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ABSTRACT

This paper presents Mechanistic Neural Networks, a neural network design for
machine learning applications in the sciences. It incorporates a new Mechanistic
Block in standard architectures to explicitly learn governing differential equations
as representations, revealing the underlying dynamics of data and enhancing
interpretability and efficiency in data modeling. Central to our approach is a novel
fast, parallel and scalable Relaxed Linear Programming Solver (NeuRLP) using
a differentiable optimization approach for ODE learning and solving. Mechanistic
Neural Networks demonstrate their versatility for scientific machine learning
applications on tasks from equation discovery to dynamic systems modeling. 1

1 INTRODUCTION

In this paper, we introduce Mechanistic Neural Networks, a new neural network design that contains
one or more Mechanistic Block that explicitly integrate governing equations as symbolic elements
in the form of ODE representations. To efficiently train them, we revisit classical results on linear
programs (Young, 1961; Rabinowitz, 1968) and develop a GPU-friendly solver. Together, they enable
automating modeling and discovery of best-fitting mechanisms from data in an efficient, scalable,
and interpretable way.

Mechanistic networks are composed of two parts: a mechanistic encoder and a solver. The output
of the mechanistic encoder is an explicit symbolic “ODE representation” Ux of the general form

Ux : F (α, x) = 0, (1) where α = fθ(x) (2)

Ux is a family of ordinary differential equations F (α, x) = 0, governed by learnable coefficients
α that may be time-dependent. Coefficients α are obtained from the mechanistic encoder fθ, and
parameters θ are trained to optimally model the evolution of data x = [x1, ..., xt] over time.

When training ODE representations we must simultaneously learn the precise form of multiple
independent ODEs (or independent systems of ODEs) and solve them over several time steps.
Sequential numerical solvers such as Runge-Kutta used in Neural ODEs (Chen et al., 2018) are
simply too inefficient for solving large batches of independent ODEs as required for Mechanistic
Neural Networks.

With Mechanistic Neural Networks, we address both challenges directly in a native neural network
context, as shown in Figure 1. We propose a novel neural Relaxed Linear Programming Solver
(NeuRLP) for ODEs based on differentiable optimization methods (Amos and Kolter, 2017; Young,

1Source code is available at https://github.com/alpz/mech-nn
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Neural ODE,UDE SINDy Neural Operators Mech. NN
Chen et al. (2018) Brunton et al. (2016) Li et al. (2020c)

Rackauckas et al. (2020)

Linear discovery – ✓ – ✓
Nonlinear discovery – – – ✓
Physical parameters ✓ ✓ – ✓
Forecasting ✓ – ✓ ✓
Interpretability – ✓ – ✓
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↵ = [ci,t,x,�k,t,x, bt,x,!x, st]

Figure 1: Mechanistic Neural Networks are a new neural network design that learn explicit ODE
representations for prediction and discovery.

1962). NeuRLP has three critical advantages over traditional solvers, leading to more efficient
learning over longer sequences than traditional sequential solvers. These are: (i) step parallelism,
i.e., being able to solve for hundreds of ODE time steps in parallel, allowing for faster solving and
efficient gradient flow; (ii) batch parallelism, where we can solve in parallel on GPU batches of
independent systems of ODEs in a single forward pass; (iii) learned step sizes, where the step sizes
are differentiable and learnable by a neural network. This makes the NeurRLP solver ideal for training
efficiently neural networks that model complex dynamic systems.

Relevance for scientific applications. Machine Learning for dynamical systems has adopted
specialized methodologies such Physics-Informed Neural Networks (Raissi et al., 2019) for solving
PDEs, neural operators (Li et al., 2020c) for prediction, linear regression with basis functions for
discovery (Brunton et al., 2016), Neural ODEs (Chen et al., 2018) for dynamical systems. Being able
to weave in governing equations in neural representations and solve them efficiently, Mechanistic
Neural Networks potentially offer a stepping stone for broad scientific application of machine learning
(Figure 1). We demonstrate this with experiments on tasks from each of above settings.

2 MECHANISTIC NEURAL NETWORKS

Formally, a Mechanistic Network contains a mechanistic encoder in a mechanistic block that takes
an input x and generates a differential equation Ux as representation according to equations 2 and 1.
The family of ordinary differential equations Ux : F (α, x) = 0

Linear Terms︷ ︸︸ ︷
d∑

i=0

ci(t;x)u
(i) +

Non-Linear Terms︷ ︸︸ ︷
r∑

k=0

ϕk(t;x)gk(t, u, u
′, . . .) = b(t;x), (3)

represents a broad parameterization for the ODE representation, with an arbitrary number d of linear
terms with derivatives u(i) and an arbitrary number r of nonlinear terms gk including derivatives
u(k), k = 1, ..., d. The coefficients ci(t;x), ϕk(t;x) for the linear and nonlinear terms are functions
that possibly depend on the time variable t (thus non-autonomous ODEs), and on input x.

After computing the ODE representation Ux, we solve it with our specially designed parallel
solver NeuRLP for n time steps and get a numerical solution as output of the mechanistic block:
z = solve_ode(Ux, ωx, n). ωx includes initial or boundary conditions and variables controlling
step sizes that may be specific to the input x. ωx can be learned by NeurRLP, unlike traditional solvers.

2
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Equations 2– 3 provide the mathematical description of ODE representation in mechanistic blocks in
continuous time. To implement them in a neural network we discretize the continuous coefficients,
parameters, function values, and derivatives in the ODE 3,

d∑
i=0

ci,t,xu
(i)
t +

r∑
k=0

ϕk,t,xgk(t, ut, u
′
t, . . .)) = bt,x, s.t. [ut=1, u

′
t=1, ...] = ωx (4)

at discrete times t = 1, ..., n and with n − 1 time steps st. Steps st do not have to be uniformly
equal, and can either be a hyperparameter or learned. Similarly, other conditions in ωx can be
a hyperparameter or learned to best explain the data evolution. In the general case, we learn st
and ωx and parameterize all coefficients of ODE representation α = [ci,t,x, ϕk,t,x, bt,x, st, ωx] with
a standard network fθ(x) (2). Coefficients α are obtained with a single forward pass for times
t = 1, ..., n. During training, we need to compute gradients ∂f

dα ,
∂f
dθ through the ODE solver. This is

an expensive operation for large systems which calls for an efficient, neural-friendly ODE solver.

3 NEURAL RELAXED LINEAR PROGRAMMING ODE SOLVER

We present the Neural Relaxed Linear Programming (NeuRLP) solver, a novel and efficient al-
gorithm for solving batches of independent ODEs. We show how to solve linear ODEs with
differentiable quadratic programming with equality constraints motivated from a linear programming
method (Young, 1961) for linear ODEs.

We start with discretized linear ODEs ignoring the nonlinear terms gk in equation 4, that is∑d
i=0 ci,t,xu

(i)
t = bt,x, s.t. [ut=1, u

′
t=1, ...] = ωx. One can solve linear ODEs by solving cor-

responding linear programs of the form
minimize δ⊤z
subject to Az ≥ β,

(5)

where z is the variable that we optimize for and A ∈ Rm×nv and β ∈ Rm represent the (inequality or
equality) constraints and δ ∈ Rnv represents the cost of each variable. In the following we describe
the constraints, variables and the optimization objective.

We have three types of constraints: the equality constraints that define the ODE itself, initial value
constraints, and smoothness constraints for the solution of the linear program.

ODE equation constraints specify that at each time step t the left-hand side of the discretized ODE
is equal to the right-hand side, e.g., for a second-order ODE,

c2,tu
′′
t + c1,tu

′
t + c0,tut = bt,∀t ∈ {1, . . . , n}. (6)

Initial-value constraints specify constraints on the function or its derivatives for the initial conditions
at t = 1, e.g., that they have to be equal to 0, as u1 = 0, u′

1 = 0.

Smoothness constraints ensure the solutions of the linear program to the function and derivative
values at each time step are ϵ-close in neighboring locations. We determine the values in neighboring
locations by Taylor approximations up to error ϵ. We define one Taylor approximation for the
forward-time evolution of the ODE, t : 1 → n, and one for the backward-time, t : n → 1. If
we are interested in a second-order ODE for instance, we have as Taylor expansions, with ϵ ≥ 0:

|ut + stu
′
t +

1
2
s2tu

′′
t − ut+1| ≤ ϵ

|stu′
t +

1
2
s2tu

′′
t − stu

′
t+1| ≤ ϵ

}
Forward

(7)

|ut − stu
′
t +

1
2
s2tu

′′
t − ut−1| ≤ ϵ

| − stu
′
t +

1
2
s2tu

′′
t + stu

′
t−1| ≤ ϵ

}
Backward

(8)

Variables. In z we introduce three types of variables. First, we introduce per time step t ∈ {1, . . . , n}
one variable z0t that corresponds to the value of the function at time t, that is ut. Second, we introduce
per time step t ∈ {1, . . . , n} one variable zit that corresponds to the value of the i-th function
derivative at time t for all derivative orders, that is u(i)

t , i = 1, ..., d. Third, we introduce a single
scalar variable ϵ shared for all time steps that corresponds to the error of the Taylor approximation for
all function values and derivatives.

Optimization objective The objective of the linear program is to minimize the smoothness error ϵ.
Solving the linear program, we obtain in z the function values and derivatives that satisfy all the ODE
equality and inequality constraints, including ϵ-smoothness.

3
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Figure 2: ODE discovery architecture (top) and learned ODE vector fields for MNN (bottom left)
and SINDy (bottom right) with non-linear tanh.

Efficient Quadratic relaxation and extension. Solving ODEs using the LP method inside neural
networks has three main obstacles: 1) the solutions to the LP are not continuously differentiable
(Wilder et al., 2019), 2) solving linear programs is generally done using specialized solvers that do
not take advantage of GPU parallelization and are too inefficient for neural networks applications,
and 3) The matrices A are highly sparse where dense methods (such as from Amos and Kolter
(2017)) are infeasible for large problems. We solve these problems by reframing the problem as an
equality constraint-only quadratic program with regularization to ensure boundedness and the use
of sparse methods for large problems. We cover further details including error analysis, complexity
and numerical validation in A.4, A.2, A.3. We also extend the LP method to nonlinear ODEs by
combining learning with solving in A.6. The presentation above applies the quadratic approximation
to the linear program 5. The same approximation can also be applied to the dual of 5 and in practice
can lead to a more efficient implementation.

4 EXAMPLE APPLICATIONS IN SCIENTIFIC ML

We benchmark Mechanistic Networks in five different settings including discovery of equations, PDE
solving, , PDE solving, n-body prediction, physical parameters discovery and time series forecasting
(with the last two in the appendix) from scientific ML applications.

Table 1: Solving 1d KdV(Brandstetter
et al., 2022) with N train samples.

Method RMSE

N=512 N=256

ResNet 0.0223 0.0392
ResNet-LPSDA-1 0.0200 0.0284
ResNet-LPSDA-2 0.0111 0.0185
ResNet-LPSDA-3 0.0155 0.0269
ResNet-LPSDA-4 0.0113 0.0184

FNO 0.0276 0.0407
FNO-LPSDA 0.0055 0.0132
FNO-AR 0.0030 0.0058
FNO-AR-LPSDA 0.0010 0.0037

Mechanistic NN (50 sec) 0.0039 0.0086

ODE Discovery. Gold standard in discovering governing
equations is SINDy (Brunton et al., 2016; Rudy et al.,
2017) which models the problem as linear regression
on a library of candidate nonlinear basis functions Θ(x).
SINDy is constrained to problems where the governing
equations are linear combinations of (nonlinear) basis
functions. Similar to Brunton et al. (2016), we model
nonlinear ODEs d

dtx(t) = F(x(t)), from equation 1
with polynomial basis but followed by a further nonlinear
transformation depending on the problem (see B.3,C.1 for
details). We experiment with the following ODE systems:
(1) the Lorenz system, and (2) ODEs with complex
nonlinear function of the form d

dtx(t) = F (Ax(t)),
where A is a linear transformation and F is a nonlinear
function such as tanh, and (3) ODEs with rational
function derivatives, d

dtx(t) = p(x)
q(x) , where p and q are

polynomials. ODEs with non-linear functions cannot be modeled by the approach employed by
SINDy. Results are shown in Figure 2 and Figures 6 and 7 in the appendix. For the Lorenz system
which can be described as linear basis combinations, both SINDy and variants, as well as Mechanistic
NNs recover the exact equations. For complex nonlinear and rational function ODEs which requires

4
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Figure 3: Solving 1d KdV: comparison of ground truth and MNN prediction for 100 seconds.

nonlinear functions of basis combinations, SINDy exhibits poor generalization and overfits to the
training domain. See appendices B.3, C.1 for more details and discovered equations.

PDE Solving. FNO (Li et al., 2020c) and Lie-group augmented models (Brandstetter et al., 2022) are
strong state-of-the-art baselines for PDE solvers. FNO models are deep operator architectures whose
intermediate layers perform spectral operations on the input. Lie-group augmentations for PDEs
exploit that PDEs conform by definition to certain Lie symmetries to generate new training data.

We adapt Mechanistic NNs from ODEs to PDEs. For 1-d PDEs, we simply model spatial dimensions
with independent ODEs. With a spatial dimension of 256 and prediction over 10 time steps, we
learn 256 ODEs for 10 time steps each. For 2-d PDEs we use a neural operator model with stacked
MNN layers. We provide further details of the model and training and visualizations in appendix C.5.
Following Brandstetter et al. (2022), we compare relative MSE loss using Lie-symmetry augmented
ResNet, FNO and autoregressive FNO on the 1-d KdV equation (Figure 3) and with FNO on 2-d
Darcy Flow (Li et al., 2020c) (Table 2 in the appendix).

We use 50 second 1-d KdV equation data and predict for 100 steps. We use 10 time steps of history
as opposed to the baselines which use 20 time steps. We also show visualizations for KdV prediction
in Figure 3 on a 100 sec dataset. Mechanistic NNs are competitive with FNO and augmented models
without using any specialized adaptions for stable rollout (Brandstetter et al., 2022).

x
y

t

Earth GT
Earth (MNN)
Mars GT
Mars (MNN)

Method Eval. MSE

ANODE 0.0470
NODE 0.0485
SONODE 12.200

MNN 0.0034

Figure 4: Ephemerides experiment predictions for
orbits of Earth, Mars (left) for 1000 days (2000
steps) and eval loss (right). Showing x,y coordi-
nates with time for visualization.

N-body prediction. The task is to predict fu-
ture locations and velocities of all bodies in a
system given past observations of locations and
velocities. We use Neural ODEs (Chen et al.,
2018; Norcliffe et al., 2020) as a gold standard
baseline and an MNN with second-order ODEs
for our model. We use planetary ephemerides
data from the JPL Horizons database for solar
system dynamics (Giorgini, 2015). The data is
positions and velocities for the 25 largest bodies
in the solar system from 1980 to 2015 with a
step size of 12 hours. We use the first 70% of
the data for training and the rest for evaluation.
At training the MNN model predicts the next 50
steps given 50 input steps. At testing we rollout
predictions for 2000 steps given the starting 50
steps. See prediction rollouts for Earth and Mars
in and evaluation losses in Figure 4. Mechanistic NNs improve Neural ODEs significantly by at least
a factor of 10.

5 CONCLUSION

Mechanistic Neural Networks (MNNs) are an approach for modeling complex dynamical and
physical systems in terms of explicit governing mechanism. MNNs represent the evolution of
complex dynamics in terms of families of differential equations making them flexible and able to
model the dynamics of complex systems combined with a specialized solver. We demonstrate the
effectiveness of the method with experiments in diverse settings.
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A FURTHER DETAILS FOR SECTION 3

A.1 LINEAR PROGRAMS

A linear program in the primal form is specified by a linear objective and a set of linear constraints.
minimize ctx

subject to Ax = b,

x ≥ 0

(9)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm the following specifies a linear program. Matrix A and vector b
define the equality constraints that the solution for x must comply with. ctx is a cost that the solution
x must minimize. The linear program can also be written in dual form,

minimize btλ

subject to Atλ = c.
(10)

A.2 ERROR ANALYSIS

We consider the case of a second order linear ODE with an N -step grid. For simplicity we consider a
fixed step size h, i.e., st = h.

c2u
′′ + c1u

′ + c0u = b, (11)
Let u(t) denote the true solution with initial conditions u(0) = r, u′(0) = s.

Define

ũt+1 = ut + hu′
t +

1

2
h2u′′

t , (12)

ũ′
t+1 = hu′

t +
1

2
h2u′′

t , (13)

as Taylor approximations and ũ′′
t is obtained by plugging the approximate values in the ODE 11.

We consider the following Taylor constraints (expressions 7 8) for the function and its first derivative.
We use the absolute-value error inequalities for conciseness, the case for equalities is similar.

|ũt+1 − ut+1| ≤ ϵ (14)

|hũ′
t+1 − hu′

t+1| ≤ ϵ (15)

Step t = 1. From Taylor’s theorem we have that for the first step, t = 1,
u(h) = ũ1 +O(h3) (16)

u′(h) = ũ′
1 +O(h2) (17)

From 14, 15
u1 = ũ1 +O(ϵ+ h3) (18)

u′
1 = ũ′

1 +O(ϵ/h+ h2) (19)

This implies a local error at each step of O(ϵ+ h3) in ut.

Step t = 2. To estimate the error at step 2 we need to estimate the error in u′′
1 at step 1.

For u′′
1 we get the error by multiplying the error in u1 by c0

c2
and that of u′

1 by c1
c2

and adding.

u′′
1 = ũ′′

1 +O(
c1
c2

(
ϵ

h
+ h2)) +O(

c0
c2

(ϵ+ h3)) (20)

Notice that u′′
1 always appears with a coefficient of h2. Assuming c0

c2 is O( 1
h2 ) and c1

c2 is O( 1h ) we
have

h2u′′
1 = h2ũ′′

1 +O(ϵ+ h3) +O(ϵ+ h3). (21)

Each of the terms u1, hu
′
1, h

2u′′
1 contribute an error of O(ϵ+ h3) to u2 plus an additional error of

O(h3) arising from the Taylor approximation and an error of ϵ arising from the inequalities 14, 15.
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N Steps. Proceeding similarly, after N steps we get a cumulative error of O(N(ϵ+ h3)).

For ϵ ≈ h3 and N ≈ 1/h, we get an error of O(h2) for N -steps under the assumption that c0
c2 is

O( 1
h2 ) and c1

c2 is O( 1h ).

The analysis implies that the cumulative error can become large for equations where c0
c2 , c1

c2 are large.
Or, in little omega notation, c0

c2 is ω( 1
h2 ) and c1

c2 is ω( 1h ) .

A.3 EFFICIENT QUADRATIC RELAXATION

Solving ODEs using the LP method inside neural networks has three main obstacles: 1) the solutions
to the LP are not continuously differentiable (Wilder et al., 2019) with respect to the variables A, b, c
that interest us and 2) solving linear programs is generally done using specialized solvers that do not
take advantage of GPU parallelization and are too inefficient for neural networks applications, and 3)
The matrices A are highly sparse where dense methods for solving and computing gradients (such as
from Amos and Kolter (2017)) are infeasible for large problems.

We can avoid the non-differentiability of linear programs by including a diagonal convex quadratic
term (Wilder et al., 2019) as a regularization term, converting inequalities into equalities by slack vari-
ables and removing non-negativity constraints (Pervez et al., 2023) to obtain an equality-constrained
quadratic program,

minimize 1
2z

⊤Gz + δ⊤z + ξ⊤ξ

subject to Ãz = β + ξ,
(22)

where G = γI, γ ∈ R is a multiple of the identity for a relaxation parameter γ and ξ are slack
variables. Importantly, equality-constrained quadratic programs can be directly and very efficiently
solved in parallel on GPU (Pervez et al., 2023). This is why we rewrite inequalities as equalities using
slack variables. Although with equalities only we lose the ability to explicitly encode non-negativity
constraints, we mitigate this by regularization making sure that solutions remain bounded.

A.4 EFFICIENT FORWARD AND BACKWARD COMPUTATIONS

Forward propagation and solving the quadratic program. We can solve the quadratic program
directly with well-known techniques (Wright and Nocedal, 1999), namely by simplifying and solving
the following KKT system for some λ ∈ Rm,[

G A⊤

A 0

] [
−z
λ

]
=

[
δ
−β

]
(23)

For smaller problems, we can solve this system efficiently using a dense Cholesky factorization. For
larger problems, we use an indirect conjugate gradient method to solve the KKT system using only
sparse matrix computations. Both methods are performed batch parallel on GPU.

Backward propagation and gradients computation. In the backward pass, we need to update
the ODE coefficients in the constraint matrix A and β. We obtain the gradient relative to constraint
matrix A by computing ∇Aℓ(A) = ∇Az∇zℓ(z), where ℓ(.) is our loss function and z is a solution
of the quadratic program.

We can compute the individual gradients using already established techniques for differentiable
optimization Amos and Kolter (2017) with the addition of computing sparse gradients only for the
constraint matrix A. Briefly, computing the gradient requires solving the system equation 23 for with
a right-hand side containing the incoming gradient g:

−
[
G A⊤

A 0

] [
dz
dλ

]
=

[
g
0

]
. (24)

The gradient ∇Aℓ(A) can then be computed by first solving for dz, dλ and then computing dλz
⊤ +

λd⊤z (Amos and Kolter, 2017). In general, this would produce a dense gradient matrix, which is very
memory inefficient for sparse A. We avoid this by computing gradients only for the non-zero terms
of A by computing sparse outer products.
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A.5 CENTRAL DIFFERENCE FOR HIGHEST ORDER

The method proposed in Young (1961) does not add a smoothness constraint for the highest order
derivative term, since derivative information is not available. In cases where a more accurate highest
order term is required, we also add a central difference constraint as a smoothness condition on the
highest order term.

A.6 NONLINEAR ODES

The standalone solver described above works for linear ODEs. When combined with neural networks,
we can extend the approach to nonlinear ODEs by combining solving with learning.

For each non-linear ODEs term gk, we add an extra variable νk,t with coefficients ϕk,t,x corresponding
to the non-linear term to our linear program.

We rewrite our nonlinear ODE in equation 4 as
d∑

i=0

ci,t,xu
(i)
t +

r∑
k=0

ϕk,t,xνk,t = bt,x (25)

νk,t = gk(t, ut, u
′
t, . . .), k = 0, ..., r (26)

s.t. [ut=1, u
′
t=1, ...] = ωx, (27)

that is, for each nonlinear term k and for every time step t we also add in z an auxiliary variable νk,t.
Additionally, we include derivative variables νik,t that are part of the Taylor approximations to ensure
smoothness. We then solve the linear part of the above ODE, that is equation 25 subject to 27 with
the linear programs we described in the previous subsections. Further, we convert the nonlinear part
in equation 26 to a loss term

(
νk,t − gk(t, ut, u

′
t, . . .)

)2
, which is added to the loss function of the

neural network. With the extra losses, we learn the parameters ϕ such that νk is close to the required
non-linear function of the solution.

Figure 14 shows solving and fitting of a non-linear ODE.

Nonlinear ODEs for Discovery. When building MNN models for governing equation discovery, we
incorporate nonlinear ODEs using a set of predefined basis functions {θi}, such as the polynomial
basis functions (Brunton et al., 2016), to build an equation of the form

d

dt
u(t;x) =

k∑
i

θi(u
′
x(t)) (28)

The input u′
x(t) to the basis functions are generated by a neural network with input x as u′

x = NN(x),
where u′

x (and possibly x) depends on time t. To ensure that this is a proper nonlinear ODE we add a
consistency term to the loss function to minimize the squared loss (u(t;x)− u′

x(t))
2. This ensures

that the basis input and ODE solution are close.

A.7 COMPLEXITY

The computational and memory complexity of MNNs is determined by the size of the time grid n,
and the order d of the ODEs to be generated. The last layer of f outputs n× (d+2) ODE parameters.
This means that the memory required to store the coefficients can be large depending on the grid
size and dimension. The main computational effort in solving the system equation 23 for a batch of
ODEs, which we do by a Cholesky factorization for small problems or sparse conjugate gradient for
large ones. Cholesky factorization has complexity cubic in nd while conjugate gradient has quadratic
complexity.

A.8 NUMERICAL VALIDATION OF THE SOLVER

Benchmarking against RK4 from scipy and torchdiffeq. We compare with traditional ODE
solvers on second- and third-order linear ODEs with constant coefficients from the scipy package.
For a learning comparison, we also compare with the RK4 solver with the adjoint method from
the torchdiffeq package on the benchmark task of fitting long and noisy sinusoidal functions
of varying lengths. The quantitative and qualitative results in Appendix D show that NeuRLP
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is comparable to standard solvers on the linear ODE-solving task. On the fitting task NeurLP
significantly improves upon the baseline and is about 200x faster with a lower MSE loss than the
torchdiffeq baseline for 1000 steps.

NeuRLP can learn time steps. Unlike traditional solvers, NeuRLP can learn the discretization grid
for learning and solving ODEs, becoming adaptively finer in regions where the fit is poor. We validate
this on fitting a damped sinusoid, see results in Figure 13, where we begin with a uniform grid and
with steps becoming denser in regions with bad fit.

B FURTHER DETAILS FOR SECTION 4

B.1 DISCOVERY OF PHYSICAL PARAMETERS

Problem. Often, the problem is not to discover the governing equations in a system but the most
fitting physical parameters explaining the observations. Applications include inverse problems in
dynamical systems (Wenk et al., 2020).

Gold standard. We use second order Neural ODEs (Norcliffe et al., 2020) to fit ODE models of
corresponding to Newton’s second Law, matching corresponding derivative coefficients to infer the
physical parameters.
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Method Force MSE Cosine sim. Mass Ratio
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SONODE 879 -0.26 2.11
MNN 345 0.85 2.02

Figure 5: Normalized true and learned
force vectors during 550 steps for 2-body
parameter discovery and comparison.

Mechanistic NNs for discovering physical parameters.
We use a second order ODE MNN with a time invariant
2nd order coefficient to match Newton’s second Law. The
force is learned by a neural networks as a function of
position.

Experiment. We design an experiment with two bodies
with masses m1 = 10,m2 = 20, distance d and initial
velocities v1, v2, moving under the influence of Newtonian
laws, and gravitational force, F = Gm1m2

r2 r̂, r̂ being the
unit vector of direction of force, G = 2 the gravitational
constant. We generate a single random train trajectory
for the two bodies for 40k steps. The physical parameters
we infer are mass ratio m1

m2
and distribution of force

values F = [Fx, Fy], by combining Newton’s second and
third law. We show quantitative and qualitative results
in Figure 5. Since forces are only determined up to a
constant, to compare forces we normalize by dividing by
the force at the first step. Neural ODE and Mechanistic
NNs estimate the mass ratio while MNNs perform
significantly better at estimating the force distribution and
Neural ODE forces often have the incorrect direction as shown by the negative cosine similarity
averaged over the entire trajectory.

B.2 FORECASTING FOR TIME SERIES

Problem. Time-series modelling and future forecasting is a classical statistical and learning problem,
usually with low-dimensional signals, like financial data or complex dynamical phenomena from
sciences.

Gold standard. We compare with Neural ODE and variants including second order and augmented
Neural ODEs.

Mechanistic NNs for time series. We use a basic Mechanistic NN second-order ODE for this
experiment.

Experiment. We validate on the benchmark of modeling the accelerations a2 produced over
time by a shaker under a wing in aircrafts (Norcliffe et al., 2020). The model sees 1,000 past
time accelerations a2 and predicts the next 4000. We show quantitative results in and qualitative

11



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

results in Figure 10 and C.3 in the appendix. The distribution of predicted a2 at test time are very
close to the true ones. Mechanistic NNs are on-par with second-order ODE, converge signifi-
cantly faster, and achieve two times lower training error showing they can model complex phenomena.

B.3 ODE DISCOVERY

We give further details regarding the ODE discovery setup.

This method follows the SINDy Brunton et al. (2016) approach for discovering sparse differential
equations using a library of basis functions. Unlike SINDy, which resorts to linear regression, the
MNN method uses deep neural networks and builds a non-linear model which allows modeling of a
greater class of ODEs.

The method requires a set of basis functions such as the polynomial basis functions up to some
maximum degree. Over two variables x, y this is the set of functions {0, x, y, x2, xy, y2, xy2, . . . , yd}
for some maximum degree d. Let k denote the total number of basis functions.

Next we are given some observations X = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)] for n steps. We
first transform the sequence by applying an MLP to the flattened observations producing another
sequence of the same shape.

X̃ = [(x̃0, ỹ0), . . . , (x̃n−1, ỹn−1)] = MLP(X)

We apply the basis functions to X̃ to build the basis matrix Θ ∈ Rn×k.

Θ(X̃) =


1 x̃0 ỹ0 x̃2

0 x̃0ỹ0 ỹ2
0 . . .

1 x̃1 ỹ1 x̃2
1 x̃1ỹ1 ỹ2

1 . . .
...

...
...

...
...

...
1 x̃n−1 ỹn−1 x̃2

n−1 x̃n−1ỹn−1 ỹ2
n−1 . . .

 (29)

Let ξ ∈ Rn×2 be a set of parameters, with each column specifying the active basis functions for the
corresponding variable in [ẋ, ẏ].

The ODE to be discovered is then modeled as

[ẋ, ẏ] = f(Θ(X̃)ξ) (30)

where f is some arbitrary differentiable function. Note that for SINDy X̃ = X and f is the identity
function and the problem is reduced to a form of linear regression adapted to promote sparsity in ξ.
SINDy estimates the derivatives using finite differences with some smoothing methods.

With MNN the ODE 30 is solved using the quadratic programming ODE solver to obtain the solution
x̄t, ȳt for t ∈ {0, . . . , n− 1}. The loss is then computed as the MSE loss between x̃t, ỹt, x̄t, ȳt and
the data xt, yt.

loss =
1

N

∑
t

(x̃t − xt)
2 + (ỹt − yt)

2 + (x̄t − xt)
2 + (ȳt − yt)

2

We show two examples of cases where F (u) is a rational function (a ratio of polynomials) and when
F (u) is a nonlinear function of Θξ. Moreover, unlike SINDy, MNN can learn a single governing
equation from multiple trajectories each with a different initial state making MNN more flexible.
In many situations a single trajectory sample is not enough represent to the entire state space while
multiple trajectories allow discovery of a more representative solution.

Planar and Lorenz System. We first examine the ability of MNN equation discovery for systems
where the true ODE can be exactly represented as a linear combination of polynomial basis functions.
We use a two variable planar system and the chaotic Lorenz system as examples. Both MNN and
SINDy are able to recover the planar system. Simulation of the learned Lorenz ODE are shown in
Figure 6 for MNN and SINDy.

Next we consider ODE systems where the derivative cannot be written as a linear combination of
polynomial (or other) basis function.
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Figure 6: Learned ODEs for the chaotic Lorenz system. Showing the true trajectory, the MNN
learned ODE trajectory and SINDy learned ODE trajectory.

Nonlinear Function of Basis. First, we consider systems where the derivative is given by a nonlinear
function of a polynomial. For simplicity we assume that the nonlinear function is known. As an
example we solve the system from Figure 2 with the tanh nonlinear function.

Vector fields for the learned systems are shown in Figure 2 for MNN and SINDy. We see that
although SINDy fits the training example, the directions diverge further away. With MNN we see
that the learned vector field is consistent with the ground truth far from the training example even
though we use only a single trajectory.

Rational Function Derivatives. Second, we consider the case where the derivative is given by a
rational function, i.e., F (u) = p(u)/q(u), where p and q are polynomials. Such functions cannot be
represented by the linear combination of polynomials considered by standard SINDy, however such
functions can be represented by MNNs by taking p and q to be two separate combinations of basis
polynomials and dividing. An example is shown in Figure 7 in the appendix for the system where we
see again MNNs learning much better equations compared to SINDy with a second-order polynomial
basis tha overfits. Further, by including more trajectories in the training, results improve further, see
Figure 7.

C EXPERIMENTAL DETAILS

C.1 DISCOVERY OF GOVERNING EQUATIONS

C.1.1 DISCOVERED EQUATIONS.

MNN Lorenz

x′ = −10.0003x+ 10.0003y

y′ = 27.9760x+−0.9934y − 0.9996xz

z′ = −2.6660z + 0.9995xy

SINDy Lorenz

x′ = −10.000x+ 10.000y

y′ = 27.998x+−1.000y +−1.000xz

z′ = −2.667z + 1.000xy

MNN Non-linear

x′ = tanh(−0.7314x+ 0.5545y+

− 1.2524x2 +−0.1511xy + 0.2134y2)

y′ = tanh(0.9879x+ 1.0005y + 0.1742x2)

SINDy Non-linear

x′ = −1.968x+ 0.985y +−0.054x2

y′ = 1.466y + 11.892x2 +−5.994xy + 0.085y2
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Figure 7: Learned ODE vector fields for MNN and SINDy with rational function derivatives and one
and two training trajectories. MNN can handle multiple input examples. The ground truth ODE is
also shown.
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Figure 8: Learned ODE vector fields for Mechanistic NN and SINDy with non-linear tanh function
of basis combination and training and test trajectories.

MNN Rational

x′ =
−0.9287x+ 0.4386y +−1.1681x2 + 0.3545y2

0.4871 + 0.8123x+ 0.0984x2 + 0.3700xy + 0.3081x2

y′ =
0.6360x+ 0.5971y + 0.3267x2

0.6090 + 0.7507x2 + 0.5694y2

SINDy Rational

x′ = −1.705x+ 0.899y +−0.318x2

y′ = −0.795 + 3.072y + 4.777x2 + 6.892xy +−4.681y2
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NODE ANODE(1) SONODE MNN

Figure 9: (a) Visualizing the state evolution of the learned equations Ux data points in nested spheres.
The points from the two classes are perfectly separated despite the nested topology without requiring
augmentations.
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Figure 10: Modeling airplane vibrations.

C.2 NESTED SPHERES

We test MNN on the nested spheres dataset (Dupont et al., 2019), where we must classify each
particle as one of two classes. This task is not possible for unaugmented Neural ODEs since they
are limited to differomorphisms (Dupont et al., 2019). We show the results in Figure 9, including
comparisons with Neural ODE (Chen et al., 2018), Augmented Neural ODE and second-order Neural
ODE (Norcliffe et al., 2020). MNNs can comfortably classify the dataset without augmentation and
can also derive a governing equation.

We use a second order ODE with coefficients computed with a single layer and the right hand side is
set to 0. We use a step size of 0.1 and length 30. However, as we note, 5 time steps are enough for
accurate classification. The loss function is the cross entropy loss.

MNNs obtain an explicit linear ODE per datapoint that governs the evolution of the point. The
example we give is for one of the ODEs for one point and for a 5-time step evolution. This computed
equation is sufficient for perfect classification.

C.3 AIRPLANE VIBRATIONS

MNNs can learn complex dynamical phenomena significantly faster than Neural ODE and second
order Neural ODE. We reproduce an experiment with a real-world aircraft benchmark dataset (Noël
and Schoukens, 2017; Norcliffe et al., 2020). In this dataset the effect of a shaker producing
acceleration under a wing gives rise to acceleration a2 on another point. The task is to model
acceleration a2 as a function of time using the first 1000 step as training only and to predicting the
next 4000 steps. Results of the experiment are shown in Figure 10. We compare against Augmented
Neural ODE and second order Neural ODE. MNNs are on-par with second-order ODE, converge
significantly faster in the number of training steps, and achieve two times lower training error,
showcasing the capacity for modeling complex phenomena and improving with modest architectural
modifications. The predicted a2 accelerations are very close to the true ones in the center-right plot.
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Method RMSE

NNLi et al. (2020c) 0.1716
FCNLi et al. (2020c) 0.0253
PCANN Bhattacharya et al. (2021) 0.0299
RBMLi et al. (2020c) 0.0244

GNO Li et al. (2020a) 0.0346
LNO Li et al. (2020c) 0.0520
MGNOLi et al. (2020b) 0.0416
FNO Li et al. (2020c) 0.0070

Mechanistic NN 0.0065

Table 2: PDE results on 2d Darcy flow

CNN CNN

UpsampleDownsample
ODE
Solve
Layer

Figure 11: PDE module architecture used for 2d data

For this experiment (Section B.2) we use an MNN with a second order ODE, step size of 0.1 and 200
steps during training. The coefficients and constant terms are computed with MLPs with 1024 hidden
units.

C.4 DISCOVERING MASS AND FORCE PARAMETERS.

For this part of the experiment we use an MNN with a restricted ODE to match Newton’s second law.
In the MNN model for this experiment, we use the same coefficient for the second derivative term for
all time steps with the remaining coefficients fixed to 0, that is c2(t) = c and c1(t) = 0, c0(t) = 0.
b(t) = Ft corresponds to the force term which is computed by a neural network from the initial
position and velocity with two hidden layers of 1024 units and Newton’s second law F21 = −F12.
We use a step size of 0.01 and run for 50 epochs.

The baseline is an SONODE designed to correspond to Newton’s second and third law with an MLP
for force as above.

C.5 PDE SOLVING

1d Model. For 1d problems we use a simplest possible model of modeling the spatial dimension by
independent ODEs. We use a history of 10 time steps and predict for 9 time steps in one iteration,
using the last time step as initial condition for the ODE. During evaluation we predict and evaluate
for 100 steps. We use 3rd and 4th order ODEs. The coefficients for ODEs, step sizes the right hand
side (b) are computed by 1d ResNets with 10 blocks. We use the L1 loss which we find improves
rollout performance.

2d Model. In Figure 11 we show the MNN architecture we used to solve PDEs. We use the 2d
Darcy Flow dataset used by Li et al. (2020c) scaled to 85x85. The ODE is solved for 30 steps and the
entire soluton trajectory is then upsampled and combined with the input features map. The network
is built by stacking three such modules together plus an input MLP layer and an output layer.
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D FURTHER EXPERIMENTS

D.1 VALIDATING THE NEURLP ODE SOLVER

First we examine whether our quadratic programming solver is able to solve linear ODEs accurately.
For simplicity we choose the following second and third order linear ODEs with constant coefficients.

u′′ + u = 0 (31)

u′′′ + u′′ + u′ = 0 (32)

For the NeuRLP solver we discretize the time axis into 100 steps with a step size of 0.1. We compare
against the ODE solver odeint included with the SciPy library. The results are shown in 12 where
we show the solutions, u(t), for the two ODEs along with the first and second derivatives, u′(t), u′′(t).
The results from the two solvers are almost identical validating the quadratic programming solver.

Solving u''(t) + u'(t) = 0

0 50 100
1.0

0.5

0.0

0.5

1.0
u(t)

0 50 100

u'(t)

0 50 100
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Scipy odeint Solver

0 50 100
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0 50 100 0 50 100

QP Solver

Solving u'''(t) + u''(t) + u'(t) = 0
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u'(t)

0 50 100

u''(t)
Scipy odeint Solver
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QP Solver

Figure 12: Comparing ODE solvers on 2nd and 3rd order ODEs.

Next we examine the ability of the solver to learn the discretization. We learn an ODE to model
a damped sine wave where each step size is a learanable parameter initial to 0.1 and modeled as a
sigmoid function. We show the results in Figure 13 for a sample of training steps. We see the step
sizes varying with training and the steps generally clustered together in regions with poorer fit.

Next we demonstrate a non-linear equation. For this we introduce a variable in the QP solver
for a non-linear term add a squared loss term as described in the paper. We use the equation
c2(t)y

′′ + c1(t)y
′ + c0(t)y + ϕ(t)y2 = 1, with time varying coefficients and fit a sine wave. The

result is in Figure 14. The ODE fits the sine wave and at the same time the non-linear solver term fits
the true non-linear function of the solution.
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Figure 13: Demonstrating a learned grid for fitting a damped sinuoidal wave (blue curve) over the
course of training. The dots show the learned grid positions. The grid generally becomes finer for
regions where the fit is poorer.

D.2 LEARNING WITH NOISY DATA

We perform an simple experiment illustrate how the ODE learning method can fit ODEs to noisy data.
We generate a sine wave with dynamic Gaussian noise added during each training step. We train
two models: the first a homogeneous second order ODE with arbitrary coefficients and the second a
homogeneous second order ODE with constant coefficients. We also train a model without noise. The
results are shown in Figure 15. The figures show that the method can learn an ODE in the presence
of noise giving a smooth solution. The model with constant coefficients learns the following ODE.

0.92023u′′ − 0.00016u′ + 0.228u = 0,

with (learned) initial conditions u(0) = −0.031799 and u′(0) = 2.3657.
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Figure 14: Demonstrating fitting a sine wave with a non-linear ODE c2(t)y
′′ + c1(t)y

′ + c0(t)y +
ϕ(t)y2 = 1. The non-linear function is y2 and the bottom shows the solver variable fitting the
non-linear function.

D.3 COMPARING RK4 WITH THE NEURLP SOLVER

We compare NeuRLP with the RK4 solver from torchdiffeq on a task of fitting noisy sinusoidal waves
of varying lengths. We compare MSE and time in Table 3 and Figure 16.

Table 3: Comparing the NeuRLP solver with the RK4 solver with a step size of 0.1 on fitting noisy
sinusoidal waves of 300 and 1000 steps. Showing MSE loss and time.

Steps QP (seconds) RK4 (seconds) QP Loss RK4 Loss

40 1.52 28.06 11.4 29.3
100 1.61 64.57 27.9 35.6
300 1.76 211.52 52 96.8
500 2.12 359.7 128 301
1000 3.68 666.69 292 589

D.4 2-BODY PROBLEM

We show learned trajectories for a 2-body prediction problem with an MNN on synthetic data in
Figure 18. The objects are generated using the gravitation force law for 4000 steps and the first half
are used for training and we predict the second half.
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Figure 15: Learning sine waves without and with dynamically added Gaussian noise with 2nd order
ODE with arbitrary coefficients (middle) and constant coefficients (right). The figure on the right
corresponds to the ODE 0.92023u′′ − 0.00016u′ + 0.228u = 0.
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Figure 18: 2-body problem: Predicted orbits for MNN
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Figure 16: Comparison of RK4 solver from torchdiffeq and our NeuRLP solver for fitting sinusoidal
waves with Gaussian noise added at each iteration. Length of the wave and number of steps is 300
(left column) and 1000 (right column). Step size is 0.1. Trained for 100 iterations. The NeuRLP
solver has better performance (and efficiency) for longer trajectories.
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Figure 17: Number of seconds per 100 iterations for fitting noisy sinusoidal waves. The NeuRLP
solver is significantly more efficient over longer times due to its parallelism.
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