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Abstract
Dataset Distillation seeks to summarize a large
dataset by generating a reduced set of synthetic
samples. While there has been much success at
distilling small datasets such as CIFAR-10 on
smaller neural architectures, Dataset Distillation
methods fail to scale to larger high-resolution
datasets and architectures. In this work, we in-
troduce Dataset Distillation with Domain Shift
(D3S), a scalable distillation algorithm, made by
reframing the dataset distillation problem as a
domain shift one. In doing so, we derive a univer-
sal bound on the distillation loss, and provide a
method for efficiently approximately optimizing
it. We achieve state-of-the-art results on Tiny-
ImageNet, ImageNet-1k, and ImageNet-21K over
a variety of recently proposed baselines, including
high cross-architecture generalization. Addition-
ally, our ablation studies provide lessons on the
importance of validation-time hyperparameters
on distillation performance, motivating the need
for standardization.

1. Introduction
Dataset Distillation (Wang et al., 2018) is the task aiming
to condense a large dataset into a smaller set of synthetic
samples. The primary objective is to ensure that models
trained with these synthetic samples can deliver competi-
tive performance in comparison to models trained on the
complete dataset (Loo et al., 2023b; Zhao & Bilen, 2021;
Zhou et al., 2022; Maalouf et al., 2023b; Nguyen et al.,
2021c; Zhao et al., 2021). Diverging from conventional
core-sets or subset selection methods (Tukan et al., 2020;
Borsos et al., 2020), dataset distillation methodology entails
the generation of synthetic samples in a continuous space
rather than their selection from the original dataset. This
approach often leads to improved performance, particularly,
in scenarios with higher compression rates. Recognizing the
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crucial importance of compressing large datasets into more
manageable sizes, recent years have seen the introduction of
several algorithms, such as gradient or distribution match-
ing (Zhao et al., 2021; Zhao & Bilen, 2023), kernel-induced
points (Nguyen et al., 2021b;c), feature alignment(Wang
et al., 2022), and matching training trajectories (Cazenavette
et al., 2022).

Scaling dataset distillation to large datasets. While
dataset distillation techniques have shown impressive per-
formance across diverse datasets and neural networks, they
fall short when it comes to scaling to large datasets. This
may stem from their significant GPU memory demands,
inability to generate an informative synthetic dataset as the
distilled set sizes increase, and difficulty in adapting to large,
complex models; see (Yu et al., 2023) for more details.

To this end, in this work, we present Dataset Distillation with
Domain Shift (D3S), a scalable distillation algorithm based
on framing the dataset distillation problem as Domain Shift
one. The problem of domain shift/adaptation deals with the
test-time distribution differing from the training distribution,
resembling the purpose of data distillation in some sense.
While domain shift is well-studied independently of Dataset
Distillation (Ben-David et al., 2010; Li et al., 2018), this
work is the first to draw connections to Dataset Distillation.
In doing so, we achieve state-of-the-art performance on
large-scale datasets such as ImageNet-1K. Specifically, we
contribute the following:

1. We formalize the problem of dataset distillation as one
of Domain Shift, leading to a universal upper bound
on the distillation loss.

2. We introduce an efficient method of approximating and
minimizing this bound, leading to the D3S algorithm.

3. We verify D3S on large scale datasets such as
ImageNet-1k, surpassing the previous state-of-the-art
by up to 17.8%. 1

2. Related Work
Coresets (Borsos et al., 2020; Chen, 2009; Maalouf et al.,
2022a) are weighted subsets, selected from a larger train-

1Code available at https://github.com/yolky/d3s_
distillation

1

https://github.com/yolky/d3s_distillation
https://github.com/yolky/d3s_distillation


Large Scale Dataset Distillation with Domain Shift

ing dataset. Used in training, they yield outcomes similar
to the full dataset, expediting the training process signifi-
cantly. Coresets have been developed for diverse machine-
learning problems, such as k-means and k-median cluster-
ing (Maalouf et al., 2023a; Braverman et al., 2016; Huang
& Vishnoi, 2020; Jubran et al., 2020; Cohen-Addad et al.,
2022), regression (Maalouf et al., 2019; Meyer et al., 2022;
Maalouf et al., 2022b), and low-rank approximation (Cohen
et al., 2017; Braverman et al., 2020; Maalouf et al., 2020).
Specifically designed for neural networks, recent strategies
focus on choosing coresets before each training epoch to
align their gradients with those of the entire dataset (Mirza-
soleiman et al., 2020a;b; Tukan et al., 2023), then, the model
undergoes training on the chosen coreset. However, despite
theoretical support, these methods encounter limitations
when attempting to compute a coreset (once) for an entire
training procedure in practice.

Dataset distillation (Wang et al., 2018), akin to coresets,
involves generating synthetic samples instead of selecting
subsets from the training data. Here, synthetic samples are
freely learned in continuous space rather than selected from
the original dataset, and often excel in high compression
rate scenarios, yielding superior performance. Similar to
coresets, training on these synthetic samples aims to en-
hance speed and improve model performance (Zhao et al.,
2021; Zhao & Bilen, 2021; Loo et al., 2022b; Nguyen et al.,
2020; Loo et al., 2023b; Bohdal et al., 2020). Thus, dataset
distillation holds promise in diverse applications such as
continual learning (Sangermano et al., 2022; Zhou et al.,
2022) and neural architecture search (Such et al., 2019).
Dataset distillation methods vary, including approximate
matching of training trajectories and gradient with the full
dataset (Cazenavette et al., 2022; Zhao et al., 2021; Zhao &
Bilen, 2023) and direct unrolling of the model training com-
putation graph (Wang et al., 2018). Due to the high memory
and computation demands of unrolling, recent approaches
aim to approximate the unrolled computation (Nguyen et al.,
2021b;c; Loo et al., 2022b; 2023b; Zhou et al., 2022). Re-
cent work (Yin et al., 2023; Yin & Shen, 2023) propose sepa-
rating the task of image recovery from the task of extracting
information from the full dataset, leading to algorithms that
scale to full-sized ImageNet-1K (Deng et al., 2009).

2.1. Domain Shift

The Domain Shift problem deals with the scenario where
the training-time dataset differs in distribution from the test-
time dataset (Ben-David et al., 2010; Mansour et al., 2009).
This happens in many practical applications, either due to
non-stationary data causing domain drift, biased datasets, or
incorrect assumptions such as i.i.d. data. To tackle this prob-
lem, many methods have been employed, such as domain
adaptation methods, which aim to quickly modify models
to perform in novel unseen distributions (Zhao et al., 2019;

Nguyen et al., 2021a), or domain generalization problems
which aim to train a model on a source domain to transfer
to a target domain (Li et al., 2018).

A general probabilistic framework for domain adaptation
treats the source domain as a data distribution pS(x), with
marginal label distribution pS(y|x), and the target domain
analogously with pT (x) and pT (y|x) (Ben-David et al.,
2010). Typically, pT (y|x) is not known (otherwise one may
just train on the target domain directly), or there exist limited
samples from it, but pT (x) is known. A common method
to achieve domain invariance is to train a network θ to have
latent representations pθ(z|x) such that the marginal distri-
bution of pS(z) and pT (z) are similar, which can be done
via adversarial methods (Li et al., 2018), the Wasserstein
distance (Shen et al., 2018), the KL-divergence (Nguyen
et al., 2021a), or other methods (Zhao et al., 2019; Azizzade-
nesheli et al., 2019; Johansson et al., 2019). The problem is
well studied theoretically (Ben-David et al., 2010; Mansour
et al., 2009), leading to generalization bounds for the gen-
eral domain shift problem as well as special cases such as
covariate shift (Cortes et al., 2010; Johansson et al., 2019)
or label shift (Azizzadenesheli et al., 2019). In this work,
we use these bounds to motivate a general-purpose Dataset
Distillation algorithm.

3. Reframing Dataset Distillation as Domain
Shift

In this section, we reconsider the problem of dataset distilla-
tion, one which is typically viewed as a bilevel optimization
problem (Wang et al., 2018), we frame it as a domain shift
one. The key insight is to treat our distilled dataset distribu-
tion XSupport as our source domain distribution pS(x) and
our full training set XTrain as the target distribution pT (x),
and define pS(x, y) and pT (x, y) as the corresponding joint
image-label distribution. In doing so, we will show that
distributional similarity in both the image distribution and
the conditional label distribution is necessary for a good dis-
tilled dataset. While much prior work (Zhao & Bilen, 2023;
Yin et al., 2023) has used the notion of distributional sim-
ilarity between the distilled and full dataset to motivation
distillation algorithms, they lack theoretical justification,
which we provide here.

A key difference in the formulation of domain shift for
dataset distillation compared to standard domain shift is that
typically, pS(x, y) and pT (x, y) are fixed, and the training
algorithm which produces pθ(y|x) is modified, i.e. we aim
to develop a training procedure that creates networks that
generalizes between domains. In our setting, the training
algorithm which produces pθ(y|x) is fixed as standard
SGD, and and we have control over pS(x, y). This means
typical distribution shift methods cannot be directly applied,
and we must start from the fundamentals.
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Figure 1. A schematic of the D3S algorithm. D3S works by approximating the domain shift bound in Theorem 3.1 using Normal
approximations of intermediate representations of the full and distilled training set, on a network trained on the full dataset. Minimizing
the KL-divergence between these Gaussian distributions leads to the D3S loss.

Let p̂(y|x) be the predictive distribution of any classifier,
which typically in our case is the one given by a trained
network on pS(x, y). With lS = EpS

[− log p̂(y|x)] and
lT = EpT

[− log p̂(y|x)], i.e. the cross-entropy loss associ-
ated with the classifier p̂ evaluated on the source and target
distribution, respectively, we have the following bound on
the difference between the two losses:

Theorem 3.1. If − log p̂(y|x) is bounded by positive con-
stant C, we have:

lT ≤ lS +
C

2
√
2

√
DKL (pT (x, y)||pS(x, y))

= lS +
C

2
√

2

√
DKL (pT (x)||pS(x)) + DKL (pT (y|x)||pS(y|x))

Proof. See Appendix B

Where DKL refers to the KL-divergence. The proof of
this follows closely with that of proposition 2 Nguyen et al.
(2021a), however, note that we modify direct the distribu-
tions pT (x), as opposed to that of a latent representation
pT (z|x). Like Nguyen et al. (2021a), we can ensure that
− log p̂(y|x) is bounded by C by padding all labels with
a small positive value to avoid non-zeros, but because we
are interested in the classification accuracy in distillation as
opposed to the loss directly, we omit such padding. Addi-
tionally, for the case when DKL(pT ||pS) ≥ 2, we have a
tighter bound in Theorem B.1.

4. D3S
We now present Dataset Distillation with Domain Shift
(D3S), a method of efficiently optimizing the bound in The-
orem 3.1. We can split this bound into two parts: opti-
mizing DKL (pT (x)||pS(x)), which is the raw image dis-
tribution, which we discuss in Section 4.1, and optimizing
DKL (pT (y|x)||pS(y|x)), which is the conditional distribu-
tion of the labels given a datapoint, which we discuss in
Section 4.3.

4.1. Optimizing the Image Distribution

The estimation and optimization of KL divergences be-
tween two arbitrary continuous distributions is a long-
standing challenge. Typical methods include the use of low-
dimensional projections (Goldfeld & Greenewald, 2021),
adversarial methods such as GANs (Goodfellow et al., 2014;
Nowozin et al., 2016), or proxy metrics such as the MMD
(Gretton et al., 2012; Chen et al., 2016; Arjovsky et al.,
2017). These methods all require jointly iterating over sam-
ples from pT (x, y) and pS(x, y), which for large datasets
can be very slow. Therefore, we aim for a method that can
compute this KL divergence using only a set of summary
statistics. Multivariate normal distributions are fully defined
by their mean µ and covariance Σ, and therefore are a good
choice.

Therefore, we approximate pT (x) and pS(x) as multivari-
ate normal distributions over the distribution of latent rep-
resentations of a network trained on pT (x). Specifically,
let θT be a network of L layers trained on pT (x, y). Let
pS,θ(zl) =

∫
hl
θ(x)pS(x)dx, where hl

θ(x) = zl is function
which outputs the intermediate representations of θ at layer
l. Specifically, at the output of each convolution layer, we
approximate that distribution by C-dimensional multivariate
normal, with µT

l ∈ RCl , and ΣT
l ∈ RCl×Cl , where Cl is

the number of convolutional channels of that layer2. This
leads to a set of L µT

l and ΣT
l statistics which summarize

our full dataset, each corresponds to a layer of the network,
with T indicating that it is on the training dataset, and l
indexing the layer. These are precomputed in a single for-
ward pass through the trained network. We do the same
multivariate-normal approximation for each layer in our dis-
tilled set batch, leading to µS

l and ΣS
l . We then optimize

the KL-divergence formula for multivariate normals, plus a

2We use ⊺ for tranpose and T to denote the training/target set.
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Algorithm 1 Dataset Distillation with Distribution Shift Image Synthesis (D3S)
Input: A set of M trained teacher models: {fθm(x)}Mm=1

Precomputed full-dataset statistics for L layers of M models: {µT
m,l}

M,L
m,l=1, {ΣT

m,l}
M,L
m,l=1

Randomly initialized initial distilled dataset XS of size |S| and target one-hot labels yS
Scalar label loss coefficient α, learning rate η, iterations per batch K, batch size |B|

Output: Distilled dataset images XS

Initialize: running {µ̃S
m,l}

M,L
m,l=1 and {Σ̃S

m,l}
M,L
m,l=1 at 0 for ISU

for batch index b in {1, · · · ,
⌈ |S|
|B|
⌉
} do

Select new batch Xb ⊂ XS and labels yb ⊂ yS of size |B| and model index m← (b mod M )
for Iteration t in {1, · · · ,K} do {Main optimization loop}

Pass Xb through fθm , to obtain ŷb = fθm(Xb) and batch feature means and covariances {µS,b
m,l}Ll=1, {Σ

S,b
m,l}Ll=1

Update: {µ̂S,b
m,l}Ll=1 and {Σ̂S,b

m,l}Ll=1 with Equation (2)
Compute: LD3S via equation Equation (1) using {µ̂S,b

m,l}Ll=1 and {Σ̂S,b
m,l}Ll=1 ▷ See Algorithm 3 for more details

Update: Xb ← Xb − η ∂LD3S

∂Xb

end for
Update: µ̃S

m,l and Σ̃S
m,l for every model m and layer l with Equation (2)

end for
Return: XS ▷ See Algorithm 2 for the labelling procedure

small label alignment term from a cross-entropy loss on the
target labels Lx-ent, leading to the D3S loss:

LD3S =
1

2

L∑
l=1

(
log
|ΣT

l |
|ΣS

l |
+ Tr((ΣT

l )
−1ΣS

l )

+ (µT
l − µS

l )
⊺(ΣT

l )
−1(µT

l − µS
l )− Cl

)
+ αLx-ent(y, fθ(xS))

(1)

Where y is the target labels for the distilled dataset xS , and
fθ(xS) is the output of the trained network on that set. α
is a scalar value which we fix at 20.0. Note that we can
cache the expensive computation of ΣT−1

l and log |ΣT
l |,

since these are constant. This use of cached statistics has
also been in used prior work in domain adaptation (Adachi
et al., 2022).

Note that by doing this multivariate-normal approximation,
we actually are no longer directly optimizing the bound in
Theorem 3.1. Nonetheless, we hope that this is an accurate
proxy for it. The use of proxies for the hard-to-compute
KL-divergence has been used in prior literature (Chen et al.,
2016). Future work can study better methods for calculat-
ing and optimizing the bound in Theorem 3.1, or for more
expressive approximations than the one we use in D3S.

4.2. Batch Incremental Statistic Updating (ISU)

Optimizing Equation (1) requires optimization of statis-
tics µS

l and ΣS
l , which are functions of the whole distilled

dataset. For larger distilled sets, loading this into memory
is unfeasible, so we must batch the computation into batch

sizes |B|. However, optimizing µS,b
l and ΣS,b

l independently
for each batch does not take into account the contributions
from other batches. We propose a simple approximation that
mitigates this problem, which we call incremental statistic
updating (ISU). Specifically, we initialize running counters
of µ̃S

l = 0 and Σ̃S
l = 0. For the bth batch, we optimize

Equation (1) for T iterations, using µ̂S,b
l and Σ̂S,b

l given by:

µ̂S,b
l =

1

b
µS,b
l + (1− 1

b
)µ̃S

l

Σ̂S,b
l =

1

b
ΣS,b

l + (1− 1

b
)Σ̃S

l

(2)

We then update µ̃S
l ← µ̂S,b

l and Σ̃S
l ← Σ̂S,b

l after optimiz-
ing batch b. That is, µ̃S

l and Σ̃S
l are the running statistics,

and batch b only aims to fill the “missing” part that previous
batches did not contain.

4.3. Optimizing the Conditional Label Distribution

Optimizing DKL (pT (y|x)||pS(y|x)) is much more
straightforward. Assuming that the trained network used
in Section 4.1 to generate the trained dataset statistics
approximately learns pT (y|x), we can use it to label the
images synthesized from Section 4.1, akin to knowledge
distillation (Bucila et al., 2006; Hinton et al., 2015). This
choice is supported by literature suggesting that networks
learn the true Bayesian conditional layer distribution
pT (y|x) during training (Menon et al., 2020), meaning that
by using knowledge-distillation we match pS(y|x) with
pT (y|x). Following prior work, we additionally generate
labels for the distilled dataset under different augmentations.
Reframing the use of knowledge distillation in dataset
distillation as minimizing DKL (pT (y|x)||pS(y|x)) sheds
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Table 1. Large scale distillation results on Tiny-ImageNet, ImageNet-1K and ImageNet-21K, with the source model a ResNet-18, and
validating of ResNet-18s, 50s, and 101s. D3S outperforms prior work on all benchmarks.

Dataset IPC ResNet-18 ResNet-50 ResNet-101 Full Dataset
(ResNet-18)SRe2L CDA D3S (Ours) SRe2L CDA D3S (Ours) SRe2L CDA D3S (Ours)

Tiny-ImageNet 50 41.4± 0.4 48.7 56.4± 0.3 42.2± 0.5 49.7 56.8± 0.3 42.5± 0.2 50.6 56.8± 0.7
59.8± 0.1100 49.7± 0.3 53.2 58.8± 0.3 51.2± 0.4 54.4 59.8± 0.2 51.5± 0.3 55.0 60.3± 0.4

ImageNet-1K

10 21.3± 0.6 – 39.1± 0.3 28.4± 0.1 – 41.9± 0.7 30.9± 0.1 – 42.1± 3.8

69.8± 0.1
50 46.8± 0.2 53.5 60.2± 0.1 55.6± 0.3 61.3 65.8± 0.1 60.8± 0.5 61.6 65.3± 0.5
100 52.8± 0.3 58.0 63.0± 0.2 61.0± 0.4 65.1 68.2± 0.1 62.8± 0.2 65.9 68.9± 0.1
200 57.0± 0.4 63.3 64.6± 0.1 64.6± 0.3 67.6 69.5± 0.0 65.9± 0.3 68.4 70.1± 0.0

ImageNet-21K 10 18.5 22.6 26.9± 0.1 27.4 32.4 34.4± 0.0 27.3 34.2 35.1± 0.2
38.0± 0.120 20.5 26.4 28.5± 0.1 29.5 35.3 35.4± 0.0 31.8 36.1 36.0± 0.1

light as to its efficacy in previous works (Yin et al., 2023;
Cui et al., 2023).

4.4. Effectively leveraging multiple networks

Allen-Zhu & Li (2023) explains the efficacy of knowl-
edge/ensemble distillation under the “multi-view” theory:
large datasets contain multiple predictive features, and inde-
pendently trained networks are biased to only use a subset
of them each. With this in mind, we choose to use multi-
ple networks to label our distilled set in Section 4.3, akin
to ensemble distillation, we call this Ensemble Labelling
(ENL). However, this use of ensembling only superficially
addresses the multi-view problem, as if our images are syn-
thesized from a single network, they are prone to be biased
towards the predictive features used by that single network.
Therefore, for each batch of synthesized we choose one of
M trained models θm to optimize the next batch on, we
call this Ensemble Synthesis (ENS). In all experiments, we
use both ENL and per-batch ENS, with careful ablations of
these two design choices in Section 6.

4.5. Putting it all together

Combining the methods in the previous sections leads to our
method D3S. Simply put, we require M trained networks
trained on pT (x, s). Then, we measure the statistics µT

m,l

and ΣT
m,l in a single forward pass on the full dataset on these

networks. We then synthesize the images using Equation (1),
using ISU and ENS. This step corresponds to optimizing
DKL (pT (x)||pS(x)). Finally, we relabel our synthesized
images pS(x) using the same M models θm, using ENL,
which effectively minimizes DKL (pT (y|x)||pS(y|x)). The
pseudocode for the image synthesis step is provided in Al-
gorithm 1. Pseudocode for the image labeling step, and
more detailed pseudocode for image synthesis are available
in Appendix A.

5. Results
5.1. Large Scale Image Distillation

We validate the efficacy of D3S on large-scale distillation
tasks. We consider three tasks, ranging from smaller scale
to larger scale. Firstly, we have Tiny-ImageNet (Le & Yang,
2015), consisting of 200 classes at resolution 64× 64 with a
total of 100K images. As our medium scale dataset, we con-
sider ImageNet-1K (Deng et al., 2009), with 1000 classes
and roughly 1M images with resolution 224× 224. Finally,
we have our most challenging task, ImageNet-21K (Ridnik
et al., 2021), which has 10450 classes and ∼11M images
with resolution 224× 224. For baselines, we consider two
recently proposed large-scale dataset distillation algorithms:
SRe2L (Yin et al., 2023), and CDA (Yin & Shen, 2023),
and consider the task of distilling from ResNet-18s (run-
ning Algorithm 1 using M = 5 trained ResNet-18s), and
evaluate their performance on ResNet-18s, ResNet-50s, and
ResNet-101s. We report results in Table 1, using reported
results in prior work3. During validation, we use the same
training duration as prior work (Yin et al., 2023), to avoid
confounding factors. Indeed, in Section 7, we show that
parameters such as training time have a significant impact
on the performance of distillation algorithms, so we control
that variable here.

Note that our algorithm is designed with
large scale distillation in mind, which is why choices such
as using precomputed statistics µl,Σl of the full dataset
were made. This obviates the need to iterate over the
training dataset during distillation, which is infeasible for
datasets such as ImageNet-1K and 21K. Therefore, we
focus our efforts on benchmarking our algorithm on larger
ResNets on larger scale datasets and avoid the typical 3-5
layer ConvNet seen in prior art, and smaller, low-resolution
datasets such as CIFAR-10, and CIFAR-100 (Krizhevsky,
2009). With smaller datasets and models, more complex

3CDA does not report standard deviations in any of their re-
sults, nor specifies the number of runs used, so we report only the
(assumed) mean
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Table 2. Cross-architecture generalization of D3S on ImageNet-1K, IPC 50. We use a source model of ResNet-18s, and validate on
various other architectures. The performance gain on the smaller source model holds for all other architectures.

Algorithm Validation Model

(with RN-18) RN-18 RN-50 RN-101 DenseNet-121 RegNet-Y-8GF ConvNeXt-Tiny DeiT-Tiny

SRe2L 46.80 55.60 60.81 49.74 60.34 53.53 15.41
CDA 53.45 61.26 61.57 57.35 63.22 62.58 31.95

D3S (Ours) 60.21± 0.07 65.75± 0.07 65.28± 0.51 63.58± 0.03 67.19± 0.09 67.33± 0.06 36.86± 2.30

Table 3. Cross-architecture generalization of D3S on ImageNet-21K, IPC 20. We use a source model of ResNet-18s, and validate on
various other architectures.

Algorithm Validation Model

(with RN-18) RN-18 RN-50 RN-101 DenseNet-121 RegNet-Y-8GF

CDA 26.42 35.32 36.12 28.66 36.13
D3S (Ours) 28.53± 0.09 35.45± 0.02 36.03± 0.08 31.97± 0.02 36.42± 0.05

Goldfish
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Bee Barn Cauliflower Goldfish Bee Barn Cauliflower Goldfish Bee Barn Cauliflower

Icecream

IN
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SRe2L CDA D3S (Ours)

Figure 2. Visualization of distilled images from SRe2L, CDA, and D3S on Tiny-ImageNet (top row) and ImageNet-1K (bottom row).
D3S produces significantly more realistic images than the other two algorithms. More visualizations are available in Appendix E

techniques such as trajectory matching (Cazenavette et al.,
2022), bilevel-optimization, (Wang et al., 2018; Loo et al.,
2023a) and KRR methods (Nguyen et al., 2021b;c; Loo
et al., 2022a; Zhou et al., 2022) can be done, but these
do not scale to larger models or datasets, so we do not
compare to those methods here.

Table 1 shows the results. D3S outperforms prior work
on every benchmark, often by substantial margins. For ex-
ample, in Tiny-ImageNet-1K, at 50 images per class (IPC),
our algorithm achieves 56.4%, which is more than 8% bet-
ter than the prior best, and outperforms CDA with double
the number of images. Note that with the source models
achieving performances of 59.8% (see Table 8), we are
nearly saturating the performance of the full-dataset with
100 IPC. A similar story is seen in both ImageNet-1K and
ImageNet-21K, with our algorithms typically outperforming
competing methods with double the images on ResNet-18s.
The performance gains hold when validating on larger mod-
els, with our method still seeing similar performance gains
on ResNet-50s and ResNet-101s. While our method still
outperforms prior work on ImageNet-21K, the margin is
less. This suggests that the block-diagonal Gaussian ap-
proximation of the datasets latent features we describe in

Section 4.1 may be a poor approximation for more complex
datasets, and a richer one may be necessary.

5.2. Architecture Generalization

A key desiderata of dataset distillation is cross-arhictecture
generalization, which is the ability of distilled datasets to
train models of varying architectures to high accuracy. High
generalization suggests that an algorithm is not over-fitting
to any specific model and that the features selected by the
dataset distillation algorithm are generalizable. We verify
that D3S generates images which transfer to other architec-
tures such as DenseNet-121 (Huang et al., 2016), RegNet
(Xu et al., 2021), and ConvNeXt (Liu et al., 2022) in Table 2
and Table 3 for ImageNet-1K 50 per class, and ImageNet-
21K 20 per class, respectively, with our base distillation
model being the ResNet-18. The margin of performance
over prior work seen on ResNet-18s still holds for larger
models. We conjecture that this ability to transfer is be-
cause the bound in Theorem 3.1 is model-agnostic, that is,
it holds for any architecture or classifier. Indeed, this sug-
gests that using information-theoretic methods for dataset
distillation is a promising avenue to tackle the architecture
generalization problem and could be the subject of future
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Figure 3. Ablations of the design choices in D3S. Left shows the effect of using Ensemble Synthesis (ENS) and Ensemble Labelling (ENL)
at various model counts. Right shows the impact of using Incremental Statistic Updating (ISU) and the choice of model randomization
mode. ENS, ENL, and ISU with per-batch randomization provide the best performance.

work.

5.3. Image Visualization

We visually compare images generated by SRe2L (Yin et al.,
2023), CDA (Yin & Shen, 2023) and D3S in Figure 2 on
Tiny-ImageNet and ImageNet-1K. It is apparent that D3S
produces visually more realistic images than compared to
the other two algorithms. We hypothesize that this is due to
the richer set of statistics given by µl and Σl, as Σl contains
covariance information, in addition to the KL-divergence
loss in Equation (1). In comparison, SRe2L and CDA both
use a Batchnorm statistic-based loss. Not only is this loss
not well-founded in theory, it also only contains statistics
for convolutional channels independently, and ignores the
off-diagonal covariance which we have in Σl.

6. Ablations
D3S was designed with the goal of minimizing Theorem 3.1
over the whole distilled set, but the whole distilled set typ-
ically cannot fit in memory. As a result, we introduced
Incremental Statistic Updating (ISU) in Section 4.2 and
Equation (2), which aims to approximate the effect of full-
batch optimization with mini-batches. Here, we validate the
importance of this choice, along with the proposed use of
multiple trained models in Section 4.4. As stated in Sec-
tion 4.4, we can use these models in two ways: using the
ensemble for image synethesis (ENS), or only for labelling
(ENL). D3S uses both. In Figure 3a, we compare D3S with
both ENS and ENL to versions with either component re-
moved, varying the number of models used on the task of
distilling ImageNet-1K with 10 IPC, evaluated on ResNet-
18s. For the configuration with ENS but no ENL, we use
a single model to label the images synethesized by the M
networks. In Figure 3a, we use ISU in all experiments.
The configuration used in Section 5 is given by the green
circle, which uses five trained models. We see that using
multiple networks in all configurations leads to improved
performance, but using the models for both synthesis and

labelling outperforms using them for only labelling, which
is better than using them only for synthesis. Using multiple
modeling for both comes at no extra runtime cost aside from
the cost of training these networks, and should therefore be
the preferred option. Performance largely saturates after 4
models, however it is likely that slightly more performance
can be gained with even greater models.

Figure 3b shows the importance of using ISU. In this figure,
we compare D3S using both ENL and ENS, and varying
whether we use ISU or not. Additionally, as described in
Section 4.4, we randomize the model used for image synthe-
sis after optimizing every batch, which we call “per-batch”
randomization in Figure 3a, but one could alternatively con-
sider selecting a model at random after every optimization
step instead, which we call “per-iter” randomization. From
Figure 3b, we see that while ISU provides a significant im-
provement over the baselines when using a single model for
distillation, the benefits of ISU are only seen in the “per-
batch” randomization mode, with all other configurations
performing much worse. We hypothesize that the poor per-
formance of “per-iter” randomization is due to the difficulty
of optimizing the objective over multiple networks, as a
single batch must optimize simultaneously M objectives
(M being the model count), given the same number of op-
timization iterations as the per-batch method, which only
has to optimize one. Furthermore, the randomness of model
selection adds variance to the optimization. It is infeasible
to optimize Equation (1) without randomizing over models
as it would increase the runtime per iteration by a factor of
M and increase the memory requirements M -fold (without
gradient accumulation). Therefore, the proposed configura-
tion of D3S which uses ISU + per-batch randomization is
superior.

6.1. Important of the Multivariate KL

While prior work uses a BatchNorm-based loss based on
diagonal covariance Gaussians (Yin et al., 2023), ours uses
a Multivariate KL loss. We verify the choice of both the
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Figure 4. Effect of number of labeled augmentation epochs and training duration during validation for D3S on Tiny-ImageNet 50 IPC,
ImageNet-1K 10 IPC, and 50 IPC. Performance is highly sensitive to training duration, with longer training producing better results,
while less sensitive to the number of epochs that are labeled.

ImageNet-1K 10/Cls

CDA (BN Loss, Diagonal) 23.68±0.70%
BN Loss, Multivariate 24.00±0.38%

KL Loss, Diagonal 23.47±0.21%
D3S (KL Loss, Multivariate) 27.96±0.37%

Table 4. The Effect of using the KL loss vs. the BatchNorm loss,
and Multivariate vs. Diagonal Covariance. Using both the full
covariance and the KL divergence loss is necessary to achieve high
performance.

KL divergence and multivariate covariance is necessary in
Table 4. Here, we distill ImageNet-1K to 10/cls, without no
ENS or ISU to isolate the effect of the loss function. Addi-
tionally, we vary either using diagonal covariance estimates,
or the full covariance, and consider whether to use the Batch-
Norm loss used in (Yin et al., 2023), or the KL-divergence
proposed here. We see that both using the multivariate and
KL divergence is necessary to gain performance, as using
only one results in similar performance to CDA (∼24%),
whereas using multivariate KL gives 28%.

7. Undertraining and Overlabelling in Dataset
Distillation

Minimization of the conditional label distribution in Theo-
rem 3.1 requires labelling the image under different augmen-
tations. Following (Yin et al., 2023), this is done without
storing additional images by storing the data augmentation
parameters, such as the cropping coordinates, alongside the
label. But this is not without cost, as the labels and crop-
ping coordinates themselves additionally cost storage. As
these augmentations must be made for each training epoch,
the cost of storing these labels grows with E × |S| × C,
where E is the number of epochs of downstream training,
|S| is the size of the distilled dataset, and C is the num-
ber of classes. This can quickly outpace the size of the
distilled images themselves. For example, for ImageNet-
21K, with 10450 classes, in 15 epochs, we require ap-

proximately as much storage for the labels as the images
(15× 10450 ≈ 3× 224× 224). In order to make the com-
parison in Section 5, we followed prior work, generating
new labels for each epoch of training (300). But now, we
take a more critical approach and ask how many of these
labels we actually need.

To answer this question, we relabel our distilled datasets for
Tiny-ImageNet 50 IPC and ImageNet-1K 10 and 50 IPC
for fewer epochs: as few as 25, up to the standard 300, and
train on these distilled sets for up to 900 epochs, with results
shown in Figure 4. When the number of training epochs
exceeds the number of epochs which we have labels for, we
simply repeat the labels, but randomizing their order. The
standard configuration used in Section 5, with 300 epochs
for both labelling and training, respectively, is given by the
green circles in Figure 4. From Figure 4, we draw two main
conclusions:

We do not need many labels for high generalization. For
Tiny-ImageNet, we less than 1.5% performance drop when
labelling for only 25 epochs compared to 300 when training
for going from 60.2% to 58.9%, and for ImageNet-1K, we
only see performance drops when labelling for fewer than
100 epochs and training for long, which requires 3x less the
storage space to store the labels compared to labelling 300
epochs. This suggests that even with relatively few labelled
augmentations, models trained on these distilled datasets do
not overfit unless trained for long.

Training for long almost always improves performance.
By training for up to 900 epochs, we can achieve perfor-
mance on ImageNet-1K with 10 IPC of 50.1%, over 10%
higher than the performance achieved at 300 epochs, at
39.1%. Similarly, training on the 50 IPC distilled datasets
for 900 epochs sees 2.6% gain over training for 300, reach-
ing 62.7%, and likely training further will improve results.
This finding that longer training improves performance is
consistent with prior studying in knowledge-distillation
(Beyer et al., 2021), which finds mimicking teacher labels
for very longer under various augmentations leads to im-
proved performance. Unsurprisingly, as we are using a
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knowledge-distillation-like method for generating distilled
dataset labels, we see a similar finding in dataset distilla-
tion. A more concerning conclusion one could draw is the
sensitivity of dataset distillation results in response to these
parameters. These findings suggest that researchers should
be rigorous in adhering to standardized downstreaming train-
ing protocols in dataset distillation literature.

8. Discussion, Conclusions, and Limitations
In this work, we introduce D3S, a scalable distillation algo-
rithm based on the theory of distribution shift, and show its
efficacy in distilling large-scale datasets such as ImageNet-
1K. D3S is one method to optimize the bound in Theo-
rem 3.1, but requires approximations such as a multivariate
normal one described in Section 4.1. Future work could look
at more sophisticated methods of optimizing Theorem 3.1
or extending D3S to other domains such as language.

Additionally, in Section 4.2 and Section 4.4, we introduce
methods for computing statistics over the whole distilled
data and leveraging multiple networks, respectively, which
could prove useful in future distillation algorithms. Finally,
in Section 7 we report interesting findings of the sensitivity
of dataset distillation to training time, as well as a elucidated
the cost of storing multiple labels for distilled sets. Future
work could study more efficient label parameterizations.

Overall, our work provides a novel, effective, and theoret-
ically robust approach to dataset distillation, which could
serve as the basis for future distillation techniques.

Impact Statement
This work details with Dataset Distillation, which can make
training more efficient by reducing the energy requirements
of training models. Additionally, due to the widespread
use of deep learning, this also has other harmful societal
impacts, but none of these are particular to the topics studied
in this paper.
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Algorithm 2 Dataset Distillation with Distribution Shift ensemble labelling procedure

Input: M trained teacher models: fθm(x)
M
m=1

Distilled dataset made with Algorithm 3, XS

Validation batch size |B| and number of labelling epochs E
Output: Labels for E epochs: Y , augmentation auxiliary information Zaug, and batch indices I
Initialize labels Y ← [] as empty list
Initialize auxiliary augmentation info Zaug ← [] as empty list
Initialize batch indices I ← [] as empty list
for epoch e in {1, · · · , E} do

Initialize epoch labels Ye ← [] as empty list
Initialize auxiliary augmentation info Ze,aug ← [] as empty list
Initialize epoch batch indices I ← [] as empty list
for batch index b in {1, · · · ,

⌈ |S|
|B|
⌉
} do

Sample new batch Xb ⊂ XS of indices Ib
Apply augmentation to X̃b ← aug(Xb), and record augmentation parameters zb,aug
Set batch labels Xb = 0 ∈ RC, with C the number of classes
for model index m in {1, · · · ,M} do {Main optimization loop}
Yb ← Yb +

1
M fθm(X̃b) ▷ Add in logit space

end for
Append Yb to Ye

Append Zb,aug to Ze,aug
Append Ib to Ie

end for
Append Ye to Y
Append Ze,aug to Zaug
Append Ie to Y

end for
Return: Y , Zaug, I

A. Algorithm Details
A.1. Statistic Computation

We perform statistic computation after each convolutional layer (L = 17 for a ResNet-18 V1(He et al., 2015)). Specifically,
the output for a convoluation layer has dimension B × Cl × Hl × Wl, where B is the batch size, Cl the number of
convolutional channels, Hl and Wl, the height and width, respectively. We compute µl as by averaging over the B, Hl and
Wl dimensions, leading to a vector µl ∈ RCl . For Σl, we treat the output as B ×Hl ×Wl samples of dimensions Cl, and
compute the covariance leading to a matrix Σl ∈ RCl×Cl .

A.2. Image Synthesis

Algorithm 3 provides detailed steps of the the D3S Image Synthesis algorithm.

A.3. Label Generation

We use the same labelling procedure as prior work (Yin et al., 2023; Yin & Shen, 2023), which is adapted from Shen &
Xing (2022), with the modification that we use an ensemble of M = 5 models to generate the labels, and average the output
in logit space. This requires generated labels for E epochs on the distilled dataset under random augmentations (and storing
the augmentation parameters such as a scale, shift, etc.) in order to train the downstream model for E epochs. We provide
pseudocode in Algorithm 2.
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Algorithm 3 Dataset Distillation with Distribution Shift (D3S)

Input: M trained teacher models: fθm(x)
M
m=1

Precomputed full-dataset statistics for L layers of M models: {µT
m,l}

M,L
m,l=1, {ΣT

m,l}
M,L
m,l=1

Randomly initialized initial distilled dataset XS of size |S| and target one-hot labels yS
Scalar label loss coefficient α, Learning rate η, iterations per batch T , batch size |B|

Output: Distilled dataset images XS

for m ≤M, l ≤ L do
Initialize: µ̃S

m,l ← 0 ∈ RCl for 1 ≤ m ≤M, 1 ≤ l ≤ L

Initialize: Σ̃S
m,l ← 0 ∈ RCl×Cl for 1 ≤ m ≤M, 1 ≤ l ≤ L ▷ Initialize running distilled dataset statistics for ISU

end for
for batch index b in {1, · · · ,

⌈ |S|
|B|
⌉
} do

Select new batch Xb ⊂ XS and labels yb ⊂ yS of size |B|
Select model m← b mod M ▷ Pick which model we are optimizing on for the batch

for Iteration t in {1, · · · ,K} do {Main optimization loop}
Forward Xb through fθm , to obtain ŷb = fθm(Xb) batch mean and covariances {µS,b

m,l}Ll=1, {Σ
S,b
m,l}Ll=1

LD3S ← αLx-ent(y, fθ(xS) ▷ Set label alignment loss
for layer l in {1, · · · , L} do
µ̂S,b
m,l ←

1
bµ

S,b
m,l + (1− 1

b )µ̃
S
m,l

Σ̂S,b
m,l ←

1
bΣ

S,b
m,l + (1− 1

b )Σ̃
S
m,l ▷ Mix batch with running statistics for ISU

LD3S ← LD3S + 1
2

(
log

|ΣT
m,l|

|Σ̂S,b
m,l|

+ Tr(ΣT−1
m,l Σ̂

S,b
m,l) + (µT

m,l − µ̂S,b
m,l)

⊺ΣT−1
l (µT

m,l − µ̂S,b
m,l)− Cl

)
▷ Add KL

divergence for layer l
end for
Xb ← Xb − η ∂LD3S

∂Xb
▷ Optimize Xb

end for

for model m in {1, · · · ,M}, layer l in {1, · · · , L} do
µ̃S
m,l ← 1

bµ
S,b
m,l + (1− 1

b )µ̃
S
m,l

Σ̃S
m,l ← 1

bΣ
S,b
m,l + (1− 1

b )Σ̃
S
m,l ▷ Update running statistics for ISU

end for
end for
Return: XS
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Algorithm 4 Dataset Distillation with Distribution Shift soft label training procedure
Input: Randomly initialized network fθ(x) with parameters θ

Validation batch size |B| and number of training epochs E
Labels for E epochs: Y , augmentation auxiliary information Zaug and batch indices I , made with Algorithm 2
Knowledge distillation temperature T , learning rate η

Output: Trained model θ.
for epoch e in π{1, · · · , E} do {Note we randomly permute the epoch order}

Take Ye, Ze,aug and Ie corresponding to epoch e from Y , Zaug and I , respectively.
for batch index b in {1, · · · ,

⌈ |S|
|B|
⌉
} do

Take Yb, Zb,aug and Ib corresponding to batch b from Ye, Ze,aug and Ie, respectively.
Sample new batch Xb ⊂ XS according to indices Ib
Apply augmentation to X̃b ← aug(Xb, Zb,aug) ▷ Use same augmentation as in the labelling phase
Forward pass through network Ŷb ← fθ(X̃b)
L ← T 2DKL(softmax(Yb/T )||softmax(Ŷb/T )) ▷ Knowledge-Distillation loss
θ ← θ − η ∂L

∂θ
end for

end for
Return: θ

A.4. Distilled Dataset Validation

We use the labels from Algorithm 2, and train in a knowledge-distillation fashion for E epochs, with hyperparamters in
Table 10. We use a student-teacher temperature for knowledge distillation (Hinton et al., 2015) of T = 20 for all experiments,
consistent with prior work (Yin et al., 2023). It is possible that other choices of temperature perform better. Pseudocode for
training with these labels is available in Algorithm 4.

B. Theorem 3.1 details
We provide the proof of Theorem 3.1, which we restate here for convenience:

Theorem 3.1. If − log p̂(y|x) is bounded by positive constant C, we have, and we have lS = EpS
[− log p̂(y|x)] and

lT = EpT
[− log p̂(y|x)], then:

lT ≤ lS +
C

2
√
2

√
DKL (pT (x, y)||pS(x, y))

= lS +
C

2
√
2

√
DKL (pT (x)||pS(x)) +DKL (pT (y|x)||pS(y|x))

Proof. We have:

lT =

∫
− log p̂(y|x)pT (x, y)dxdy (3)

lS =

∫
− log p̂(y|x)pS(x, y)dxdy (4)

Then:

15



Large Scale Dataset Distillation with Domain Shift

lT =

∫
− log p̂(y|x)pT (x, y)dxdy (5)

=

∫
− log p̂(y|x) (pS(x, y)− pS(x, y) + pT (x, y)) dxdy (6)

=

∫
− log p̂(y|x)pS(x, y)dxdy +

∫
− log p̂(y|x) (pT (x, y)− pS(x, y)) dxdy (7)

= lS +

∫
− log p̂(y|x) (pT (x, y)− pS(x, y)) dxdy (8)

= lS +

∫
A
− log p̂(y|x) (pT (x, y)− pS(x, y)) dxdy −

∫
B
− log p̂(y|x) (pS(x, y)− pT (x, y)) dxdy (9)

Where we define A = {x, y|pT (x, y) ≥ pS(x, y)} and B = {x, y|pT (x, y) < pS(x, y)}, so the second integral is
Equation (9) is positive. Note also we have that 0 ≤ − log p̂(y|x) ≤ C. Continuing:

lT = lS +

∫
A
− log p̂(y|x) (pT (x, y)− pS(x, y)) dxdy −

∫
B
− log p̂(y|x) (pS(x, y)− pT (x, y)) dxdy (10)

≤ lS +

∫
A
− log p̂(y|x) (pT (x, y)− pS(x, y)) dxdy (11)

≤ lS + C

∫
A
(pT (x, y)− pS(x, y)) dxdy (12)

= lS + C

∫
A
(pT (x, y)− pS(x, y)) dxdy (13)

= lS +
C

2
δ (pT (x, y)||pS(x, y)) (14)

Where δ (pT (x, y)||pS(x, y)) is the Total-Variational distance defined as

δ (pT (x, y)||pS(x, y)) =
1

2

∫
|pT (x, y)− pS(x, y)| dxdy (15)

We then apply Pinsker’s inequality:

δ(p||q) ≤
√

1

2
DKL(p||q)

leading to:

lT ≤ lS +
C

2
δ (pT (x, y)||pS(x, y)) (16)

≤ lS +
C

2
√
2

√
DKL (pT (x, y)||pS(x, y)) (17)

= lS +
C

2
√
2

√
DKL (pT (x)||pS(x)) +DKL (pT (y|x)||pS(y|x)) (18)

When DKL(p||q) ≥ 2, Pinsker’s inequality is vacuous, but we can use the Bretagnolle–Huber inequality instead, leading to:
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Theorem B.1. If − log p̂(y|x) is bounded by positive constant C, we have:

lT ≤ lS +
C

2

√
1− e−DKL(pT (x,y)||pS(x,y))

= lS +
C

2
√
2

√
1− e−DKL(pT (x)||pS(x))−DKL(pT (y|x)||pS(y|x))

Proof. Follow the proof of Theorem 3.1 until Equation (14). Then apply the Bretagnolle–Huber inequality instead:

δ(p||q) ≤
√
1− e−DKL(p||q) (19)

lT ≤ lS +
C

2
δ (pT (x, y)||pS(x, y)) (20)

≤ lS +
C

2

√
1− e−DKL(pT (x,y)||pS(x,y)) (21)

= lS +
C

2
√
2

√
1− e−DKL(pT (x)||pS(x))−DKL(pT (y|x)||pS(y|x)) (22)

C. Additional Experiments
C.1. CIFAR-10/100

In this section we verify that our method also works for smaller datasets, namely CIFAR-10/CIFAR-100. As before, we
distill from a ResNet-18, and train on a ResNet-18. For CIFAR-100, we train for 800 epochs (similar to previous baselines),
and for CIFA0-10 we train for 1600. Table 5 shows that our method is competitive with other methods on smaller dataset
as well. We reiterate that D3S is primarily designed with large-scale distillation in mind, and that high performance on
CIFAR-10/100 is not the main goal. (Yin et al., 2023) and (Yin & Shen, 2023) do not report performance on CIFAR-10, so
we do not have baselines.

SRe2L CDA D3S (Ours)

10/cls 23.48±0.80 49.8 56.73±1.30
50/cls 51.35±0.79 64.4 69.65±0.26

Table 5. Distillation performance on CIFAR-100

D3S (Ours)

10/cls 44.93±1.36
50/cls 75.81±2.27

Table 6. Distillation performance on CIFAR-10

D. Implementation Details
D.1. Dataset Details

See Table 7 for details of the datasets used in this paper.

17



Large Scale Dataset Distillation with Domain Shift

Table 7. Details of Datasets
Tiny-ImageNet (Le & Yang, 2015) ImageNet-1K (Deng et al., 2009) ImageNet-21K (Ridnik et al., 2021)

Number of Classes 200 1000 10450
Training Set Size 100,000 1,281,167 11,060,223

Validation Set Size 10,000 50,000 522,500
Resolution 64× 64 224× 224 224× 224

Source Model Accuracy 59.83± 0.03% 69.83± 0.03% 38.06± 0.02%

Table 8. Hyperparameters used for training source models
Parameter Tiny-ImageNet ImageNet-1K ImageNet-21K

Model ResNet-18 ResNet-18 ResNet-18
Initialization Random Random Pretrained on IN-1K

Optimizer SGD SGD AdamW
Learning Rate/Momentum 0.2/0.9 0.1/0.9 3e-4

Weight Decay 1e-4 1e-4 1e-4
Batch Size 256 256 1024

Augmentation RandomResizedCrop + Horizontal Flip RandomResizedCrop + Horizontal Flip CutoutPIL, RandAugment
LR Scheduler CosineAnneal, Linear warmup = 5 StepLR (decay 0.1 every 30 epochs) OneCycleLR

Epochs 50 90 80
Accuracy 59.83± 0.03% 69.83± 0.03% 38.06± 0.02%

D.2. Source model training details

We use M = 5 models for all experiments, except where otherwise stated such as in Section 6. For training these models we
have the configurations in Table 8.

These configurations largely follow prior work. We use the library from Ridnik et al. (2021) for code for training the
ImageNet-21K models. For ImageNet-1K, we use the Pytorch library code for training. For Tiny-ImageNet ResNet-18s, we
replace the first 7x7 convolution with a 3x3 one, and remove the first max-pool layer, consistent with prior work (Yin et al.,
2023).

D.3. Image Synthesis Details

We provide hyperparameters for image synthesis in Table 9. For the augmentation, we use the recently propose curriculum
augmentation Yin & Shen (2023), where we gradually increase the size of magnitudes of the augmentation linearly up to the
full scale. The full scale is the standard RandomResizeCrop with max scale 1.0 and min scale 0.08.

Table 9. Hyperparameters used for Image Synthesis
Parameter Tiny-ImageNet ImageNet-1K ImageNet-21K

Optimizer Adam Adam Adam
Adam β1, β2 0.5/0.9 0.5/0.9 0.5/0.9

Initial LR 0.4 0.25 0.05
Batch Size 200 200 200

Augmentation RandomResizedCrop + Horizontal Flip RandomResizedCrop + Horizontal Flip RandomResizedCrop + Horizontal Flip
LR Scheduler CosineAnneal CosineAnneal CosineAnneal

Iterations per Batch (K) 4000 1000 1000

D.4. Validation Details

Table 10 shows the hyperparameters used during validation of the distilled dataset, used for tables 1, 2 and 3. We use a fixed
temperature of T = 20 for the knowledge-distillation loss during validation. We report the average and standard deviation
over n = 5 indepedently trained networks for Table 1 for ResNet-18s, and n = 3 for other models. For results in Section 7,
the epoch parameter is varied.
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Table 10. Hyperparameters used for Validation
Parameter Tiny-ImageNet ImageNet-1K ImageNet-21K

Optimizer SGD AdamW AdamW
Learning Rate/Momentum 0.2/0.9 1e-3 2e-3

Weight Decay 1e-4 1e-4 1e-4
Batch Size 64 128 128

Augmentation RandomResizedCrop + Horizontal Flip RandomResizedCrop + Horizontal Flip RandomResizedCrop + Horizontal Flip
LR Scheduler CosineAnneal CosineAnneal CosineAnneal

Epochs 100 300 300

D.5. Hardware

All experiments were run on either single 4090s with 24GB VRAM or single RTX 6000 Adas with 48GB VRAM.

D.6. Runtime and Memory Consumption

Image synthesis on Tiny-ImageNet consumes 7729MiB, and for ImageNet-1K and ImageNet-21K 9851MiB for batch
sizes of 200 used for all experiments. For 1000 iterations, it takes 155s for Tiny-ImageNet and 170s for ImageNet-1K and
ImageNet-21K on a RTX 6000 Ada. Combined with Table 9, the procedure takes a total of 17.2h for Tiny-ImageNet 100
IPC, 47.2h for ImageNet-1K 200 IPC, and 50.0h for ImageNet-21K 20IPC.

D.7. Training Time Experiments

This section contains details of the experiments in Section 7. As seen in Algorithm 2, we generate labels for E epochs,
which is 100 for Tiny-ImageNet or 300 for ImageNet-1K/21K (see table Table 10. For the experiments in Section 7 we vary
the number of epochs labelled, and the training epochs. Let the training duration be ET and the and the labelled epochs be
EL. If we have EL = ET (the default configuration), then we train for a random permutation of the epochs, i.e. the epochs
maybe labelled [0, 1, 2, 3, 4] for EL = 5 but we may train in the order [3, 2, 1, 0, 4], and we randomize over runs to add
randomness. In the case that EL > ET , we take the first EL epochs as the random permutation. E.g. if EL = 5 and ET = 3,
then we might train for epoch indices [1, 0, 4]. When EL < ET , we concatenate random permutations of the EL labelled
epochs until we reach ET . E.g. if EL = 5 and ET = 10, then we might train for epoch indices [4, 2, 1, 3, 0, 4, 0, 3, 2, 1].
This requires a small modification of the code from (Shen & Xing, 2022).

E. Image Visualization
Here we provide visualizations of distilled images from Tiny-ImageNet, ImageNet-1K, and ImageNet-21K.
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Figure 5. Visualization of distilled images from D3S on Tiny-ImageNet
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Figure 6. Visualization of distilled images from D3S on ImageNet-1K
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Figure 7. Visualization of distilled images from D3S on ImageNet-21K
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