
Under review as a conference paper at ICLR 2021

RSO: A GRADIENT FREE SAMPLING BASED AP-
PROACH FOR TRAINING DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose RSO (random search optimization), a gradient free, sampling based
approach for training deep neural networks. To this end, RSO adds a perturba-
tion to a weight in a deep neural network and tests if it reduces the loss on a
mini-batch. If this reduces the loss, the weight is updated, otherwise the existing
weight is retained. Surprisingly, we find that repeating this process a few times
for each weight is sufficient to train a deep neural network. The number of weight
updates for RSO is an order of magnitude lesser when compared to backpropaga-
tion with SGD. RSO can make aggressive weight updates in each step as there is
no concept of learning rate. The weight update step for individual layers is also
not coupled with the magnitude of the loss. RSO is evaluated on classification
tasks on MNIST and CIFAR-10 datasets with deep neural networks of 6 to 10 lay-
ers where it achieves an accuracy of 99.1% and 81.8% respectively. We also find
that after updating the weights just 5 times, the algorithm obtains a classification
accuracy of 98% on MNIST.

1 INTRODUCTION

Deep neural networks solve a variety of problems using multiple layers to progressively extract
higher level features from the raw input. The commonly adopted method to train deep neural net-
works is backpropagation (Rumelhart et al. (1985)) and it has been around for the past 35 years.
Backpropagation assumes that the function is differentiable and leverages the partial derivative w.r.t
the weight wi for minimizing the function f(x,w) as follows,

wi+1 = wi − η∇f(x,w)∆wi

, where η is the learning rate. Also, the method is efficient as it makes a single functional estimate to
update all the weights of the network. As in, the partial derivative for some weight wj , where j 6= i
would change once wi is updated, still this change is not factored into the weight update rule for wj .
Moreover, it may not even be optimal for all weights to move in the same direction as obtained from
the gradients in the previous layer. Although deep neural networks are non-convex (and the weight
update rule measures approximate gradients), this update rule works surprisingly well in practice.

To explain the above observation, recent literature (Du et al. (2019); Li & Liang (2018)) argues
that because the network is over-parametrized, the initial set of weights are very close to the final
solution and even a little bit of nudging using gradient descent around the initialization point leads
to a very good solution. We take this argument to another extreme - instead of using gradient
based optimizers - which provide strong direction and magnitude signals for updating the weights;
we explore the region around the initialization point by sampling weight changes to minimize the
objective function. Formally, our weight update rule is

wi+1 =

{
wi, f(x,wi) <= f(x,wi + ∆wi)

wi + ∆wi, f(x,wi) > f(x,wi + ∆wi)

, where ∆wi is the weight change hypothesis. Here, we explicitly test the region around the initial
set of weights by computing the function and update a weight if it minimizes the loss, see Fig. 1.

1

Under review as a conference paper at ICLR 2021

Figure 1: Gradient descent vs sampling. In gradient descent we estimate the gradient at a given point
and take a small step in the opposite direction direction of the gradient. In contrast, for sampling
based methods we explicitly compute the function at different points and then chose the point where
the function is minimum.

Surprisingly, our experiments demonstrate that the above update rule requires fewer weight updates
compared to backpropagation to find good minimizers for deep neural networks, strongly suggesting
that just exploring regions around randomly initialized networks is sufficient, even without explicit
gradient computation. We evaluate this weight update scheme (called RSO; random search optimiza-
tion) on classification datasets like MNIST and CIFAR-10 with deep convolutional neural networks
(6-10 layers) and obtain competitive accuracy numbers. For example, RSO obtains 99.1% accuracy
on MNIST and 81.8% accuracy on CIFAR-10 using just the random search optimization algorithm.
We do not use any other optimizers for optimizing the final classification layer.

Although RSO is computationally expensive (because it requires updates which are linear in the
number of network parameters), our hope is that as we develop better intuition about structural
properties of deep neural networks, we will be able to accelerate RSO (using Hebbian principles,
Gabor filters, depth-wise convolutions). If the number of trainable parameters are reduced drastically
(Frankle et al. (2020)), search based methods could be a viable alternative to back-propagation.
Furthermore, since architectural innovations which have happened over the past decade use back-
propagation by default, a different optimization algorithm could potentially lead to a different class
of architectures, because minimizers of an objective function via different greedy optimizers could
potentially be different.

2 RELATED WORK

Multiple optimization techniques have been proposed for training deep neural networks. When gra-
dient based methods were believed to get stuck in local minima with random initialization, layer
wise training was popular for optimizing deep neural networks (Hinton et al. (2006); Bengio et al.
(2007)) using contrastive methods (Hinton (2002)). In a similar spirit, recent work, Greedy InfoMax
by Löwe et al. (2019) maximizes mutual information between adjacent layers instead of training a
network end to end. Taylor et al. (2016) finds the weights of each layer independently by solving
a sequence of optimization problems which can be solved globally in closed form. Weight pertur-
bation (Werfel et al. (2004)) based methods have been used for approximate gradients estimation in
situations where gradient estimation is expensive. However, these training methods do not general-
ize to deep neural networks which have more than 2-3 layers and its not shown that the performance
increases as we make the network deeper. Hence, back-propagation with SGD or other gradient
based optimizers (Duchi et al. (2011); Sutskever et al. (2013); Kingma & Ba (2014)) are commonly
used for optimizing deep neural networks.

Recently, multiple works have proposed that because these networks are heavily over-parametrized,
the initial set of random filters is already close to the final solution and gradient based optimizers only
nudge the parameters to obtain the final solution (Du et al. (2019); Li & Liang (2018)). For example,
only training batch-norm parameters and keeping the random filters fixed can obtain very good
results with heavily parametrized very deep neural networks (> 800 layers) as shown in Frankle et al.
(2020). It was also shown that networks can be trained by just masking out some weights without
modifying the original set of weights by Ramanujan et al. (2020) - although one can argue that

2

Under review as a conference paper at ICLR 2021

Figure 2: Notation for variables in the network architecture are shown in this figure.

masking is a very powerful operator and can be used to represent an exponential number of output
spaces. The network pruning literature covers more on optimizing subsets of an over-parametrized
randomly initialized neural network (Frankle & Carbin (2019); Li et al. (2017)). Our method, RSO,
is also based on the hypothesis that the initial set of weights is close to the final solution. Here we
show that gradient based optimizers may not even be necessary for training deep networks and when
starting from randomly initialized weights, even search based algorithms can be a feasible option.

Recently, search based algorithms have gained traction in the deep learning community. Since
the design space of network architectures is huge, search based techniques are used to explore the
placement of different neural modules to find better design spaces which lead to better accuracy
(Zoph & Le (2016); Liu et al. (2018)). This is done at a block level and each network is still
trained with gradient descent. Similar to NAS based methods, weight agnostic neural networks
(WANN) (Gaier & Ha (2019)) also searches for architectures, but uses a fixed set of weight values
[−2,−1,−0.5,+0.5,+1,+2]. WANN operates at a much finer granularity as compared to NAS
based methods while searching for connections between neurons and does not use gradient descent
for optimization. Algorithms like Deep Neuroevolution by Such et al. (2017) and evolution strategies
(ES) by Salimans et al. (2017) are search based optimization algorithms which have been used for
training neural networks for reinforcement learning. ES is comprehensively reviewed by Beyer &
Schwefel (2004). Both Deep Neuroevolution and Salimans et al. (2017) create multiple replicas
(children) of an initial neural network by adding small perturbations to all the weight parameters
and then update the parameters by either selecting the best candidate or by performing a weighted
average based on the reward. Both the methods update all the parameters of the network in each
update. The problem with changing all the weights is that updating all the parameters of the network
at once leads to random directions which are unlikely to contain a direction which will minimize
the objective function and slows down learning (results shown in Section 4.5). Also, these methods
were only trained on networks with 2-3 hidden layers, which is fairly shallow when compared to
modern deep architectures.

3 APPROACH

Consider a deep neural network with D layers, where the weights of a layer d with nd neurons is
represented byWd = {w1, w2.., wid , ..wnd

}. For an input activationAd−1 = {a1, a2, ...and−1
},Wd

generates an activation Ad = {a1, a2, ...and
}, see Fig 2. Each weight tensor wid ∈ Wd generates

an activation ai ∈ Ad, where ai can be a scalar or a tensor depending on whether the layer is fully
connected, convolutional, recurrent, batch-norm etc. The objective of the training process is to find
the best set of weights W , which minimize a loss function F(X ,L;W) given some input data X
and labels L.

To this end, we initialize the weights of the network with a Gaussian distribution N (0,
√

2/|wid |),
like He et al. (2015). The input data is also normalized to have zero mean and unit standard deviation.
Once the weights of all layers are initialized, we compute the standard deviation σd of all elements
in the weight tensor Wd. In the weight update step for a weight wj ∈ wid , ∆wj is sampled from
∼ N (0, σd). We call this ∆Wj which is zero for all weights of the network but for wj , where

3

Under review as a conference paper at ICLR 2021

j ∈ id. For a randomly sampled mini-batch (x, l) ∈ X ,L, we compute the loss F(x, l;W) for W ,
W + ∆Wj and W −∆Wj . If adding or subtracting ∆Wj reduces F , W is updated, otherwise the
original weight is retained. This process is repeated for all the weights in the network, i.e., to update
all the weights of the network once, F needs to be computed three times the number of weight
parameters in the network, 3|W |. We first update the weights of the layer closest to the labels and
then sequentially move closer to the input. This is typically faster than optimizing the other way, but
both methods lead to good results. This algorithm is described in Algorithm 1.

In Algorithm 1, in line 12, we sample change in weights from a Gaussian distribution whose standard
deviation is the same as the standard deviation of the layer. This is to ensure that the change in
weights is within a small range. The Gaussian sampling can also be replaced with other distributions
like uniform sampling from (−2σd, 2σd) or just sampling values from a template like (−σd, 0, σd)
and these would also be effective in practice. The opposite direction of a randomly sampled weight
is also tested because often it leads to a better hypothesis when one direction does not decrease the
loss. However, in quite a few cases (close to 10% as per our experiments), not changing the weight
at all is better. Note that there is no concept of learning rate in this algorithm. We also do not
normalize the loss if the batch size increases or decreases as the weight update step is independent
of the magnitude of the loss.

There is widespread belief in the literature that randomly initialized deep neural networks are already
close to the final solution (Du et al. (2019); Li & Liang (2018)). Hence, we use this prior and explore
regions using bounded step sizes (N (0, σd)) in a single dimension. We chose to update one weight
at a time instead of sampling all the weights of the network as this would require sampling an
exponential number of samples to estimate their joint distribution. RSO will be significantly faster
even if prior knowledge about the distribution of the weights of individual neurons is used.

4 EXPERIMENTS

We demonstrate the effectiveness of RSO on image classification tasks by reporting the accuracy on
the MNIST (Lecun et al. (1998)) and the CIFAR-10 (Krizhevsky (2009)) data sets. MNIST consists
of 60k training images and 10k testing images of handwritten single digits and CIFAR-10 consists
of 50k training images and 10k testing images for 10 different classes of images.

4.1 MNIST

We use a standard convolution neural network (CNN) with 6 convolution layers followed by one
fully connected layer as the baseline network for MNIST. All convolution layers use a 3 × 3 filter
and generate an output with 16 filters channels. Each convolution layer is followed by a Batch Norm
layer and then a ReLU operator. Every second convolution layer is followed by a 2×2 average pool
operator. The final convolution layer’s output is pooled globally and the pooled features are input
to a fully connected layer that maps it to the 10 target output classes. The feature output is mapped
to probability values using a softmax layer and cross entropy loss is used as the objective function
when choosing between network states. For RSO, we train the networks for 50 cycles as described

4

Under review as a conference paper at ICLR 2021

Random Search (ours) Backpropagation (SGD) WANN Gaier & Ha (2019)
Accuracy 99.12 99.27 94.2

Table 1: Accuracy of RSO on the MNIST data set compared with back propagation and WANN.
The CNN architecture used for RSO and SGD is described in 4.1.

in Section 3 and in each cycle the weights in each layer are optimized once. We sample random
5000 samples in a batch per weight for computing the loss during training. The order of updates
within each layer is discussed in Section 4.3. After optimizing a convolution layer d, we update the
parameters of it’s batch norm layer using search based optimization as well.

For layer d at cycle c, we sample weight updates from a Gaussian with mean 0 and standard de-
viation σc

d. At the first cycle, this standard deviation is set to the standard deviation of the layer at
initialization σd. We linearly anneal the standard deviation of the Gaussian such that at the final
cycle C, σC

d = σ1
d/10. RSO is robust to the choice of the initial value of the standard deviation. On

varying the initial value from 0.1σd to 10σd, the minimum accuracy on MNIST is within 0.15 of
the maximum accuracy. In Table 1 we compare the performance of RSO with training using back-
propagation (with SGD) and with the training based approach described in Gaier & Ha (2019). The
network is able to achieve a near state-of-the-art accuracy of 99.12% using random search alone to
optimize all the weights in the network.

4.2 SAMPLING MULTIPLE WEIGHTS VERSUS A SINGLE WEIGHT

We compare different strategies each with different set of weights that are perturbed at each update
step to empirically demonstrate the effectiveness of updating the weights one at a time (Algorithm
1). The default strategy is to sample a single weight per update step and cycle through the layers
and through each weight within each layer. A second possible strategy is to optimize all the weights
in a layer jointly at each update step and then cycle through the layers. The third strategy is to
sample all the weights in whole network at every update step. For layer-level and network-level
sampling, we obtain optimal results when the weight changes for a layer d with weight tensor Wd

are sampled from ∼ N (0, σd/10), where σd is the standard deviation of all elements in Wd after
Wd is initialized for the first time. We optimize each of the networks for 500K steps for each of the
three strategies and report performance on MNIST in Figure 2. For the baseline network described
in Section 4.1, 500K steps translate to about 42 cycles when using the single weight update strategy.
Updating a single weight obtains much better and faster results compared to layer level random
sampling which, in turn, is faster compared to a network-level random sampling. When we test
on harder data sets like CIFAR-10, the network-level and layer-level strategies do not even show
promising initial accuracies when compared to the single weight sampling strategy. The network
level sampling strategy is close to how genetic algorithms function, however, changing the entire
network is significantly slower and less accurate that RSO. Note that our experiments are done with
neural networks with 6-10 layers.

4.3 ORDER OF OPTIMIZATION WITHIN A LAYER

When individually optimizing all the weights in a layerWd, RSO needs an order for optimizing each
of the weights, wj ∈ wid , where nd is the number of neurons and Wd = {w1, w2.., wid , ..wnd

}. nd
is the number of output channels in a convolution layer and each neuron hasL×k×k weights, where
L the number of input channels and k is the filter size. By default, we first optimize the set of weights
that affect each output neuron wid ∈ Wd and optimize the next set and so on till the last neuron.
Similarly, in a fully connected layer we first optimize weights for one output neuron wid ∈ Wd and
then move to the next in a fixed manner. These orders do not change across optimization cycles. This
ordering strategy obtains 99.06% accuracy on MNIST. To verify the robustness to the optimization
order, we inverted the optimization order for both convolution and fully connected layers. In the
inverted order, we first optimize the set of weights that interact with one input channel Li ∈ L
and then move to the next set of weights and so on. Inverting the order of optimization leads to a
performance of 99.12% on the MNIST data set. The final performance for the two runs is almost
identical and demonstrates the robustness of the optimization algorithm to a given optimization order
in a layer.

5

Under review as a conference paper at ICLR 2021

100K Steps 200K Steps 300K Steps 400K Steps 500K Steps 600K Steps
Network 88.7 91.81 91.89 92.71 93.01 94.49

Layer 94.85 95.77 96.95 97.24 97.25 97.53
Weight 98.24 98.78 98.94 99.0 99.08 99.12

Table 2: Accuracy of RSO on the MNIST data set reported at different stages of training while
sampling at different levels - at the network level, at the layer level and at the weight level. The final
performance and the rate of convergence when sampling at the weight level is significantly better
than other strategies.

Stage conv1 conv2 conv3 conv4 Accuracy
Depth-3 - - 3× 3, 32 3× 3, 32 56.30%
Depth-5 3× 3, 16 3× 3, 16 3× 3, 32 3× 3, 32 68.48%
Depth-10 3× 3, 16 〈3× 3, 16〉 〈3× 3, 32〉 〈3× 3, 32〉 × 2 81.80%

Table 3: Accuracy of RSO with architectures of varying depth on CIFAR-10. The 〈·〉 brackets
represent a basic residual block (He et al. (2016)) which contains two convolution layers per block
and a skip connection across the block. Each convolution layer is represented as the filter size and
the number of output filters. The conv2 and conv3 stages are followed by a 2 × 2 average pooling
layer. The accuracy increases as the depth increases which demonstrates the ability of random search
optimization to learn well with deeper architectures.

4.4 CIFAR-10

On CIFAR-10, we show the ability of RSO to leverage the capacity of reasonably deep convolution
networks and show that performance improves with an increase in network depth. We present results
on architectures with 2, 4 and 9 convolution layers followed by one fully connected layer. The CNN
architectures are denoted by Depth-l, where l is the number of convolution layers plus 1 and the
details of the architectures are reported in Table 3. Each convolution layer is followed by a Batch
Norm layer and a ReLU activation. The final convolution layer output is pooled globally and the
pooled features are input to a fully connected layer that maps it to the 10 target output classes. For
RSO, we train the networks for 500 cycles and in each cycle the weights in each layer are optimized
once as described in Section3. To optimize each weight we use a random batch of 5000 samples.
The performance of RSO improves significantly with increase in depth. This clearly demonstrates
that RSO is able to leverage the improvements which come by increasing depth and is not restricted
to working with only shallow networks. A comparison for different depth counts is shown in Table
3.

To compare with SGD, we find the hyper-parameters for the best performance of the Depth-10
architecture by running grid search over batch size from 100 to 20K and learning rate from 0.01 to
5. In RSO, we anneal the standard deviation of the sampling distribution, use weight decay and do
not use any data augmentation. For SGD we use a weight decay of 0.0001, momentum at 0.9, no
data augmentation and step down the learning rate by a factor of 10 twice. The top performance on
CIFAR-10 using the Depth-10 network was 82.94%.

4.5 COMPARISON OF TOTAL WEIGHT UPDATES

RSO samples each weight once per cycle and a weight may or may not be updated. For C cycles,
the maximum number of times all weights are updated is C. Back-propagation based SGD updates
each weight in the network at each iteration. For a learning schedule with E epochs and B batches
per epoch, the total number of iterations is E × B. On the left in Figure 3 we report the accuracy
versus the number of times all the weights are updated for RSO and SGD on the MNIST data set.
For SGD, we ran grid search as described in Section 4.4 to find hyper-parameters that require the
minimum steps to reach ≥ 99.12% accuracy because that is the accuracy of RSO in 50 cycles. We
found that using a batch size of 5000, a learning rate of 0.5 and a linear warm-up for the first 5
epochs achieves 99.12% in less than 600 steps.

6

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 3: Accuracy versus the number of times all the weights are updated for RSO and SGD on
the MNIST and on the CIFAR-10 data set. The results demonstrate that the number of times all
the weights need to be updated in RSO is typically much smaller than the corresponding number in
SGD. Note that since the weight update step for RSO is linear in the number of parameters of the
network, each weight update step is significantly more expensive. For example, on MNIST, SGD
takes 10 seconds per epoch while RSO takes 12 minutes. On CIFAR10, RSO takes 52 minutes per
epoch while SGD takes 29 seconds.

(b)(a)

Figure 4: Sequential updates versus updating all the weights in convolution layers in parallel or
updating the neurons in parallel. Sequential updates perform the best for both data sets. The parallel
update scheme enables using distributed learning techniques to reduce wall-clock time to reach
convergence for MNIST. For CIFAR-10, the gap between sequential and parallel may be closed by
running the parallel setup on a longer learning schedule using distributed learning hardware.

On the right in Figure 3 we report the accuracy on the Depth-10 network (Table 3) at different stages
of learning on CIFAR-10 for RSO and SGD. We apply grid search to find optimal hyper-parameters
for SGD such that the result is ≥ 81.8%, which is the accuracy of RSO on the Depth-10 network
after 300 cycles. The optimal settings use a batch size of 3000, a learning rate of 4.0, momentum
at 0.9 and a linear warm-up for the first 5 epochs to achieve an accuracy of 81.98% in a total of
1700 iterations. The results on number of iterations demonstrate that the number of times all the
weights are updated in RSO, C, is typically much smaller than the corresponding number in SGD,
E × B for both MNIST and CIFAR-10. Further, RSO reaches 98.0% on MNIST after updating all
the weights just 5 times, which indicates that the initial set of random weights is already close to the
final solution and needs small changes to reach a high accuracy.

4.6 UPDATING WEIGHTS IN PARALLEL

RSO is computationally expensive and sequential in its default update strategy, section 4.3. The
sequential strategy ensures that the up to date state of the rest of the network is used when sampling
a single weight in each update step. In contrast, the update for each weight during an iteration in the
commonly used backpropagation algorithm is calculated using gradients that are based on a single
state of the network. In backpropagation, the use of an older state of the network empirically proves
to be a good approximation to find the weight update for multiple weights. As shown in section 4.2,
updating a single weight at each step leads to better convergence with RSO as compared to updating

7

Under review as a conference paper at ICLR 2021

weights jointly at the layer and network level. If we can search for updates by optimizing one
weight at a time and use an older state of the network, we would have an embarrassingly parallel
optimization strategy that can then leverage distributed computing to significantly reduce the run
time of the algorithm.

We found that the biggest computational bottleneck was presented by convolution layers and ac-
cordingly experimented with two levels of parallel search specifically for convolution layers. The
first approach was to search each of the weights in a layer wj ∈ wid ,Wd = {w1, w2.., wid , ..wnd

}
in parallel. The search for the new estimate for each weight uses the state of the network before the
optimization started for layer d. The second approach we tried was to search for weights of each
output neuron wid in parallel. We spawn different threads per neuron and within each thread we
update the weights for the assigned neuron sequentially. Finally we merge the weights for all neu-
rons in the layer. Results on the MNIST data set are shown on the left and results on the CIFAR-10
data set are shown on the right in Figure 4. Regarding the rate of convergence, sequential updates
outperform both layer-level parallel and updating the neurons in parallel. However, both parallel
approaches converge almost as well as sequential search at the end of 50 cycles on MNIST. For the
CIFAR-10 data set, the sequential update strategy seems to out perform the parallel search strategies
by a significant margin over a learning schedule of 500 cycles. However, given the embarrassingly
parallel nature of both parallel search strategies, this limitation may be overcome by running the
experiment on a longer learning schedule using distributed learning hardware to possibly close this
gap. This is a hypothesis which will have to be tested experimentally in a distributed setting.

4.7 CACHING NETWORK ACTIVATION

Throughout this paper, we have described neural networks with D convolution layers and 1 fully
connected layer. The number of weight parameters |W | = nD×10+

∑D
1 nd× id×kd×kd, where

nd, id and kd are the number of output filters, number of input filters and filter size respectively, for
convolution layer d ∈ D. The FLOPs of a forward pass for a batch size of 1 is F = nD × 10 +∑D

1 nd × id × kd × kd × sd × sd, where sd is the input activation size at layer d. Updating all the
parameters in the network once using a batch size 1 requires 3× |W | × F FLOPs, which leads to a
computationally demanding algorithm.

To reduce the computational demands for optimizing a layer d, we cache the network activations
from the layer d − 1 before optimizing layer d. This enables us to start the forward pass from the
layer d by sampling a random batch from these activations. The FLOPs for a forward pass starting
at a convolution layer d reduce to Fd = nD × 10 +

∑D
d nd × id × kd × kd × sd × sd. The cost

of caching the activations of layer d − 1 for the complete training set is negligible if computed at a
batch size large enough that the number of forward iterations Id << |Wd| = nd× id×kd×kd. The
FLOPs for training the parameters once using this caching techniques is

∑D
1 3 × |Wd| × Fd. This

caching strategy leads to an amortized reduction in FLOPs by 3.0 for the MNIST network described
in 4.1 and by 3.5 for the Depth-10 network in Table 3.

5 CONCLUSION AND FUTURE WORK

RSO is our first effective attempt to train reasonably deep neural networks (≥ 10 layers) with search
based techniques. A fairly naive sampling technique was proposed in this paper for training the
neural network. Yet, as can be seen from the experiments, RSO converges an order of magnitude
faster compared to back-propagation when we compare the number of weight updates. However,
RSO computes the function for each weight update, so its training time scales linearly with the
number of parameters in the neural network. If we can reduce the number of parameters, RSO will
train faster.

Another direction for speeding up training would be to use effective priors on the joint distribution
of weights and sampling using techniques like Blocked Gibbs sampling. While sampling at the
layer and network level lead to a drop in performance for RSO, a future direction is to identify
highly-correlated and coupled blocks of weights in the network (like Hebbian priors) that can be
sampled jointly to reduce computational costs similar to blocked Gibbs. The north star would be a
neural network which consists of a fixed set of basis functions that need a small set of parameters to

8

Under review as a conference paper at ICLR 2021

modulate the responses. If we can construct and train such networks with search based methods, it
would significantly improve our understanding of deep networks.

REFERENCES

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep
networks. In Advances in neural information processing systems, pp. 153–160, 2007.

H. Beyer and H. Schwefel. Evolution strategies – a comprehensive introduction. Natural Computing, 1:3–52,
2004.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. ICLR, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
ICLR, 2019.

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm: On the
expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020.

Adam Gaier and David Ha. Weight agnostic neural networks. In Advances in Neural Information Processing
Systems, pp. 5365–5379, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on com-
puter vision, pp. 1026–1034, 2015.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 1998.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
ICLR, 2017.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on
structured data. In Advances in Neural Information Processing Systems, pp. 8157–8166, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated learning
of representations. In Advances in Neural Information Processing Systems, pp. 3033–3045, 2019.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari. What’s
hidden in a randomly weighted neural network? CVPR, 2020.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

9

Under review as a conference paper at ICLR 2021

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147, 2013.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training neural
networks without gradients: A scalable admm approach. In International conference on machine learning,
pp. 2722–2731, 2016.

Justin Werfel, Xiaohui Xie, and H. S. Seung. Learning curves for stochastic gradient descent in linear feedfor-
ward networks. In Advances in Neural Information Processing Systems 16, 2004.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

10

	Introduction
	Related Work
	Approach
	Experiments
	MNIST
	Sampling multiple weights versus a single weight
	Order of optimization within a layer
	CIFAR-10
	Comparison of total weight updates
	Updating weights in parallel
	Caching network activation

	Conclusion and Future Work

