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Abstract

Reweighted wake-sleep (RWS) is a machine learn-
ing method for performing Bayesian inference in
a very general class of models. RWS draws K
samples from an underlying approximate posterior,
then uses importance weighting to provide a better
estimate of the true posterior. RWS then updates
its approximate posterior towards the importance-
weighted estimate of the true posterior. However,
recent work [Chatterjee and Diaconis, 2018] in-
dicates that the number of samples required for
effective importance weighting is exponential in
the number of latent variables. Attaining such a
large number of importance samples is intractable
in all but the smallest models. Here, we develop
massively parallel RWS, which circumvents this is-
sue by drawing K samples of all n latent variables,
and individually reasoning about all Kn possible
combinations of samples. While reasoning about
Kn combinations might seem intractable, the re-
quired computations can be performed in polyno-
mial time by exploiting conditional independencies
in the generative model. We show considerable im-
provements over standard “global” RWS, which
draws K samples from the full joint.

1 INTRODUCTION

Many machine learning tasks involve inferring the la-
tent variables from underlying observations [Jaynes, 2003,
MacKay et al., 2003]. One approach to inferring these la-
tent variables from data is to use Bayesian inference. In
Bayesian inference, we define a generative model which
consists of a prior, P (latents), describing the probability
of the latent variable before seeing data, and a likelihood,
P (data|latents), describing the probability of the data given
the latents. The goal is then to compute the posterior using

Bayes theorem,

P (latents|data) ∝ P (data|latents) P (latents) . (1)

However, computing this posterior is typically intractable,
especially in more complex models where the likelihood or
prior is parameterised by a neural network.

As an alternative, modern approaches such as variational
inference [VI; Jordan et al., 1999, Wainwright et al., 2008,
Kingma and Welling, 2013, Rezende et al., 2014, Blei et al.,
2017, Nguyen et al., 2017, Zhang et al., 2018, Kingma
et al., 2019, Gayoso et al., 2021] and reweighted wake-
sleep [RWS; Bornschein and Bengio, 2014, Le et al.,
2020] learn the parameters, ϕ, of an approximate poste-
rior, Qϕ (latents|data). In VI, we learn this posterior by op-
timizing the evidence lower-bound objective (ELBO) using
the reparameterisation trick [Kingma and Welling, 2013,
Rezende et al., 2014]. This bound often has considerable
slack, which can bias inferences. To address this issue impor-
tance weighted auto-encoders [IWAEs; Burda et al., 2015,
Cremer et al., 2017] draw multiple samples from the approx-
imate posterior and use importance weighting to provide a
tighter bound on the model evidence. In RWS, we draw mul-
tiple samples from the approximate posterior, reweight those
samples to approximate the true posterior, then update the
approximate posterior towards the reweighted approxima-
tion of the true posterior (specifically, this is the wake-phase
Q update; see Bornschein and Bengio, 2014).

However, recent work [Chatterjee and Diaconis, 2018]
showed that the number of samples required to get accurate
importance weighted estimates is very large. Specifically,
they showed that the required number of samples scales
as eDKL(P(z|x)∥Q(z|x)). This is particularly problematic be-
cause we expect the KL divergence to scale linearly in the
number of latent variables, n. Indeed, if P (z|x) and Q (z|x)
are IID over the n latent variables, then the KL-divergence
is exactly proportional to n. Overall, this implies that we
expect the required number of samples to be exponential in
the number of latent variables, which is clearly infeasible
for larger models.
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This problem has been addressed in the IWAE context using
TMC [Aitchison, 2019], which draws K samples for each
of the n latent variables, and individually reasons about
each of the Kn combinations of samples. Here, we develop
an analogous approach for RWS, which we call massively
parallel (MP) RWS. Critically, this is not a simple extension
of the derivations in Aitchison [2019]. The derivations in
Aitchison [2019] are either restricted to factorised approxi-
mate posteriors, or use an augmented state-space viewpoint
which cannot be applied to RWS. We therefore give very dif-
ferent and considerably more general derivations in Sec. 4.
Indeed, these more general derivations allow us to use a
more general class of approximate posteriors, even in the
original VI setting.

2 RELATED WORK

Of course, our methods are based on fundamental work on
VI [Jordan et al., 1999, Wainwright et al., 2008, Kingma
and Welling, 2013, Rezende et al., 2014, Blei et al., 2017,
Nguyen et al., 2017, Zhang et al., 2018, Kingma et al., 2019,
Gayoso et al., 2021], IWAE [Burda et al., 2015, Cremer
et al., 2017] and RWS [Bornschein and Bengio, 2014, Le
et al., 2020].

Perhaps the most obvious related work is TMC [Aitchison,
2019], which also draws K samples for each of the n latent
variables, and considers all Kn combinations. The key dif-
ference to our work is that TMC only applies to VI, while
our work applies to RWS. However, our more general deriva-
tions improve on TMC itself. Specifically, TMC is restricted
to approximate posteriors that are IID across the K particles
for one latent variable. In contrast, our derivations allow us
to couple the distribution over K particles for a single latent
variable (Appendix 2), which gives scope for e.g. applying
variance reduction strategies.

Further, there is a body of work improving VI, but not RWS
in specific restricted classes of model.

The first model class is a single-level hierarchical model,
with a Bayesian parameter, z0, common to all datapoints,
and latent variables, z1 . . . zn, each associated with a dif-
ferent datapoint. Geffner and Domke [2022] propose a “lo-
cal” importance weighting (LIW) scheme for this class of
model, which contrasts with standard importance weight-
ing schemes that they describe as “global”. We adopt their
“global” terminology for standard IWAE and RWS, which
draw K samples from the full joint approximate posterior.
LIW in effect does IWAE separately for each datapoint: it
separately draws K IWAE samples for the latent variables,
z1 . . . zn, associated with each datapoint, x1, . . . , xn. This
looks very similar to TMC and massively parallel RWS,
which draw K samples for the Bayesian parameter, z0 and
the latent variables, z1, . . . , zn, and reasons about all Kn+1

combinations of all samples on z0, z1, . . . , zn. However

LIW differs from TMC and massively parallel RWS in that
LIW draws only a single sample of the Bayesian parameter,
z0. Of course, there are additional differences. In particular,
LIW, like TMC, ultimately performs VI, while massively
parallel RWS applies RWS. Further, massively parallel RWS
(like TMC) can be applied to a very broad class of models,
while LIW is restricted to these single-level hierarchical
models.

A second class of models is timeseries models. Massively
parallel methods in timeseries may bear some resemblance
to particle filtering/sequential Monte-Carlo (SMC) [Gordon
et al., 1993, Doucet et al., 2009, Andrieu et al., 2010, Mad-
dison et al., 2017, Le et al., 2017, Lindsten et al., 2017,
Naesseth et al., 2018, Lai et al., 2022], in that SMC/particle
filters also reason over multiple samples for each latent vari-
able. However, work which learns a proposal/approximate
posterior in the particle filtering setting focuses on VI rather
than RWS [Maddison et al., 2017, Le et al., 2017, Lind-
sten et al., 2017, Naesseth et al., 2018, Lai et al., 2022].
Moreover, most work in SMC / particle filtering considers
only a restrictive class of timeseries model, while massively
parallel methods operate in a very general class of models.
While there is some work extending SMC to more general
generative models [e.g. Lindsten et al., 2017], this work
does not, for instance, give a mechanism to learn an approx-
imate posterior using e.g. IWAE or RWS, let alone to have
an approximate posterior whose structure differs from that
of the underlying generative model.

3 BACKGROUND

Here, we give background on IWAE and RWS, which are
methods for performing Bayesian inference in a probabilis-
tic generative model. Both IWAE and RWS work with a
collection of K samples of the latent variables. The full
collection of K samples is denoted z, while an individual
sample (specifically the kth sample) is denoted zk,

z = (z1, z2, . . . , zK) ∈ ZK . (2)

For standard global VI and RWS, K samples are drawn
by sampling K times from the underlying single-sample
approximate posterior, Qϕ

(
zk|x

)
, which has parameters, ϕ,

Qglobal (z|x) =
∏
k∈K

Qϕ

(
zk|x

)
, (3)

where K = {1, . . . ,K}.

IWAE and RWS can be written in terms of an unbiased
estimator of the marginal likelihood (Appendix 3.1.2),

Pglobal(z) =
1

K

∑
k∈K

rk(z), (4)

rk(z) =
Pθ

(
x, zk

)
Qϕ (z

k|x)
, (5)



where P
(
x, zk

)
is the generative probability, and rk(z) is

the ratio of generative and approximate posterior probabili-
ties, r(zk).

3.1 IMPORTANCE WEIGHTED AUTOENCODER

In IWAE [Burda et al., 2015], we optimize ϕ and θ using
the IWAE objective, Lglobal, which forms a lower-bound on
the marginal likelihood, log Pθ (x),

log Pθ (x) ≥ Lglobal(θ, ϕ) = EQglobal(z|x) [logPglobal(z)]

(6)

Differentiating this objective wrt the parameters of the gener-
ative model is straightforward, as Qϕ (z|x) does not depend
on θ so we can interchange the expectation and gradient
operators. In contrast, the distribution over which the ex-
pectation is taken does depend on ϕ, so the ϕ update is
more difficult to implement and requires reparameterisation
[Kingma and Welling, 2013, Rezende et al., 2014].

3.2 REWEIGHTED WAKE-SLEEP

In RWS [Bornschein and Bengio, 2014], we do not have a
single unified objective. Instead, we update the generative
model and approximate posterior by drawing K samples
from an approximate posterior, Qϕ

(
zk|x

)
. We then use

importance reweighting to bring those samples closer to
the true posterior, Pθ (z|x), and do a maximum likelihood-
like update with those reweighted samples. In particular,
the P update resembles the M-step in EM, and maximizes
log Pθ

(
zk, x

)
for the reweighted samples. Likewise, the

(wake-phase) Q update maximizes logQϕ

(
zk|x

)
for the

reweighted samples mirroring the true posterior, and there-
fore brings Qϕ

(
zk|x

)
closer to the true posterior,

∆θglobal = (7a)

EQglobal(z|x)

[
1

K

∑
k∈K

rk(z)

Pglobal(z)
∇θ log Pθ

(
zk, x

)]
,

∆ϕglobal = (7b)

EQglobal(z|x)

[
1

K

∑
k∈K

rk(z)

Pglobal(z)
∇ϕ logQϕ

(
zk|x

)]
.

See Appendix 3.2.1 for a derivation of these updates. How-
ever, it turns out that implementing the updates in (Eq. 7)
directly is difficult, as it requires us to separately compute
the gradients for each sample, zk. Instead, we typically use,

∆θglobal = EQglobal(z|x) [∇θ logPglobal(z)] , (8a)

∆ϕglobal = EQglobal(z|x) [∇ϕ (− logPglobal(z))] . (8b)

See Appendix 1 for a proof of equivalence.

4 METHODS

These previous approaches draw K samples from the full
joint latent space. However, the required number of sam-
ples scales exponentially in the number of latent variables
[Chatterjee and Diaconis, 2018]. Thus, we define a mas-
sively parallel scheme in which we draw K samples for
each latent variable, then effectively obtain Kn samples by
considering all combinations of K samples for each of the
n latent variables. To that end, we denote each of the sepa-
rate samples for separate latent variables zki ∈ Zi, where k
indexes the sample and i indexes the latent variable. We can
write the collection of K samples for a single latent variable
(the ith) as,

zi = (z1i , z
2
i , . . . , z

K
i ) ∈ ZK

i . (9)

To sample all K copies of the full joint latent space, TMC
[Aitchison, 2019] uses an IID distribution over the K sam-
ples, z1i , . . . , z

K
i ,

QTMC (z|x) =
n∏

i=1

∏
k∈K

QTMC

(
zki

∣∣zj for all j ∈ qa (i)
)
.

(10)

Here, qa (i) are the indices of parents of the ith latent vari-
able under the approximate posterior. In contrast, massively
parallel methods allow for dependencies between the K
samples for the ith latent variable, z1i , . . . , z

K
i (Appendix 2),

QMP (z|x) =
n∏

i=1

QMP (zi|zj for all j ∈ qa (i)) . (11)

There are no formal constraints on these dependencies. How-
ever, there are practical constraints, namely that we need to
be able to efficiently compute the single-particle marginals,
Q
(
zki

∣∣zj for all j ∈ qa (i)
)
. In Appendix 2, we give more

specifics about choices of QMP (zi|zj for all j ∈ qa (i)) and
QTMC

(
zki

∣∣zj for all j ∈ qa (i)
)
. At a high level, these dis-

tributions are constructed by mixing the underlying single-
sample approximate posterior, Qϕ, for different combina-
tions of parent particles.

The generative model is more complicated, because we
want to evaluate the generative probability for any of the
Kn possible combinations of the K samples of the n la-
tent variables. To facilitate writing down these generative
probabilities, we begin by defining a vector of indices,

k = (k1, k2, . . . , kn) ∈ Kn, (12)

which has one index, ki, for each of the n latent variables.
The latent variables specified by these indices is known as
the “indexed” latent variables and can be written,

zk =
(
zk1
1 , zk2

2 , . . . , zkn
n

)
∈ Z. (13)
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Figure 1: Results of massively parallel RWS and standard or “global” RWS for a hierarchical model on subsets of MovieLens
with differing numbers of users and films per user, showing the predictive log likelihood after 25k training iterations.

The generative probability can thus be written,

Pθ

(
x, zk

)
=Pθ

(
x
∣∣∣zkj

j for all j ∈ pa (x)
)

n∏
i=1

Pθ

(
zki
i

∣∣∣zkj

j for all j ∈ pa (i)
)
.

(14)

Here, pa (i) are the indices of parents of the ith latent vari-
able under the generative model, and pa (x) are the parents
of the data under the generative model. Our use of pa (i) mir-
rors our use of qa (i) to denote indices of parents of the ith
latent variable under the approximate posterior. Of course,
the structure of the generative model and approximate pos-
terior may differ, so qa (i) and pa (i) can also differ.

Looking at Pglobal(z) (Eq. 4) we average only over K terms,
corresponding to our K samples from the full joint latent
space. Our key contribution is to adapt RWS for the case
where we average over all Kn combinations of samples for
each latent variable, indexed k.

We can define an alternative unbiased marginal likelihood
estimator, PMP(z). This estimator is obtained by averag-
ing over all Kn combinations of all samples of all latent

variables,

PMP(z) =
1

Kn

∑
k∈Kn

rk(z), (15)

rk(z) =
P
(
x, zk

)∏
i QMP

(
zki
i

∣∣∣zj for all j ∈ qa (i)
) (16)

For the proof that PMP(z) is an unbiased marginal likeli-
hood estimator, see Appendix 3.1.3. By analogy with global
IWAE, we can define an objective for massively parallel
IWAE,

LMP = EQMP(z|x) [logPMP(z)] . (17)

We prove that this quantity has the required properties
(specifically, that it is a lower-bound on the log marginal
likelihood) in Appendix 3.1.3. This quantity is very simi-
lar to that given in [Aitchison, 2019], except that it allows
for a slightly more general proposal, QMP, which allows
for dependencies between the K samples for a single la-
tent variable, z1i , . . . , z

K
i . Our key contribution is to design
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Figure 2: Comparison of performance between massively parallel RWS and global RWS, for the movielens dataset. a Same
as Fig. 1 (top right), except that we use much higher values of K for global RWS. b As massively parallel RWS may take
longer than global RWS for a given K, we plotted time for a single training iteration against the predictive log-likelihood.

massively parallel updates for RWS,

∆θMP=EQMP(z|x)

[
1

Kn

∑
k∈Kn

rk(z)

PMP(z)
∇θ log Pθ

(
zk, x

)]
(18a)

∆ϕMP=EQMP(z|x)

[
1

Kn

∑
k∈Kn

rk(z)

PMP(z)
∇ϕ logQϕ

(
zk, x

)]
(18b)

These updates are derived in Appendix 3.2.2, and they can
be implemented using,

∆θMP = EQMP(z|x) [∇θ logPMP(z)] , (19a)

∆ϕMP = EQMP(z|x) [∇ϕ (− logPMP(z))] , (19b)

(see Appendix 3.2.1).

Algorithm 1 Massively Parallel RWS

Require: Data x, Prior Pθ, Proposal QMP, K ≥ 1
for i← 1 to n do

Sample zi ∼ QMP (zi|zj for all j ∈ qa (i))
z ← {z1, ..., zi−1} ∪ zi

f iki,kpa(i)
(z)←

Pθ

(
z
ki
i

∣∣∣zkj
j for all j∈pa(i)

)
QMP

(
z
ki
i |x,zj for all j∈qa(i)

)
end for
fxkpa(x)

(z)← Pθ

(
x
∣∣∣zkj

j for all j ∈ pa (x)
)

PMP(z)← 1
Kn

∑
kn fxkpa(x)

(z)
∏

i f
i
ki,kpa(i)

(z)

∆θMP ← ∇θ logPMP(z)
∆ϕMP ← ∇ϕ (− logPMP(z))

4.1 EFFICIENTLY AVERAGING
EXPONENTIALLY MANY TERMS

It should be surprising that we can compute PMP(z) (Eq. 15)
efficiently, as it involves summing over exponentially many

(Kn) terms. However, it turns out that efficient computation
is possible if we exploit structure in the generative model. To
exploit structure, we first need to write down the generative
probability for the kth sample of all latent variables, zk.
This looks alot like Eq. (14), as it follows the same graphical
model structure, with pa (x) and pa (i) giving the indices of
parents of the data and the ith latent variable respectively,

rk(z) =Pθ

(
x
∣∣∣zkj

j for all j ∈ pa (x)
)

n∏
i=1

Pθ

(
zki
i

∣∣∣zkj

j for all j ∈ pa (i)
)
.

QMP

(
zki
i |x, zj for all j ∈ qa (i)

) (20)

If we fix z (i.e. allKn samples of all n latent variables), then
rk(z) can be regarded as a big tensor with Kn elements,
indexed by k. In that case, each term in the product defining
rk(z) (Eq. 20) can also be regarded as a tensor. The key
observation is that the individual tensors in the product typi-
cally have only a few indices. For instance, the probability
of the data, x, depends only on the indices of samples of the
parents (i.e. (kj for all j ∈ pa (x))). These indices of the
samples of the parents can be written,

kpa(x) = (kj for all j ∈ pa (x)) ∈ K|pa(x)|, (21a)

kpa(i) = (kj for all j ∈ pa (i)) ∈ K|pa(i)|. (21b)

and where |pa (x)| and |pa (i)| are the number of parents
latent variables. To make explicit the idea that the individual
terms in Eq. (20) can be understood as tensors, we define
fxkpa(x)

(z) as the tensor for the data and f iki,kpa(i)
(z) as the

tensor for the ith latent variable,

fxkpa(x)
(z) = Pθ

(
x
∣∣∣zkj

j for all j ∈ pa (x)
)
, (22a)

f iki,kpa(i)
(z) =

Pθ

(
zki
i

∣∣∣zkj

j for all j ∈ pa (i)
)

QMP

(
zki
i |x, zj for all j ∈ qa (i)

) . (22b)
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Figure 3: Comparison of performance for massively parallel RWS and global RWS on the NYC bus breakdown dataset. a
Predictive log-likelihood against K after 75k training iterations. b Predictive log-likelihood against the time for a single
training iteration.

Thus, we can write rk(z) as a product of these factors,

rk(z) = fxkpa(x)
(z)

∏
i

f iki,kpa(i)
(z), (23)

and PMP(z) can be understood as a big tensor product,

PMP(z) =
1

Kn

∑
kn

fxkpa(x)
(z)

∏
i

f iki,kpa(i)
(z). (24)

This tensor product can be efficiently computed in polyno-
mial time by ordering the sums and products using Python
packages such as opt-einsum [Daniel et al., 2018].

5 EXPERIMENTS

We present an empirical evaluation of massively paral-
lel RWS 1. Since the RWS wake phase Q requires mul-
tiple importance samples we test massively parallel RWS
(MP RWS) with K ∈ {3, 10, 30} and global RWS with
K ∈ {3, 10, 30, 100, 300, 1000, 3000, 10000, 30000}. Un-
less otherwise stated our variational posterior is of the form
qϕ(z) =

∏L
i=1 q(zi), where q(zi) is from the same family

of distributions as zi’s distribution in the generative model.
We compare massively parallel RWS (Eq. 18 and Eq. 19)
and against standard “global” RWS (Eq. 7 and Eq. 8).

Optimisation is done using Adam [Kingma and Ba, 2014]
with β = (0.9, 0.999), no weight decay, and a learning
rate of 0.001 which is decreased by a factor of 10 every
10k iterations. In all cases we plot the result of 5 runs with
different random seeds and plot the mean and standard error.
All times are measured on a single Nvidia A100 GPU.

5.1 MOVIELENS DATASET

We show results on the MovieLens100K dataset [Harper and
Konstan, 2015]. This dataset consists of 100K ratings from

1Code for reproduction of experiments can be found: https:
//github.com/ThomasHeap/MPRW-S

M = 943 users (indexed m) of N = 1682 films (indexed j).
Each film, indexed j, has as a feature vector xj . We observe
user ratings, and following [Geffner and Domke, 2022],
binarise ratings of (0, 1, 2, 3) to 0 and ratings of (4, 5) to 1.
We use the following hierarchical model:

µ ∼ N (018, 1)

ψ ∼ Categorical([0.1, 0.5, 0.4, 0.05, 0.05])

zm ∼ N (µ, exp(ψ)I), m = 1, . . . ,M

Ratingmj ∼ Bernoulli(σ(z⊺mxj)), j = 1, . . . ,N (25)

This model, first samples a global mean, µ, and a discrete
variance, ψ. We then sample a vector, zm for each user,
which describes the types of films that they will rate highly.
The probability of a high rating is then given by taking
the dot-product of the latent user-vector, zm and the film’s
feature vector, xj . A corresponding graphical model can be
seen in Appendix 3.3.

Note that this model has a discrete latent variable ψ. As
RWS does not reparameterise gradients of the ELBO, in-
ference can proceed straightforwardly, without needing any
approaches to discrete latent variables from VI, such as sum-
ming out the latent variable, applying REINFORCE gra-
dient estimators or using continuous relaxations [Le et al.,
2020]. We compare the two methods by calculating the
predictive log likelihood on a test set the same size as the
training set.

To evaluate inference methods effectively, it is important to
ensure that the posterior distributions are broad, and have
not collapsed to very narrow point-like distributions. As
such, we evaluate on subsets of the full MovieLens dataset,
composed of either 5 or 10 films per user, and 50, 150 or
300 users.

Results are shown in Fig. 1 and Fig. 2. massively parallel
RWS gives considerably higher predictive log-likelihoods
for all K (Fig. 1, 2a). Importantly, the massively parallel
RWS updates are more complex than the global RWS up-
dates, so may take longer. We therefore also considered

https://github.com/ThomasHeap/MPRW-S
https://github.com/ThomasHeap/MPRW-S
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Figure 4: Comparison of performance between massively parallel methods, TMC, particle filter and global importance
weighting. a The timeseries model with one observation. b The timeseries model with multiple observations.

the performance, measured as the predictive log-likelihood,
against the time for a single training iteration. We again
found considerable, albeit less dramatic, improvements
(Fig. 2b).

5.2 NYC BUS BREAKDOWN DATASET

The city of New York releases data on the length of delays
to school bus journeys [DOE, 2023]. We model the length
of the delay in terms of the type of journey, the school year
in which the delay occurred, the borough the delay occurred
in and the ID of the bus that was delayed.

To model delay time we use the model outlined in Appendix
3.4. Because the dataset can be stratified into a hierarchy
with three levels (Year, Borough and ID) we want our model
to reflect this and, inspired by attempts to use hierarchical
regression to model radon levels indoor radon levels [Price
et al., 1996], we use a similar multi-level regression with
three levels. This model first samples a variance and mean
for each year, then uses these to sample a borough mean
for each year. A variance is then sampled for each borough,
which together with the year level borough mean is used to
sample an ID mean for each year and borough. Finally, a
variance is sampled and used to sample two weight vectors,
Ci which has length “Number of bus companies” and Ji

which has length “Number of types of journeys”. These are
used to weight covariates that indicate which bus company
was running a given ID’s route and which type of journey
was being undertaken respectively. These are then summed
with the sampled ID mean for that year and borough to get
the logits for a negative binomial distribution that then gives
the predicted delay for the i-th ID in the j-th borough in the
m-th year. A corresponding graphical model can be seen in
Appendix 3.5.

We evaluate this model using a training dataset with 270
observations: I = 30 Ids from J = 3 Boroughs in M = 3

Years. We perform RWS for 75k iterations, and evaluate the
predictive log likelihood on a held out test set the same size
as the training set.

Results are shown in Fig. 3. Again we see that massively
parallel RWS outperforms global RWS for all K.

5.3 COMPARING MP VI WITH TMC

Even though our main contribution is in developing mas-
sively parallel RWS, our derivations also allow for slightly
more general massively parallel approaches to VI. In par-
ticular, our derivations allow us to couple the proposal for
the K samples of the ith latent variable, z1i , . . . , z

K
i , while

TMC [Aitchison, 2019] forces these K samples to be IID.
This coupling in massively parallel methods allows us to
introduce variance-reduction strategies inspired by methods
for reducing particle degeneracy in particle filters [Carpenter
et al., 1999, Li et al., 2012, 2014, Zhou et al., 2016, Wang
et al., 2017] (see Appendix 2 for further details).

To highlight these advantages, we considered two toy time-
series models: a single observation and a multi- observation
model.

5.3.1 Single Observation

In the single observation model, there is a latent timeseries
z1, . . . , z30 (we use N = 30), and an observation, x, only
at the last timestep,

z1 = 0,

zi ∼ N (zi−1, 1/N),

x ∼ N (zN , 1)

(26)

We use the prior to define the proposal (see Appendix 2).
Results can be seen in figure 4a. For large K, all methods
converge to the same value, as the ELBOs are all bounded by



the true model evidence. To compare the methods, we there-
fore need to consider their relative performance for smaller
values of K. We can see that the TMC (orange) [Aitchison,
2019] performs considerably worse than massively parallel
VI (red) and IWAE (blue) [Burda et al., 2015]. We believe
that TMC is performing poorly because of particle degener-
acy [Carpenter et al., 1999, Li et al., 2012, 2014, Zhou et al.,
2016, Wang et al., 2017]. In particular, the TMC proposal
for zi is given by a mixture of the prior, conditioned parti-
cles from the previous timestep, zi−1. In sampling from this
mixture, in essence, we first sample a parent particle, zki−1

i−1 ,
then we sample from the prior, conditioned on that parent
sample, P

(
zki
i |z

ki−1

i−1

)
. In TMC, we choose these parent

sample IID, which means that one parent particle, zki−1

i−1

may have zero, one or multiple children. This is problem-
atic: whenever a parent sample has zero children, then this
reduces diversity in the samples of zi, and this issue builds
up over timesteps. Massively parallel methods circumvent
this issue by ensuring that each parent sample has one and
only one child sample (which requires us to couple the dis-
tribution over z1i , . . . , z

K
i ), and IWAE avoids the issue by

simply sampling zki conditioned on zki−1. Massively parallel
is comparable to IWAE in this setting due to conditioning
only a single scalar value at the end of the timeseries. These
methods separate when we consider multiple observations
(next).

5.3.2 Multiple Observations

Next, we considered a more standard timeseries with multi-
ple observations. We are implementing these methods in the
context of a new probabilistic programming language. This
language currently has limitations on the number of latent
variables that are inherited from the opt-einsum implemen-
tation. As such, we were not able to do the obvious thing of
having one observation at every timestep. Instead, we had
an observation every third timestep.

z1 ∼ N (0, 1),

zi ∼ N ((1− 1
τ )zi−1, 2/τ),

xi ∼ N (zi, 1) if i divisible by 3.

(27)

Again, we use N = 30. Results can be seen in Fig. 4.
Again, the methods converge as K increases, but this time,
massively parallel VI (red) gives better performance than
both alternatives for lower values of K.

6 CONCLUSION

We introduced massively parallel RWS, in which we draw
K samples for n latent variables, and efficiently consider all
Kn combinations by exploiting conditional independencies
in the generative model. We showed that massively parallel
RWS represents a considerable improvement over previous

RWS methods that drawK samples from the full joint latent
space.
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