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Abstract: Reaction optimization is challenging and traditionally delegated to domain experts who iteratively pro-
pose increasingly optimal experiments. Problematically, the reaction landscape is complex and often requires
hundreds of experiments to reach convergence, representing an enormous resource sink. Bayesian optimization
(BO) is an optimization algorithm that recommends the next experiment based on previous observations and has
recently gained considerable interest in the general chemistry community. The application of BO for chemical re-
actions has been demonstrated to increase efficiency in optimization campaigns and can recommend favorable
reaction conditions amidst many possibilities. Moreover, its ability to jointly optimize desired objectives such as
yield and stereoselectivity makes it an attractive alternative or at least complementary to domain expert-guided
optimization. With the democratization of BO software, the barrier of entry to applying BO for chemical reactions
has drastically lowered. The intersection between the paradigms will see advancements at an ever-rapid pace.
In this review, we discuss how chemical reactions can be transformed into machine-readable formats which
can be learned by machine learning (ML) models. We present a foundation for BO and how it has already been
applied to optimize chemical reaction outcomes. The important message we convey is that realizing the full
potential of ML-augmented reaction optimization will require close collaboration between experimentalists and

computational scientists.
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1. Introduction

Chemical discovery involves iterative decision-making to pro-
pose increasingly optimal experiments in response to empirical
results. Traditionally, domain experts were tasked with travers-
ing these complex multi-dimensional problems where success
typically involved many iterations of design make-test-analyze
(DMTA) cycles, often changing only one variable at a time.
Recently, machine learning (ML) has been applied in chemistry
and has demonstrated success in designing candidate molecules
satisfying a set of desired properties!!-! and computer-aided
synthesis planning (CASP)[®-121 to propose actionable synthetic
routes. Integrating these ML tools into an experimentalists’ work-
flow can aid decision-making and has started a paradigm shift
toward a data-driven scientific process with the potential to ac-
celerate chemical discovery.[!3-141 We focus on the fundamental
problem of navigating chemical reaction space to optimize a tar-
get objective, e.g., reaction yield and selectivity, and highlight
the seminal works,!!>161 which have recently gained significant
interest in the general chemistry community. The subtleties of
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chemical reactivity are challenging to understand and, to a great
degree, are still predominantly explored through a trial-and-er-
ror approach. While ML methods can model chemical reactivity
within reasonable accuracy, actively deciding the next experiment
is still challenging as these models are not guaranteed to gener-
alize to new reaction space, e.g., predicting the effect of a new
catalyst on the stereoselectivity.l'7-181 Moreover, while a domain
expert can, on average, suggest experiments that gradually im-
prove reaction outcomes, the complexities of chemical reactivity
present a multi-dimensional problem that is not easily traversed.
More recently, Bayesian optimization (BO) has been applied to
iteratively suggest new reaction conditions to couple a decision-
making mechanism to predictive ML models.l>! These models
can suggest reaction conditions that converge on the target objec-
tive faster than domain experts. Together with robotic automation,
predictive ML models with BO offer an opportunity to greatly
accelerate the generation of chemical data and eventually accel-
erate discovery.[!9-211 Here, we first discuss methods to transform
chemical reactions into machine-readable representations and the
challenges of navigating a large reaction design space. Next, we
present the BO framework and discuss the historical works using
flow reactors that are foundational to the recent works applying
BO for reaction optimization. We end by presenting an outlook
on the field and emphasize that the ongoing efforts to digitalize
chemical data and collaboration between ML practitioners and
experimentalists are crucial to realizing a future with accelerated
discovery.

2. Design Space

2.1 Reaction Representations

Chemical reactions describe the transformation of reacting
substances towards a resulting product. Classic literature uses
chemical equations to denote this process, but they are not suitable
inputs for modern machine-learning models. A systematic repre-
sentation of chemical reactions in a computer-readable format is
necessary to employ methods like BO. Better chemical reaction
representations bring better predictive power to the underlying
models, which, in turn, makes optimization faster. We can distin-
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guish two intrinsically different methods that convert chemical
reactions into a computer-friendly form (Fig. 1).

The first one concatenates vectors of individual molecular
components into a unified digital representation. The second one
aims to directly transform the chemical reaction into a vectorized
form without separating its components. Typically, initializing an
optimization campaign is done in a low-data regime, i.e., a chem-
ist starting a reaction optimization project will likely only have
performed a few reactions. The lack of experimental data points
coupled with highly complex reaction descriptors can make the
optimization goals unattainable. This contrasting setup might be
why more straightforward reaction representations like one-hot
encodings (OHE) achieve outstanding results in reaction optimi-
zation, often matching the outcomes of more costly and elaborate
reaction descriptors.[22231 One-hot encoding defines a reaction
through a set of categorized precursors. For example, a reaction
composed of different additives, solvents, and catalysts will have a
binary representation indicating whether a particular additive, sol-
vent, or catalyst from the design space is present in the reaction or
not.24l Although OHE does not contain structural information, it
performs surprisingly well in reaction optimization settings.[22-24]
As an alternative, traditional chemoinformatics fingerprints offer
more information by encoding the molecular graph of reaction
components. Extended-Connectivity Fingerprints (ECFP),[251 for
example, construct the molecular vector by encoding connections
of each atom within the a radius. Other fingerprints use the sim-
plified molecular-input line-entry system (SMILES)[251to encode
the neighboring connections of atoms/29! and more distanced atom
pairs.271 SMILESI?3] are a line notation that encodes the molecu-
lar graphs as strings with the addition of limited stereochemistry.
SMILES follow the natural graph representation of molecules
and convert it to a textual format suitable for natural language
processing-based machine learning models. These models exploit
the string notation and provide additional techniques to represent
molecules. For example, CDDDI28] creates descriptors by trans-
lating between equivalent molecular notations using an encoder-
decoder network. ChemBERTal30! utilizes transformer models
for molecular property predictions and, as a side-effect, uncovers
informative continuous molecular vectors. Unlike the purely data-
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driven descriptors, more chemically meaningful chemical reac-
tion representations come as a mixture of molecular and atomic
QM properties.[24] They provide significantly more insights into
the reaction dynamics but are expensive to calculate. Still, the
price we pay for calculating these descriptors is reasonable com-
pared to the time and cost needed for running the entire design
space of chemical reactions. Contrary to the expectation, however,
their performance is often similar to the one obtained with simple
OHE.I['5.24] Concatenating different molecular precursors to form
a reaction representation offers a lot of freedom and information
in defining the final vector. However, it comes with a curse of
dimensionality. Concatenated vectors can grow fast in size based
on the number of reaction components. An additional concern is
a limited generality, as a variable number of reaction components
creates a variable-sized vector which is not convenient for ma-
chine learning models.

Alternative recent approaches map reactions directly to a fin-
gerprint, making them independent of the number of reaction com-
ponents. Schneider3! uses the difference between the molecular
fingerprints of the reactants and the product to define a novel chemi-
cal fingerprint used for large-scale reaction classification and simi-
larity. DRFP32! calculates the symmetric difference between two
sets of circular molecular n-grams generated from the reactants and
reagents on one side and products on the other. Schwaller et al.[33]
introduces fully data-driven reaction representations as a result of
transformer models employed for reaction classification (RXNFP).
Recently, van Gerwen et al.34! introduced novel physics-based re-
action fingerprints that build bond-based reaction representations.

Additional reaction space diversity comes from the reaction
condition parameters that can be tuned, e.g., temperature. During
a reaction optimization campaign, chemists often vary one vari-
able at a time while keeping others constant to isolate the effect
of the variable on the outcome. Problematically, even a modest
number of variables can lead to a combinatorial explosion of pos-
sible reaction conditions. Strategies to navigate a large reaction
space are discussed next. Nonetheless, to make the reaction rep-
resentation complete, these parameters are concatenated with the
structural representation (Fig. 1).

2.2 Navigating Design Space

Traditionally, reaction data are generated solely through man-
ual effort and the majority of published literature are comprised
of such experiments. More recently, the application of robotic
platforms has enabled high-throughput experimentation (HTE),
which has either supplemented or replaced manual experimenta-
tion in certain scenarios.[15-24.351 The reaction space diversity is an
important distinction between HTE and literature data generated
during methodology development (Fig. 1). HTE typically aims
to manipulate a few variables and almost exhaustively queries
the search space.[*0] By contrast, methodology data typically en-
compasses both optimization and substrate scope experiments.[37]
The latter greatly increases the reaction space diversity as the
standard protocol is to probe the compatibility of different ‘scaf-
folds” and ‘R-groups’, which can span numerous chemotypes. In
any optimization campaign, there is generally an inverse relation-
ship between reaction space diversity and ease of convergence,
i.e., it is more difficult to find the optimal conditions in large
design spaces (needle in a haystack problem). Provided access
to HTE, traversing a relatively narrow design space is perfectly
feasible by exhaustive screening and removes the need to make
decisions on the next condition to try. However, limited access
to HTE platforms coupled with large design spaces makes tra-
versing multi-dimensional reaction space challenging. Progress
is usually driven by domain experts that make design choices by
iteratively extracting mechanistic insights gained from previous
experimental outcomes. Consequently, the question is how one
can navigate reaction space efficiently, especially in large design

spaces where HTE is infeasible. Ideally, we want to minimize
the number of experiments performed to reach convergence. The
next section introduces BO, which has demonstrated success in
ML-guided reaction space navigation. The underlying premise of
BO essentially mimics what is done by domain experts, where
experimental observations guide sequential decision-making. An
important note, however, is that domain experts may be inherently
biased to propose reaction conditions known to work for similar
reactions. While this is sometimes true, reactions are so complex
that even if these reaction conditions work, they are likely not the
optimal choice. In some sense, BO is less prone to this bias and
explores uncommon reagents which has proved to be advanta-
geous in reaction optimization campaigns.t>!

3. Bayesian Optimization

BO is a sequential optimization strategy widely used in many
applications, including molecular discovery* and chemical reac-
tion optimization.!'3! BO consists of two components: a probabilis-
tic surrogate model (also known as a response surface) that learns
the relationship between the input and the output of the function,
and an acquisition function (AF) that is used to propose new inputs
to be evaluated on the real function. In the case of chemical reac-
tions, the inputs are the chemical reaction conditions and the real
function may be the experimentally measured yield or selectivity.
The AF considers both the prediction and the uncertainty of the
surrogate model and guides the optimization process to sample
inputs that are most likely to be optima. The AF proposes the next
experiments based on the previous observations. Correspondingly,
the BO loop consists of training/retraining the surrogate model
and subsequently proposing new reaction conditions to try via the
AF, repeating the process until convergence or the experimental
budget is exceeded (Fig. 2). For a detailed discussion of the math-
ematical aspects of BO, we refer the reader to the Supplementary
Information and the review by Shahriari et al.[38]

3.1 Surrogate Model

Different probabilistic models, which map the inputs, i.e.,
chemical reaction components, to the outputs, e.g., yield or se-
lectivity and an associated uncertainty or confidence on the pre-
diction, can be used as surrogate models. We will discuss the
Gaussian process (GP), decision-tree-based models, and neural
network (NN) models.

The Gaussian Process (GP) is one of the most popular sur-
rogate models for Bayesian optimization due to its flexibility and
interpretability.[38:391 GPs assume that the function values of differ-
ent inputs are jointly Gaussian. The covariance of these Gaussian
variables is specified by a kernel function. The kernel function
takes the distance between the inputs as the input and outputs the
similarity between them. Therefore, the kernel function can be
used to incorporate our prior knowledge about the structure of
the function.

Random Forests (RF's) are an ensemble of decision trees that
by themselves often suffer from overfitting, i.e., memorizing the
training data to the point where the model cannot generalize to
new data.[*0] RFs mitigate overfitting by adding stochasticity gen-
erally at two levels. Firstly, each decision tree in the ensemble is
trained with a different dataset generated by bootstrapping, i.e.,
sampling the original dataset with replacement. Secondly, a ran-
dom subset of features is used to train each decision tree instead
of the full set of features in regular decision trees. The output
of regression RFs is the arithmetic mean of the individual trees’
predictions and uncertainty can be extracted via the standard de-
viation of these predictions.

Neural Networks (NN) are not often used in BO applica-
tions for reaction discovery due to small reaction dataset sizes, as
these models typically require more training data. Nonetheless,
examples exist in which feed-forward neural networks (FFNN)
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have demonstrated success in predicting reaction outcomes.[*!]
FFNNSs can handle uncertainty quantification (UQ) via ensemble
approaches, i.e., training multiple FFNNs and taking the variance
in their predictions as the uncertainty. An alternative method is
Monte Carlo (MC) dropout!#2l where the FENN is trained with
dropout, i.e., deactivating neurons with some probability during
training. During inference, keep dropout such that repeated que-
ries to the model yield different outputs since the model weights
would differ depending on which neuron is deactivated. These UQ
methods have been shown to be amenable to uncertainty-based
AFs for reaction optimization. 4!l

3.2 Acquisition Functions

The second crucial component in BO is the AF. AFs are heu-
ristics used to select the next best experiments to execute.38]
Generally, AFs balance between exploration and exploitation
in an attempt to identify the global optimum. Exploration and
exploitation refer to selecting query points where the surrogate
model has high uncertainty, i.e., the space is underexplored and
the model does not have enough information to be confident, or
predicts a high target value, respectively. Intuitively, exploration
selects query points where the model is most uncertain, i.e., the
target output may or may not be good, but one hopes it leads
to a new optimal. By contrast, exploitation selects query points
similar to optimal points that the model has already observed,
i.e., selecting an input similar to other inputs that are known to be
favorable, should also yield a favorable target output. In practice,
a balance between exploration and exploitation is required to ex-
plore enough design space to identify the global optimum rather
than a local optimum. For a more detailed discussion on AFs, see
the Supplementary Information.

4. Reaction Optimization

Reaction optimization is a fundamental problem in method-
ology development and process scale-up for pharmaceutical in-
gredients and materials. The previous sections attempt to lay a
foundation for the discussion of applied BO for reaction discov-
ery which has recently garnered significant interest in the general
chemistry community.!'5431 There is, however, a rich history of re-
action optimization from chemical reactor engineering that needs
to be acknowledged. In this section, we first discuss the historical
foundations for reaction optimization and then show the natural
progression of the field to the present day, where wider adoption
of BO methods has been enabled by open-sourced code.

4.1 Closed-loop Self-optimization Using Flow Reactors
Over the last two decades, significant work in closed-loop re-
action optimization has been enabled by flow reactors equipped

Select the
next
experiment(s)

with heuristic optimization algorithms, in which Simplex,[44-46]
Stable Noisy optimization by Branch and FIT (SNOBFIT),!“7!
Steepest Descent and Conjugate Gradient,*3-501 and evolution-
ary algorithms.[5!l are popular. Integration of analytical instru-
ments enables closed-loop workflows, where real-time moni-
toring of reaction progression and outcome is crucial for self-
optimization.2-551 Exemplary works from McMullen et al.,156-57]
Parrott et al.,l>8 Bourne et al.,159 O’Brien et al.,!90 Moore et al.,[o!]
Sans, Porwol, Dragone, Cronin et al.,[®2l Amara et al.,l%3 Houben
et al.,|*4l Holmes et al.,lo51 Cortés-Borda et al.,[90] Fitzpatrick et
al.,1s”l and Echtermeyer .[8] demonstrate this paradigm and navi-
gate continuous reaction variables space, e.g., temperature, to op-
timize yield, reactor efficiency, and waste minimization. These
flow reactors can also optimize simultaneously over continuous
and discrete reaction variables, e.g., catalyst choice, as shown by
Reizman et al.,[99701 Baumgartner et al.,[’"1 and Hsieh et al.[’]
While these significant advancements in closed-loop optimiza-
tion demonstrate the utility of robotic automation to increase pro-
ductivity and ensure reproducibility across replicate experiments,
their domain of applicability is often limited due to inflexible
reactor setups that have mostly been applied to process optimiza-
tion.

4.2 Towards More General Flow Reactors

More recent development has focused on enhancing generaliz-
ability such that the same reactor is compatible with a wide range
of reactions where individual reaction steps can require different
reaction mediums, e.g., a pressurized reaction vessel. Li et al.[73]
report an automated platform using a chromatographic set-up that
can strategically release desired intermediates based on reaction
need. Bédard ez al.’¥] report a reconfigurable flow reactor where
compartments can be changed based on reaction requirements.
Coley et al.>l integrated an open-sourced synthesis planning tool,
ASKCOS, for route recommendation, which can be subsequently
executed on a robotic platform. Steiner er al.l’0! Mehr et al.,/"
Angelone et al.,I’81 and Vaucher et al.[79301 report efforts to turn
synthetic procedures into computer code that is executable and
portable across different reactors.

However, an ongoing challenge is navigating reaction space
efficiently for multi-objective optimization (MOO), especially
when the design space is relatively large. Importantly, access to
robotic reactors remains limited, yet the potential of accelerated
convergence from optimization algorithms should be accessible
to any potential chemist. The concurrent development of open-
sourced BO software packages has drastically lowered the bar-
rier to entry in applying these algorithms for reaction discovery.
Correspondingly, proof-of-concept works describing the applica-
tion of BO to general reaction discovery have started a paradigm
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shift from traditional wet-lab labor-intensive chemistry to one that
is augmented by ML.[81]

4.3 Bayesian Optimization for Chemical Reactions

Recently, numerous BO software packages have been
open-sourced, including general frameworks such as
GPyTorch,[821 BoTorch,331 Dragonfly,84 Scikit-learn,[85-86] and
chemistry specialized frameworks including GAUCHE,$7]
Phoenics,[#8] Chimera,[®9! and Gryffin,!°® and benchmarks.[1.92]
Correspondingly, Shields ef al.['5] and Torres, Lau, Anchuri et
al.l'%1 build upon these frameworks and develop the Experimental
Design via Bayesian Optimization (EDBO) web application
aimed at equipping any chemist with a BO tool. The potential
of BO to accelerate reaction optimization was demonstrated ret-
rospectively using HTE data for Buchwald-Hartwig and Suzuki-
Miyaura cross-coupling reactions from Ahneman et al.**! and
Perera et al.351 Prospective experiments were then designed to
show the applicability of EDBO to optimization problems en-
countered in daily chemistry research tasks. Specifically, the op-
timal conditions for a Mitsunobu reaction and a deoxyfluorination
of alcohols with design spaces of 180,000 and 312,500, respec-
tively, were found within 30-50 experiments using DFT descrip-
tors and outperforming human experts.l'3! Choi et al. used the
same HTE data for Buchwald-Hartwig?¥! and Suzuki-Miyaurall>!
reactions in addition to data from an arylation reactionl®3-94 and
their own generated Ullmann and Chan-Lam HTE data to show an
improved Hybrid-type Dynamic Reaction optimization algorithm
using graph-neural networks (GNNs) which can outperform hu-
man experts.[%! Rankovi¢ et al.! applied DRFP and RXNFP to
optimize the yield of a nickel-catalyzed reaction retrospectively.
The dataset measures the effect of changing only the additive and
is thus not amenable to OHE, i.e., every single data point would
feature a different OHE vector. The use of DRFP and RXNFP
shows significantly improved performance to a random search,
demonstrating the importance of having complementary methods
for reaction representation.

Moreover, drawing from extensive historical developments in
flow reactors, there has recently been a surge in works describ-
ing the integration of BO algorithms into ML-augmented robotic
synthesis platforms. Schweidtmann et al.,[°71 Amar et al.,%8 and
Clayton et al. apply the Thompson Sampling Efficient Multi-
objective optimization (TS-EMO)[1091 BO algorithm to optimize
SnAr, N-benzylation, Sonogashira, Claisen-Schmidt condensa-
tion, and asymmetric hydrogenation reactions using flow reac-
tors. Burger et al.[' report a mobile robotic chemist that oper-
ated autonomously to perform 688 experiments guided by BO
and successfully identified photocatalysts for hydrogen produc-
tion from water with increased activity. Sugisawa et al.['01 use
BO to optimize the yield of an unsymmetrical sulfamides reaction
using a flow reactor. Christensen et al.! use Phoenics/®! and
Gryffin®! with DFT descriptors to optimize the stereoselectiv-
ity of a Suzuki-Miyaura reaction and explore human and ML-
guided selection of monodentate phosphine ligands, thus han-
dling both continuous and categorical features. Gérardy et al. use
Dragonfly!®] to optimize a photochemical reaction using flow
reactors, showcasing the use of another open-sourced BO soft-
ware package. Nambiar et al.l12] attempt to achieve increased au-
tonomy by coupling ASKCOS!"®! for synthetic route recommen-
dations with Dragonfly®3! and flow reactors for MOO of yield,
reactor productivity, and reagent cost for Sonidegib synthesis (an
anti-cancer medication). However, bottlenecks exist that impair
full autonomy, including the need for human experts to investigate
the solubility of proposed reagents and specifying intricate details
in experimental protocols that are crucial for success, e.g., which
reagents to mix first to mitigate side-product formation. Recently,
Angello et al.?l leverage BO with robotic automation to iden-
tify general conditions for a Suzuki Miyaura cross-coupling re-

action which is akin to a chemist exploring the substrate scope
of a newly discovered reaction. Furthermore, the generalizability
and democratization of BO algorithms have led to applications in
other reaction classes. Exemplary examples include work by Xie
et al.l'031 and Naito et al.l'04 to improve the crystallinity of metal-
organic frameworks (MOFs) and optimize the yield and current
efficiency of a reductive carboxylation of imines via an electro-
chemical transformation, respectively. It is worth noting that Xie
et al."%1 use an RF prior in contrast to GPs, which are by far the
most common surrogate model.

4.4 Multi-objective Optimization

Recent works have demonstrated the viable application of BO
for chemical transformations beyond process chemistry, especial-
ly through the development of BO web applications which remove
the need for technical expertise in ML.I'5:161 However, encourag-
ing wide adoption of BO into a chemist’s daily workflow will
likely require further work to demonstrate enhanced efficiency for
MOO and Pareto front optimization, i.e., when improving upon
one objective further comes at a necessary trade-off on another
objective.%7] Thus far, most works showcasing the integration of
optimization algorithms with robotic platforms define target ob-
jectives either more relevant to process chemistry or are not rep-
resentative of the challenges encountered by synthetic chemists.
For example, a quintessential MOO task for a synthetic chemist
is the simultaneous optimization of yield and stereoselectivity,
which presents a considerably more challenging problem, yet
is representative of everyday research.l'®) Works describing the
successful application of optimization algorithms to these tasks
would be most convincing to a chemist interested in adopting
ML-augmented workflows and do exist, albeit comparatively
fewer. Amar ez al.l®8! use TS-EMOL!!%I to optimize the yield and
diastereoselectivity of an asymmetric hydrogenation reaction and
convincingly show enhanced performance compared to a human
benchmark. Interestingly, the authors provide a discussion around
the covariance matrix in their GP model which can be queried
for some notion of feature importance, i.e., which reagent in the
reaction seems to be important to achieving the desired outcome.
We note that the ability to extract feature importance is not ex-
clusive to GP models and tree-based models such as RFs are well
suited for this. Furthermore, Torres, Lau, Anchuri et al.['6.105] yse
their web application for BO, EDBO, with a GP and g-Expected
HyperVolume Improvement (q-EHVI)[06] acquisition to opti-
mize yield and enantioselectivity for Suzuki-Miyaura and Nickel
photoredox-catalyzed reactions. Different substrates were also
investigated, thus mimicking an entire workflow of a chemist,
i.e., optimizing yield and enantioselectivity and then probing the
substrate scope.

A key question that must be addressed when considering
adopting a BO workflow for reaction optimization is: to what ex-
tent can BO accelerate convergence relative to manual experiment
and HTE? The benefits compared to manual experiments can be
more easily reasoned as several works have shown that BO algo-
rithms can consistently identify optimal conditions compared to
human experts.!'5.16.981 By contrast, HTE can exhaustively screen
reaction conditions and query exact outcomes. In such scenarios,
it is clearly better to know with certainty than rely on a statistical
model.[15:24.36.96] However, in relatively large design spaces, i.e.,
reactions involving many reagents, HTE can become infeasible
or prohibitively expensive. In a situation like this, Christensen et
al.1?01 argue that the ability for BO to navigate both continuous and
discrete variables space can make it more efficient than HTE or
Design of Experiment (DoE) strategies, although only a theoreti-
cal comparison is drawn. In our opinion, a compelling argument
can be drawn by contrasting the ease of access to BO frameworks
with literature support demonstrating the possible benefit over
HTE and DoE with the limited accessibility to robotic automation
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by the average chemist. Thus, while there is no guarantee that BO
will always outperform human experts, the ease of access to these
algorithms should at least warrant a try in reaction optimization
campaigns.

4.5 Batch Experiments: Enabling Practical Chemistry

Chemists typically perform experiments in parallel, and AFs
should be easily adaptable for batch acquisition, i.e., proposing
parallel experiments. A straightforward method is to acquire the
top N reactions based on the ranking by the AF. However, BO
algorithms work ideally by iteratively suggesting new query con-
ditions based on previous observations. If N reactions were ac-
quired as a batch, the proposed reaction conditions would all be
based on the same previous posterior. In an extreme case, this
could potentially lead to sub-optimal performance. For example,
if an exploitation-heavy AF were used and N conditions (which
are similar) were acquired as a batch, poor performance for one
condition would likely translate to the other conditions as well.
By contrast, in the sequential acquisition workflow, the surro-
gate model would be updated after observing a poor performance
of that one reaction condition, potentially removing the resource
sink for the remaining N-1 conditions in the case of a batch acqui-
sition. An alternative strategy for batch acquisition draws inspira-
tion from Ginsbourger et al. and is known as Kriging Believer
(KB).[1071Tn KB, new query points are acquired sequentially, and
the corresponding prediction by the surrogate model is taken
by faith and used to update the model. This process is repeated
until the desired N is acquired and is known as Batch Expected
Improvement (qEI) if Expected Improvement (EI) is used.[108.109]
Shields et al.l'>! observe and show by statistical testing that KB
performs equally well as normal sequential acquisition involving
posterior update for reaction optimization. Another batch acqui-
sition strategy uses Thompson Sampling (TS) and is known as
Parallel and Distributed Thompson Sampling (PDTS).l10.1111 A
distinct difference between qEI and PDTS other than the acqui-
sition heuristic is that PDTS acquires the batch of query points
in parallel and, thus, can be partitioned on numerous computing
nodes and is more scalable on large datasets. We note, however,
that reaction datasets are typically so small that the difference
in required computing resources for qEI and PDTS strategies is
negligible. Another heuristic similar to KB is Constant Liar (CL),
where new query points are also acquired sequentially but are
assigned a predefined constant value.l'%7] If the value were favor-
able, then it encourages exploitation behavior and exploration oth-
erwise, Le., if the acquired point is assigned a poor evaluation and
the posterior is updated, it is likely that the next acquisition will
be different. While CL has not been applied to reaction optimiza-
tion, it could be used to encourage exploration in cases with large
design spaces. Overall, strategies exist to enable batch acquisition
such that it is practical for a chemist to integrate BO workflows
into their research.

5. Outlook

The recent release of open-sourced BO software packages has
enabled their ‘out-of-the-box’ application for reaction optimiza-
tion. Furthermore, efforts in the chemistry community to create
user-friendly tools such as EDBOI!5:16] have drastically lowered
the barrier of entry to adopting these workflows for everyday re-
search. While access to robotic automation, whether HTE or flow
reactors, remains limited, these algorithms can still propose use-
ful experiments that can at least be used to supplement domain
experts’ decision-making. One of the biggest obstacles to address
is that chemistry is still mostly a web-lab science, and efforts to
adopt data-driven workflows are only gradually becoming more
prevalent. A prime example is the historical method of recording
experimental procedures and observations in physical notebooks,
which are often difficult to parse and risks data being lost. The

community effort to address this problem comes in the form of
encouraging the adoption of Electronic Lab Notebooks (ELNs)
and initiatives such as the Open Source Reaction Databasel!!?]
which aims to curate an open-sourced database of chemical reac-
tion data. The increased availability of correct and complete data
will only help ML-based algorithms for reaction optimization.
Another obstacle is the ability to predict MOO objectives, espe-
cially stereochemistry, which is a challenging problem commonly
faced by research chemists. Recent works have proposed informa-
tive featurization strategies such that simple ML models can cap-
ture stereochemical relationships, and further developments will
enhance the capability of BO to predict stereoselectivity.l17-18.113]
Moreover, related frameworks like HTE are complementary to BO
and will see continued development as it is ubiquitous in industrial
laboratories!?! and best practices to apply ML to HTE data will
further benefit BO applications.[!!4] Finally, the collective devel-
opments in ML models for chemical datasets, data availability,
robotics, and optimization algorithms will drive progress toward
achieving autonomous discovery.l!!>-1171 We end by expressing
that the field is progressing rapidly and will likely accelerate as
more tools become open-sourced, with practically every recent
work demonstrating the capability of BO algorithms to acceler-
ate convergence. It will only be through effective collaboration
between ML practitioners and experimentalists that a future with
accelerated and autonomous chemical discovery can be realized.
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