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ABSTRACT

Deciphering the function of unseen protein sequences is a fundamental chal-
lenge with broad scientific impact, yet most existing methods depend on task-
specific adapters or large-scale supervised fine-tuning. We introduce the “Protein-
as-Second-Language” framework, which reformulates amino-acid sequences as
sentences in a novel symbolic language that large language models can in-
terpret through contextual exemplars. Our approach adaptively constructs se-
quence–question–answer triples that reveal functional cues in a zero-shot setting,
without any further training. To support this process we curate a bilingual cor-
pus of 79,926 protein–QA instances spanning attribute prediction, descriptive un-
derstanding, and extended reasoning. Empirically, our method delivers consis-
tent gains across diverse open-source LLMs and GPT-4o, achieving up to 17.2%
ROUGE-L improvement (average +7%) and even surpassing fine-tuned protein-
specific language models. These results highlight that generic LLMs, when guided
with protein-as-language cues, can outperform domain-specialized models, offer-
ing a scalable pathway for protein understanding in foundation models.

1 INTRODUCTION

Proteins are indispensable molecular machines of life, driving key functions such as maintaining
cell structure and enabling cell communication. Their three-dimensional architectures, catalytic ac-
tivities, interaction networks, and evolutionary trajectories are all encoded within a linear sequence
composed of twenty amino-acid characters (22, 55). Therefore, the core of understanding protein
function lies in accurately “reading” and “translating” the biological meaning contained within these
amino-acid sequences (9, 23). However, this task is fraught with challenges. Although the amino
acid sequence is formally like a language—possessing a fixed character set (over 20 genetically
encoded amino acids) and potential grammatical rules (physicochemical laws)—the mapping re-
lationship from the one-dimensional sequence to the three-dimensional structure and function is
extremely complex and highly context-dependent (39, 49). Consequently, the central challenge of
“what cellular function does an unknown amino acid sequence encode?” still lacks a comprehensive
solution.

To address this challenge, research efforts on protein understanding can be broadly categorized into
two dominant paradigms: protein representation learning and protein–language alignment model-
ing. Protein representation learning sees amino-acid sequences as a standalone modality like lan-
guage and visual, acquires universal protein representations through self-supervised pre-training
on large-scale amino-acid sequences, and then attaches lightweight decoders to predict structure
or function (59, 4, 25, 42, 7, 52, 51). While this paradigm excels in the universality of its em-
beddings and in mining deep sequential patterns, these embeddings still rely on additional “inter-
preters”, i.e., post-processing adapters, to be converted into human-understandable explanations.
Protein–language alignment modeling, in contrast, co-trains on paired protein sequences and their
textual descriptions, establishing a bidirectional mapping within a shared latent space that enables
end-to-end text-based question answering (56, 37, 16, 1, 48, 54). Although this route bypasses down-
stream adapters, it is intrinsically bound to large-scale paired data and often requires re-fine-tuning
whenever the output format or downstream objective shifts. In summary, both of these approaches
face bottlenecks of large training data requirements, high computational costs, and limited general-
ization ability.

Protein as Second Language. Reflecting on the human cognitive process, we observe that hu-
mans exhibit remarkable efficiency and generalization ability when learning a brand-new symbolic
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system (i.e., a new language). The key lies in their ability to rely on and transfer their existing
native language knowledge system (14, 20). Given the aforementioned “linguistic” properties of
protein sequences—possessing a compositional structure and contextual semantics—and our goal
of understanding their function using natural language, we propose a novel perspective: to treat pro-
tein sequences as a symbolic system that can be learned and interpreted by large language models
(LLMs) as a “second language”.

Analogous to how humans acquire a second language, i.e., by encountering new words in con-
text and inferring their meaning and usage, we propose a protein language learning framework in
which an LLM acquires protein semantics and reasoning ability through context-driven exposure
that grounds sequence patterns in functional and structural examples. This framework adaptively
constructs learning contexts for a given protein understanding goal, enabling rapid acquisition of tar-
get protein knowledge without additional training or sacrificing generalization. To support effective
learning, we constructed a “bilingual” dataset of 79,926 protein-sequence–question–answer triples
covering functional, descriptive, and extended-information queries. Across Protein2Text (58), Mol-
Instructions(12) and ProtDescribe-QA (2), our framework raises the average ROUGE-L by 7%
across diverse open-source models and GPT-4o, with a maximum gain of 17.2%, without any task-
specific fine-tuning. Our contributions are as follows:

• We introduce the “Protein-as-Second-Language” conceptual framework, which recasts amino-
acid sequences as a second language that can be acquired via in-context learning, enabling
efficient and generalized protein understanding.

• We construct a protein-natural language bilingual dataset that spans four task families:
attribute-based QA, True or False QA, descriptive-text QA, and extended-information QA, to
support effective protein language learning and benchmarking.

• We present a protein language learning framework that adaptively constructs learning contexts
for protein understanding, yielding significant gains for both open-source models and GPT-4o,
enabling them to outperform domain-specialized models without additional training.

2 RELATED WORK

2.1 LANGUAGE MODELS IN PROTEIN

Protein representation learning with protein language models (PLMs) extends the Transformer to
amino-acid strings, producing dense embeddings for property prediction (17, 4, 11, 18, 5, 7, 8) or
generative design (32, 34, 29, 13). Because these models are trained exclusively on amino acid
sequences, their outputs remain latent vectors that external classifiers must translate into human-
readable function. To obviate this indirection, protein–language alignment modeling has emerged,
which jointly connects sequences with textual descriptions via (i) contrastive objectives mapping
proteins and sentences into a shared space (57, 51), (ii) bioknowledge-augmented pre-training on
curated protein–text corpora (13, 44, 29, 36, 60, 26), or (iii) multi-modal LLMs that graft protein
encoders onto frozen language backbones (27, 1, 48, 8, 31, 53). While effective, these approaches
entail costly retraining or gradient updates and risk catastrophic forgetting when scaled to larger
LLMs (21, 50), prompting a shift toward parameter-efficient adaptation.

2.2 PROTEIN QA DATESETS

Datasets that couple proteins with natural-language annotations have become the empirical bedrock
for developing protein–text hybrid systems. At present, two complementary families of corpora
dominate the landscape. The first centers on protein captioning: given an amino-acid sequence
alone, the objective is to generate a concise textual description. Representative instances include
the richly annotated Swiss-Prot collection (3), the ProteinKG resource (59) and ProtDescribe (58).
The second family targets protein question answering: here, both a sequence and a natural-language
query are supplied, and the model is required to synthesize an answer grounded in the provided
protein. Curated examples span Mol-Instructions (12), UniProtQA (28), ProteinLMBench (40),
VenusX (43) and Protein2Text-QA (2).
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3 PROTEIN AS SECOND LANGUAGE

We introduce “Protein-as-Second-Language”, a framework that treats amino-acid sequences as a
new symbolic system to be learned much like humans acquire a foreign language. Just as learners
infer the meaning of unfamiliar words by repeatedly encountering them in context, we construct a
protein–natural language bilingual dataset (Sec. 3.1) and design an adaptive context construction
mechanism (Sec. 3.2) to provide such contextual exposure. In this way, our framework enables
LLMs to acquire protein semantics through exemplars rather than through extensive re-training.

3.1 BILINGUAL DATASET CONSTRUCTION

We curate our bilingual dataset in three steps (Figure 1). Starting from 573,661 Swiss-Prot (3)
entries with gene ontology (GO) annotations, we avoid directly converting all annotations, as this
would introduce heavy redundancy; instead, we construct a balanced sample. Specifically, (i) we
prune the GO-directed acyclic graph (GO-DAG) to obtain representative functional categories and
group proteins accordingly (Sec. 3.1.1), (ii) perform bilingual deduplication by clustering sequences
within each protein group and sampling proteins with diverse functional annotation (Sec. 3.1.2), and
(iii) use DeepSeek-R1 (15) to generate attribute, knowledge, descriptive, and true/false QA pairs,
yielding 79,926 high-quality protein–QA triples (Sec. 3.1.3).

Figure 1: The overview of data construction of our bilingual protein–QA dataset.

3.1.1 FUNCTION-BASED GROUPING

To enable representative sampling across functional categories, the dataset is partitioned according
to the GO hierarchy. Directly using the raw directed acyclic graph (DAG) risks over-fragmentation
from overly fine, sparsely populated terms, and excessive generalization near the root. To address
this, we adapt a pruning strategy inspired by decision tree simplification (33), where complexity is
managed through a penalty to avoid overfitting. This strategy aims to retain an optimal set of GO
terms as functional grouping nodes. It balances granularity and coverage, ensuring that the retained
nodes represent biologically diverse yet statistically well-supported categories for downstream sam-
pling.

The pruning process is driven by two main criteria: (1) A node is retained if it meets the minimum
support threshold, which ensures that the node has a sufficient number of associated proteins, and
does not exhibit significant child imbalance. (2) If the child-imbalance ratio is high, meaning the
protein distribution among a node’s child terms is uneven, the parent node is retained, even if the
child nodes fail to meet the minimum support threshold.

Minimum Support Threshold A node is retained only if the number of associated proteins meets
a depth-adjusted threshold m(d), which adapts based on the node’s depth in the GO hierarchy. The
threshold is calculated as:

m(d) = λ · Ctot · (1 + βd) (1)

3
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where Ctot is the total protein count, d is the node depth, and λ and β are constants. This dynamic
threshold is designed to prevents deep nodes from splitting infinitely due to overly small absolute
values.

Child-Imbalance Ratio The child-imbalance ratio is applied to assess whether the child nodes of
a given term are too imbalanced. The imbalance ratio ρ(v) is computed as the ratio of the largest to
the smallest protein count among the child nodes:

p(u) =

max
u∈C+(v)

C(u)

min
u∈C+(v)

C(u)
(2)

where C+(v) represents the set of valid child nodes with non-zero protein counts. If the imbalance
ratio ρ(v) exceeds a specified threshold τ(d), the parent node v is retained to preserve the biological
diversity. This threshold is adjusted dynamically with the depth d to allow for greater flexibility at
deeper levels of the hierarchy:

τ(d) = τ0 · αd (3)
where τ0 is the base threshold, and α is a scaling factor.

By applying these two criteria, the pruning process is carried out recursively, allowing the algorithm
to adaptively prune the GO DAG and identify the most relevant, biologically diverse functional
groups.

3.1.2 BILINGUAL DEDUPLICATION

After grouping by GO term, proteins within the same node often exhibit high similarity, as they
represent homologous proteins. To address this, we use MMseqs2 (41) for sequence clustering
within each GO node, applying a 70% amino acid sequence similarity threshold. From each cluster,
a single representative sequence is selected. This threshold efficiently removes redundant sequences
with minimal functional variation while preserving functional diversity.

While sequence similarity-based redundancy removal effectively reduces sequence-level redun-
dancy, it does not necessarily capture functional divergence. Specifically, sequence similarity below
70% does not imply functional divergence, and substantial functional redundancy may still exist
within the set (10). To address this, we focus on annotation semantic similarity, quantifying the
functional relationships between proteins based on their GO annotations. Inspired by the simGIC
method (38) for calculating GO terms semantic similarity, we calculate the Protein Functional In-
formation Content ICprotein function for each protein, which is the sum of the Information Content (IC)
of all associated GO terms and their ancestral terms. The IC of each GO term is calculated based
on its frequency in the dataset, using the total protein set after sequence redundancy removal. The
ICprotein function value for each Protein ID is computed as:

ICprotein function =
∑

g∈GO terms of p

IC(g) +
∑

g′∈ancestors of GO terms of p

IC(g′). (4)

This provides a quantitative measure of each protein’s functional information, capturing both di-
rect and indirect annotations. For each GO term, proteins are sampled based on their unique
ICprotein function values (rounded to 3 decimal places). To ensure balanced species representation,
a species quota strategy is applied based on the proportions of Eukaryota, Bacteria, Archaea, and
Viruses in the dataset after sequence redundancy removal. This ensures an unbiased species distri-
bution in the final sample. The bilingual deduplication process reduces redundancy in two aspects,
amino acid sequence and annotation semantics, ensuring a balanced and diverse protein corpus.

3.1.3 LLM-BASED QA CONSTRUCTION

To transform curated protein annotations into natural-language question–answer pairs, we prompt
the DeepSeek-R1 (15) model to generate biologically grounded QA texts that reflect both func-
tional attributes and contextual knowledge (the prompts used for each QA type are provided in
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Appendix D). The resulting QA corpus covers four complementary types: 1 Attribute-based QA
captures factual properties directly associated with a protein, such as molecular function, cellular
component, or family. 2 Knowledge-based QA comprises concise, annotation-driven questions and
answers that involve in multiple biological aspects of a protein, such as expression, localization,
mechanism, and interactions. 3 Descriptive Text QA produces longer natural-language explana-
tions that integrate multiple annotations into coherent functional summaries. 4 True or False QA
consists of single statements that integrate multiple biological aspects of a protein, accompanied by
a True/False answer and a brief explanation.

These four types yield a rich and varied bilingual dataset, ensuring that models are exposed to both
concise factual knowledge and more detailed contextual explanations, supporting their ability to
understand and reason about protein functions.

3.2 BILINGUAL CONTEXTUAL LEARNING

      User Query

    Contextual Integration

      Adaptive Contextualization

     Dataset Construction

"What types of cells does this protein seem
to target in the retina?"

M F R Q F Y L W T C L A S G I I L G S L ...
G S L N N I V E G T E K Q S H S Q S T S L

Context Provider

Knowledge Base

Context Injection
Prompt Builder

Information Derivation from
Existing Data

Bilingual contextual learning

Please extract and integrate relevant information from the CONTEXT to accurately
answer the USER QUERY question.

Bilingual Context

M A T S A S S H L S K A I K H M Y M K L P Q G E K V Q A M Y I W I D G T G E ... 
Y F E D R G P S A N C D P Y A V T E A L V R T C L L N E T G D E P F E Y K N
This protein is uniformly expressed across the retina but enriched in the

ventral region where B cells reside; it may contribute to photoperiodic
photoreception, though the underlying mechanism remains unclear.
......

User Query

M F R Q F Y L W T C L A S G I I L G S ... N I V E G T E K Q S H S Q S T S L
What types of cells does this protein seem to target in the retina?

This protein targets photoreceptor cells in the retina.

Figure 2: Process of Query-Adaptive Context Construction.

In practical scenarios, questions concerning protein sequences are often highly flexible and complex:
they require not only analogous proteins with similar sequence patterns to capture potential struc-
tural or functional signals, but also complementary descriptive knowledge and QA pairs to provide
semantic grounding. As shown in Figure 2, we propose an adaptive context construction mechanism,
for bilingual contextual learning, designed to selectively build bilingual learning contexts for each
query. Instead of brute-force mixing of amino acid sequences and descriptive texts, the mechanism
follows the principle of second language acquisition—exposing learners to new words in context
so that meaning and usage can be inferred (19). By analogy, LLMs acquire protein semantics and
reasoning ability through context-driven exposure that grounds sequence patterns in functional and
structural exemplars.

The mechanism operates in three stages. First, the adaptive context provider selects candidate
contexts from the protein–natural language bilingual dataset, guided by two criteria: (i) amino
acid sequence homology between candidate proteins and the query sequence, computed with MM-
seqs2 (41), and (ii) similarity between the descriptive texts or QA pairs of candidate proteins and the
query question. Second, the contextual integration module structures the selected examples into a
coherent context. Finally, the constructed bilingual context is combined with the query and presented
to the LLM as in-context examples, enabling analogy-based reasoning and evidence integration to
produce biologically meaningful responses.

4 EXPERIMENTS

4.1 SETUP

Evaluation Datasets We comprehensively evaluated our method using 3 text-based protein under-
standing datasets: 1 ProtDescribe (58) comprises 553,052 high-quality protein–text pairs extracted
from Swiss-Prot. Each instance pairs an amino-acid sequence with a single textual description ob-
tained by concatenating four annotation fields in a fixed order: protein name, function, subcellular
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location, and similarity. The resulting descriptions average 40–60 tokens. 2 Protein2Text-QA (2)
comprises 209,847 open-ended question–answer pairs covering 5,574 unique proteins. Each in-
stance consists of an amino-acid sequence, a free-form question, and a concise answer; all QAs are
automatically generated from PubMed abstracts/discussion/introduction sections and presented as
conversational natural-language text without fixed templates. 3 Mol-Instructions (12) comprises
2.04 M instruction instances divided into three major sections: molecule-oriented, protein-oriented,
and biomolecular-text. The protein-oriented section alone contributes 505 K instructions covering
diverse tasks. Each sample is formatted as a natural-language “instruction–input–output” triplet: the
input is a UniProt amino-acid sequence, and the output is a free-text answer tailored to the specific
task.

Models All experiments are conducted under identical prompting protocols. We first evaluate
the proposed adaptive context construction method on frozen LLMs, including Qwen2.5-3B (46),
Mistral-7B-Instruct-v0.3 (6), Qwen3-14B (47), Kimi-k2 (45), and GPT-4o (35), to test few-shot and
compositional reasoning capabilities, thereby mimicking the dynamics of second language acquisi-
tion. In addition, we also evaluate fine-tuned protein-oriented LLMs, such as BioT5-plus-base (37)
and ProLLaMA (30), which have been explicitly trained on large-scale protein corpora. These mod-
els serve as a baseline for comparison, allowing us to examine the performance gains of our method
in general-purpose frozen LLMs relative to specialized protein LLMs.

Metrics We evaluate model outputs using both an automatic metric (ROUGE-L (24)) and human
evaluation. ROUGE-L (24), though widely used for text generation, primarily measures lexical over-
lap and may not fully capture semantic correctness in protein-related QA. To address this limitation,
five evaluators rated the quality of generated answers on a 0–5 scale, where 0 denotes garbled and
unreadable content, intermediate scores reflect increasing levels of informativeness and accuracy,
and 5 represents fully correct outputs (detailed scoring rubrics are provided in Appendix A). This
combined evaluation provides a more reliable assessment of factual accuracy and overall compre-
hensibility.

4.2 QUALITY OF DATASET

Figure 3 (a-f) provides a multidimensional analysis of the protein sequences included in our dataset.
The collection spans a wide range of sequence lengths, from short peptides to large multi-domain
proteins, and covers proteins from 4,135 species across diverse evolutionary lineages. At the family
level, the dataset comprises 63,749 families and 1,115 superfamilies, ensuring representation of both
well-studied proteins and rare functional groups. Additional annotations capture domain composi-
tion, catalytic activity classes, and gene ontology categories, collectively highlighting the long-tail
distribution across sequence space and functional categories. This diversity ensures broad biolog-
ical coverage while posing realistic challenges in inferring functions for proteins, particularly for
infrequent families and underexplored functions.

Figure 3 (g,h) summarizes the distribution of tasks and token composition within the dataset.
The corpus encompasses four distinct protein-QA types, with sample counts ranging from 11,693
(attribute-based QA) to 32,444 (true/false QA), thereby providing balanced coverage across multi-
ple functional perspectives. In terms of token composition, amino-acid sequences constitute nearly
70 % of the corpus, reflecting the sequence-centric nature of protein understanding tasks and high-
lighting the need for models to align symbolic sequence information with natural-language context
effectively.

4.3 MAIN RESULTS

Accuracy gains from context-driven exposure Table 1 presents that our method consistently
improves performance on three text-based protein understanding datasets. Our method raises the
average ROUGE-L by 7% across diverse open-source models and GPT-4o (35), with a maximum
gain of 17.2%, demonstrating that context-driven exposure allows LLMs to acquire protein seman-
tics and reason about function directly from sequence and textual context without any parameter
updates. Larger models benefit more, suggesting that greater capacity enhances the ability to lever-
age contextual cues, consistent with learning protein meaning through in-context analogy and rea-
soning. In contrast, fine-tuned protein LLMs such as ProLLaMA-7B (30) do not surpass frozen
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(g) Sample counts across the four QA task types
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acid sequence tokens

Figure 3: Dataset statistics. Left: Multidimensional analysis of protein amino-acid sequences, in-
cluding length, domain composition, and catalytic activity. Right: Sample sizes for the four protein-
QA types and the ratio of textual to amino-acid sequence tokens.

Table 1: Comparison of different approaches in protein question answering “Fun.”, “Des.”,
“Dom.”, and “Cat.” denote the 4 protein-oriented tasks in the Mol-Instructions dataset (12): protein
function prediction (Fun.), general textual description generation (Des.), domain/motif recognition
(Dom.), and catalytic activity prediction (Cat.). ∆ Gain shows the percentage performance increase.
♢ indicates LLMs augmented with our adaptive context construction method. Metric: ROUGE-L.

Model ProtDescribe Protein2Text- Mol-Instructions
QA Func. Desc. Dom. Cat. Avg.

Fine-tuned LLM
BioT5+ (37) 9.97 6.96 2.92 6.22 2.37 2.87 3.60
ProLLaMA-7B (30) 12.77 10.09 16.89 15.34 15.85 19.32 16.85
Frozen LLM
Qwen2.5-3B (46) 18.45 23.21 18.91 17.18 18.01 20.05 18.54
Qwen2.5-3B (46) ♢ 27.32 28.66 22.05 22.23 25.14 15.96 21.35
∆ Gain +8.87 +5.45 +2.81
Mistral-7B-Instruct-v0.3 (6) 15.02 20.97 17.05 18.59 14.95 18.07 17.17
Mistral-7B-Instruct-v0.3 (6) ♢ 29.39 28.59 15.77 22.72 17.46 21.20 19.29
∆ Gain +14.37 +7.62 +2.12
Qwen3-14B (47) 23.20 21.02 15.80 12.75 15.81 14.06 14.61
Qwen3-14B (47) ♢ 35.53 25.93 20.17 17.37 18.47 23.25 19.82
∆ Gain +12.33 +4.91 +5.21
kimi-k2 (45) 26.74 17.33 12.60 12.36 10.32 15.97 12.81
kimi-k2 (45) ♢ 35.91 21.04 14.47 14.97 15.68 17.02 15.54
∆ Gain +9.17 +3.71 +2.72
GPT-4o (35) 18.29 20.84 16.89 14.50 16.74 20.00 17.03
GPT-4o (35) ♢ 35.53 26.86 20.24 19.23 17.46 22.61 19.89
∆ Gain +17.22 +6.02 +2.85

LLMs augmented with our method, likely due to limited training coverage and task-specific rigidity.
This underscores the our method as a lightweight alternative that enables general-purpose LLMs to
potentially exceed the performance of domain-adapted models.

Human evaluation further demonstrates that exposing models to curated protein–language contexts
improves the perceived quality of outputs (Figure 4). Across all rated instances, inter-rater consis-
tency was substantial (Krippendorff’s α = 0.72%), ensuring reliable annotations; the detailed rubric
is given in Appendix A. Models receiving context-driven exposures achieve higher or comparable
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ratings on most tasks (left panel), with the clearest improvements observed on Protein2Text-QA (2)
and several Mol-Instructions (12) subtasks. Furthermore, pairwise win/lose analyses (right panel)
show that outputs generated with context-driven exposure are preferred in the majority of compar-
isons, with win rates systematically exceeding loss rates.

Qwen2.5-3B Mistral-7B-Instruct-v0.3 Qwen3-14B Kimi-k2 GPT-4o
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Figure 4: Comparison of human evaluation results. Left: Absolute human rating scores (0–5)
for zero-shot model outputs (dark bars) and model outputs with adaptive context exposure (light
bars) on three datasets. Right: Pairwise win/lose proportions comparing outputs with and without
adaptive context exposure. Each comparison is based on 8 randomly selected cases per subset (48
cases in total across six subsets).

Varying exemplar number (k) Figure 5 illustrates how model performance varies with the num-
ber of exemplars (k) provided in context across different datasets. Performance generally improves
as k increases, but only up to a task-dependent optimum; beyond this point, additional exemplars of-
fer little benefit or even introduce noise. The optimal k differs by task. For ProtDescribe (58), which
involves fixed attribute-centric questions, a larger set of bilingual exemplars from related proteins
helps the model capture recurring patterns, with performance peaking at k = 10–11. In contrast,
Protein2Text-QA (2) requires open-ended and integrative reasoning, where only a small number of
highly relevant exemplars are beneficial; here, performance peaks earlier at k = 3–4. In our exper-
iments, we therefore adopt the task-specific optimal settings: k = 11 for ProtDescribe (58), k = 4
for Protein2Text-QA (2), and k = 4 for Mol-Instructions (12).
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Figure 5: Effect of varying exemplar number (k) on model performance. We explored k ∈
[1, 12] as the search space; the upper bound was set after a coarse scan up to k = 50 showed
performance saturation around 2-12 exemplars. Metric: ROUGE-L.

Ablation on dual-criterion context selection Table 2 shows that using both sequence homol-
ogy and text/QA similarity (Dual) outperforms either criterion alone, providing complementary sig-
nals that maximize the effectiveness of context-driven exemplar selection. On average across three
datasets, using only sequence homology reduces performance by 5.2%, and using only text/QA sim-
ilarity reduces performance by 2.8% compared to Dual, though all variants still outperform zero-shot
models.
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Table 2: Ablation on dual-criterion context selection. Columns show model performance when
using both sequence homology and text/QA similarity (Dual), sequence homology only (SeqOnly),
or text/QA similarity only (QAOnly) to guide exemplar selection. Metric: ROUGE-L.

Model ProtDescribe Protein2Text-QA Mol-Instructions
Dual SeqOnly QAOnly Dual SeqOnly QAOnly Dual SeqOnly QAOnly

Qwen2.5-3B (46) 27.32 20.10 25.24 28.66 27.76 25.73 21.35 20.16 19.68
Mistral-7B-Instruct-v0.3 (6) 29.39 19.46 25.24 28.59 21.85 22.68 19.12 14.31 17.40
Qwen3-14B (47) 35.53 22.90 30.52 25.93 23.26 25.87 19.82 15.07 17.58
kimi-k2 (45) 35.91 28.58 32.43 21.04 17.10 18.06 15.54 12.79 12.09
GPT-4o (35) 35.51 27.72 32.59 26.86 23.90 26.45 19.89 17.46 17.08

Case studies and qualitative evaluation Figure 6 illustrates that context-driven exposure pro-
duces concise, function-specific descriptions consistent with UniProt annotations. In the two exam-
ples shown, the model correctly identifies “intrinsically disordered regions”, and “[4Fe-4S] RNA
methyltransferase activity”, whereas zero-shot outputs remain generic.

Qualitative examples of Protein2Text-QA question answering task

Model Answers
The transcriptional adapter has a unique structure characterized by multiple
low-complexity and disordered regions, which likely facilitate dynamic
interactions with other transcription factors and regulatory proteins,
enhancing its role in transcriptional regulation.

Context Engineering

The transcriptional adapter is intrinsically disordered, meaning its structure is not fixed.
Ground Truth

Amino acid sequence to analyze:<seq> M C T K T K E E C E K H Y M K H F I N N P L F A S T L L N L K Q A E E A K T A D T A I P F H S T D D P P R P T F D S L L S R D M A G Y M P A R A D F I
E E F D N Y A E W D L R D I D F V E D D S D I L H A L K M A V V D I Y H S R L K E R Q R R K K I I R D H G L I N L R K F Q L M E R R Y P K E V Q D L Y E T M R R F A R I V G P V E H D
K F I E S H A L E F E L R R E I K R L Q E Y R T A G I T N F C S A R T Y D H L K K T R E E E R L K R T M L S E V L Q Y I Q D S S A C Q Q W L R R Q A D I D S G L S P S I P M A S N S G R R
S A P P L N L T G L P G T E K L N E K E K E L C Q M V R L V P G A Y L E Y K S A L L N E C N K Q G G L R L A Q A R A L I K I D V N K T R K I Y D F L I R E G Y I T K G </seq> 
What is unique about the structure of the transcriptional adapter?

User Query

The transcriptional adapter protein sequence contains multiple lysine (K) and
arginine (R) residues, indicating potential nuclear localization and involvement
in DNA binding. The presence of acidic residues (E, D) suggests roles in
protein-protein interactions, crucial for transcriptional regulation.

Zero-shot

Qualitative examples of Mol-Instructions question answering task

Model Answers

Amino acid sequence to analyze: <seq> M T P T A P I T Q D M L T I T R K L P D G P T N L V G L T R D G L R D V L I A A G T P E K Q A K M R V G Q I W Q W I Y Q K G V R D F D A M T N L S
K S Y R A E L A E K F V I E V P E V V S R Q V S A D G T R K Y L V R I A G G H E V E T V Y I P E E S R G T L C I S S Q V G C T L T C S F C H T G T Q K L V R N L T A G E I I G Q V M I A R D
D L G E W P E P G R A P K D E T R L L S N I V L M G M G E P L Y N F E G V R D A M K I A M D G E G I S L S R R R I T L S T S G V V P E I A R T A E E I G C L L A V S F H G T T D E I R D K
L V P I N K K W N I A A L L N A L R E Y P R L S N S E R I T F E Y V M L K G V N D S D E D A R R L V K L I K G I P A K I N L I P F N E W P G A P Y E R S D W D R I E S F A N I I Y K A G Y A
S P I R T P R G E D I M A A C G Q L K S E T E R A R K S R K V I A A E A G L T </seq>
Please examine the protein encoded by the amino acid sequence and describe its functional role, potential involvement in cellular processes, and its subcellular location.

User Query

The protein encoded by the provided amino acid sequence appears to be a
member of the GTPase family, characterized by motifs involved in
binding and hydrolyzing GTP. These proteins often function as molecular
switches in various cellular processes, including signal transduction, cell
division, and vesicle trafficking. The presence of sequences such as "GTP"
and "Ras-like" motifs suggest a role in regulating pathways like the Ras-
MAPK signaling cascade, which is crucial for cell proliferation and
differentiation.

Zero-shot

The protein characterized by the amino acid sequence demonstrates 4 iron, 4 sulfur cluster binding, metal ion binding, rRNA (adenine-C2-)-methyltransferase activity, rRNA binding, tRNA
(adenine-C2-)-methyltransferase activity, tRNA binding and is implicated in the rRNA base methylation. Its subcellular localization is primarily within the cytoplasm.

Ground Truth

The protein encoded by the given amino acid sequence functions as a dual-
specificity RNA methyltransferase, similar to RlmN_AZOC5. It catalyzes
methylation of adenosine at specific positions in 23S rRNA and tRNA,
aiding in ribosomal fidelity and tRNA stability. It relies on a [4Fe-4S] cluster
and S-adenosyl-L-methionine (SAM) for its activity. The protein is localized
in the cytoplasm.

Context Engineering

ROUGE-L: 11.76
Human Rating: 2

ROUGE-L: 22.22
Human Rating: 4

ROUGE-L: 19.20
Human Rating: 1

ROUGE-L: 28.83
Human Rating: 4

Figure 6: Qualitative examples of protein question answering. We present two examples with
answers generated by GPT-4o (35) along with the target ground truth. The green color highlights
accurate keywords, while the red color indicates prediction errors.

5 CONCLUSION

We have proposed the “Protein-as-Second-Language” framework, which leverages adaptive con-
text construction to enhance bilingual protein understanding by dynamically integrating sequence
homology and textual similarity. Additionally, we introduced a protein-natural language bilingual
dataset, specifically designed to support this framework and facilitate the bridging of protein se-
quences with functional descriptions. Our approach has successfully enhanced large language mod-
els’ ability to acquire protein semantics and reasoning capabilities without the need for task-specific
parameter updates. Experiments on multiple protein-language datasets demonstrate that our frame-
work consistently outperforms zero-shot baselines, highlighting the effectiveness of context-driven
learning in bridging protein sequences with functional descriptions.
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6 ETHICS STATEMENT

This work complies with ethical standards and established research practices. All protein data were
sourced from publicly available databases, with no proprietary or confidential information involved.
Quality assurance and safety checks were applied to minimize harmful or inappropriate content.
We acknowledge the broader risks of combining LLMs with biomolecular knowledge, including
potential misuse for harmful purposes, and therefore emphasize responsible use guided by fairness,
transparency, and accountability. Any harmful or unsafe applications of this dataset are strictly
prohibited.

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the protein–natural language bilingual dataset (Sec. 3.1, Ap-
pendix C), the adaptive context construction mechanism (Sec. 3.2). Data processing steps and QA
generation prompts for all four question types are included in Sec. 3.1 and Appendix D. Code im-
plementing the framework and instructions for reproducing experiments on both frozen and protein-
adapted LLMs will be provided as supplementary material upon acceptance.
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A EVALUATION METRICS

We use the automatic metric ROUGE-L (24) to assess the quality of the generated text by comparing
it with reference answers. In addition, we incorporate manual checking into the evaluation pipeline
and compute a human-rating score. Five evaluators with biological-research experience were asked
to rate each generated answer on a 0–5 scale (the integer score corresponds to the category number
minus one). All evaluators have at least two years of research experience in biology. The six ordinal
categories they used are:

1. Garbled – the text is incomprehensible and lacks any readability.

2. Inaccurate – the text is readable but entirely incorrect and devoid of meaningful informa-
tion.

3. Partially informative – the text offers some reference value, yet its factual correctness is
poor.

4. Moderately accurate – roughly half of the information is correct, but several errors remain.

5. Mostly accurate – the content is almost entirely correct, with only minor omissions or
errors.

6. Completely correct – the content is accurate in its entirety, without any mistakes.

B ADDITIONAL RESULTS

Evaluation on real-world protein scenarios To examine the applicability of our framework be-
yond benchmark datasets, we evaluated it on biologically relevant queries involving uncharacterized
Homo sapiens proteins. For each case, a current biologically relevant question of research interest
was paired with the corresponding protein amino acid sequence and input to representative LLMs
guided by our framework. As illustrated in Figure 7, the models produced plausible hypotheses
aligned with biological knowledge. These results demonstrate that our framework can extend to
real-world scenarios, offering interpretable preliminary insights into proteins lacking experimental
annotation and potentially guiding future biological investigations.

C BILINGUAL DATASET: DETAILS AND EXAMPLES

All protein entries are derived from the manually curated SwissProt (3) section of UniProt, which
provides high-quality annotations of protein sequences and functional descriptions. After deduplica-
tion, we prompted LLMs to generate four types of bilingual QA pairs from these entries. To assess
data quality, we randomly sampled 500 pairs from the full set of 79,926 automatically constructed
examples. Each sampled pair was manually reviewed by domain experts along three dimensions: se-
mantic fidelity, biological plausibility, and translation fluency. The review showed a 95% pass rate,
confirming that the dataset maintains high linguistic accuracy and biological reliability. Examples
of four bilingual QA types are provided in Figure 8 and Figure 9.
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Is the protein involved in cellular stress or growth signaling pathways, adjusting protein synthesis in response to conditions?
Uncharacterized protein C8orf88 [Homo sapiens]: <seq>M E T K K L I G K P L Q P A R P V R H L T S P P G A V F P F N F Q N E Y P C N T Q C I Q S G V S R C K T N G M Q A F S Q G L N E Q Q
Q Q Q S P V K K E R I K Y S R D F L L K L S S V S I C R K K P D F L P D H P I V L Q K P E N N Q S F K</seq>

Open Research Question

Qwen3-14B: There is no evidence to suggest that the uncharacterized protein C8orf88 is directly involved in cellular stress or growth signaling pathways that adjust protein synthesis. in response to
conditions.
Kimi-k2: No.
GPT-4o: Based on the information given, there is no direct indication that this protein is involved in cellular stress or growth signaling pathways, or in adjusting protein synthesis in response to
conditions.

Model Answers

Protein id: P0DMB2

Does it function intracellularly (as a regulatory microprotein) rather than as a secreted signaling peptide, and what cellular process might it influence?
Uncharacterized protein (LOC122394732) [Homo sapiens] : <seq>M G F V T N K S A F K A G D S L Y L R R A F V N N L G E E R R T R I Q I Q S I Q K A L D I Q I R E I D R E K A A L K R F L V K
L H K T T G Y F P Q K P L W</seq>

Open Research Question

Qwen3-14B: No, it does not function intracellularly as a regulatory microprotein but rather as a secreted signaling peptide. The cellular process it might influence could involve signaling pathways
related to extracellular communication, such as immune responses, synaptic plasticity, or vasoconstriction, depending on its specific interactions and ligands.
Kimi-k2: No. The sequence contains a predicted signal peptide (MGFVTNKSAF) and lacks known nuclear localization or other intracellular retention motifs. It is most likely secreted and, based on its
length and basic charge, may act as an extracellular signaling peptide influencing cell–cell communication or receptor-mediated processes rather than intracellular regulation.
GPT-4o: The sequence does not appear to be a secreted signaling peptide based on its length and composition. Secreted peptides are typically shorter and contain signal sequences that facilitate their
export out of the cell. This protein sequence is relatively long and lacks obvious signal peptide motifs.

Model Answers

Protein id: A0A1B0GW15
Exploratory evaluation on real-world protein scenarios

Figure 7: Exploratory evaluation of our framework on real-world protein scenarios.

D LLM STATEMENT

We acknowledge the use of LLMs in this work. Specifically, DeepSeek-R1 (15) was employed for
two purposes: (i) polishing the English presentation of the manuscript, and (ii) generating bilingual
dataset entries from curated protein annotations, where the prompts were carefully designed to en-
sure scientific accuracy and linguistic quality. Below we provide the exact prompts used for each
bilingual QA type in the dataset construction process.

Prompt for Attribute-based Answer generation is following:

"Based on the provided annotations, compose a concise protein information description in the
following fixed format:
PROTEIN NAME: ...
FUNCTION: ...
SUBCELLULAR LOCATION: ...
FAMILY: ...
KEY SEQUENCE MOTIF: ... (write N/A if none).
After the fixed fields, leave one blank line and proceed to the ‘Extended Information’
paragraph. In fluent, professional English, supply any additional details essential for
understanding the protein, integrating all relevant annotation content in a coherent
narrative. Maintain brevity and avoid redundancy."

Prompt for True or False QA generation is following:

"You are a protein science expert. Please read the UniProt entry above and design 1 True/False
question that meets all of the following rules:
(1) The stem must weave together diverse distinct knowledge dimensions from the entry (e.g.,
catalytic chemistry, structural biology, disease relevance, evolutionary conservation, PTM,
mutational effect, regulatory mechanism, substrate selectivity, experimental evidence,
GO term, PDB ID, cofactor, physiological pathway, drug-target potential).
(2) Do not include the words ‘True/False’ in the stem; hide the decisive technical point
within the details.
(3) Give True or False, followed by an explanation.
Use this exact output template: Stem: ...; Answer: ...; Explanation: ..."

Prompt for Descriptive Text generation is following:

"Based on the given annotation information of the protein, describe the given amino-acid
sequence in one coherent paragraph that covers:
(1) its main function and any bound cofactors/ligands,
(2) subcellular localization and the biological process involved,
(3) key domains or motifs, and
(4) the specific reaction catalyzed if it is an enzyme. The description begins with A
sentence pattern like
‘A short report on the protein with the given amino acid sequence highlights:’
or ‘A brief overview of the protein with the provided amino acid sequence is as follows:’
or ‘A concise description of the protein with the specified amino acid sequence includes:’
or ‘An outline of the key aspects of the protein with the corresponding amino acid sequence
is as follows:’
or ‘A summary of the protein’s main attributes with the input amino acid sequence reveals:’
(uses similar synonymous sentences to avoid uniformity)."
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Examples of attribute-based protein-QA

Kinesin-like protein Klp68D: <seq>M S A K S R R P G T A S S Q T P N E C V Q V V V R C R P M S N R E R S E G S P E V V N V Y P N R G V V E L Q N V V D A N K E Q R K V F T Y D A A Y D
A S A S Q T T L Y H E V V F P L V S S V L E G F N G C I F A Y G Q T G T G K T F T M E G V R G N D D L M G I I P R T F E Q I W L H I N R T E N F Q F L V D V S Y L E I Y M E E L R D L L K
P N S K H L E V R E R G S G V Y V P N L H A I N C K S V D D M I R V M K V G N K N R T V G F T N M N E H S S R S H A I F M I K I E M C D T E T N T I K V G K L N LI D L A G S E R Q S K
T G A S A E R L K E A S K I N L A L S S L G N V I S A L A E S S P H V P Y R D S K L T R L L Q D S L G G N S K T I M I A N I G P S N Y N Y N E T L T T L R Y A S R A K S I Q N Q P I K N E D P
Q D A K L K E Y Q E E I E R L K R L I A P Q Q Q Q R S E K Q G T I K K Q R V K K P K K E P I S Q E L I G S A L Q A S S A D L Q V D E D R D S D G D G A E S E S D K E N E A E V A K S N E
E L E R E R V E N A K L A A K L A E L E G Q L V R G G K N L L D T Y S E R Q I E L E K K L V E I A E R KK R E I E I Q Q Q L E L Q E E T T L E I R E R N V S L E Q E V E L K K R K L S K C
Y A K Y L A L Q Q E L N D C K H D H N Q D L R E L E M A Q N E L V K E L K R Q L L I I D N F V P I E V K Q R L Y T Q A K Y D E E Q E E W K F S S F P L P L P P S G G D G R Q G Y R R P
V S H P Q R R R P T S E H A L Q E A K S N A P S S L R F K S E N I V S Y E L E M P C R T T Q E Y R T P K V S A S L Q A V L A Q A M Q T G G D D I D I V D S H T N S L R S R L E N I I N A N
S S S N G G P G S G A G P L A A N T A G S G V G SM P N V R N I K S S R G L P S A G T A L D S N R R P P T G R I P A K K P A S A Y P K A R G L V N K</seq>

Protein

Analyze the provided protein amino acid sequence, accurately predict and describe its function, subcellular_location, family, key_sequence_motif.\nResponse in the following exact format:\nFUNCTION:
…\nSUBCELLULAR LOCATION: …\nFAMILY: …\nKEY SEQUENCE MOTIF: …\nDetailed Analysis (≤300 words): [in one brief paragraph of ≤ 300 words, describe potential catalytic mechanisms,
key domains, post-translational modifications, associations with diseases, etc.]\nKeep the tone professional yet fluent; let every word earn its place.

FUNCTION: Plus-end directed microtubule motor involved in anterograde axonal transport, potentially moving distinct cargos in fly neurons compared to other kinesin motors.\nSUBCELLULAR
LOCATION: Cytoplasm, cytoskeleton (microtubule-associated)\nFAMILY: TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin II subfamily\nKEY SEQUENCE MOTIF: ATP-
binding site (106-113)\n\n**Extended Information**\n\nKlp68D is a microtubule-associated motor protein that utilizes ATP hydrolysis to drive anterograde transport along microtubules, likely facilitating
cargo movement in *Drosophila* neurons. It contains a conserved kinesin motor domain (19-344) responsible for ATP binding and microtubule interaction, along with two coiled-coil regions (350-384,
432-580) that may mediate dimerization or cargo binding. The protein exhibits multiple disordered regions and compositional biases, including basic and acidic residue clusters, which may regulate its
function or interactions. Klp68D belongs to the Kinesin II subfamily, suggesting specialized roles distinct from conventional kinesin heavy chains. Its localization to the cytoskeleton underscores its
involvement in microtubule-based motility processes.

Answer

Question

Protein id: Q29DY1

Protein id: Q29J90

G-protein coupled receptor moody: <seq>M S D E T T G S L G D A F S P M D T P T T T I M P P P A D V D E S G F S H S L L T F A A V M T F L I M I V G I C G N L L T V V A L L K C P K V R N V
A A A F I I S L C I A D L L F C A L V L P F Q G L R F V Q G T W R H G E V L C R L I P F I Q Y G N I G V S L L C I A M I T I N R Y V M I T H Y S L Y N R I Y K R H W I A I M I A A C W L F S Y
G M Q L P T L L G A W G R F G Y D A R L Q T C S I M S D R H G H S S K T T L F I T A F V I P C L V I I A C Y A K I F W V V H K S E Q R L K R H A T K Q N S I P N N L R P L A A A T S M P S
G D G A N P S Q V P A G C R V S S D S S S N Y S T D V P D T T P G G A G G G A G V K Q Q P S R V K D Q R E V R A K R N E W R I T K M V L A I F L S F V I C Y L P I T I V K V A D K D V E
H P S L H I F S Y I M L Y L S A C I N P I I Y V I M N K Q Y R K A Y K T V V F C Q P A A R L L M P F G K G N G A S S A A E K W K D T G L S N N H S R T I V S Q M S A G A T A T A T A T A A
A G T Q P Q S T S T Q G P V Q A L E L T A R V P D L I S K S S N L P L P Q P L P Q I P P A G A R P S L T P P P P P S V L T A T H S N G S G S Q R L P L K K N N H S Y T N S G F N S S V I S A N
P S S S P S P S S S G G G I Y R P G I G S M G N G S A S I R R I T M V G D D I I L E E E E L P P T P T A S S P P Q M Q A P P P P P S S S R Q T T M N A L N T T P K T P I Y M N V D S P K R N Q
S Y S E R N I P V P A R E G H D Q G V K D S Q G L P S K L M D K K K F P K D</seq>

Protein

Analyze the provided protein amino acid sequence, accurately predict and describe its function, subcellular_location, family, key_sequence_motif.\nResponse in the following exact format:\nFUNCTION:
…\nSUBCELLULAR LOCATION: …\nFAMILY: …\nKEY SEQUENCE MOTIF: …\nDetailed Analysis (≤300 words): [in one brief paragraph of ≤ 300 words, describe potential catalytic mechanisms,
key domains, post-translational modifications, associations with diseases, etc.]\nKeep the tone professional yet fluent; let every word earn its place."

FUNCTION: Plus-end directed microtubule motor involved in anterograde axonal transport, potentially moving distinct cargos in fly neurons compared to other kinesin motors.\nSUBCELLULAR
LOCATION: Cytoplasm, cytoskeleton (microtubule-associated)\nFAMILY: TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin II subfamily\nKEY SEQUENCE MOTIF: ATP-
binding site (106-113)\n\n**Extended Information**\n\nKlp68D is a microtubule-associated motor protein that utilizes ATP hydrolysis to drive anterograde transport along microtubules, likely facilitating
cargo movement in *Drosophila* neurons. It contains a conserved kinesin motor domain (19-344) responsible for ATP binding and microtubule interaction, along with two coiled-coil regions (350-384,
432-580) that may mediate dimerization or cargo binding. The protein exhibits multiple disordered regions and compositional biases, including basic and acidic residue clusters, which may regulate its
function or interactions. Klp68D belongs to the Kinesin II subfamily, suggesting specialized roles distinct from conventional kinesin heavy chains. Its localization to the cytoskeleton underscores its
involvement in microtubule-based motility processes.

Answer

Question

Examples of true or false protein-QA

<seq>M A K R S S L Y I R I V E G K N L P A K D I T G S S D P Y C I V K V D N E P I I R T A T V W K T L C P F W G E E Y Q V H L P P T F H A V A F Y V M D E D A L S R D D V I G K V C L T
R D T I A S H P K G F S G W A H L T E V D P D E E V Q G E I H L R L E V W P G A R A C R L R C S V L E A R D L A P K D R N G T S D P F V R V R Y K G R T R E T S I V K K S C Y P R W N E
T F E F E L Q E G A M E A L C V E A W D W D L V S R N D F L G K V V I D V Q R L R V V Q Q E E G W F R L Q P D Q S K S R R H D E G N L G S L Q L E V R L R D E T V L P S S Y Y Q P L
V H L L C H E V K L G M Q G P G Q L I P L I E E T T S T E C R Q D V A T N L L K L F L G Q G L A K D F L D L L F Q L E L S R T S E T N T L F R S N S L A S K S M E S F L K V A G M Q Y L
H G V L G P I I N K V F E E K K Y V E L D P S K V E V K D V G C S G L H R P Q T E A E V L E Q S A Q T L R A H L G A L L S A L S R S V R A C P A V V R A T F R Q L F R R V R E R F P G A
Q H E N V P F I A V T S F L C L R F F S P A I M S P K L F H L R E R H A D A R T S R T L L L L A K A V Q N V G N M D T P A S R A K E A W M E P L Q P T V R Q G V A Q L K D F I T K L V D I
E E K D E L D L Q R T L S L Q A P P V K E G P L F I H R T K G K G P L M S S S F K K L Y F S L T T E A L S F A K T P S S K K S A L I K L A N I R A A E K V E E K S F G G S H V M Q V I Y T D
D A G R P Q T A Y L Q C K C V N E L N Q W L S A L R K V S I N N T G L L G S Y H P G V F R G D K W S C C H Q K E K T G Q G C D K T R S R V T L Q E W N D P L D H D L E A Q L I Y R H
L L G V E A M L W E R H R E L S G G A E A G T V P T S P G K V P E D S L A R L L R V L Q D L R E A H S S S P A G S P P S E P N C L L E L Q T</seq>

Protein

Determine whether this statement about the given protein is true or false: although this calcium-binding protein translocates to the plasma membrane upon intracellular calcium elevation to inactivate Ras
signaling, its pleckstrin homology domain mediates this membrane association through specific phosphoinositide interactions, which is essential for its GTPase-activating function. 

False. The PH domain lacks phosphoinositide binding activity due to a leucine substitution at position 592, preventing it from mediating membrane association; calcium-dependent membrane binding
occurs through its C2 domains instead.

Answer

Question

Protein id: O43374

Protein id: O43390

<seq>M A N Q V N G N A V Q L K E E E E P M D T S S V T H T E H Y K T L I E A G L P Q K V A E R L D E I F Q T G L V A Y V D L D E R A I D A L R E F N E E G A L S V L Q Q F K E S D L S
H V Q N K S A F L C G V M K T Y R Q R E K Q G S K V Q E S T K G P D E A K I K A L L E R T G Y T L D V T T G Q R K Y G G P P P D S V Y S G V Q P G I G T E V F V G K I P R D L Y E D E
L V P L F E K A G P I W D L R L M M D P L S G Q N R G Y A F I T F C G K E A A Q E A V K L C D S Y E I R P G K H L G V C I S V A N N R L F V G S I P K N K T K E N I L E E F S K V T E G L
V D V I L Y H Q P D D K K K N R G F C F L E Y E D H K S A A Q A R R R L M S G K V K V W G N V V T V E W A D P V E E P D P E V M A K V K V L F V R N L A T T V T E E I L E K S F S E F
G K L E R V K K L K D Y A F V H F E D R G A A V K A M D E M N G K E I E G E E I E I V L A K P P D K K R K E R Q A A R Q A S R S T A Y E D Y Y Y H P P P R M P P P I R G R G R G G G R
G G Y G Y P P D Y Y G Y E D Y Y D D Y Y G Y D Y H D Y R G G Y E D P Y Y G Y D D G Y A V R G R G G G R G G R G A P P P P R G R G A P P P R G R A G Y S Q R G A P L G P P R G S R G G
R G G P A Q Q Q R G R G S R G S R G N R G G N V G G K R K A D G Y N Q P D S K R R Q T N N Q Q N W G S Q P I A Q Q P L Q Q G G D Y S G N Y G Y N N D N Q E F Y Q D T Y G Q Q W
K</seq>

Protein

Determine whether this statement about the given protein is true or false: although this protein's SUMOylation at specific lysine residues supports its role in mRNA processing complexes, and mutations
causing an autosomal recessive neurodevelopmental disorder implicate its functional importance, structural studies reveal that these covalent modifications occur exclusively at lysine-359 within its third
RNA recognition motif domain

False; Explanation: SUMOylation occurs at Lys-13, Lys-171, and Lys-359, not exclusively at Lys-359, and the associated neurodevelopmental disorder is autosomal dominant, not recessive.
Answer

Question

Figure 8: Illustrative examples of the four bilingual QA types (Part 1).
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Examples of descriptive text protein-QA

<seq>M A S P F F F V F L L S A L S L E N T Y A S P N Y R E A L S K S L L F F Q G Q R S G R L P S D Q Q L S W R S S S G L S D G S S A H V D L T G G Y Y D A G D N V K F N F P M A F T T T
M L S W S S L E Y G K K M G P E L Q N S R V A I R W A T D Y L L K C A R A T P G K L Y V G V G D P N G D H K C W E R P E D M D T P R T V Y S V S P S N P G S D V A A E T A A A L A A S
S M V F R K V D P K Y S R L L L A T A K K V M Q F A I Q Y R G A Y S N S L S S S V C P F Y C S Y S G Y K D E L L W G A A W L H R A T N D P Y Y T N F I K S L G G G D Q P D I F S W D N
K Y A G A Y V L L S R R A V L N K D N N F E L Y K Q A A E N F M C K I L P N S P S S S T K Y T K G G L M Y K L P Q S N L Q Y V T S I T F L L T T Y A K Y M K S T K Q T F N C G N S L I V
P N A L I N L S K R Q V D Y V L G V N P M K M S Y M V G F S S N F P K R I H H R G S S L P S R A V R S N S L G C N G G F Q S F R T Q N P N P N I L T G A I V G G P N Q N D E Y P D Q R D
D Y T R S E P A T Y I N A A F V G P L A Y F A A S R S P </seq>

Protein

In one coherent paragraph, describe the protein represented by the given amino-acid sequence, covering: (1) its main function and any bound cofactors/ligands, (2) subcellular localization and the
biological process involved, (3) key domains or motifs, and (4) the specific reaction catalyzed if it is an enzyme.

A brief overview of the protein with the provided amino acid sequence (Q2V4L8, GUN3_ARATH) is as follows: This enzyme, an endoglucanase 3 (EC 3.2.1.4) from *Arabidopsis thaliana*, catalyzes the
endohydrolysis of (1→4)-β-D-glucosidic linkages in cellulose, lichenin, and cereal β-D-glucans, facilitating polysaccharide degradation without requiring bound cofactors. It is secreted to the extracellular
region, particularly localized to the plant-type cell wall and Golgi apparatus, where it participates in cell wall organization and cellulose catabolic processes. Key features include its classification within
the glycosyl hydrolase 9 family, a catalytic nucleophile at position 77, additional active sites at residues 402, 453, and 462, an N-linked glycosylation site at Asn-370, and an N-terminal signal peptide
(residues 1–21) for secretion. Functionally, it mediates root cap cell sloughing through cell wall breakdown, is specifically expressed in root cap cells, and is down-regulated by auxin and abscisic acid.
The mature chain spans residues 22–484 and may undergo alternative splicing.

Answer

Question

Protein id: Q2V4L8

Protein id: Q39056

<seq>M I S T L R R A V F L R R F P A V V S P I K R A F S S R I D D E F D P Q I M N I N E L N Q E M Q S I F G Q E P S P D G P G T M D F S E L K S S K I E P L R S K N I D F R Q Q I E Y H K S
T H S S K N D S Q A I E Q Y A K V A S D M S K L T H V G I A G E A Q M V D V S S K D N S K R T A L A C C K V I L G K R V F D L V L A N Q M G K G D V L G V A K I A G I N G A K Q T S S
L I P L C H N I A L T H V R V D L R L N P E D F S V D I E G E A S C T G K T G V E M E A M T A V S V A G L T V Y D M C K A A S K D I S I T D V R L E R K T G G K S G S W S R L</seq>

Protein

Determine whether this statement about the given protein is true or false: although this protein's SUMOylation at specific lysine residues supports its role in mRNA processing complexes, and mutations
causing an autosomal recessive neurodevelopmental disorder implicate its functional importance, structural studies reveal that these covalent modifications occur exclusively at lysine-359 within its third
RNA recognition motif domain

A concise description of the protein with the specified amino acid sequence (Q39056, CNX3_ARATH) is as follows:\n\nThis mitochondrial protein, localized specifically within the mitochondrial matrix
via an N-terminal transit peptide (residues 1-32), functions as a cyclic pyranopterin monophosphate synthase (EC 4.6.1.17). It is essential for molybdenum cofactor biosynthesis, catalyzing the specific
lyase reaction that converts (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate into cyclic pyranopterin monophosphate (cPMP) and diphosphate (RHEA:49580). Key residues form an active site
(including residue 240) and substrate binding sites (residues 187-189 and 225-226). Belonging to the MoaC protein family, it assembles as a homohexamer and is predominantly expressed in the roots of
*Arabidopsis thaliana*. Its primary biological role is in the \"Mo-molybdopterin cofactor biosynthetic process\" (GO:0006777).

Answer

Question

Examples of knowledge-based protein-QA

<seq>M S A A I L G Q V W T R K L L P I P W R L C V P G R C V S S N F K A A D L Q V Q V T R E P Q K K P A P S Q P L L F G K T F T D H M L M V E W N S K T G W G P P R I Q P F Q N L T L
H P A C S G L H Y S L Q L F E G L K A Y K G R D K Q V R L F R P W L N M D R M L R S A R R L C L P D F D K Q E L L E C I R Q L I E V D K D W V P D G N G T S L Y V R P V L I G N E P S
L G V G M V T Q A L L F V I L C P V G S Y F P G D S M T P V S L L A D P S F V R A W I G G V G D C K L G G N Y G P T V A V Q Q E A Q K K G C E Q V L W L Y G P D H Q L T E V G T M N I
F V Y W T H E D G E L E L A T P P L D G I I L P G V V R Q S L L D L A R T W G E F R V A E R K V T M K E L K R A L E E G R V R E V F G S G T A C Q V C P V H Q I L Y E G K Q L H I P T M
E N G P E L I L R F Q K E L K A I Q Y G T S A H D W M L R V </seq>

Protein

You are a molecular biology professor writing a protein description for undergraduates. Based on the characteristics of the given protein amino acid sequence, briefly answer the following questions: 1.
What is the primary catalytic function of this protein in branched-chain amino acid metabolism?\n2. Where is this protein localized within the cell?\n3. What cofactor is essential for its enzymatic activity?
\n4. How does its substrate affinity (KM) vary among the branched-chain amino acids?\n5. What is the quaternary structure of this protein?\n6. Which post-translational modifications are known to occur
on this protein?\n7. What is the physiological direction of its catalytic reactions?\n8. In which tissues is this protein expressed?\n9. What family of enzymes does this protein belong to?

1. It catalyzes the transamination of leucine, isoleucine, and valine with 2-oxoglutarate to form their respective α-keto acids and glutamate.\n2. It is localized in the mitochondrion.\n3. Pyridoxal 5'-
phosphate is the essential cofactor.\n4. The KM values are 1 mM for L-leucine and L-isoleucine, and 5 mM for L-valine.\n5. It forms a homodimer.\n6. It undergoes N6-(pyridoxal phosphate)lysine
modification at position 230 and N6-acetyllysine at position 322.\n7. The reactions proceed physiologically from left to right (branched-chain amino acids to α-keto acids).\n8. It is expressed in all
tissues.\n9. It belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family.

Answer

Question

Protein id: O35854

Protein id: Q9LXN8

<seq>M A F S M L F T G H A E C V K F V K K F N L P L L V T G G G G Y T K E N V A R C W T V E T G I L L D T E L P N E I S E N D Y I K Y F A P D F S L K I P G G H I E N L N T K S Y I S S I
K V Q I L E N L R Y I Q H A P S V Q M Q E V P P D F Y I P D F D E D E Q N P D V R V D Q R S R D K Q I Q R D D E Y F D G D N D N D A S</seq>

Protein

You are a molecular biology professor writing a protein description for undergraduates. Based on the characteristics of the given protein amino acid sequence, briefly answer the following questions: 1.
What is the enzymatic reaction catalyzed by this protein?\n2. Where is this protein localized within the cell?\n3. What is the role of this protein in chromatin organization?\n4. Which histone proteins are
substrates for its deacetylation activity?\n5. How does its activity contribute to transcriptional regulation?\n6. What are the functional implications of its disordered region (residues 120-158)?\n7. Does it
form part of any multiprotein complexes?\n8. What is the significance of its basic and acidic residue compositional biases?\n9. How does it compare to other members of the histone deacetylase family?

1. It catalyzes the hydrolysis of N(6)-acetyl-L-lysyl-[histone] to produce L-lysyl-[histone] and acetate.\n2. It is localized in the nucleus.\n3. It is involved in chromatin organization through histone
deacetylation, leading to epigenetic repression.\n4. It deacetylates lysine residues on the core histones H2A, H2B, H3, and H4.\n5. Its deacetylation activity represses transcription by modifying chromatin
structure.\n6. The disordered region may contribute to protein flexibility or interaction with other molecules.\n7. Yes, it acts via the formation of large multiprotein complexes.\n8. These biases may
influence protein-protein interactions or substrate binding.\n9. It belongs to the histone deacetylase family and shares similar functional domains.

Answer

Question

Figure 9: Illustrative examples of the four bilingual QA types (Part 2).
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Under review as a conference paper at ICLR 2026

Prompt for Knowledge-based QA generation is following:

"Based on the provided annotations, generate exactly 1-9 distinct, single-sentence questions
that a researcher would naturally ask to fully interrogate this protein. Guidelines:
(1) Each question must probe a different biological dimension (expression, localization,
mechanism, regulation, phenotype, disease, evolution, interaction, structure/properties).
(2) Keep questions concise, fluent.
(3) One per line, numbering, and the corresponding answers to these questions are concise and
clear.
(4) The questions can be appropriately flexible and occasionally combined with some actual
scenarios or content related to species.
The Questions and Answers are divided into two parts (wrapped with <Questions><\\Questions>
and <Answers><\\Answers> respectively). All the information in the Q&A should be based entirely
on the given annotations and should not be supplemented by yourself."
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