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Abstract

Many real-world problems in computational sustainability require tight integrations
of symbolic and statistical AI. Interestingly, Satisfiability Modulo Counting (SMC)
captures a wide variety of such problems. SMC searches for policy interventions
to control probabilistic outcomes. Solving SMC is challenging because of its
highly intractable nature (NPPP -complete), incorporating statistical inference and
symbolic reasoning. Previous research on SMC solving lacks provable guarantees
and/or suffers from sub-optimal empirical performance, especially when combi-
natorial constraints are present. We propose XOR-SMC, a polynomial algorithm
with access to NP-oracles, to solve highly intractable SMC problems with constant
approximation guarantees. XOR-SMC transforms the highly intractable SMC into
satisfiability problems, replacing the model counting in SMC with SAT formulae
subject to randomized XOR constraints. Experiments on solving important SMC
problems in computational sustainability demonstrate that XOR-SMC finds solutions
close to the true optimum, outperforming several baselines which struggle to find
good approximations for the intractable model counting in SMC.

1 Introduction

Solving real-world problems in computational sustainability requires tight integrations of symbolic
and statistical Artificial Intelligence (AI). Symbolic AI, exemplified by SATisfiability (SAT) and
constraint programming, finds solutions satisfying constraints but requires rigid formulations and
is difficult to include probabilities. Statistical AI captures uncertainty but often lacks constraint
satisfaction. Integrating symbolic and statistical AI remains an open field and has gained research
attention recently [25, 6, 45].

Satisfiability Modulo Counting (SMC) is an umbrella problem at the intersection of symbolic and
statistical AI. It encompasses problems that carry out symbolic decision-making (satisfiability)
mixed with statistical reasoning (model counting). SMC searches for policy interventions to control
probabilistic outcomes. Formally, SMC is an SAT problem involving predicates on model counts.
Model counting computes the number of models (i.e., solutions) to an SAT formula. Its weighted
form subsumes probabilistic inference on Machine Learning (ML) models.

As a motivating application in computational sustainability, stochastic connectivity optimization
searches for the optimal plan to reinforce the network structure so its connectivity preserves under
stochastic events – a central problem for a city planner who works on securing her residents multiple
paths to emergency shelters in case of natural disasters. This problem can be formulated as SMC and
is useful for disaster preparation [61], bio-diversity protection [19], internet resilience [29], social
influence maximization [32], energy security [2], etc. It requires symbolic reasoning (satisfiability)
to decide which roads to reinforce and where to place emergency shelters, and statistical inference
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(model counting) to reason about the number of paths to shelters and the probabilities of natural
disasters. Despite successes in many use cases, previous approaches [58, 16, 50, 60] found solutions
lack of certifiable guarantees, which are unfortunately in need for policy adoption in this safety-
related application. Besides, their surrogate approximations of connectivity may overlook important
probabilistic scenarios. This results in suboptimal quality of the generated plans. As application
domains for SMC solvers, this paper considers emergency shelter placement and supply chain network
management – two important stochastic connectivity optimization problems.

It is challenging to solve SMC because of their highly intractable nature (NPPP -complete) [46]
– still intractable even with good satisfiability solvers [7, 48, 9] and model counters [27, 22, 1, 11,
33, 13, 26]. Previous research on SMC solves either a special case or domain-specific applications
[5, 57, 64, 56, 23, 15, 51]. The special case is called the Marginal Maximum-A-Posterior (MMAP)
problem, whose decision version can be formulated as a special case of SMC [42, 40, 43, 31, 37, 47]
Both cases are solved by optimizing the surrogate representations of the intractable model counting
in variational forms [39, 34], or via knowledge compilation [14, 47, 44] or via sample average
approximation [35, 49, 52, 50, 20, 59, 62, 54].

Nevertheless, previous approaches either cannot quantify the quality of their solutions, or offer
one-sided guarantees, or offer guarantees which can be arbitrarily loose. The lack of tight guarantees
results in delayed policy adoption in safety-related applications such as the stochastic connectivity
optimization considered in this paper. Second, optimizing surrogate objectives without quantifying
the quality of approximation leads to sub-optimal behavior empirically. For example, previous
stochastic connectivity optimization solvers occasionally produce suboptimal plans because their
surrogate approximations overlook cases of significant probability. This problem is amplified when
combinatorial constraints are present.

We propose XOR-SMC, a polynomial algorithm accessing NP-oracles, to solve highly intractable
SMC problems with constant approximation guarantees (full version in [38]). These guarantees hold
with high (e.g. > 99%) probability. The strong guarantees enable policy adoption in safety-related
domains and improve the empirical performance of SMC solving (e.g., eliminating sub-optimal
behavior and providing constraint satisfaction guarantees). The constant approximation means that
the solver can correctly decide the truth of an SMC formula if tightening or relaxing the bounds on
the model count by a multiplicative constant do not change its truth value. The embedding algorithms
allow us to find approximate solutions to beyond-NP SMC problems via querying NP oracles. It
expands the applicability of the state-of-the-art SAT solvers to highly intractable problems.

The high-level idea behind XOR-SMC is as follows. Imagine a magic that randomly filters out half
models (solutions) to an SAT formula. Model counting can be approximated using this magic and an
SAT solver – we confirm the SAT formula has more than 2k models if it is satisfiable after applying
this magic k times. This magic can be implemented by introducing randomized constraints. The idea
is developed by researchers [53, 30, 28, 27, 22, 21, 36, 1, 11, 10]. In these works, model counting is
approximated with guarantees using polynomial algorithms accessing NP oracles. XOR-SMC notices
such polynomial algorithms can be encoded as SAT formulae. Hence, SAT-Modulo-Counting can be
written as SAT-Modulo-SAT (or equivalently SAT), when we embed the SAT formula compiled from
algorithms to solve model counting into SMC. The constant approximation guarantee also carries.

2 Preliminaries

2.1 Satisfiability Modulo Theories

Satisfiability Modulo Theory (SMT) determines the SATisfiability (SAT) of a Boolean formula, which
contains predicates whose truth values are determined by the background theory. SMT represents a
line of successful efforts to build general-purpose logic reasoning engines, encompassing complex
expressions containing bit vectors, real numbers, integers, and strings, etc [4]. Over the years, many
good SMT solvers are built, such as the Z3 [18, 8] and cvc5 [3]. They play a crucial role in automated
theorem proving, program analysis [24], program verification [55], and software testing [17].
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2.2 Model Counting and Probabilistic Inference

Model counting computes the number of models (i.e., satisfying variable assignments) to an SAT
formula. Consider a Boolean formula f(x), where the input x is a vector of Boolean variables, and
the output f is also Boolean. When we use 0 to represent false and 1 to represent true,

∑
x f(x)

computes the model count. Model counting is closely related to probabilistic inference and machine
learning because the marginal inference on a wide range of probabilistic models can be formulated as
a weighted model counting problem [12, 63].

2.3 XOR Counting

There is an interesting connection between model counting and solving satisfiability problems subject
to randomized XOR constraints. To illustrate this, hold x at x0, suppose we would like to know if∑

y∈Y f(x0,y) exceeds 2q . Consider the SAT formula:

f(x0,y) ∧ XOR1(y) ∧ . . . ∧ XORq(y). (1)
Here, XOR1, . . . , XORq are randomly sampled XOR constraints. XORi(y) is the logical XOR or the
parity of a randomly-sampled subset of variables from y. In other words, XORi(y) is true if and only
if an odd number of these randomly sampled variables in the subset are true.

Formula (1) is likely to be satisfiable if more than 2q different y vectors render f(x0,y) true.
Conversely, Formula (1) is likely to be unsatisfiable if f(x0,y) has less than 2q satisfying assignments.
The significance of this fact is that it essentially transforms model counting (beyond NP) into
satisfiability problems (within NP). An intuitive explanation of why this fact holds is that each
satisfying assignment y has 50% chance to satisfy a randomly sampled XOR constraint. In other
words, each XOR constraint “filters out” half satisfying assignments. For example, the number of
models satisfying f(x0,y) ∧ XOR1(y) is approximately half of that satisfying f(x0,y). Continuing
this chain of reasoning, if f(x0,y) has more than 2q solutions, there are still satisfying assignments
left after adding q XOR constraints; hence formula (1) is likely satisfiable. The reverse direction
can be reasoned similarly. This idea of transforming model counting problems into SAT problems
subject to randomized constraints is rooted in Leslie Valiant’s seminal work on unique SAT [53, 30]
and has been developed by a rich line of work [28, 27, 22, 21, 36, 1, 11, 10]. This idea has recently
gathered momentum thanks to the rapid progress in SAT solving [41, 9]. The contribution of this
proposal extends the success of SAT solvers to problems with even higher complexity, namely,
NPPP -complete SMC problems.

3 Problem Formulation

Satisfiability Modulo Counting (SMC) is Satisfiability Modulo Theory (SMT) [4] with model counting
as the background theory. A canonical definition of the SMC problem is to determine if there exists
x = (x1, . . . , xn) ∈ X = {0, 1}n and b = (b1, . . . , bk) ∈ {0, 1}k that satisfies the formula:

ϕ(x,b), bi ⇔

 ∑
yi∈Yi

fi(x,yi) ≥ 2qi

 ,∀i ∈ {1.., k}. (2)

Here each bi is a Boolean predicate that is true if and only if the corresponding model count exceeds
a threshold. Bold symbols (i.e., x, yi and b) are vectors of Boolean variables. ϕ, f1, . . . , fk are
Boolean functions (i.e., their input is Boolean vectors, and their outputs are also Boolean). We use 0
to represent false and 1 to represent true. Hence

∑
fi computes the number of satisfying assignments

(model counts) of fi. The directions of the inequalities do not matter much because one can always
negate each fi.

Our XOR-SMC algorithm obtains the constant approximation guarantee to the following slightly relaxed
SMC problems. The problem SMC(ϕ, f1, . . . , fk, q1, . . . , qk) finds a satisfying assignment (x,b) for:

ϕ(x,b) ∧

b1 ⇒

 ∑
y1∈Y1

f1(x,y1) ≥ 2q1

 · · · ∧

bk ⇒

 ∑
yk∈Yk

fk(x,yk) ≥ 2qk

 . (3)

The only difference compared to the full-scale problem in Eq. (2)) is the replacement of ⇔ with ⇒.
This change allows us to derive a concise constant approximation bound. We also mention that all the
applied SMC problems considered in this paper can be formulated in this relaxed form.
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4 The XOR-SMC Algorithm

The key motivation behind our proposed XOR-SMC algorithm is to notice that the XOR-Counting
Algorithm presented in Section 2.3 can be written as a Boolean formula due to the Cook-Levin
reduction. When we embed this Boolean formula into Eq. (3), the Satisfiability-Modulo-Counting
problem translates into a Satisfiability-Modulo-SAT problem, or equivalently, an SAT problem. This
embedding also ensures a constant approximation guarantee (see Theorem 1).

To illustrate the high-level idea, let us consider replacing each
∑

yi∈Yi
fi(x,yi) ≥ 2qi in Eq. (3)

with formula

fi(x,yi) ∧ XOR1(yi) ∧ . . . ∧ XORqi(yi). (4)

We denote the previous equation (4) as γ(fi,x, qi,yi). This replacement results in the Boolean
formula:

ϕ(x,b)∧ [b1 ⇒ γ(f1,x, q1,y1)] ∧ · · · ∧ [bk ⇒ γ(fk,x, qk,yk)] . (5)

We argue that the satisfiability of formula (5) should be closely related to that of formula (3) due to
the connection between model counting and satisfiability testing subject to randomized constraints
(discussed in Section 2.3). To see this, Eq. (5) is satisfiable if and only if there exists (x,b,y1, . . . ,yk)
that render Eq. (5) true (notice y1, . . . ,yk are also its variables). Suppose SMC(ϕ, f1, . . . , fk, q1 +
c, . . . , qk + c) is satisfiable (a.k.a., Eq. (3) is satisfiable when qi is replaced with qi + c). Let (x,b)
be a satisfying assignment. For any bi = 1 (true) in b, we must have

∑
yi∈Yi

fi(x,yi) ≥ 2qi+c.
This implies with a good chance, there exists a yi that renders γ(fi,x, qi,yi) true. This is due to the
discussed connection between model counting and SAT solving subject to randomized constraints.
Hence bi ⇒ γ(fi,x, qi,yi) is true. For any bi = 0 (false), the previous equation is true by default.
Combining these two facts and ϕ(x,b) is true, we see Eq. (5) is true.

Conversely, suppose SMC(ϕ, f1, . . . , fk, q1 − c, . . . , qk − c) is not satisfiable. This implies for
every (x,b), either ϕ(x,b) is false, or there exists at least one j such that bj is true, but∑

yj∈Yj
fj(x,yj) < 2qj−c. The first case implies Eq. (5) is false under the assignment. For

the second case,
∑

yj∈Yj
fj(x,yj) < 2qj−c implies with a good chance there is no yj to make

γ(fj ,x, qj ,yj) true. Combining these two facts, with a good chance Eq. (5) is not satisfiable.

In practice, to reduce the error probability the determination of the model count needs to rely on the
majority satisfiability status of a series of equations (4) (instead of a single one). Hence we develop
the full Algorithm in [38], which is a little bit more complex than the high-level idea discussed above.
The idea is still to transform the highly intractable SMC problem into solving an SAT problem
of its polynomial size, while ensuring a constant approximation guarantee. Please see the full
paper for the algorithm’s pseudo-code. We prove XOR-SMC has a constant approximation guarantee in
Theorem 1:

Theorem 1. Let 0 < η < 1 and c ≥ log(k + 1) + 1. Select T = ⌈((n+ k) ln 2− ln η)/α(c, k)⌉,
we have

• Suppose there exists x0 ∈ {0, 1}n and b0 ∈ {0, 1}k, such that SMC(ϕ, f1, . . . , fk, q1+c, . . . , qk+c)
is true. In other words,

ϕ(x0,b0) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x0,yi) ≥ 2qi+c

))
,

Then algorithm XOR-SMC (ϕ, {fi}ki=1, {qi}ki=1, T ) returns true with probability greater than 1− η.

• Contrarily, suppose SMC(ϕ, f1, . . . , fk, q1 − c, . . . , qk − c) is not satisfiable. In other words, for all
x ∈ {0, 1}n and b ∈ {0, 1}k,

¬

(
ϕ(x,b) ∧

(
k∧

i=1

(
bi ⇒

∑
yi

fi(x,yi) ≥ 2qi−c

)))
,

then XOR-SMC (ϕ, {fi}ki=1, {qi}ki=1, T ) returns false with probability greater than 1− η.
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