expressed?\n9. What family of enzymes does this protein belong to?

Answer

1. It catalyzes the transamination of leucine, isoleucine, and valine with 2-oxoglutarate to form their respective a-keto acids and glutamate.\n2. It localized in the mitochondrion.\n3. Pyridoxal -
phosphate is the essential cofactor.\n4. The KM values are 1 mM for L-leucine and L-isoleucine, and 5 mM for L-valine.\n3. It forms a \n6. It und N6-(pyridoxal

modification at position 230 and Né-acetyllysine at position 322.\n7. The reactions proceed physiologically from left to right (branched-chain amino acids to a-keto acids).\n8. Itis expressed in all
tissues.\n9. It belongs to the class-IV pyridoxal family.

Protein id: Q9LXNS
Protein

<se¢>MAFSMLFTGHAECVKFVKKFNLPLLVTGGGGYTKENVARCWTVETGILLDTELPNEISENDYIKYFAPDFSLKIPGGHIENLNTKSYISSI
KVQILENLRYIQHAPSVQMQEVPPDFYIPDFDEDEQNPDVRVDQRSRDKQIQRDDEYFDGDNDND A S</seq>

Question
You are a molecular biology professor writing a protein description for Based on the istics of the given protein amino acid sequence, briefly answer the following questions: 1.
What is the enzymatic reaction catalyzed by this protein?\n2. Where is this protein localized within the cell?\n3. What is the role of this pmlcm in chromatin organization?\n4. Which histone proteins are
substrates for its deacelylauon activity?\n5. How does its activity contribute to transcriptional regulation?\n6. What are the i ions of its region (residues 120-158)?\n7. Does it
form part of any p ?\n8. What is the si; of its basic and acidic residue compositional biases?\n9. How does it compare to other members of the histone deacetylase family?
Answer
1. It catalyzes the hydrolysis of N(6)-acetyl-L- 1y>y] [hl:tonc] to produce L-lysyl-[histone] and acetate.\n2. It is localized in the nucleus.\n3. It is involved in chromatin organization through histone

, leading to epi s lysine residues on the core histones H2A, H2B, H3, and H4.\n5. Its deacetylation activity represses transcription by modifying chromatin
structure.\n6. The disordered region may conlnhule to protein flexibility or interaction with other molecules.\n7. Yes, it acts via the formation of large multiprotein complexes.\n8. These biases may
influence protein-protein interactions or substrate binding.\n9. It belongs to the histone deacetylase family and shares similar functional domains.

~

Figure 15: Illustrative examples of the four bilingual QA types (Part 2).
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clear.

(4) The questions can be appropriately flexible and occasionally combined with some actual
scenarios or content related to species.

The Questions and Answers are divided into two parts (wrapped with <Questions><\\Questions>

and <Answers><\\Answers> respectively). All the information in the Q&A should be based entirely
on the given annotations and should not be supplemented by yourself."

F METRICS

We evaluate semantic similarity using BERTScore (Zhang et al., 2020). To better capture biomedical
terminology, we use SciBERT (allenai/scibert scivocab uncased) as the backbone model. Since
BERT-based models have a maximum context window of 512 tokens, we follow common practice
and truncate longer sequences to 512 subwords before computing token-level cosine similarities.
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