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ABSTRACT

Can Vision-Language Models (VLMs) imagine the full scene from just a few
views, like humans do? Humans form spatial mental models naturally, internal
representations of unseen space, to reason about layout, perspective, and mo-
tion. Our MINDCUBE benchmark with 21,154 questions across 3,268 images
exposes this critical gap, where existing VLMs exhibit near-random performance.
Using MINDCUBE, we systematically evaluate how well VLMs build robust spa-
tial mental models through representing positions (cognitive mapping), orienta-
tions (perspective-taking), and dynamics (mental simulation for “what-if”” move-
ments). We then explore three approaches to help approximate spatial mental
models in VLMs, focusing on incorporating unseen intermediate views, natu-
ral language reasoning chains, and cognitive maps. The significant improve-
ment comes from a synergistic approach, “map-then-reason”, that jointly trains
the model to first generate a cognitive map and then reason upon it. By training
models to reason over these internal maps, we boosted accuracy from 37.8% to
60.8% (+23.0%). Adding reinforcement learning pushed performance even fur-
ther to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental
models, actively constructing and utilizing internal structured spatial representa-
tions with flexible reasoning processes, significantly improves understanding of
unobservable space.

1 INTRODUCTION

For Vision-Language Models (VLMs) (OpenAl, 2024)) to move beyond passive perception (Li et al.,
2023) to interact with partially observable environments (Yang et al., [2024), it is fundamental to
reason about unseen spatial relationships from limited views. Consider how effortlessly a human
can infer the layout of a room or the hidden objects behind furniture, all by integrating information
from several egocentric observations. For example, given the second viewpoint in Figure[I} human
can easily infer the unseen objects behind the “plant” are the “tissue box” and the “hand sanitizer”,
including their position, pose, and their relationship with objects that are not simultaneously visible.
We humans build and update a mental model of our surroundings, even when objects are out of sight.
This is enabled by a core cognitive function referred to as spatial mental model (Johnson-Laird,
1980;1983): an internal representation of the environment that allows for consistent understanding
and inference about space, independent of the current viewpoint. VLMs, despite their impressive
progress, struggle to synthesize spatial information from limited views, maintain spatial consistency
across views, and reason about objects not directly visible (Ma et al.| [2025a).

This gap calls for specialized evaluation settings, which must include: (a) reasoning with partial
observations where objects are occluded or out of view (such as “hand sanitizer” in the second
viewpoint in Figure[I)), (b) maintaining cross-view consistency across shifting viewpoints (such as
through anchor objects “plant”), and (c) mental simulation to infer hidden spatial relationships (such
as “what if turning left and moving forward”). To fill this gap, we introduce MINDCUBE, featuring
21, 154 questions and 3, 268 images, organized into 976 multi-view groups through various types of
viewpoint transformations (i.e., ROTATION, AMONG, AROUND in Figure @]) We annotate questions
with a focus on objects that are not visible in the current query view. As shown in Figure 2] we
systematically design question types requiring “what-if” mental simulations from the given view
(such as “what if turning to left”), perspective taking (such as “what if taking the sofa’s perspective’™),
complex relation reasoning queries (referencing either the agent or other objects).
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Our extensive evaluations of 17 state-of-the-art VLMs on MINDCUBE reveal that both open-weight
and closed-source models perform only marginally better than random guessing. This poor per-
formance motivates a central question: How can we facilitate spatial mental models to reason
effectively from partial observations?

The Challenge: Spatial Mental Modeling from Limited Views
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Figure 1: Top: VLMs cannot maintain a coherent mental model when evaluating on the MINDCUBE
benchmark. Bottom: We study how we can help build spatial mental models through external (scal-
ing of views, cognitive map input) and internal strategies (fine-tuning, cognitive map elicitation).
We find joint cognitive map and reasoning setting yields the highest gain (+32.86%).

Inspired by spatial cognition (Ramakrishnan et al.} 2025}, [Lee et all, 2025} [Zha et al.} 2025)) oper-

ating through visual imagery, linguistic reasoning, or explicit cognitive maps, to build consistent
spatial awareness across different views, we investigate three approaches to determine whether in-
termediate representations can assist approximating spatial mental models in VLMs. View Inter-
polation enhances the input by providing additional views and thereby offering more information
using recorded video, which unexpectedly is not helpful, highlighting the importance of reasoning
directly from limited views. Free-form Natural Language Reasoning verbalizes the mental simu-
lation process, achieving performance gains (+2.7%). Structured Cognitive Map simulates global
spatial memory from an allocentric (bird’s-eye) perspective with orientation and view augmenta-
tion. Interestingly, providing ground truth cognitive maps directly to answer questions will not yield
strong improvements (—5.81%), only actively engaging reasoning with a map achieves strong im-
provements (+3.62%). Despite the effectiveness of reasoning over maps, building accurate spatial
mental models exhibit a significant bottleneck attributed to VLMSs’ intrinsic ability, evidenced by
low Isomorphic Rates (< 10%) with ground truth maps during generation.

Recognizing this limitation, we train VLMs by constructing 10, 000 reasoning chains and ground
truth cognitive maps, investigating how to effectively guide spatial mental models toward achiev-
ing accuracy. While SFT on free-form reasoning chains proved more effective with a gain of
+1.2%, guiding models to first build cognitive maps and then perform free-form reasoning over
them achieved significantly better performance, resulting in a total gain of +8.5%, proving scaf-
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Figure 2: MINDCUBE taxonomy and examples. Left: Three camera movement patterns (ROTATION,
AROUND, AMONG) with corresponding spatial QA examples. Right: Four-dimensional taxonomy
categorizing MINDCUBE questions types.

folding spatial mental models via actively constructing and utilizing internal structured spatial rep-
resentations with flexible reasoning processes is highly effective. We also use Reinforcement Learn-
ing (RL) to further boost post-SFT performance, guiding models to think in terms of building and
reasoning over cognitive maps by injecting structured thinking before RL training, using our SFT
model. This approach leads to a significant improvement, raising task accuracy from a baseline of
37.8% to 70.7%. Our empirical evidence substantiates a critical finding: autonomously generating
and leveraging internal mental representations help VLMs exhibit superior performance in
spatial reasoning tasks, as compared to conventional approaches such as view interpolation or
externally-supplied maps.

2 MINDCUBE BENCHMARK AND EVALUATION

2.1 MINDCUBE BENCHMARK

Overview. We introduce MINDCUBE, a benchmark for evaluating VLMs’ spatial reasoning under
partial observations and dynamic viewpoints. MINDCUBE features multi-view orthogonal images
paired with spatial reasoning questions, enabling fine-grained analysis of spatial mental modeling
performance. It targets key challenges such as maintaining object consistency across views and
reasoning about occluded or invisible elements.

Settings. MINDCUBE incorporates three distinct settings—Reotation, Around and Among (vi-
sualized in left of Figure [2). In the Rotation setting, the challenge lies in interpreting multiple
orthogonal views from a static and rotational observation point, requiring models to form a holistic
understanding of the environment despite only incremental visibility shifts. The Around setting
leverages occlusion to force VLMs to maintain object permanence even with partial visibility and
to convert lateral (left-right) relations in frontal views into depth (front-back) cues in side views.
The Among setting maintain spatial consistency and overcome visibility constraints as views are
captured around a central object with adjacent ones, each view showing the central object posi-
tioned before one surrounding element. VLMs need to share information across views, deducing the
overall spatial arrangement and relationships even when not all elements are visible simultaneously.
Table |I| (left) summarizes the benchmark’s overall data distribution. Details on benchmark design
about settings and taxonomies and curation are provided in the Appendix [B] [Cland [B:2.2]
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Table 1: Left: MINDCUBE data statistics. The number next to the setting (ROTATION, AMONG,
AROUND) means the total QA pairs. Numbers next to each dataset (e.g., Arkitscenes) mean QA
pairs/image groups. For example, “865/53” for Arkitscenes in ROTATION means 865 QA pairs and

53 image groups from it. Right: Performance of VLMs on MINDCUBE. Dark blue indicates the
best result among all models and light blue indicates the second best result among all models.

Rotation (1081) Method Overall Rotation Among Around
. Baseline
Arkitscenes 865/53 Random (chance) 32.35 36.36 32.29 30.66

Random (frequency) 33.02 38.30 32.66 35.79
Open-Weight Multi Image Models

Self collected  216/9

Img groups 42 LLaVA-Onevision-7B |Li et al.|(2024a) 47.43 36.45 48.42 44.09
LLaVA-Video-Qwen-7B[Zhang et al.|(2024d) ~ 41.96 35.71 43.55 30.12
LongVA-7B|Zhang et al.[(2024c) 29.46 35.89 29.55 24.88
mPLUG-OwI3-7B-241101Ye et al.|(2024) 44.85 37.84 47.11 26.91
Among (18204) InternVL3-8B|Zhu et al.|(2025) 37.50 26.00 42.03 36.00
: Qwen?2.5-VL-7B-Instruct|Bai et al.|(2025) 29.26 38.76 29.50 21.35
WIldRGB-D  17500/710 Qwen2.5-VL-3B-Instruct|Bai et al.|(2025) 33.21 37.37 33.26 30.34
3 DeepSeek-VL2-Small|Lu et al.|(2024) 47.62 37.00 50.38 2691
DESBNAIES 704/24 Gemma-3-12B-it/Team et al.|(2025) 46.67 38.39 48.38 34.63
Img groups 733 Mantis-8B (SigLip) Jiang et al.|(2024) 41.05 37.65 40.23 50.99
Proprietary Models

GPT-5-2025-08-07|OpenAI|(2025) 47.59 93.33 34.17 41.63
Around (1869) Gemini-2.5-pro-2025-06|Team |(2025) 47.05 85.50 25.95 38.40
Claude-4-Sonnet-20250514|Anthropic|(2025) 44.75 48.42 44.21 47.62

DL3DV-10K  789/109 Spatial Models ‘
RoboBrain|Ji et al.|(2025) 37.38 35.80 38.28 29.53
Self collected 1080/71 SpaceMantis |Chen et al.|(2024a) 22.81 37.65 21.26 29.32
Spatial- MLLM|Wu et al.|(2025a) 32.06 38.39 20.92 32.82
Img groups 180 Space-Qwen|Chen et al.[(2024a) 33.28 38.02 33.71 26.32

Dataset Curation. The MINDCUBE dataset was created through a pipeline: We first selected
multi-view image groups matching our taxonomy’s movement patterns (Figure [2)) and spatial crite-
ria. These were then annotated with key spatial information. Finally, we algorithmically generated
taxonomy-aligned questions with targeted distractors. Details are included in the Appendix

2.2 EVALUATION ON MINDCUBE

We evaluate VLMSs’ spatial mental modeling ablities on MINDCUBE using a diverse set of models
(Table [T] right; setup details in the Appendix [C). Results reveal a striking performance gap: the
best model, DeepSeek-VL2-Small, achieves only 47.62% accuracy, well above chance but far from
human-level[C.3] While some models show strength in specific areas—notably GPT-5 in ROTATION
(93.33%) and Mantis-8B (SigLip) in AROUND (50.99%)—no single model excels across all cate-
gories. We also observe that proprietary models generally outperform the open-source ones. Spatial
fine-tuning also yielded varied outcomes without consistently reaching top performance. Overall,
neither multi-image input nor spatial fine-tuning reliably improves spatial reasoning, raising a key
question: How can we help VLMs develop or approximate these crucial spatial reasoning ca-
pabilities?

3  WHICH SCAFFOLDS BEST GUIDE SPATIAL MENTAL MODELING?

To address the identified gap, we first evaluate whether structured data forms can scaffold spatial
reasoning in frozen VLMs by approximating spatial mental models under limited views.

3.1 DATA STRUCTURES AS COGNITIVE SCAFFOLDS FOR SPATIAL MENTAL MODELS

We investigate whether certain data structures can act as cognitive scaffolds that help form spa-
tial mental models in VLMs from limited visual observations. In cognitive science, spatial mental
models are internal representations encoding the relative configuration of objects and viewpoints.
Rather than metric-precise maps, they are schematic, manipulable constructs that support reason-
ing across fragmented observations and unseen perspectives (Johnson-Laird, 1983} [Tversky, 1993
Tversky et al.| [1994; [Tversky, 2003)). For instance, humans can mentally simulate turning or infer
what lies behind them, suggesting that such representations are flexible, incomplete, yet functionally
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Figure 3: Grounded examples of our three data structures that approximate spatial mental models.

effective. Drawing on this literature, we define three data structures below (detailed introduction can
be found in Appendix [D.), each targeting distinct cognitive properties (integration, transformation,
inference) of spatial mental models, with grounded examples in Figure 3}

1. View Interpolation. Interpolating between sparse views introduces perceptual continuity, echo-
ing the process of mental animation and supporting internal transformation such
as imagined rotation. This structure scaffolds the dynamic updating capability of spatial mental
models. Figure[3]shows a one-frame inserting example that replaces the original question images.

2. Augmented Cognitive Map. A cognitive map is a 2D schematic representation of object layouts
in space. Such maps resemble Tversky’s cognitive collages (Tversky, [1993), and they capture
locally coherent but fragmented structures. Recent studies (Yang et al., 2024} | Yeh et al.,[2025)) on
VLM-based spatial intelligence typically adopt a plain form that only encodes object positions
in a top-down view. We propose an augmented variant that incorporates discrete views, with
both objects and views annotated by position and orientation, thereby approaching the relational
consistency of spatial mental models.

3. Free Form Reasoning. Open-ended, step-by-step natural language reasoning offers a procedural
approximation of how spatial models are constructed and queried. While less rigid than map-like
structures, such reasoning reflects the inferential function of spatial mental models, especially
under ambiguous or incomplete observations (Tversky et al.| [1994)).

3.2 EXPERIMENT SETUP

We conduct controlled experiments with fixed input formats to test whether structured scaffolds can
help without retraining. Each condition introduces a different structure to support internal modeling.

Configurations and Evaluation Metrics. Each experiment is defined by two orthogonal axes: In-
put Structure (what spatial evidence VLMs receive) and Output Format (the required response type).
As the experimental foundation of this paper, we begin with the ten possible configurations listed
in Table 2] from which we investigate a representative subset. Specifically, our grounded cognitive
maps are generated using the object arrangements annotation described in Section[2.1] and examples
for all configurations are provided in the Appendix [D.3] In the frozen VLMs evaluation setup, we
exclude the Aug—CGMap—-Out and Plain-CGMap—-Out settings, as VLMs tend to conflate map
generation with reasoning, even when instructed otherwise. Beyond evaluating task performance
using QA accuracy, we also introduce two well-defined graph metrics for generated cognitive maps:
(1) Overall Similarity, a weighted score combining directional and facing consistency; and (2) Iso-
morphic Rate, measuring whether all pairwise object relations match the ground truth under optimal
alignment. Full definitions are provided in the Appendix [D.2}

Model and Evaluation Data We conduct all experiments using Qwen2.5-VL-3B-Instruct
with all evaluations performed on MINDCUBE-TINY, a diagnostic subset sampled
from MINDCUBE, containing 1,050 questions in total. Detailed statistics are: 600 from AMONG,
250 from AROUND, and 200 from ROTATION.
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Table 2: Input—output configurations used in all experiments. The suffix “-In” means the (aug-
mented) cognitive map is given to the model as input, whereas “-Out” means the cognitive map is
predicted as an intermediate output before answering. “Aug” indicates maps with object and camera
annotations; “Plain” indicates maps without these augmentations. VI = View Interpolation, CGMap
= Cognitive Map, FFR = Free-form reasoning. Figure[3|shows visual examples of the corresponding
input structures.

Name What the model receives (input) What the model produces (output)
Raw—QA Raw views + question text Direct answer
vVI-1 Raw views + 1 interpolated view + Direct answer
question text
VI-2 Raw views + 2 interpolated views + Direct answer
question text
FFR Raw views + question text Free-form reasoning — answer
Aug-CGMap-1In Augmented cognitive map (objects + Direct answer
camera) + question text
Aug-CGMap-0Out Raw views + question text Augmented cognitive map — answer
Plain-CGMap-Out Raw views + question text Plain cognitive map — answer
Aug-CGMap-FFR-Out Raw views + question text Augmented cognitive map + free-form
reasoning — answer
Plain-CGMap-FFR-Out Raw views + question text Plain cognitive map + free-form rea-
soning — answer
CGMap-In-FFR-Out Augmented cognitive map (objects + Free-form reasoning — answer

camera) + question text

3.3 DO SCAFFOLDS IMPROVE SPATIAL MENTAL MODELING WITHOUT TRAINING?

We evaluate how well the seven input configurations defined in Table 2] support spatial mental mod-
eling in VLMs under limited views, without any model updates. Results are shown in Table 3] (left).

How far can structure alone go? We begin with the baseline: raw input views and direct answering
(Raw—QAa), which achieves 37.81% accuracy. Adding interpolated views, which we hope to simu-
late smoother perceptual transitions, leads to no meaningful gain (T 0.09%). We include a further
analysis on VI in Appendix Similarly, providing a pre-computed augmented cognitive map
as direct input (Aug-CGMap—1In) severely degrades performance to 32.00%. In contrast, enabling
free-form reasoning (FFR) alone or combined with other settings provides a substantial boost to
41.33%. These results suggest: structure alone, whether visual or spatial, is not enough. Without
engaging reasoning, VLMs struggle to leverage even well-formed spatial cues to improve spatial
mental models.

Table 3: Left: QA accuracy (%) of Qwen2.5-VL-3B-Instruct on the MINDCUBE-TINY benchmark
under different configs for frozen VLMs. Right: Graph metrics for two cog map output settings.

0 50 100
Config. Overall Rotation Among Around ! !
Raw-QA 37.81 3400 3600 4520 4114
vI-1 37901 3550 3733 4120 %o 3686
VI-2 3781— 3550 3650  42.80 RN

x4
Aug-CGMap-In 32.00 3500 3050 3320 27
FFR 4048t 3200 3600  58.00 <« 1 SEMap \va)
Aug-CGMap-FFR-Out 40577  21.00  43.00  50.40 Y 2664 comap
Plain-CGMap-FFR-Out 41.337 25.00 39.67 58.40 o,poA ' Output (Plain)
CGMap-In-FFR-Out 41431 3700 4167  44.40 %S

Can we prompt the model to think spatially? The answer appears to be yes. Prompting the
model to generate a cognitive map (Aug—-CGMap—-FFR-Out, Plain-CGMap-FFR-Out) before
answering leads to further improvements over free-form reasoning alone (FFR) from 40.48% to
41.43%. This suggests that generating a map may encourage the model to first form a global un-
derstanding of the scene, which in turn supports more structured reasoning. Both map forms have a
great format-following ability, yet fail to generate accurate maps. Overall, augmented maps perform
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worse. In Table [3] (Right), despite generating syntactically valid maps for both formats, similarity
to grounded maps is low (< 50%), reflecting limited mapping ability. Notably, both augmented
and plain maps have low isomorphism rates (0.10%, 7.43%). The reason that the isomorphic rate
for augmented map setting is nearly zero is likely because the added view-level details increase
generation errors. Detailed case examples can be found in the Appendix

@ Key Takeaways: Scaffolding Spatial Mental Models in Frozen VLMs

o Explicit reasoning is crucial for improving performance.

* Reasoning acts as a necessary mechanism to ground spatial structure in frozen settings.
e Passive structures (like maps as input) alone and visual continuity offer little benefit.

4 CAN WE TRAIN FOR THE EMERGENCE OF SPATIAL MENTAL MODELS VIA
VLMS’ USE OF SCAFFOLDS?

So far, prompting frozen VLMs with external scaffolds, such as interpolated views or cognitive
maps, has yielded limited gains. These techniques fail to tackle the core limitation: VLMs do not
form internal spatial representations or reason through space effectively. To go further, we want to
know: Can supervised fine-tuning (SFT) and Reinforcement learning (RL) teach VLMs to build and
leverage spatial mental models from within?

4.1 DESIGNING A ROBUST EXPERIMENTAL FRAMEWORK

To ensure consistency and comparability, we inherit experimental configurations detailed in Sections
BT and[3:2} Specifically, we retain: (1) the two effective data scaffolds—Cognitive Maps (Object-
only / Object + Camera) and Free-Form Reasoning, (2) the base model Qwen2.5-VL-3B-Instruct,
(3) the evaluation benchmark MINDCUBE-TINY, and (4) all established evaluation metrics. View
interpolation is excluded due to its limited performance gains in earlier validations.

SFT Task Configurations. Drawing on insights from Section 3.3] we use selected configura-
tions from Table [2] to evaluate the incremental impact of cognitive map generation and free-form
reasoning in SFT. These include baseline QA without explicit reasoning (Raw—QA), reasoning
guided by generated maps only (P1lain-CGMap-Out, Aug-CGMap-0Out), reasoning-augmented
prompts (FFR), and a fully integrated setup that asks VLMs to generate both maps and reasoning
(Aug-CGMap-FFR-Out and Plain-CGMap—-FFR-Out).

RL Task Configurations and Reward Design. We employ the VAGEN framework (Wang* et al.,
2025)) for VLM policy optimization, using Group Relative Policy Optimization (GRPO) (Shao et al.,
2024])) as our core algorithm. We evaluate three RL variants: (1) RL—-FFR (from scratch),
which trains base model to produce free-form reasoning chains; (2) RL-Aug-CGMap-FFR-Out
(from scratch), which trains the model to jointly generate cognitive maps and reasoning; and
(3) RL-Aug-CGMap-FFR-Out (from SFT), which initializes from the strongest SFT check-
point. Detailed settings can be found in the Appendix [G.T]

Grounded Cognitive Maps and Free-Form Reasoning Chain. Grounded cognitive maps are not
only used as the input in the Aug-CGMap—-In and CGMap-In-FFR-Out setting for the frozen
VLMs in the Section [3.2] but also as the training and comparison data. We curate such grounded
cognitive maps through a template-based method, where we always select the front image in our
annotation as the “up” direction. We also manually constructed grounded reasoning chains using
detailed image annotations and structured question templates, ensuring logical coherence and clear
grounding in observable spatial relations (see an example in Figure[3)). The detailed grounded cog-
nitive maps and reasoning data generation pipelines are shown in the Appendix [F1.T]and [F1.2]

4.2 DO THE EMERGENCE OF SPATIAL MENTAL MODELS TRULY BENEFIT FROM EXPLICIT
TRAINING?

We explore several SFT configurations (results shown in Table [d), guided by a series of core ques-
tions. Fine-tuning directly on raw QA pairs, without spatial supervision, raises accuracy from
37.81% to 52.28%. This suggests VLMs can absorb some spatial cues from QA data alone. We
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Figure 4: SFT per 5 step training performance on task accuracy and graph metrics.

use this setup as the baseline for evaluating methods that explicitly incorporate spatial structures.
Primary modifications in SFT phase include adjusted training hyperparameters (detailed in the Ap-
pendix [F:2) and the input-output configurations.

Table 4: QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under
both SFT and RL on MINDCUBE-TINY. Both FFR and FFR refer to free-form reasoning. Bolded
means the best within that training category (SFT or RL).

Confi MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)
ontig: Overall Rotation Among Around  Overall Sim. Isom. Rate
Raw-QA 52.28 34.50 52.50 66.00 - -
FFR 53.527 36.00 54.67 64.80 - -
= Aug-CGMap-Out 54.197 35.50 53.17 71.60 74.30 43.24
& Plain-CGMap-Out 54.381 35.50 53.50 71.60 91.73 89.05
“ Aug-CGMap-FFR-Out 55.241 49.50 52.50 66.40 75.27 46.00
Plain-CGMap-FFR-Out 60.761 47.50 62.33 67.60 88.79 73.81
RL-FFR (from scratch) 50.57 36.50 49.33 64.80 - -
RL-Aug-CGMap-FFR-Out (from scratch) 52.19 32.00 52.00 68.80 57.03 0.00
3 RL-Plain-CGMap-FFR-Out (from scratch) 53.71 33.00 53.66 70.40 47.60 10.29
& RL-Aug-CGMap-FFR-Out (from SFT) 70.67 53.00 76.83 70.00 85.53 58.86
RL-Plain-CGMap-FFR-Out (from SFT) 70.67 48.00 79.17 68.40 85.79 71.52

Can structured approximations of mental models alone meaningfully improve performance?
As shown in Tabled] supervised fine-tuning on explicit cognitive maps, either Augmented or Plain,
leads to substantial improvements in graph structure quality, with more than 30% gains in both
overall similarity and Isomorphic rate. However, the effect on end-task accuracy remains limited.
Both augmented maps (54.19%) and Plain maps (54.38%) offer only modest gains over the fine-
tuned Raw—0QA (52.28%). Similarly, directly FFR also yields a marginal gain (53.52%). This means
that a scaffold alone is not sufficient to automatically translate into performance gains.

Generating both cognitive maps and free-form reasoning is the most effective approxima-
tion. Among all configurations, the combination of generating a plain map and then reasoning
(Plain-CGMap-FFR-Out) yields performance gain (18.48% compared to Raw QA—-SFT), sur-
passing models that rely on only map generation or reasoning alone. This suggests a synergy be-
tween structured spatial modeling and natural language inference. The training dynamics reveal
a crucial trade-off that explains this synergy. As shown in Figure [] (b, c), models trained solely
on map generation (Plain-CGMap-Out) learn the target structure very rapidly, quickly reaching
near-perfect similarity and isomorphism. However, their QA accuracy soon plateaus (Figure [fh),
suggesting the model learns the structure without fully grasping its functional utility. In contrast,
the top-performing P1ain-CGMap—FFR-Out model learns the map structure more slowly and
never reaches the same level of structural perfection. Yet, its QA accuracy continues to increase and
surpass all other configurations. This suggests that the joint pressure of the reasoning task forces
the model not just to replicate a structure, but to build a functionally effective spatial representation,
which can lead to improvement for overall spatial understanding despite being imperfect.

@ Key Takeaways: Explicit Training for the Emergence of Spatial Mental Models

* Joint cogmap and reasoning setting yields optimal performance through synergistic effects.
* Neither map generation nor reasoning alone largely outperforms the SFT QA baseline.
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4.3 CAN REINFORCEMENT LEARNING FURTHER REFINE SPATIAL MENTAL MODELS?

While SFT establishes a strong baseline for spatial mental modeling, emerging evidence from mod-
els like DeepSeek R1 suggests reinforcement learning (RL) can offer additional
gains by optimizing behavior through outcome-driven feedback. We ask: Can reward-guided refine-
ment help VLMs build sharper spatial models and reason more effectively?

RL lets a model feel the consequences of its spatial thoughts through reward, but does that feedback
alone forge a genuine “mental map,” or must we first teach the model what a map looks like? Table
[] summarizes three key settings and answers this question in two parts.

RL in a vacuum is not enough. Training from scratch with sparse rewards provides insufficient
guidance for building robust spatial representations. When asked to produce free-form reasoning
(RL-FFR (from scratch)), the model achieves only 50.57% overall accuracy. This result,
while an improvement over initial baselines, confirms that task-level rewards alone are too unstruc-
tured to effectively teach spatial abstraction.

Structured outputs provide modest benefits when learned from scratch. Introducing a cognitive
map structure for the policy to generate offers a scaffold for its reasoning. When starting from
scratch, the simpler RL-Plain-CGMap-FFR-Out configuration (53.71%) slightly outperforms
its augmented counterpart (52.19%) in QA accuracy. However, in both cases, the model fails to learn
meaningful geometry, with low similarity scores and near-zero isomorphism rates. This suggests
that without a prior concept of a ’good” map, RL struggles to exploit the provided structural format,
even if it can learn to fill it out validly.

RL performs better when it trains from SFT checkpoint. The most dramatic improvements occur
when warm-starting RL from an optimal SFT checkpoint. Both RL-Plain-CGMap-FFR-Out
(from SFT) and its augmented version reach an identical, impressive 70.67% overall QA accu-
racy. This represents a significant 19.91% absolute gain over the best SFT model and a 116.96%
gain over the best RL-from-scratch approach. Crucially, while both models achieve the same peak
accuracy, their underlying spatial representations differ. The P1ain-CGMap variant produces geo-
metrically superior maps, with a much higher isomorphism rate (71.52% vs. 58.86%). This suggests
that while RL fine-tuning can guide different initial models to the same reasoning proficiency, start-
ing with a cleaner, simpler SFT scaffold (Plain) allows RL to better preserve and polish a geometri-
cally sound internal map. These results strongly indicate that RL’s primary role here is (1) polishing
and refining the strong priors learned during SFT, and (2) raising the performance ceiling of SFT,
enabling the model to break through previous plateaus to achieve near-oracle-level performance.

@ Key Takeaways: Reinforcement Learning for the Emergence of Spatial Mental Models

* Combining cognitive maps with reasoning consistently improves all learning outcomes.

e Starting from scratch, RL provides only marginal gains for spatial reasoning; its true power
is unlocked when building upon a strong SFT foundation.

5 RELATED WORKS

Spatial Cognition. Spatial cognition encompasses skills like mental rotation, spatial visualiza-
tion, and object assembly, essential for perceiving and manipulating spatial relationships in both
2D and 3D environments (Xu et al., 2025b; [Zha et al.| 2025} [2025). At the core of
these abilities are Spatial Mental Models (SMMs) (Johnson-Laird, [1980; [1983)), which are internal
representations that allow for consistent understanding of space. Recently, much effort has been

dedicated to evaluating spatial cognition in VLMs (Zhan et al, 2025}, Ma et al., 20254; [Lee et al.}
[2025},[Zhang et al.} [2025)). Moreover, some methods are proposed to enhance spatial understanding,

such as coordinate-aware prompting (Cai et al.,[2024), CoT reasoning (Ma et al., [2025b;
2025b)), explicit spatial representation alignment (Cheng et al.| 2024} [Chen et al., [20244), and an
RL-based approach (Pan & Liul 2025). However, existing benchmarks (Lee et al., 2025; Zhan et al.

2025} [Chen et al.| [2025; |Qi et al.| 2025; Zhang et al., 2025; Ma et al., 2025aj; |Ramakrishnan et al.
2025} [Tang et al.,[2025b; [Fu et al.,[2024; Yang et al., 2024} [Zhang et al.,[2024a) and approaches often

neglect the mental-level spatial reasoning that underpins human cognition, leaving a gap between
machine and human capabilities. To bridge this gap, a new approach is needed that trains VLMs
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to reason about space not only through visual data but also through mental-level spatial reasoning,
aligning more closely with human spatial cognition.

Multi Views understanding. Multiview spatial understanding leverages multiple viewpoints to re-
construct 3D structures and overcome single-view limitations. Efficient techniques optimize view
processing, while reconstruction methods (Wang et al., |2025; [Liu et al., 2025a; |Fu et al., 2025} |Qu
et al.}2025), view synthesis methods (Sun et al., 2018} Zhang et al., [2024¢} Sargent et al., 2023) and
multiview equivariant learning (You et al.,2024)) enhance geometric consistency. Topological repre-
sentations like|Zhang et al.| (2024b)) encode object relations for holistic reasoning, while frameworks
such as|Hong et al.| (2023) advance open-vocabulary concept learning from multiview data via neu-
ral fields and vision-language fusion. LMMs augmented with multiview inputs (Daxberger et al.,
20255 |Wu et al., 20254} |[Fan et al., |2025; Zheng et al., 2025; Lee et al., 2025; |Zhao et al., 2025} (Xu
et al., [2025a) demonstrate marked improvements in spatial tasks like geometric understanding and
perspective taking. Yet, they struggle with multiview consistency understanding due to fragmented
reasoning and 2D-to-3D projection ambiguities, leaving a gap for robust spatial Al

6 CONCLUSION

We introduced MINDCUBE to study how VLMs can approximate spatial mental models from lim-
ited views, a core cognitive ability for reasoning in partially observable environments. Moving be-
yond benchmarking, we explored how internal representations can be scaffolded through structured
data and reasoning. Our key finding is that constructing and reasoning over self-generated cogni-
tive maps, rather than relying on view interpolation or externally provided maps, yields the most
effective approximation of spatial mental models across all elicitation methods (input-output con-
figurations, supervised fine-tuning, and reinforcement learning). Initializing RL from a well-trained
SFT checkpoint further optimizes the process, pushing spatial reasoning performance to new limits.

ETHICS STATEMENT

The MINDCUBE benchmark was developed using a combination of publicly available, anonymized
datasets (ArkitScenes, WildRGB-D, DL3DV-10K) and self-collected imagery. For our self-collected
data, care was taken to capture indoor and outdoor scenes without including personally identifiable
information (PII) or sensitive content. All human annotators involved in the data curation and eval-
uation phases were compensated at rates significantly exceeding their local minimum wage.

We acknowledge several limitations and ethical considerations. The datasets used, while diverse,
may not fully represent the vast range of global environments, potentially introducing geographic
or cultural biases into the model’s spatial understanding. Furthermore, the training, fine-tuning, and
evaluation of the large-scale Vision-Language Models discussed in this paper carry a significant
computational and environmental cost. While our research is intended to advance the scientific un-
derstanding of Al cognition, we recognize that technologies enhancing spatial reasoning in machines
could have dual-use applications.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have included our complete codebase for data
processing, model training, and evaluation in the supplementary materials as a .zip archive. Further-
more, the full MINDCUBE benchmark, encompassing all of our training data, test data, annotations,
and evaluation protocols, will be released in a public repository to facilitate further research and
verification by the community.
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A THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs), including Google’s Gemini 2.5 Pro and OpenAI’s GPT-
5, as auxiliary tools to assist with writing, editing, and conducting the literature review for this
manuscript. All content was critically reviewed, fact-checked, and revised by the human authors
to ensure its scientific validity and originality. The authors are fully responsible for all statements
and conclusions presented in this paper. Specifically, we use LLMs for polishing our wording and
writing, and we use LLMs to retrieve several related works.

B MINDCUBE BENCHMARK

B.1 DETAILS FOR DATA COLLECTION AND ANNOTATION

Image Collection and Selection. Our MINDCUBE benchmark comprises 3,268 images (2,302
indoor/outdoor images from publicly released dataset and 400 self-collected images), where we im-
plement a comprehensive image selection methodology encompassing four distinct view dynamics,
incorporating various data sources and processing procedures, as shown in Fig[2]

For rotation view dynamics, we implement a three-stage filtering strategy to extract meaningful
camera trajectories and key frames from ArkitScenes Baruch et al.| (2021) dataset.

In the first stage, we analyze the top-down view of camera poses within each scene to identify two
types of trajectories: linear paths and small rotational arcs. A linear trajectory is characterized by
consistently oriented cameras exhibiting significant displacement perpendicular to their viewing di-
rection. A rotational arc trajectory is identified when three to four camera positions demonstrate
approximately 90-degree relative orientation changes while being distributed along an approximate
circular arc. The second stage focuses on selecting two critical frames from the previously identified

) arkitscenes/40958767 arkitscenes/41007602

an
o B
P -10

(a) camera pose 1 (b) camera pose 2

Figure 1: Examples of camera poses in ArkitScenes

translation segments. The selection criteria mandate that: (1) the camera movement direction must
be parallel to the object arrangement direction, (2) this movement should be aligned with the hori-
zontal axis, (3) the first frame should only capture objects A and B, while the second frame should
only capture objects B and C, and (4) both frames must be free from motion blur and exhibit clear
object visibility.

The third stage processes the rotation segments to extract three or four key frames. These frames
must satisfy several conditions: (1) the camera positions should appear to originate from a station-
ary rotating camera, even if slight circular movement exists, (2) the camera orientations should align
with standard cardinal directions (approximately 90 degrees apart), and (3) each frame should con-
tain no more than three semantically distinct primary objects that occupy over 50% of the frame area
relative to the background.

For among view dynamics, image groups are manually selected from DL3DV-10KLing et al.|(2023)
and WildRGB-DXia et al.| (2024) datasets. We employ a single-stage selection process to identify
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four key frames representing cardinal viewpoints (front, left, right, and back) from 360-degree scene
captures. The selection criteria are: (1) camera orientations must align with standard directions,
ensuring that the central object, its background objects, and the camera’s line of sight are collinear
and parallel or perpendicular to standard scene elements such as tables or walls, (2) we reject sets
where three or more frames share identical semantic background information, and (3) we discard sets
where three or more frames have severely occluded background objects that cannot be reconstructed
from information in the other frames.

For around view dynamics, image groups are manually curated from the DL3DV-10KLing et al/|
dataset and assigned sequential identifiers. The front view (designated as view 1) must
provide clear visibility of all relevant information. This view is established as the reference point
for subsequent views in the sequence.

This structured approach to image selection and processing yields a rich dataset that supports sub-
sequent model training and testing procedures. The methodology ensures comprehensive coverage
of spatial relationships, occlusion states, and view-dependent object characteristics across multiple
viewing scenarios.

Top View Camera Pose

Filter for Views

Filter for Clips
R\,Y . ]/ Orth hi
rthographic
w Sl > "ew
| N i/ Aligned with
K 3/ Room Walls

Filtering high-quality groups
Filter for Among

Consistent Main Object

Filter for Views

Diverse Semantics
E Background Objects

WildRGB-D

9 Orthographic
Views

Filter for Around
Limit and Distinct
Obijects
Diverse Semantics

DL3DV-10K

Clear Spatial Relations

Figure 2: MINDCUBE Bench construction pipeline.

Data Annotation. After collecting and filtering the images, we follow a two-phase paradigm for
annotation: We establish a systematic image annotation protocol to ensure data consistency and
accuracy. The annotation framework encompasses four key dimensions: spatial relationship identi-
fication, object grouping rules, semantic orientation determination, and occlusion level assessment.
We provide a pdf of the annotation interface in the supplementary material.

Regarding spatial relationship identification, annotators are required to identify primary object en-
tities within images and determine their spatial relationships. These relationships are primarily
categorized into two types: front-back relationships typically involving two primary objects, with
priority given to objects directly behind as key entities; and left-right relationships encompassing
two to four primary objects, where adjacent objects with front-back relationships can be considered
as a unified entity.

To enhance annotation efficiency and semantic completeness, this study introduces object grouping
rules. Multiple objects can be annotated as a unified entity when they collectively form clear spatial
relationships with other primary objects. Each object may include attribute descriptors (e.g., color,
material) to enhance semantic expression. Combined object entities must maintain distinct spatial
relationships with other primary objects.

For objects with definitive semantic fronts, the following information must be recorded: the object’s
inherent semantic front, the object’s orientation relative to the current viewpoint (aligned, reversed,
leftward, rightward, etc.), and the object’s actual projected direction within the scene.
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Occlusion levels are evaluated using a four-tier classification system: complete occlusion where
the object is entirely invisible from the current viewpoint; major occlusion where primary object
features are difficult to identify; minor occlusion where primary object features remain identifiable;
and no occlusion where the object is fully visible. For cases of complete occlusion, the annotation
system provides multi-view scene images, ensuring object visibility in at least one viewpoint to
support subsequent cross-view question-answering system training.

This annotation protocol provides a structured semantic foundation for subsequent automated
question-answer pair generation while ensuring data quality and consistency. Through this stan-
dardized annotation process, we effectively capture key information including spatial relationships,
compositional features, semantic orientations, and occlusion states of objects within scenes.
Examples for automatic QA generation pipeline. Our automatic QA generation pipeline gener-

Current Frame

Visual Patterns

no linear

“What-if” Dynamics Relation Perspective Questions:
Query Taking Level 1. How did you likely move from
1 the first view to second view?
(Agent, Agent) self perspective 2. What is behind of you?
3. From chair's view, could you
2 see the quilt-covered sofa?
Main Objects - i 4. From the TV's view, what is on
{Alef Ol ) 3 R your left-front side?
1. A chair with a 5. What is on the left of the chair
basket on it 5 4 from your ego-centric view?
2. TV (Object, Object) )6 other perspective-2 ) 6. What is on the left of the chair

from TV's view?

Figure 3: Example of different question-related label combinations to generate QA pairs.

ates different types of questions using combinations of labels. Each question’s label combination is
encoded in its ID (e.g., among_group001_q1_1_1"), while the original object and label information
is preserved in the meta_info field to track the context of question generation.

B.2 DETAILS OF OUR MINDCUBE BENCHMARK
B.2.1 THREE KINDS OF INVISIBILITY SETTINGS

Rotation. In this setting, our camera remains stationary while rotating in place, capturing 2 to 4
orthogonal views. In each view, a central object remains visible in the foreground, while all views
maintain equal importance in the spatial representation.

We evaluate models’ understanding of spatial invisibility by asking questions such as *When
positioned at a particular viewpoint, what should be to your left or right (given that each view
only reveals what’s directly ahead)?’ or ’After rotating a quarter or half turn, what objects would
be in front of you, to your left, behind you, or to your right?” We expect models to construct
a comprehensive spatial understanding by leveraging the sequential nature of the views and
consistent spatial cues across images (such as lighting direction), thereby demonstrating their
ability to reason about the complete environment despite only having access to partial visual
information from each viewpoint.

Around. In this setting, we leverage occlusion phenomena to force MLLMs beyond simple 2D
spatial recognition. When viewing objects from different angles, some objects become partially or
fully hidden, requiring models to:

* Maintain object permanence despite partial visibility
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» Transform lateral relationships (left-right) from frontal views into depth relationships
(front-back) for side views

* Integrate spatial information across multiple viewpoints to form a coherent 3D understand-
ing

This approach prevents models from relying solely on direct visual cues and instead necessitates
true 3D spatial reasoning by combining information from multiple perspectives.

Among. In this setting, the camera rotates around a central object, positioned between this central
object and several surrounding objects. Four orthogonal views are captured, with each view showing
the central object positioned in front of one of the surrounding objects.

This setup creates interesting visibility constraints across different perspectives. For instance, a
surrounding object visible in one view may be invisible in another view because of the constraints
imposed by the camera’s field of view. Through establishing consistency relationships between these
views, we can infer the relative positions of objects not directly visible from certain perspectives.
When an object is not visible from a particular viewpoint, consistency and spatial reasoning can
determine its position relative to the central object.

All views hold equal status in this framework, allowing for bidirectional establishment of invisi-
bility relationships. This creates a coherent spatial reasoning system where information from each
perspective contributes to a complete understanding of the three-dimensional arrangement, even
when direct visual confirmation is unavailable from certain angles.

B.2.2 LABEL TAXONOMY

We use image related labels for better analysis and question related labels for automatic QA gener-
ation with different label combinations.

Visual Patterns. In our taxonomy of spatial configurations, we classify visual patternss into distinct
categories based on their geometric relationships. Linear arrangements refer to configurations where
objects are positioned along a single axis, forming a collinear pattern. Non-linear arrangements,
conversely, are characterized by objects positioned such that the connecting lines between adjacent
pairs form 90-degree angles, creating rectilinear patterns. This binary classification serves as a
fundamental attribute in our spatial relationship labeling scheme, enabling precise description and
analysis of scene compositions across various domains.

“What if” Dynamics. “What if” Dynamics refers to the model’s capability to comprehend and
reason about dynamic perspective changes occurring within images or posed questions. We concep-
tualize viewpoint transitions as combinations of translation and rotation operations, resulting in four
distinct categories:

* Pure Translation: Cases where the viewpoint undergoes only translational movement with-
out rotational change.

» Pure Rotation: Scenarios involving rotational transformation of the viewpoint while main-
taining its positional coordinates.

¢ Simultaneous Translation-Rotation(Meanwhile): Instances where both translational and ro-
tational operations occur concurrently.

* Sequential Translation-Rotation(Sequence): Cases where translation and rotation occur in
sequence rather than simultaneously. Notably, in our dataset, this category is uniquely
represented through textual descriptions in the questions rather than through explicit visual
transformations.

The first three categories of “What if” dynamics are visually demonstrated through changes in view
representation, while the sequential category requires models to interpret text-based descriptions of
perspective changes. This taxonomy provides a systematic framework for evaluating spatial reason-
ing capabilities across diverse viewpoint transformation scenarios.

Relation Query. We define three distinct categories of relation queries that capture the fundamental
nature of spatial reasoning tasks:
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» Agent-Agent: This pattern involves self-referential spatial positioning, where the observer
must evaluate and potentially adjust their own position in space. It requires egocentric
spatial reasoning and self-awareness of one’s location relative to environmental constraints.

» Agent-Object: This pattern focuses on determining the orientation of an observed object
relative to the observer’s position. Unlike the P-P pattern, the emphasis here is on object
perception rather than self-positioning, requiring the observer to make judgments about
external entities while maintaining awareness of their own reference frame.

* Object-Object: This pattern involves reasoning about the spatial relationship between two
discrete objects in the environment, independent of the observer’s position. This allocen-
tric spatial reasoning requires understanding relative positioning, distance, and orientation
between entities without necessarily using oneself as a reference point.

These categorizations provide a structured approach to analyzing the cognitive demands of different
spatial reasoning tasks and can inform both the design of spatial question answering systems and the
evaluation of human spatial cognition abilities.

Perspective Taking. We propose a label called Perspective Taking” that categorizes the complexity
of viewpoint projection. This label distinguishes between three increasingly sophisticated levels of
perspective reasoning:

* Self Perspective: Reasoning based on the current camera view or the observer’s own view-
point. This represents the baseline where no perspective shift is required.

¢ Other’s Perspective Taking-1: The ability to determine visibility relationships from another
agent’s viewpoint. This involves understanding what objects are visible or occluded from
a different viewpoint (e.g., determining whether a specific object is within the field of view
of another camera). The another agent’s viewpoint is usually determined by an object with
a clear orientation in the image.

 Other’s Perspective Taking-2: The ability to understand how spatial relationships transform
when viewed from another agent’s perspective. This more advanced capability requires
mental rotation and spatial transformation to reason about relative positions (e.g., deter-
mining whether, from another viewpoint, object X appears to be positioned behind object
Y).

This classification aligns with developmental psychology research on perspective-taking abilities,
where Level-1 perspective taking typically develops earlier than the more cognitively demanding
Level-2 perspective taking.

We provide performance across different categories and labels in Tabldl] and Upon detailed
analysis of model performance across various capabilities, certain trends emerge. The O-O (Object-
Object) task within Relation Pattern also demonstrates generally lower scores across the board,
suggesting it is a less tractable problem for current models. Notably, InternVL2-8B struggles with
the sequence task, exhibiting the lowest score among all evaluated models in that category.

Regarding model stability, Mantis(SigLip) demonstrates robust performance in both Object Ar-
rangement and Relation Pattern sections, indicating a consistent capability in these spatial reasoning
tasks. Similarly, Qwen2.5-VL-7B-Instruct maintains relatively stable performance within Viewpoint
Dynamics. In contrast, InternVL2-8B shows a broader instability, with consistently lower overall
scores and considerable performance fluctuations across different sub-categories, highlighting areas
for further improvement in its generalizability and robustness.

B.3 COMPARISON WITH EXISTING SPATIAL INTELLIGENCE BENCHMARKS

To provide a clear and convenient overview of the current research landscape, we have compiled
the detailed comparison table below. Our analysis suggests that higher-order cognitive abilities like
Free-Form Reasoning (FFR), Perspective-Taking, and Consistency are crucial for advancing beyond
simple spatial perception. Our MindCube framework is distinctive in its holistic integration of these
diverse challenges. While our benchmark does not currently focus on fine-grained Quantitative
questions, this was a deliberate design choice. Our priority is to address the more fundamental and
pressing challenge of building a coherent mental model, rather than precise numerical calculation.
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Table 1: Performance of VLMs on MINDCUBE across categories.(Part 1)

Model Overall Object Arrangement Perspective Taking
Linear Perp. Self  Levell Level2
LLaVA-Video-7B-Qwen2  41.96 30.12 43.11 42.19  60.76  33.80
Mantis(SigLip) 41.04 50.99 40.08 41.20 54.43  35.41
GPT-40 38.81 29.16 39.75 39.07 46.20  31.86
Qwen2.5-VL-3B-Instruct 33.21 30.34 33.49 32.96 46.84  36.28
LongVA-7B 29.46 24.88 29.91 28.81 51.90  39.83
Qwen2.5-VL-7B-Instruct 29.26 21.35 30.02 28.77  46.84  36.81
deepseek-vI2-small 47.62 26.91 49.63 48.32 56.33  31.11
Robobrain 37.38 29.53 38.14 37.56  55.06  30.57
Claude-sonnet-4 44.75 47.62 44.48 4532  49.38 31.74
Space-Mantis 22.82 29.32 22.19 22.15  45.57  33.48
InternVL2-8B 18.68 13.11 19.22 17.89 6456  27.99
Space-Qwen 33.28 26.32 33.95 33.06 46.84  35.63
LLaVA-Onevision-7B 4743 44.09 47.75 48.04 51.27  33.48
Spatial- MLLM 32.06 20.92 33.13 31.79 46.84  35.20
mPLUG-OwI3-7B 44.85 26.91 46.59 45.15  60.13  35.74

Table 2: Performance of VLMs on MINDCUBE across categories.(Part 2)

Model Relation Pattern Viewpoint Dynamics
A-A A-O 0-O Rotation Meanwhile Sequence

LLaVA-Video-7B-Qwen2  36.22 57.61 26.67 35.71 30.12 73.45
Mantis(SigLip) 23.78 64.16 25.24 37.65 24.99 82.74
GPT-40 4930 48.38 16.70 32.65 31.09 59.73
Qwen2.5-VL-3B-Instruct  37.85 37.51 20.65 37.37 27.88 46.05
LongVA-7B 19.72 35.49 25.58 35.89 24.67 40.50
Qwen2.5-VL-7B-Instruct ~ 31.41 34.67 15.63 38.76 22.87 43.76
deepseek-vI2-small 43.98 68.27 25.33 37.00 32.97 87.13
Robobrain 30.94 49.18 27.37 35.80 28.79 59.66
Claude-sonnet-4 41.78 67.25 15.85 48.42 34.76 69.53
Space-Mantis 28.18 17.03 20.89 37.65 24.98 14.46
InternVL2-8B 15.67 1247 24.58 36.45 21.78 7.36
Space-Qwen 31.59 38.14 26.13 38.02 28.51 44.58
LLaVA-Onevision-7B 42.28 65.87 29.79 36.45 33.80 84.38
Spatial- MLLM 27.72 37.75 25.80 38.39 26.84 44.19
mPLUG-Owl13-7B 47.80 62.29 18.83 37.84 31.02 81.55

B.4 DISCUSSIONS ABOUT OTHER RELATED AREAS

Early research on spatial language and spatial role labeling largely originated from large-scale cor-
pora like the HCRC Map Task Map, (n.d.) (1990s), which analyzed how people use language to
express and understand spatial relations through task-oriented dialogues. This line of work estab-
lished the foundational framework for Spatial Role Labeling (SpRL), which categorizes sentence
entities into a Trajector (the moving or described object), a Landmark (the reference point), and a
Spatial Indicator (the preposition or verb indicating the relationship). Pioneering works in this field
include that of [Kordjamshidi et al.| (2011). Subsequently, the field extensively explored computa-
tional models to automatically identify and extract these spatial role labels, giving rise to crucial
shared tasks like SemEvalSem| (n.d.).

In contrast to this past research, which was primarily based on text and symbolic representations,
current work on spatial intelligence in multimodal large models is centered on learning and inte-
grating spatial concepts directly from images, videos, and text. These models are no longer limited
to simple Trajector-Landmark relation extraction. Instead, they can handle more complex, context-
aware spatial reasoning through the joint understanding of vision and language, such as identifying
the relative positions and dynamic changes of objects in a scene, thereby achieving a more human-
like, visually grounded spatial cognition.
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Table 3: Comparison of MINDCUBE with existing spatial intelligence benchmarks

Legend: v'= Supported/Evaluated, x = Not Supported/Evaluated, R = Real-world, S = Simulated, - = Not Ap-
plicable, Camera = Whether camera positions have specific spatial distribution in multi-view, FFR = Free Form
Reasoning, Consistency = Spatial Consistency Perception from multiview images, Orientation = Awareness of
Object Orientation

Benchmark QA Pairs Multi-view Env. Camera Outdoor Orientation FFR Perspective-Taking  Consistency
5K X R - X X X X X
VSR 10K X R X v v X X X
B et al.[(2024} 2.6k X R X v X X X X
SpatialRGPT-BencHCheng ¢ 1.4K X R X v v X X X
SpatialBot-BenchCai et al. (2024 200 X R - v X X X X
218k v S v X v X v X
5.1K v R X X v v X X
M X R - X X X X X
3.6k X R X v X v v v
2.8k v R X X v v X X
(2025 23K v R/S - X X X X v
2.1k v R X X v X X X
1.5k X R/S - v v v v v
6k X S X X X X X X
h 1k v R v X X X X X
MindCube (Ours 20k v R v v v v v v

B.5 EXAMPLES

We show some examples in Figurdd] [6]and ]

Example of Among setting

|
i
:
d Q): meanwhile agent-agent self perspective )( non-linear
i
P
i
i
i

Question: Based on view1 and view2 showing the same
i scene, which direction did you move from the first view
i to the second view?
| Options: B. Forward-right

System Prompt: Based on these four images (image 1, 2, 3, and 4) showing the red ball from different viewpoints
(front, left, back, and right), with each camera aligned with room walls and partially capturing the surroundings:

Q: meanwhile )( agent-object ){ self perspective /( non-linear ): Q: meanwhile )( object-object ) self perspective /( non-linear

Question: If you are standing at the viewpoint presented Question: From the viewpoint presented in image 1, what
in image 1, then you turn left and move forward, will you

is to the left of the red ball?
get closer to the light-colored sofa? ! Options: A. white-red cabinet C. dark
Options: B. No !

I brown sofa D. school bag and TV cabinet

Question: If you are standing at the viewpoint presented | Question: From the viewpoint presented in image 1, what

in image 1, what is behind you? ! is to the right of the red ball?
Options: B. light-colored sofa C. darkOptions: A. white-red cabinet B. light-colored sofa C. dark
brown sofa D. school bag and TV cabinet * brown sofa

Q): meanwhile )( object-object other perspective )(_non-linear

Question: If you are positioned where the light-colored ! Question: If you are positioned where the dark brown
sofa is and facing the same direction, what would be to sofa is and facing the same direction, what would be to
the left of the red ball from this view? the right of the red ball from this view?

Options: B. school bag and TV Options: A. school bag and TV cabinet B. white-red
cabinet C. white-red cabinet cabinet

P
P
P
P
i
P
i
P
i

Figure 4: Example of among setting.
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Example of Around setting

Q: meanwhile agent-agent self perspective linear

i Question: Based on view1 and view2 showing the same
! scene, please determine which direction did you move?
i A. Left-front B. Right-front.

| Options: B. Forward-right

System Prompt: Given 3 orthogonal perspectives of a scene, they are the front view, left view and right view.

Q: meanwhile )( object-object )( self perspective linear Q: meanwhile )( object-object )( self perspective linear
Question: In the second image, what is the nearest
object the nearest object behind of the black waste bin?
Options: . B. blue waste bin C.
shrubbery

i Question: If you are at the view of the second image now,
then you turn right and go straight, is the green waste bin
be closer to you?

Options: A. Yes

Question: In the third image, what is the nearest object
behind of the blue waste bin.

Options: B. blue waste bin C.
shrubbery

Question: If you are at the view of the third image now,
i then you turn left and go straight, is the green waste bin
be closer to you?

Options: A. Yes

Figure 5: Example-1 of around setting.

C EVALUATION ON MINDCUBE

C.1 PROMPT TEMPLATES FOR EVALUATION

Evaluation Prompt Prefix

Based on these images, answer the question based on this rule: You only need to provide
*ONE* correct answer selecting from the options listed below. For example, if you think
the correct answer is ‘A. above’ from ‘ A. above B. under C. front D. behind.’, your response
should only be ‘A. above’.

The Question is:

C.2 DETAILS IN TEXT ONLY EVALUATION

In the text-only evaluation, we replace the original image input with corresponding textual descrip-
tions and assess the performance of models based on these descriptions. The purpose of this eval-
uation is to highlight how much information may be lost or distorted when the visual input is sub-
stituted with text-based representations, and to demonstrate the crucial role of visual data in the
models’ performance.

We used two types of captions: brief and dense. The brief captions provide a concise overview
of the image, while the dense captions offer a more detailed description with a focus on the spatial
relationships between objects. Additionally, the models are evaluated using textual descriptions
(text-only evaluation) based on these captions, with no access to the actual images.

Prompt for Brief Captioning
Describe this image briefly.

Prompt for Dense Captioning
Describe this image in detail, specifially focusing on the spatial relationship between objects.
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Example of Around setting

1
i
i meanwhile self perspective linear
View3 !
‘@ Question: Based on view1 and view2 showing the same
! scene, please determine which direction did you move?
i A. Left-front B. Right-front.
| Views | Options: B. Forward-right

System Prompt1: Given 3 orthogonal perspectives of a scene, they are the front view, left view and right view.

Q: meanwhile self perspective linear . Q: meanwhile self perspective linear
Question: In the second image, what is the nearest : Question: If you are at the view of the second image now,
object the nearest object behind of the double trash can?: then you turn right and go straight, is the sanitation cart
Options: B. bench C. battery powered i be closer to you?
vehicle D. car (View 123 or View 145 Used) ! Options: A. Yes (View 123 or View 145 Used)
Question: lIn the third image, what is the nearest object ; Question: If you are at the view of the third image now,
behind of the sanitation cart? i then you turn left and go straight, is the double trash be
Options: B. bench C. battery powered closer to you?
vehicle D. car (View 123 or View 145 Used) i Options: A. Yes (View 123 or View 145 Used)

System Prompt2: Given 3 orthogonal perspectives of a scene, they are the behind view, left view and right view.

Q): meanwhile self perspective linear Q: meanwhile self perspective linear

Question: In the second image, what is the nearest

! ) ) Question: If you are at the view of the second image now,
object the nearest object behind of the double trash can?

then you turn right and go straight, is the sanitation cart

Options: B. bench C. battery powered e closer to you?

vehicle D. car (View 623 or View 645 Used) Options: A. Yes (View 623 or View 645 Used)
Question: |=In the third image, what is the nearest object Question: If you are at the view of the third image now,
behind of the sanitation cart? then you turn left and go straight, is the double trash be
Options: B. bench C. battery powered closer to you?

vehicle D. car (View 623 or View 645 Used) Options: A. Yes (View 623 or View 645 Used)

Figure 6: Example-2 of around setting.

Text-only evaluation Prompt Prefix

You need to gather information about each image based on the descriptions I provide below,
and answer the given questions using those textual descriptions, without directly viewing
the images.

Image 1: <Caption 1>

Image N: <Caption N>

As shown in the Table[d] all three models exhibit a noticeable performance decline when replacing
the original image input with its corresponding text-based description. Specifically, the brief cap-
tions cause the most significant performance drop. For instance, RoboBrain-8B experiences a 7.83%
decrease with the brief captions, and LLaVA-OneVision-7B drops by 12.91% in the same condition.
Even when using dense captions, which offer more detail, there is still a performance reduction,
although the decrease is slightly less pronounced compared to brief captions. In conclusion, while
textual descriptions can convey some information, they fail to capture the richness and intricacies of
visual data, leading to a marked reduction in performance across all models.
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Table 4: Text-only (T) evaluation vs. original evaluation with image inputs (I). The results highlight
a significant performance drop when the original image input is replaced with the corresponding
text-based caption, particularly with the brief captions. In all cases, model performance decreases
notably, underscoring that our benchmark is vision-centric.

Model Brief (T) Dense (T) Original (I)
RoboBrain-8B 33.92% 35.58% 41.75%
LLaVA-OneVision-7B 34.17% 35.92% 47.08%
Qwen2.5-VL-7B-Instruct  27.00% 28.75% 32.33%

C.3 HUMAN EVALUATION

We use our Tiny Benchmark— encompassing all task categories for evaluation by 5 human annota-
tors, each of whom independently answers every question. Here is the result{3]

Table 5: Comparison of Human and GPT-4 Performance (%)

Model/Annotator GPT4-0 Human-max Human-min Human-avg
Accuracy 36.54 94.77 94.20 94.55

This observation demonstrates the disparity in spatial reasoning capabilities between humans and
state-of-the-art multimodal large language models, where humans exhibit superior performance in
solving spatial problems that remain challenging for advanced Al systems.

C.4 EVALUATION SETUP

To comprehensively evaluate model performance, we conducted experiments on a diverse suite of
models. This suite includes models with native multi-image reasoning capabilities (e.g., LLaVA-
Onevision (L1 et al.} 2024a), LLaVA-Video (Zhang et al., 2024d), mPLUG-OwI3 (Ye et al.,|[2024),
InternVL2.5 (Chen et al.l 2024b), QwenVL2.5 (Bai et al., 2025), LongVA (Zhang et al., 2024c),
DeepSeek-VL2 (Lu et al.l 2024)), Gemma3 [Team et al.| (2025), models fine-tuned on interleaved
image-text data (e.g., Mantis (Jiang et al., |2024)), leading proprietary APIs (e.g., GPT-5, Claude-
4-Sonnet), and models specifically fine-tuned for spatial reasoning tasks (e.g., RoboBrain (J1 et al.|
2025)), Space-Mantis (Chen et al.,2024a)), Space-Qwen (Chen et al.| 2024al), and Spatial-MLLM |Wu
et al. (2025a)).

C.5 ANALYSIS IN SETTINGS
C.5.1 AROUND

First, we examine the relationship between occlusion degree and response accuracy across four
visibility levels (fully visible, mostly visible, mostly occluded, fully occluded) to determine whether
performance degrades proportionally with increasing occlusion. Second, we investigate the impact
of camera height variation within the same lateral viewpoint, as different vertical perspectives
yield distinct occlusion patterns that may challenge the model’s ability to maintain spatial coher-
ence. These paradigms evaluate whether models perform consistently when transferring spatial
relationships across viewpoints, particularly in scenarios with significant object size discrepancies
where smaller objects may be completely occluded from one angle but visible from another. This
multifaceted analysis approach enables a more nuanced understanding of MLLMs’ genuine 3D
spatial reasoning capabilities beyond simple pattern recognition of 2D visual cues. We mainly
evaluated GPT-40 and Qwen2.5-VL.

Occlusion Degree Analysis. Our analysis reveals a notable correlation between occlusion
degree and model performance. Accuracy rates declined progressively with increasing occlusion,
with an average decrease of 50.7% between fully visible and fully occluded conditions (p <0.01).
Interestingly, the performance degradation was non-linear, with a precipitous drop occurring
between the mostly visible and mostly occluded categories (28.7% decrease), suggesting a potential
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Abstract spatial representation

Around
e Column @
Complex
Arrange
-ment Condiment cart

Questionl: From the viewpoint presented in image 2, is there an blue trash can behind the
brick-patterned column? A. Yes B. No.

Question2: From the viewpoint presented in image 3, is there an orange trash can behind the
brick-patterned column? A. Yes B. No.

Answerl: In image 2, the viewpoint is from the left side of the brick-patterned column. Image 4 shows the back
view of the column, where a blue trash can is visible. Therefore, from the viewpoint in image 2, the blue trash can
is indeed behind the column.

Therefore, my answer is A. Yes.

Answer2:In image 3, the viewpoint shows a blue trash can next to the brick-patterned column. Image 4, which
shows the back view, reveals an orange trash can next to the column. Therefore, from the viewpoint in image 3,
the orange trash can is not visible because it is on the opposite side of the column.

Therefore, my answer is B. No. GPT-40 Response

Figure 7: Example of complex spatial arrangement in around setting.

threshold effect in the models’ spatial reasoning capabilities. Error analysis in Figurd8] further
revealed that models frequently defaulted to proximity-based guessing when confronted with
heavily occluded objects, rather than leveraging cross-view information to reason about hidden
spatial relationships.

Camera Height Impact Analysis. Varying camera heights significantly affected model per-
formance through different occlusion patterns. High-angle perspectives yielded 24.8% higher
accuracy than eye-level views by revealing tops of partially occluded objects and providing better
scene context. This advantage was most pronounced in dense arrangements where top-down angles
exposed spatial gaps between objects otherwise invisible from eye-level. Models clearly benefited
from the holistic understanding afforded by elevated viewpoints, where global spatial relationships
became more apparent. In contrast, eye-level perspectives with more severe occlusions led to poorer
spatial reasoning, suggesting limited ability to mentally reconstruct hidden scene elements from
partial visual information.

The integration of findings across all three dimensions indicates that current MLLMs pos-
sess partial but inconsistent 3D spatial reasoning capabilities. The models’ performance appears
heavily influenced by the visibility of key reference points across multiple viewpoints, suggesting
a reliance on visual correspondence matching rather than true 3D mental modeling. The
observed asymmetries in spatial transformation paradigms further support this hypothesis, as a
robust 3D reasoning system would demonstrate consistent performance regardless of the specific
transformation required.

C.5.2 AMONG

While the correctness of one single question indicates how often a model answers an isolated ques-
tion correctly, it does not capture whether the model remains consistent when presented with objects
with different visual attributes and different number of central objects while retaining the original
peripheral scenes.
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Question: Based on these three images (image 1, 2, and 3) showing the same
scene from different viewpoints (front, left, and right): From the viewpoint
presented in image 3, is there a table behind the trash can? A. Yes B. No."

Answerl: In image 3, we see the trash can
positioned against the wall with no visible
table behind it. The angle of the shot does
not show any part of a table behind the
trash can.

Therefore, my answer is B. No.

Answer2: In image 3, we see a trash can
placed against a wall with a partial view of
the floor and part of another object that
appears to be a table. The angle suggests
that if there were a table behind the trash
can, it would be visible or at least partially
seen. However, the image only shows the
trash can and part of the floor, without
any indication of a table being present
behind it.

Therefore, my answer is B. No.

Answer3: In image 3, we see the trash can
positioned in front of a wall with a table
visible behind it. The perspective shows
that the table is indeed located behind

the trash can when viewed from this angle.

Therefore, my answer is A. Yes.

Qwen-7B-Instruct Response

GPT-40 Response

Answerl: - In image 1, we see a table and
chairs adjacent to the trash can near wall.

- In image 2, the view from the left shows
the table extends from the wall, and the
trash can is closely beside it.

- In image 3, the view from the right toward
the trash can shows the area where the
table is located.

From this viewpoint, while there's no direct
view behind the trash can, based on the
previous images that illustrate the spatial
arrangement, the table should be visible
next to the trash can, not directly behind it.
Therefore, my answer is B. No.

Answer2: Image 1 shows a trash can to
the right of a table with two chairs. Image
2 reinforces this by showing the table and
chairs aligned along the wall, with the
trash can just beyond the table. Image 3
shows the view from the side of the trash
can, where the table is not visible directly
behind it, suggesting it is adjacent rather
than directly behind from this viewpoint.
Therefore, my answer is B. No

Answer3: In image 1, a table is visible next
to a trash can. Image 2 confirms the same
table and trash can placement from a
different angle. Image 3 shows the trash
can in the foreground, and a table is visible
directly behind it. Therefore, my answer is
A. Yes.

Figure 8: Example of different camera heights’ impact in around setting.
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Figure 9: Paired question-answers inconsistency in two tests. We report the proportions of IC, CC
and WW. Notably, SpaceQwen has a highest inconsistency(around 40%). GPT-40 and LLaVA-
Onevision exhibit more balanced performance.

To investigate this, we also propose two different tests:

Attribute Invariance Test. We modify only the visual attributes (e.g., color, category) of
the central object while keeping the spatial configuration of all objects unchanged, as shown
in FigurdI0] A robust spatial reasoning system should maintain consistent answers, as spatial
relationships remain invariant despite superficial attribute changes.

Figure 10: Examples in Attribute Invariance Test.

Quantity Sensitivity Test. We increase the number of central objects (e.g., from one to three) while
retaining the original peripheral objects, as shown in FigurdI1] This modification is hypothesized
to enhance reasoning performance, as additional central objects provide more reference points for
establishing cross-view correspondences and consistency.

We also propose to look into the proportions of paired questions in tests where the answers are in-
consistent with one another. First, we classify each paired instance into three scenarios: 1) CC(Both
Correct) when the model answers both the primary and paired question correctly, 2) WW (Both
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Figure 11: Examples in Quantity Sensitivity Test.

Wrong) when it fails both versions, and 3) IC (Inconsistent) when the model answers one version
correctly but fails the other.

As shown in Figure [9] we report the proportions of IC (in consistent) outcomes across 4 MLLMs
in two tests — two open-source (Intern2.5-VL, LLaVA-Oneyvision), a spatial model (SpaceQwen)
and a closed-source GPT-40. We have several observations: 1) SpaceQwen exhibits notably high
inconsistency score IC (around 40%) on both tasks, 2) LLaVA-Onevision remain fairly balanced
inconsistency and high performance across tests, while InternVL vary significantly across tests.

Our systematic evaluation demonstrates MLLMs can achieve attribute-invariant spatial reasoning
but struggle to utilize additional reference objects effectively. This highlights the need for: (1)
enhanced geometric reasoning architectures, and (2) comprehensive benchmarks evaluating both
attribute invariance and quantity sensitivity in 3D spatial understanding.

C.6 FAILURE CASE ANALYSIS

The observed pattern of errors indicates that models primarily rely on local relationship match-
ing rather than inferring global spatial configurations, which represents a critical gap compared to
human-like spatial reasoning abilities. Future architectural improvements should therefore focus on
enhancing transitive spatial inference mechanisms and view-invariant scene representation to sup-
port more robust reasoning across multiple perspectives.

D DATA STRUCTURES AS COGNITIVE SCAFFOLDS, EVALUATION METRICS,
AND INPUT-OUTPUT CONFIGURATIONS

In this section, we provide detailed descriptions of the three data structures employed as cognitive
scaffolds to approximate spatial mental models in VLMs, followed by formal definitions of the
evaluation metrics employed across all experiments. Furthermore, we show the prompts for all the
input-output configurations that were used across the following experiments.
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Question: Based on these four different viewpoints (front, left,
back, and right), if you are positioned at the first viewpoint,
then you tum right and move forward,wil you get closer to the

window? Question: Based on these four different viewpoints (front, left,

Options: A. No back, andright), if you are positioned at the third viewpoint,
what is behind you?

<Reasoning>: Options: A Washing machine CWhite +

1. The first image shows a view with a vent,likely the front view. gray curtains D. White wall and window

2. The second image has a window visible,indicating it is the

view opposite to the first.

3. The third image features a large cardboard, potentially a <Reasoning>:

covered window on one side. The third viewpoint shows the right side of the shoe, with the
4. The fourth image shows a plain wal,suggesting the view

opposite the third image.

Based on these, the four views are likely structured in a roughly ~ Therefore, if you are positioned at the third viewpoint,the

rectangular layout. Starting at the first view (front with vent), washing machine is behind you. Therefore, my answer is A.
turning right would bring you to the wall (fourth image), away Washing machine.

from the window (second image). Therefore, my answer is A.

No.

Figure 12: Failure case analysis. We show GPT4-0’s reasoning process. In case 1, the model is
unable to establish the spatial location corresponding to each view; In case 2, the model confuses
the subject of the “behind” relationship.

D.1 DATA STRUCTURES AS COGNITIVE SCAFFOLDS

The human ability to navigate and reason about space, especially with incomplete information, is
largely attributed to the formation of internal spatial mental models. These models, as extensively
studied in cognitive science, are not necessarily veridical, metric-perfect replicas of the environment.
Instead, they are often schematic and even distorted, yet functionally effective representations. These
models can be especially useful for understanding the environment spatial layouts for agentic set-

tings [Yao et al.| (2023); Wang et al| (2024), such as embodied scenarios [Liang et al.| (2023); [Driess
et al| (2023); Huang et al. (2023}, [2024); [Li et al| (2024b)); [Yang et al.| (2025a)); [Tang et al.| (2025al).

Pioneering work by Barbara Tversky suggests that these internal constructs are more akin to ’cog-
nitive collages” — flexible assemblies of spatial information gleaned from various perspectives and
experiences, rather than rigid, map-like blueprints (1993). These “cognitive collages” al-
low for the integration of fragmented observations and support reasoning across unseen perspectives.
Johnson-Laird Johnson-Laird| (1983) posits that mental models, including those for space, serve as
“structural analogs of the world,” enabling individuals to simulate and infer spatial relationships,
such as determining the relative positions of objects from sequential descriptions (e.g., ”A is to the
left of B; B is in front of C”). Research by Tversky |Tversky et al.|(1994) has also demonstrated that
individuals can construct rich, multi-dimensional mental representations even from linear, descrip-
tive texts, and subsequently query these models from various psychological viewpoints.

Inspired by these cognitive theories, we explore three distinct data structures designed to act as
cognitive scaffolds for VLMs. When VLMs are presented with limited visual input, these structures
aim to approximate different facets of human spatial mental modeling: dynamic updating, integrated
spatial layout representation, and inferential reasoning.

D.1.1 VIEW INTERPOLATION FOR DYNAMIC UPDATING

Human spatial mental models are not static; they are continuously updated with new sensory infor-
mation and through mental simulation, such as imagining a change in viewpoint. To approximate
this dynamic updating and mental animation capability (1992), we employ view interpo-
lation. This technique aims to bridge perceptual gaps between discrete, sparsely sampled views by
generating intermediate visual frames.
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QOur Setting: In our experiments, view interpolation is implemented by inserting synthetic frames
between consecutive views provided to the model. For instance, if 1 interpolated frame” is speci-
fied, one new frame is generated and inserted between an initial view V,, and the subsequent view
Vo1 (e.g., between View 1 and View 2). Similarly, 72 interpolated frames” would mean two syn-
thetic frames are inserted in sequence between V,, and V), ;. For the interpolated frames, we either
define a heuristic function to choose from the original datasets|Baruch et al.[(2021)); | Xia et al.|(2024)
where we sampled our data, or we use Stable Virtual Camera Zhou et al.| (2025) to generate inter-
mediate frames for those image groups without. This approach is intended to provide a smoother
perceptual experience, potentially aiding the VLM in tracking object relations and maintaining spa-
tial consistency across viewpoint shifts. (Refer to Figure [3] in the main paper for a conceptual
illustration)

D.1.2 COGNITIVE MAPS FOR INTEGRATED SPATIAL LAYOUTS

A core aspect of spatial cognition is the ability to form an allocentric (world-centered) or survey-
like understanding of an environment, capturing the relative locations of objects. Tversky [I'versky
(1993 2003)) highlights that such representations often involve different frames of reference and
hierarchical structures. Cognitive maps in our context are 2D schematic representations that attempt
to embody this integrated spatial layout.

Our Setting: We investigate two variants of cognitive maps, both represented as structured data
(e.g., ISON-like objects), to capture the spatial layout:

e We provide a 2D grid map of the scene that is related to the question to be answered.

* The map uses a 10x10 grid, where [0, 0] is the top-left corner and [9, 9] is the bottom-
right corner (i.e., bird’s-eye view).

¢ Directions are defined as follows:

— up = towards the top of the grid (decreasing y-value)

— right =towards the right of the grid (increasing x-value)

— down = towards the bottom of the grid (increasing y-value)

— left = towards the left of the grid (decreasing x-value)

— inner = into the 2D map (perpendicular to the grid, pointing away from you)
— outer = out of the 2D map (perpendicular to the grid, pointing toward you)

* The map contains:

— objects — alist of all important items in the scene with their position
— facing — indicating the direction an object is oriented (when applicable)
— views — representing different camera viewpoints in the scene

* Augmented Cognitive Map: This version explicitly integrates the observer’s perspective by
encoding the positions and orientations (facing directions) of the camera viewpoints
within the map, alongside the objects and their locations. For instance, as depicted in our
data examples (refer to Figure [3] Cognitive Map - Augmented panel), an augmented map
might define a list of objects with their name and position (e.g., "Tissue box": {
"position": [5, 5] }), and a separate list of views detailing each camera’s name
(e.g., "View 1"),position (e.g., [3, 51),and facing direction (e.g., "up™").

* Plain Cognitive Map (Object Only): This is a more simplified, object-centric representation. It
primarily focuses on the spatial locations of objects and, for some objects, their
intrinsic orientation (facing direction) from a top-down survey perspective, without explic-
itly embedding camera view information within its structure. For example (refer to Figure [3]
Cognitive Map - Plain panel), a plain map might list objects like "Potted plant" with
its position (e.g., [5, 6])and facing direction (e.g., "down"), and another object like
"Sofa" with only its position (e.g., [4, 51). This type of map still allows for reasoning
about object-to-object relationships and, where specified, object orientations, but abstracts away
the explicit camera viewpoints that generated the scene understanding.

In both map types, coordinates represent positions on a 2D grid, and facing directions can be
categorical (e.g., "up", "down", "left", "right", "outer", "inner"). These structures
aim to provide the VLM with an explicit, albeit potentially imperfect, schematic of the environment
that it can then learn to generate and utilize for spatial reasoning tasks.
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As for the format, our JSON format has been widely adopted as a computational model providing a
flexible structure for VLMs, designed to offer a bird’s-eye view representation encoding the relative
positions and orientations of objects |Yang et al.[(2024). This representation aligns, at a high level,
with the functional principles of cognitive maps in cognitive science. Our goal is to equip VLMs
with a scaffold that approximates the functional role of a cognitive map to enable explicit reasoning,
rather than replicating its exact neurological basis.

The use of JSON is a principled choice for interfacing with text-native VLMs, following standard
practices for eliciting structured outputs. VLMs fundamentally operate on sequences of language
tokens, making JSON a naturally fitting text-based format. JSON provides a structured and com-
putationally effective means to evaluate complex spatial outputs, constituting one of the standard
methods for eliciting structured knowledge from LLMs and VLMs. Although differentiable vector-
ized representations represent a promising research direction, current integration attempts have been
widely recognized as ineffective, particularly owing to limitations in VLM comprehension.

D.1.3 FREE FORM REASONING

Spatial mental models are not just static representations; they are actively used for inference and
problem-solving Tversky et al.| (1994). To approximate this procedural and inferential aspect, we
utilize free-form reasoning, implemented as a natural language Chain-of-Thought (CoT) Wei et al.
(2022) process. This encourages the VLM to externalize its step-by-step reasoning process when
deducing an answer to a spatial query.

Our Setting: The VLM is prompted to generate a textual reasoning chain before outputting the
final answer. This process is guided by a three-step principle, exemplified by the reasoning chain
shown in Figure [3] the reasoning chain panel. For the steps shown in that example, they are: (1)
Initial Observation and Grounding: The model first processes each available view, identifying key
objects and their immediate spatial relationships within that specific viewpoint. For instance, the
example chain begins with: "In View 1, I see a potted plant, tissue box,
and hand sanitizer from left to right, with a sofa behind." This step
grounds the reasoning in direct visual evidence from individual perspectives. (2) Cross-View
Integration and Environment Consolidation:Next, the model attempts to identify consistent objects
or environmental cues across the different views to recognize that they depict the same underlying
3D scene. The example reasoning continues: "In View 2, I see the same potted
plant, so both views are from the same environment." This step is crucial
for building a unified understanding of the space from discrete observations. (3) Question-Guided
Spatial Inference: Finally, based on the specific question posed and the integrated understanding
from the previous steps, the model performs step-by-step logical and spatial inferences to arrive at
the answer. In the example, this involves relating the object positions across views relative to the
observer’s position in View 2: "Since the hand sanitizer is rightmost in View
1, it’s spatially furthest behind the potted plant when looking in
View 2.

In View 2, the potted plant is closest to me, so the hand
sanitizer is

the furthest from me."

D.2 EVALUATION METRICS

To quantitatively assess how these data structures affect the performance of VLMs in the spatial
mental modeling presented in MINDCUBE, and to evaluate the quality of the generated cognitive
maps, we employed the following metrics: (1) QA Accuracy, and (2) Graph Metrics for Generated
Cognitive Maps.

D.2.1 QA ACCURACY

QA Accuracy serves as the core metric for evaluating task performance. It quantifies the proportion
of questions that the vision-language model (VLM) answers correctly out of the total number of
questions. A higher QA Accuracy indicates better alignment between the model’s responses and the
ground truth.
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The metric is formally defined as:

NCOlTeC
QA Accuracy = —2=% % 100%

total

where N orect denotes the number of correctly answered questions, and Ny iS the total number of
questions evaluated.

D.2.2 GRAPH METRICS FOR COGNITIVE MAPS

To quantitatively evaluate the quality of a generated cognitive map, we use a set of structured graph-
based metrics. The overall process consists of several key steps:

1. Validity Check. First, we ensure that the generated map is syntactically and semantically
valid—i.e., it has a correct JSON format, contains interpretable object positions, and includes
at least one valid object.

2. Rotation Normalization. Since we do not enforce a fixed orientation for generated maps (to
allow for flexible generation from vision-language models), we evaluate the similarity between
the generated map and the ground truth across a set of 3D rotations. We always choose the
best-aligned rotation to compute our similarity scores.

3. Structural Matching. We define a relation graph between object pairs in each map, capturing di-
rectional and proximity-based relationships. A core part of the evaluation is determining whether
these relationships in the ground truth are preserved in the generated map.

4. Similarity Metrics. We compute coverage (how many ground-truth objects are present), direc-
tional similarity (relative spatial relations), and facing similarity (object orientation). These are
aggregated into an overall similarity score.

5. Rotation-Invariant Isomorphism. We also evaluate whether a generated map is graph-
isomorphic to the ground truth under any allowed 3D rotation, providing a strict measure of
structural correctness.

Below, we provide precise mathematical definitions for each of these components.

Notation. A cognitive map is a finite set of objects O = {o0y,...,0,} where each object o; is
associated with (i) a 2-D position vector p; = (x;,v;) € R? and (ii) an optional facing label f; €
{up, right, down, left, inner, outer} U {@&}. For two maps, we distinguish (1) the ground-truth map
(O*, p*, f*) and (2) a generated map (O, p9, f9).

The set of objects that appear in both maps is O¢ = O* N OY.

Extended directional relation. We define a directional or proximity-based relationship between
any ordered object pair (0;, 0,) based on their spatial arrangement and optional facing annotations.
This relation is captured via the function:

right  |z; — z;|>|y; — yi| and z; >z,

left  |z; —x;|>|y; — yi| and x; < x5,

down [y; —vi| > |z — @il and y;>y;,

dir(o;,0;) = Qup  [y; — il > [z — xi| and y; < ys,

inner ||p; — pill2 < d and (f; = inner V f; = outer),
outer ||p; — pill2 < d and (f; = outer V f; = inner),
1% otherwise,

with threshold § = 0.5 as in the implementation. These relations form a relation matrix:
R(0;,0;) = dir(o;, 0).

Coverage. Coverage measures how many ground-truth objects are successfully retrieved in the

generated map:
0°

0%

Cov = € [0,1].
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Directional similarity. We now evaluate how well the generated map preserves the directional
relationships among object pairs from the ground truth. Define:

P = {(0i70j) e 0°x O° | i # 7, R*(Oi,Oj) #* @}.
Then the directional similarity score is given by:

Sair = |{(0i,05) € P* | R9(0i,05) = R*(0i,0,)}
1T "P*|

which corresponds to the proportion of directional relations in the ground truth that are correctly
matched in the generated map.

€ [0,1],

Facing similarity. For objects with defined facing directions, we compare their orientation across
the two maps:

Fr={0i € O°| fi #2}.
Then:

g e 71 =)
ace |f*|

€ [0,1].

Overall similarity. To aggregate the directional and facing similarities, we use a weighted combi-
nation:
Soverall = ¢ = Sgir + (1 - a) - Stace € [07 1]7
where o = (.7 places greater emphasis on spatial layout than orientation.
Rotation-invariant isomorphism. To ensure fair comparison regardless of orientation, we define

a set of 3D rotations: R = {Ry, ..., Ry}, including all 90° turns about the z-axis, and one 90° turn
about each of the x- and y-axes.

We say the maps are rotation-invariant isomorphic if there exists a rotation such that their relation
matrices match completely:

dke{l,...,m}Vo;,0;, € O°: R*(0;,0;) = R‘?k)(oi,oj),

where R*E’k) is the relation matrix computed after applying Ry, to the generated map.

Graph validity. Finally, a generated map is deemed valid if: (1) It is well-formed JSON, (2) All
fields conform to expected formats and constraints, and (3) At least one object has a valid position.

Together, the tuple (Cov7 Sdir, Stace, Soveralls Isorm) provides a comprehensive, rotation-aware eval-
uation of how closely a generated cognitive map matches ground truth structure and orientation.

D.3 PROMPTS FOR ALL INPUT-OUTPUT CONFIGURATIONS

Below, we provide all prompts for the input-output configurations we investigate in our work.

D.3.1 EXAMPLE FOR RAW—QA

Example Prompt for Raw—QA

[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints.
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[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For
example, if you think the correct answer is *A. Above’ from *A. Above B. Under C. Front
D. Behind’, your response should **only** be *<answer>A. Above</answer>’.
[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

\ J

D.3.2 EXAMPLE FOR FFR

Example Prompt for : Free-Form Reasoning

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints.

[Answer Instruction]

Please do step by step reasoning first, then give your final answer. For example, if
you think the correct answer is ’A. Above’ from ’A. Above B. Under C. Front D.
Behind’, your response should be this format: ’<think>(replace with your reasoning
here)</think><answer>A. Above</answer>".

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

\ J

D.3.3 EXAMPLE FOR VI-1 AND VI-2

Prompt for VI-1: View Interpolation with 1 Frame

37



Under review as a conference paper at ICLR 2026

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints.

[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For
example, if you think the correct answer is *A. Above’ from *A. Above B. Under C. Front
D. Behind’, your response should **only** be *<answer>A. Above</answer>’.
[Question]

Based on these 8 images showing the white jar from different viewpoints (from front (image
1) to left (image 3), from left (image 3) to back (image 5), from back (image 5) to right (im-
age 7), from right (image 7) back to front (image 1)), with each camera aligned with room
walls and partially capturing the surroundings: From the viewpoint presented in image 7,
what is to the left of the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

Prompt for VI-2: View Interpolation with 2 Frames

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints.

[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For
example, if you think the correct answer is *A. Above’ from *A. Above B. Under C. Front
D. Behind’, your response should **only** be *<answer>A. Above</answer>’.
[Question]

Based on these 12 images showing the white jar from different viewpoints (from front (im-
age 1) to left (image 4), from left (image 4) to back (image 7), from back (image 7) to right
(image 10), from right (image 10) back to front (image 1)), with each camera aligned with
room walls and partially capturing the surroundings: From the viewpoint presented in image
10, what is to the left of the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

D.3.4 EXAMPLE FOR AUG-CGMaAP-IN

Prompt for Aug—CGMap—In: Grounded Augmented Cognitive Map as Input
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p
[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. Also, we provide you a
cognitive map that shows the general layout for the scene. Please use the cognitive map to
reason and answer the question.
[Answer Instruction]
You only need to provide *ONE* correct answer selecting from the options listed below. For
example, if you think the correct answer is *A. Above’ from *A. Above B. Under C. Front
D. Behind’, your response should **only** be ’<answer>A. Above</answer>’.
[Cognitive Map Format]
We provide you a 2D grid map of the scene that is related to the question you should answer.
Below is the description of the map:
- The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-
right corner
- The map is shown in the bird’s view
- Directions are defined as:
* up = towards the top of the grid (decreasing y-value)
* right = towards the right of the grid (increasing x-value)
* down = towards the bottom of the grid (increasing y-value)
* left = towards the left of the grid (decreasing x-value)
* inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
* outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- “objects” lists all important items in the scene with their positions
- ”facing” indicates which direction an object is oriented towards (when applicable)
- ”views” represents the different camera viewpoints in the scene
Below is the cognitive map of the scene related to the question. Please use it to reason and
answer the question.
*YYjson
{
"objects": [
{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern",
"position": [5, 8]},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 21},
{"name": "table with cups on it", "position": [8, 51}
1,
"views": [
{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}
]
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board
\
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D.3.5 EXAMPLE FOR AUG-CGMaP-QUT

Prompt for Aug—CGMap—-Out: Ask VLM to Output Augmented Cognitive Map and Direct
Answer

LD

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. You will then create a
detailed cognitive map representing the scene using a 10x10 grid coordinate system.
[Rules]

1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
floral pattern, white headboard, clothes rack, table with cups on it}

2. Create a cognitive map with the following structure in the bird’s view:

- A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner

- up = towards the top of the grid (decreasing y)

- right = towards the right of the grid (increasing x)

- down = towards the bottom of the grid (increasing y)

- left = towards the left of the grid (decreasing x)

- inner = straight into the 2D map (perpendicular to the grid, pointing away from you)

- outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)

- Include positions of all objects from the specified categories

- Estimate the center location (coordinates [X, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them

- Each object’s estimated location should accurately reflect its real position in the scene,
preserving the relative spatial relationships among all objects

- Combine and merge information from the images since they are pointing to the same scene,
calibrating the object locations accordingly

- Include camera positions and directions for each view

3. Carefully integrate information from all views to create a single coherent spatial repre-
sentation.

[Answer Instruction]

1. Given the provided views and main objects mentioned in the above rules, you **MUST**
present your cognitive map in the following JSON format **before your answer**:

\\\json

{

"objects": [

{"name": "object_name", "position": [x, vI,
"facing": "direction"},
{"name": "object_without_orientation", "position": [x, vy]}
1,
"views": [
{"name": "View/Image 1", "position": [x, vI,
"facing": "direction"},
{"name": "View/Image 2", "position": [x, yI,
"facing": "direction"}

]

ANR YR

2. Next, provide *ONE* correct answer selecting from the options. Your answer field must
be in the format like ”A. Above”.
3. In general, your response’s format should be like "Based on my observation, the answer
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.

is: <cogmap>(Replace with your cogmap here)</cogmap><answer>(Replace with your
answer here)</answer>". Your option must be from the available options.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

D.3.6 EXAMPLE FOR PLAIN-CGMAP—-QUT

Prompt for Plain-CGMap-Out: Ask VLM to Output Plain Cognitive Map and Direct
Answer

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. You will then create a
detailed cognitive map representing the scene using a 10x10 grid coordinate system.
[Rules]

1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
floral pattern, white headboard, clothes rack, table with cups on it}

2. Create a cognitive map with the following structure in the bird’s view:

- A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner

- up = towards the top of the grid (decreasing y)

- right = towards the right of the grid (increasing x)

- down = towards the bottom of the grid (increasing y)

- left = towards the left of the grid (decreasing x)

- Include positions of all objects from the specified categories

- Estimate the center location (coordinates [X, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them

- Object positions must maintain accurate relative spatial relationships

- Combine and merge information from the images since they are pointing to the same scene,
calibrating the object locations with grid coordinates accordingly

3. Carefully integrate information from all views to create a single coherent spatial repre-
sentation.

[Answer Instruction]

1. Given the provided views and main objects mentioned in the above rules, you **MUST**
present your cognitive map in the following JSON format **before your reasoning**:

ANAURY

{

json

"object_category_1": {"position": [x, vyIl},

"object_category_2": {"position": [x, y
"facing": "direction"},

# if the object is asked for orientation

ANA U

2. Next, provide *ONE* correct answer selecting from the options. Your answer field must
be in the format like ”A. Above”
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3. In general, your response’s format should be like ”Based on my observation, the answer
is: <cogmap>(Replace with your cogmap here)</cogmap><answer>(Replace with your
answer here)</answer>". Your option must be from the available options.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

D.3.7 EXAMPLE FOR PLAIN-CGMAP-FFR-OUT

Prompt for P1lain-CGMap-FFR-Out: Ask VLM to Output Plain Cognitive Map and
Free-Form Reasoning

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. You will then create a
detailed cognitive map representing the scene using a 10x10 grid coordinate system.
[Rules]

1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
floral pattern, white headboard, clothes rack, table with cups on it}

2. Create a cognitive map with the following structure in the bird’s view:

- A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner

- up = towards the top of the grid (decreasing y)

- right = towards the right of the grid (increasing x)

- down = towards the bottom of the grid (increasing y)

- left = towards the left of the grid (decreasing x)

- Include positions of all objects from the specified categories

- Estimate the center location (coordinates [X, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them

- Object positions must maintain accurate relative spatial relationships

- Combine and merge information from the images since they are pointing to the same scene,
calibrating the object locations with grid coordinates accordingly

3. Carefully integrate information from all views to create a single coherent spatial repre-
sentation.

[Answer Instruction]

1. Given the provided views and main objects mentioned in the above rules, you **MUST**
present your cognitive map in the following JSON format **before your reasoning**:

ANR YR

{

json

"object_category_1": {"position": [x, vyIl},
"object_category_2": {"position": [x, vyI,
"facing": "direction"},

# 1f the object is asked for orientation
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L

2. Next, please also provide your reasons step by step in details, then provide *ONE* correct
answer selecting from the options. Your answer field must be in the format like ”A. Above”
3. In general, your response’s format should be like ”Based on my observation, the answer
is: <cogmap>(Replace with your cogmap here)</cogmap><think>(Replace with your
reasoning here)</think><answer>(Replace with your answer here)</answer>". Your op-
tion must be from the available options.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

D.3.8 EXAMPLE FOR AUG-CGMAP-FFR-0UT

Prompt for Aut -CGMap-FFR-Out: Ask VLM to Output Augmented Cognitive Map and
Free-Form Reasoning

< ‘ »
[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. You will then create a
detailed cognitive map representing the scene using a 10x10 grid coordinate system.
[Rules]

1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
floral pattern, white headboard, clothes rack, table with cups on it}

2. Create a cognitive map with the following structure in the bird’s view:

- A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner

- up = towards the top of the grid (decreasing y)

- right = towards the right of the grid (increasing x)

- down = towards the bottom of the grid (increasing y)

- left = towards the left of the grid (decreasing x)

- inner = straight into the 2D map (perpendicular to the grid, pointing away from you)

- outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)

- Include positions of all objects from the specified categories

- Estimate the center location (coordinates [X, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them

- Each object’s estimated location should accurately reflect its real position in the scene,
preserving the relative spatial relationships among all objects

- Combine and merge information from the images since they are pointing to the same scene,
calibrating the object locations accordingly

- Include camera positions and directions for each view

3. Carefully integrate information from all views to create a single coherent spatial repre-
sentation.

[Answer Instruction]

1. Given the provided views and main objects mentioned in the above rules, you **MUST**
present your cognitive map in the following JSON format **before your reasoning**:

‘YYison

{

"objects": [
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e A
{"name": "object_name", "position": [x, vI,
"facing": "direction"},
{"name": "object_without_orientation", "position": [x, vy]}
1,
"views": [
{"name": "View/Image 1", "position": [x, vyI,
"facing": "direction"},
{"name": "View/Image 2", "position": [x, yI,
"facing": "direction"}

]

ANA YUY

2. Next, please also provide your reasons step by step in details, then provide *ONE* correct
answer selecting from the options. Your answer field must be in the format like ”A. Above”
3. In general, your response’s format should be like "Based on my observation, the answer
is: <cogmap>(Replace with your cogmap here)</cogmap><think>(Replace with your
reasoning here)</think><answer>(Replace with your answer here)</answer>". Your op-
tion must be from the available options.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

D.3.9 EXAMPLE FOR CGMaAP—IN-FFR-OUT

Prompt for CGMap-In-FFR-Out: Input VLM with Grounded Cognitive Map and Output
with Free-Form Reasoning

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the
provided images, which show the scene from different viewpoints. Also, we provide you a
cognitive map that shows the general layout for the scene. Please use the cognitive map to
reason and answer the question.

[Answer Instruction]

Please do step by step reasoning first, then give your final answer. For example, if
you think the correct answer is ’A. Above’ from ’A. Above B. Under C. Front D.
Behind’, your response should be this format: ’<think>(replace with your reasoning
here)</think><answer>A. Above</answer>’. [Cognitive Map Format]

We provide you a 2D grid map of the scene that is related to the question you should answer.
Below is the description of the map:

- The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-
right corner

- The map is shown in the bird’s view

- Directions are defined as:

* up = towards the top of the grid (decreasing y-value)

* right = towards the right of the grid (increasing x-value)
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* down = towards the bottom of the grid (increasing y-value)

* left = towards the left of the grid (decreasing x-value)

* inner = straight into the 2D map (perpendicular to the grid, pointing away from you)

* outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)

- “objects” lists all important items in the scene with their positions

- ”facing” indicates which direction an object is oriented towards (when applicable)

- "views” represents the different camera viewpoints in the scene

Below is the cognitive map of the scene related to the question. Please use it to reason and
answer the question.

ANR YR

{

json

"objects": [

{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern",
"position": [5, 81},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 21},
{"name": "table with cups on it", "position": [8, 5]}
1,
"views": [
{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}
]
[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
points (front, left, back, and right), with each camera aligned with room walls and partially
capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
board

E  WHICH SCAFFOLDS BEST GUIDE SPATIAL THINKING IN UNCHANGED
VLMS?

The primary experimental setup for evaluating how different structural scaffolds can guide spatial
reasoning in unchanged VLMs, has been comprehensively described in Section 3 of the main paper.
This current section is dedicated to presenting qualitative examples of model outputs, serving as
case studies for the different scaffolding configurations tested.

For precise details on the input prompt structures and specific instructions provided to the Qwen2.5-
VL-3B-Instruct for each experimental condition (e.g., Raw—QA, FFR,Plain-CGMap-FFR-Out),
please refer to Appendix [D.3]

E.1 VLM RESPONSE EXAMPLES FOR CONFIGURATIONS IN SECTION [D.3]

Output for Raw—QA: Input Prompt Refer to D.3.1

C. Bed sheet with a floral pattern
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Output for VI: Input Prompt Refer to D.3.3

B. Clothes rack

Output for Aug—CGMap—In: Input Prompt Refer to D.3.4

C. Bed sheet with a floral pattern

Output for : Input Prompt Refer to D.3.2

<think>To determine what is to the left of the white jar from the viewpoint presented in
image 4, let’s analyze the scene:

- In image 4, the white jar is placed on a table covered with a pink tablecloth featuring heart
patterns.

- The table has a glass top and is positioned against a wall.

- To the left of the jar, there is a piece of furniture that appears to be a bed or a bed frame.
Given this information, the object to the left of the white jar is most likely a bed or a bed
frame. </think>

<answer>C. Bed sheet with a floral pattern</answer>

Output for Aug—CGMap—-FFR-Out: Input Prompt Refer to D.3.8

\\\json

{

"objects": [

{"name": "white jar", "position": [150, 446],
"facing": "left"},
{"name": "bed sheet with a floral pattern",
"position": [0, 31717,
"facing": "left"},
{"name": "clothes rack", "position": [0, 108],
"facing": "left"},
{"name": "table with cups on it", "position": [188, 200],
"facing": "left"},
{"name": "white headboard", "position": [188, 3171,
"facing": "left"}
1,
"views": [
{"name": "Image 1", "position": [0, 0], "facing": "left"},
{"name": "Image 2", "position": [0, 0], "facing": "left"},
{"name": "Image 3", "position": [0, 0], "facing": "left"},
{"name": "Image 4", "position": [0, 0], "facing": "left"}
]
<CogMap>
<Your cognitive map>
<Reasoning>

From the viewpoint presented in image 4, we can see that the white jar is positioned in the
foreground, facing left. The bed sheet with a floral pattern is located directly behind the
white jar, covering the lower part of the image. The clothes rack is visible on the left side of
the image, slightly above the bed sheet. The table with cups on it is situated further back, to
the right of the white jar. The white headboard is also visible, but it is not as prominent as
the other objects due to its position behind the bed sheet.
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Therefore, my answer is A. Table with cups on it.
</Answer>
Therefore, my answer is A. Table with cups on it.

Output for Plain-CGMap—-FFR-Out: Input Prompt Refer to D.3.7

‘*YYjson

{
"white_jar": {"position": [150, 440], "facing": "left"},
"table_with_cups_on_it": {"position": [187, 260],
"facing": "right"}

ANA R

<CogMap>

<Your cognitive map>

<Reasoning >

From the viewpoint presented in image 4, we can see that the white jar is positioned on the
bed sheet with a floral pattern. The table with cups on it is located to the right of the white
jar, as indicated by its position in the image. The clothes rack is not visible in this particular
view, and the white headboard is not directly related to the white jar or the table with cups
on it. Therefore, the correct answer is A. Table with cups on it.

<Answer>

Therefore, my answer is A. Table with cups on it.

Output for CGMap-In-FFR-Out: Input Prompt Refer to D.3.9

C. Bed sheet with a floral pattern

E.2 ADDITIONAL GRAPH METRICS FOR GENERATED GRAPHS

To quantitatively assess the quality of the cognitive maps produced by our models, we employ a suite
of graph-based metrics detailed in Section C.2.2. Table [f] presents a comparison of the cognitive
maps generated by two of our methods: Aug-CGMap-FFR-Out and Plain-CGMap-FFR-Out.

The results highlight several key findings:

High Validity: Both methods demonstrate a strong ability to generate syntactically and seman-
tically valid maps, achieving high Valid Rates (94.95% for Plain-CGMap-FFR-Out and
92.57% for Aug—CGMap—-FFR-Out). This indicates that the models successfully learned the
required JSON structure for the cognitive maps.

Structural Complexity: Achieving perfect structural replication of the ground truth remains
challenging, as shown by the modest Isomorphism Rates. The Plain-CGMap-FFR-Out
method performs significantly better, with 7.43% of its maps being structurally identical (iso-
morphic) to the ground truth, compared to a mere 0.10% for the augmented map method.

Superior Similarity Performance: A clear performance difference in semantic similarity is ev-
ident. The Aug-CGMap-FFR-Out method, which explicitly includes camera views, achieves a
substantially higher Overall Similarity (51.12%) and is superior in representing both the relative
directional relationships (Avg. Dir. Sim. of 43.57 %) and the correct orientation of individual ob-
jects (Avg. Facing Sim. of 68.75%). In contrast, while P1ain-CGMap—-FFR-Out maintains
higher validity and isomorphism, it lags behind in all three similarity metrics.
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Table 6: Comparison of graph metrics for cognitive maps generated by different methods. The met-
rics evaluate the quality of the generated maps against the ground truth. Valid Rate: percentage of
syntactically and semantically valid maps. Isomorphism Rate: percentage of maps that are struc-
turally identical (isomorphic) to the ground truth, accounting for rotation. Overall Sim. (Similar-
ity): a weighted score combining directional and facing similarity (Soveran = @+ Sgir + (1 — @) * Stace)-
Avg. Dir. Sim. (Average Directional Similarity): correctness of relative spatial relations between
objects. Avg. Facing Sim. (Average Facing Similarity): correctness of object orientations. All
values are percentages (%).

Method Valid Rate Isomorphism Rate Overall Sim. Avg. Dir. Sim.  Avg. Facing Sim.
Aug-CGMap-FFR-Out 92.57 0.10 51.12 43.57 68.75
Plain-CGMap-FFR-Out 94.95 7.43 37.44 28.29 58.78

E.3 FURTHER ANALYSIS ON VIEW INTERPOLATION

To rigorously assess the impact of view interpolation and ensure fair comparison, we conducted
extensive additional experiments covering view selection strategies, comparisons with optimal in-
terpolation settings, and scaling laws across model sizes.

(1) Smart View Selection vs. Dense Interpolation. It’s possible that the dense interpolation might
introduce redundancy by implementing an “Oracle View Selection” baseline. Using GPT-5 as a
planner to select the top-2 most informative views from 4 images, we compared this “Smart Selec-
tion” against our dense interpolation setting on Qwen2.5-VL-7B. As shown in Table [/| the Smart
Selection (36.80%) performs similarly to the standard 2-view setting but is significantly inferior to
dense interpolation (47.40%). This suggests that intermediate views, often perceived as redundant,
provide essential spatio-temporal continuity that high-performing models utilize to stitch scenes;
aggressive filtering disrupts this chain.

Method (Qwen2.5-VL-7B) \ Top-2 Selection (Oracle) Dense Interpolation (VI-4)
Accuracy (%) | 36.80 47.40

Table 7: Comparison: Oracle View Selection vs. Dense Interpolation.

(2) Comparison with Optimal View Interpolation. To ensure fairness, we compared our
Plain—-CGMap against the best possible performance of the View Interpolation (VI) baseline on
Qwen2.5-VL-3B. As detailed in Table@ our method (Plain-CGMap-FFR-0ut, 47.41%) outper-
forms the baseline even at its peak performance (VI-1, 46.47%). This confirms that the Cognitive
Map provides a structural advantage over simply increasing visual frame density. Furthermore,
adding standard Free-Form Reasoning (FFR) to interpolated views harms performance as density
increases (dropping from 45.53% to 40.77%), indicating that the bottleneck lies in the perception
ability to organize visual floods rather than reasoning capacity alone.

Method (Qwen2.5VL-3B) ‘ VI-0 (Raw) ‘ VI-1  VI-2 VI3 VI4 VI5 VI-6 VI7

Plain-CGMap-FFR-Out 4741 4494 4459 43.18 4435 4341 4282 4528
RawQA 43.76 46.47 4553 4494 4435 4424 4518 4459
FFR 45.53 4371 43.83 41.65 41.00 40.36 40.89 40.77

Table 8: Comparison with Optimal View Interpolation (Qwen2.5-VL-3B).

(3) Scaling Analysis: Does View Interpolation Scale? We extended our evaluation to larger mod-
els, including Qwen2.5-VL-7B, Qwen3-VL-8B, Qwen3-VL-235B, and GPT-5, to test if higher ca-
pacity naturally resolves interpolation issues. Results for 7B/8B models (Table [0 show no consis-
tent scaling law. While Qwen2.5-VL-7B benefits from density (peaking at VI-4), Qwen3-VL-8B
exhibits unstable performance despite being architecturally advanced.

Moreover, for massive-scale models (Table[T0), performance negatively correlates with view density.
GPT-5 peaks at the sparse 1-frame setting (46.59%) and declines to 42.35% as density increases to
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Config | VIO VIl VI2 VI3 VI4 VIS5 VL6 VL7

Qwen2.5-VL-7B | 37.80 3490 3560 4530 4740 4650 46.80 46.80
Qwen3-VL-8B 33.80 36.60 37.60 3520 3530 3390 35.80 35.80

Table 9: Scaling Analysis on Qwen2.5-VL-7B and Qwen3-VL-8B.

7 frames. Similarly, Qwen3-VL-235B drops to ~36% with interpolation. This suggests that without
structured mapping, interpolation artifacts act as noise rather than useful signals, even for SOTA
models.

Model | VI-1 VI-2 VI3  VI-4 VI5 VL6 VI-7

GPT-5 46.59 45.18 4424 4459 4259 4353 4235
Qwen3-VL-235B | 38.94 3859 3729 37.18 3529 36.12 36.00

Table 10: Performance of Large-Scale Models (GPT-5, Qwen3-VL-235B) across view densities.

E.4 EXPLICIT REASONING WITH VISUAL-OF-THOUGHT

Explicit Visual Sketching via External Tools. While text-structured maps (e.g., JSON) intro-
duce symbolic order, they fundamentally remain implicit token sequences. To bridge this gap, we
investigated whether externalizing spatial map into explicit visual representations could further en-
hance reasoning. Inspired by ViLaSRWau et al.| (2025b), we implemented a pipeline where the VLM
interacts with an external plotting engine (Matplotlib) rather than generating text maps directly.

Cognitive Map Visualization
Cognitive Map Visualization ~ aroun d_92 7df251 7. 789677c1e906_q2_1

among_01 75b983° 77cbc8flae7ela27410cbce89b282 q0_1 1

, .
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X Coordinate X Coordinate
(a) Explicit Visual Map in Among Setting. (b) Explicit Visual Map in Around Setting.

Figure 13: Comparison of Map Representations. The visual map, generated via external tools,
renders objects and viewpoints onto a 10 x 10 grid, providing explicit geometric grounding.

We designed two visual-centric configurations:

1. Visual-Map-as-Input (Img—CGMap—1In): Instead of ingesting raw JSON tokens, the
model receives a rendered 10 x 10 grid image where objects and viewpoints are plotted
explicitly. This tests the model’s ability to comprehend provided visual layouts.

2. Visual-Map-for-Reasoning (Img—CGMap): We adopt a multi-turn tool-use framework.
The model first acts as a coder to generate drawing commands (e.g., add (obj,
[x,v])), which are executed to render a visual sketch. This sketch is then fed back to
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the model as a new visual prompt to guide the final spatial reasoning. The entire multi-
turn interaction pipeline and prompt design were strictly aligned with the ViSaLR

framework.
Configuration | Map Modality | Overall | Rotation Among Around
Raw-QA | i | 3781 | 3400 3600 4520

CGMap-In (Original) Text (JSON) 41.43 37.00 41.67 44.40
Img-CGMap-In (New) Visual (Grid) 42.10 31.50 44.17 45.60

Plain-CGMap (Original) Text (JSON) 41.33 25.00 39.67 58.40
Img-CGMap (New) Visual (Grid) 43.13 32.75 41.13 55.06

Table 11: Performance comparison between implicit text-based maps (JSON) and explicit visual-
based maps (Image/Grid). Visual configurations consistently outperform their textual counterparts.

Results Analysis. As shown in Table visual map configurations consistently outperform their
textual counterparts. Specifically, Img—CGMap achieves an overall accuracy of 43.13%, surpassing
the text-based P1lain-CGMap (41.33%). Notably, the “Among” spatial relation benefits signifi-
cantly from the visual grid (41.13% vs. 39.67%), likely because relative positioning is more intuitive
in pixel space than in coordinate space. This experiment validates that leveraging external tools to
create explicit visual sketches grounds the model’s reasoning more effectively than symbolic text,
offering a promising direction for future development.

F CAN WE TEACH VLMS TO BUILD AND LEVERAGE SPATIAL
REPRESENTATIONS?

In the main paper, we demonstrated that prompting frozen VLMs with external scaffolds offers
limited improvements. This highlighted a core limitation: the models themselves aren’t effectively
forming internal spatial representations or reasoning through space. To address this, we investigated
whether supervised fine-tuning (SFT) could teach VLMs to build and leverage these spatial models
internally. This section of the appendix provides further details on our SFT methodology, starting
with the crucial step of data curation.

F.1 SUPERVISED FINE-TUNING DATA CURATION

Effective SFT heavily relies on the quality and nature of the training data. To teach our VLMs the
desired spatial reasoning capabilities, we meticulously curated two primary types of data: cognitive
maps and free-form reasoning chains. These were designed to provide strong supervisory signals
for the model to learn how to represent and reason about space.

F.1.1 COGNITIVE MAP GENERATION

As discussed in Section cognitive maps serve as 2D schematic representations of object lay-
outs. For the SFT phase, we needed to generate ground truth cognitive maps that the VLM could
learn to produce. Our approach to generating these maps was grounded in the object arrangement
annotations described in Section[B.I} We aimed for representations that were not only accurate but
also in a format that the VLM could feasibly learn to generate.

The generation process was automated via a script that processes input JSONL files, where each
line item contains scene details including images and, crucially, met a_info describing the objects,
their potential orientations, and the camera viewpoint setup. For every item, the script first identifies
its specific spatial arrangement “setting” (e.g., “around,” ”among,” “translation,” or “’rotation”) by
parsing the item’s unique ID. Based on this setting, dedicated functions apply a set of predefined
rules and heuristics to determine the 2D coordinates (on a 10x10 grid) and facing directions for both

the objects and the camera views.
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For instance, in the “around” setting, objects (typically 2-4) are placed in a predetermined linear
arrangement near the grid’s center (e.g., at coordinates like [4,5], [5,5]), and camera views are posi-
tioned at cardinal directions relative to these objects, based on the specific camera angles pertinent to
the question. In the “’rotation” setting, the camera is fixed at the center ([5,5]), and its facing direction
changes across views, while object positions are defined relative to the camera’s current orientation.
Similar rule-based placements are implemented for “among” (objects in a cross or T-shape with
views from specific angles) and “translation” (objects arranged linearly to depict relationships like
“on” or “down to”) settings. Object orientations, if applicable, are also assigned based on the input
meta_info.

Finally, the generated layout of objects and views is formatted into a structured JSON string,
representing the cognitive map. This JSON cogmap, along with templated instructional prompts
(cogmap_input for VLM input format guidance and cogmap_output for VLM output task
description), is added to the original data item. The overall generation logic is summarized in Algo-
rithm [l

Algorithm 1 Cognitive Map Generation

Require: Dataset D containing items with spatial arrangement annotations
Ensure: Updated dataset with cognitive maps in JSON format
1: for all item € D do
2: setting <— Extract setting type from ¢tem.id
3: Initialize empty cognitive map cogmap
> Position objects and views based on setting type
4 if setting = “around” then
5: Position 2-4 objects in a line with coordinates like [4,5], [5,5], etc.
6: Place views at cardinal positions based on camera angles
7 else if setting = “among” then
8 Place center object at [5,5] and surrounding objects at [5,8], [2,5], [5,2], [8,5]

9: Position views based on specified camera angles
10: else if setting = “translation” then
11: Position objects according to their spatial relationships (e.g., “on”, “down”)
12: Place views to highlight these spatial relationships
13: else if setting = “rotation” then
14: Arrange objects based on rotation type (clockwise, counterclockwise, etc.)
15: Fix camera at [5,5] with varying facing directions
16: end if

> Add orientation information where applicable
17: for all object € cogmap.objects do

18: if object has orientation then

19: Add facing direction (“up”, “down”, “left”, “right”)
20: end if

21: end for

22: Format cogmap as structured JSON

23: Add formatted cognitive map to item

24: end for

25: return Updated dataset D

F.1.2 FREE-FORM REASONING GENERATION

While cognitive maps provide a structured, global understanding of the scene, effective spatial rea-
soning also involves a procedural, step-by-step thought process. To instill this capability in our
VLMs, we generated a dataset of grounded free-form reasoning chains. These chains were designed
to verbalize the mental simulation process required to answer the spatial questions in MINDCUBE.

The generation of these reasoning chains was closely tied to the question-answer (QA) templates
developed in Section 2. For each specific setting (e.g., rotation, among, around), we manually
constructed reasoning chains following a consistent set of principles to ensure logical coherence and
clear grounding in the provided visual information and the question asked.
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The core principles guiding the generation of these reasoning chains were:

1. Initial Scene Understanding. The reasoning begins by processing each input image individu-
ally. This involves identifying key objects visible in that view and noting their explicit spatial
relationships with other objects within that same view. This step emulates the initial perceptual
intake a human might perform.

2. Cross-View Consistency and Environment Integration. After individual view analysis, the
reasoning emphasizes that although different images are provided, they all depict the same un-
derlying spatial environment. This is often achieved by identifying and highlighting an anchor
object or a consistent set of objects that appear across multiple views, thereby helping to establish
a unified mental model of the scene.

3. Question-Driven Inference. With a foundational understanding of the scene established from
the views, the subsequent steps in the reasoning chain are directly guided by the specifics of the
question. This involves: (1) Mental Simulation: If the question involves a hypothetical change
in viewpoint or a “what-if” scenario (e.g., "what if you turn left?””), the reasoning chain explicitly
verbalizes this mental transformation. (2) Perspective Taking: If the question requires adopting
a different perspective (e.g., “from the sofa’s perspective”), the reasoning chain articulates this
shift. (3) Spatial Relationship Deduction: The chain logically deduces the queried spatial
relationship by integrating information from the relevant views, applying spatial concepts (like
left-of, behind, further from), and referencing the established mental model of the scene.

This structured approach to generating reasoning chains aimed to provide clear, step-by-step exam-
ples of spatial thought processes for the VLM to learn from. Figure [I4] [I5]and [I6show a template
example combined with the filled case for ROTATION, AMONG, AROUND, respectively.

F.2 DETAILED EXPERIMENTAL SETUP

Table 12: Training hyperparameters for SFT ex-
periments with Qwen2.5-VL-3B-Instruct.

In this section, we provide a more granular view
of the experimental parameters employed dur-
ing the Supervised Fine-Tuning (SFT) phase

of our research. As stated in the main Parameter Value
text, these experiments were designed to teach - -
Vision-Language Models (VLMs) to build and Eatashet s1ze ;O’OOO QA pairs
leverage internal spatial representations. The pochs
. Learning rate le-5

base model for these SFT experiments was .

Scheduler Cosine
Qwen2.5-VL-3B-Instruct. . ;

Fine-tuning type Full-parameter
We utilized a consistent training script for Batch Size 256
all SFT experiments, ensuring comparability GPUs used 2 x NVIDIA H100

across different configurations. The primary
variation across these runs was the specific
dataset used (datasets variable in the script),
corresponding to the different SFT task con-
figurations discussed in Section 4.1, such as
Aug-CGMap-Out. Other hyperparameters
were kept constant to isolate the effects of the
different training signals.

The core training hyperparameters are summa-

Max image resolution
Min image resolution
Model Max Length
Weight Decay
Warmup Ratio

Max Grad Norm
Precision

Optimizer

90,000 pixels
784 pixels
8192 tokens
0

0.03

1

BF16
AdamW

rized in Table|12|and further detailed by the provided training script.

The training was conducted using a distributed setup managed by torchrun and leveraged
DeepSpeed with a ZeRO Stage 3 optimization strategy for efficient full-parameter fine-tuning.
Specifically, we set NPROC_PER_NODE to 2, utilizing two NVIDIA H100 GPUs, though the
script template showed CUDA_VISIBLE DEVICES=0,1, 2,3 and NPROC_PER_NODE default-
ing to 4, our table and resource claims point to 2 GPUs being used for these runs. The
per_device_train_batch_size wassetto4, and withgradient_accumulation_steps
at 32, this resulted in an effective batch size of 256.

The learning rate was 1 x 1075 with a cosine learning rate scheduler and a warmup ra-
tio of 0.03 over 3 training epochs. We enabled full fine-tuning of the vision encoder,
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Rotation - Template Type 2

[ JOX ) Template Reasoning Chain

This scene is observed using four images. Inimage 1, | can see {object_in_front_view1} as the
main object in front of me. Inimage 2, | can see {object_in_front_view2} as the main object in
front of me. In image 3, | can see {object_in_front_view3} as the main object in front of me. In
image 4, | can see {object_in_front_view4} as the main object in front of me. Image 1 is the initial
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after
another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-
degree clockwise rotation (270 degrees from image 1). From the perspective of image 4:
{object_in_front_view4}' is in front, {object_in_front_view1}'is to the right, {object_in_front_view2}
is behind, '{object_in_front_view3}'is to the left. After turning 90 degrees to the right:
{object_in_front_view1}'is now in front, {object_in_front_view2}' is now fo my right,
{object_in_front_view3}' is now behind, {object_in_front_view4}'is now to my left. The object
located to my behind is '{object_in_front_view3}'. Therefore, from the viewpoint of image 4, after
a mental turn of 90 degrees to the right, the object fo my behind is {object_in_front_view3}'. The
answer is {option}

Question: If you are standing at the viewpoint presented in image 4
and turn 90 degrees to the right, what is to your behind ?

Options:

A. Staircases

B. Vanity unit

C. Urinal

D. Yellow signboard

Q) S rotation agent-agent self perspective (non-linear

[ JON ) Curated Reasoning Chain

This scene is observed using four images. In image 1, | can see yellow signboard as the main
object in front of me. In image 2, | can see vanity unit as the main object in front of me. In image
3, I can see staircases as the main object in front of me. In image 4, | can see urinal as the main
object in front of me. Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise
rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from
image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1).
From the perspective of image 4: 'urinal' is in front, 'yellow signboard' is to the right, 'vanity unit' is
behind, 'staircases' is to the left. After turning 90 degrees to the right: 'yellow signboard' is now in
front, 'vanity unit' is now fo my right, 'staircases' is now behind, 'urinal' is now to my left. The object
located to my behind is 'staircases'. Therefore, from the viewpoint of image 4, after a mental turn
of 90 degrees to the right, the object to my behind is 'staircases'. The answer is A. Staircases

Figure 14: Example reasoning chain template for ROTATION
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2862

2863

2222 Among - Template Type 3

2866 [ JON Template Reasoning Chain

222; In this scene, | observe four images showing different perspectives. Allimages feature the {main_object} as
the main object. Inimage 1, | can see {main_object} in front of the {context_obj_V1}.Inimage 2, | can see

2869 {main_object} in front of the {context_obj_V2}. In image 3, | can see {main_object} in front of the

2870 {context_obj_V3}. Inimage 4, | can see {main_object} in front of the {context_obj V4}. By observing the main

2871 object and its surroundings across views, and noting the rotational changes, | establish their relationships.

2872 Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is

2873 after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree

2874 clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, | construct a

2875 complete spatial understanding: When | view {context_obj_V2} behind {main_object} in the second view, i
implies that in the first view, {context_obj V2} is on the right side of {main_object}. Similarly, when | see

2876 {context_obj_V4} behind {main_object} in the fourth view, it indicates that in the first view, {context_obj_V4} is

2877 on the left side of {main_object}. To determine what lies behind me in the first view, | examine the opposite

2878 view, which is the third view. As {context_obj V3} is observed behind {main_object} in the third view, it means

2879 that in the first view, {context_obj_V3} is positioned behind me. This way, | can fully comprehend the spatial

2880 relationships of all objects in the entire scene from the perspective of image 1. So, from the perspective of

2881 image 1: {context_obj_V2} is to the right of {main_object}, {context_obj_V3}is to my behind, and

2882 {context_obj_V4}is to the left of {main_object}. The answer is {option}.

2883

2884 Question: From the viewpoint presented in image 1, what is o the right of the

2885 black stool ?

2::3 Options:

2888 A. Desk

2889 B. Office Area

2890 C. Grey sofa

2891 D. Two chairs on the corridor

2222 Q: meanwhile object-object  self perspective (non-linear

2894

2895 ®eoce Curated Reasoning Chain

2896 In this scene, | observe four images showing different perspectives. Allimages feature the black stool as the

2897 main object. Inimage 1, | can see black stool in front of the cabinet desk along a corridor. Inimage 2, | can

2898 see black stool in front of the office area. Inimage 3, | can see black stool in front of the two chairs on the

2899 corridor. In image 4, | can see black stool in front of the grey sofa. To identify the position change across

2900 views, | focus on the main object's angle variation. Then, | analyze the angles and relative positions of other

2901 objects on the platform to back up this observation. | understand that: Image 1 is the initial view. Image 2 is
captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise

2902 rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees

2903 fromimage 1). Through analyzing these perspective changes, | can construct a complete spatial

2904 understanding: when | view office area behind black stool in the second view, it implies that in the first view,

2905 office area is on the right side of black stool. Similarly, when | see grey sofa behind black stool in the fourth

2906 view, it indicates that in the first view, grey sofa is on the left side of black stool. However, | am still uncertain

2007 about what lies behind me in the first view. Then, | recognize that | can examine the opposite view to find

2908 out. The opposite view of the fist view is the third view. As two chairs on the corridor is observed behind black
stool in the third view, it means that in the first view, two chairs on the corridor is positioned behind me. This

2909 way, | can fully comprehend the spatial relationships of all objects in the entire scene. So, from the

2910 perspective of image 1: office area is to the right of black stool, two chairs on the corridor is to my behind,

2911 grey sofa is to the left of black stool. The answer is B. office area

2912

2913

2914 Figure 15: Example reasoning chain template for AMONG

2915
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Around - Template Type 1

{ JON Template Reasoning Chain

| need to determine how | moved from the viewpoint in image 1 to the viewpoint in image 2. In
image 1, | can see: {object1_view1}, {object2_view1} from left to right. In image 2, | can clearly
see {anchor_object_view?2}. | nofice that {anchor_object_both_views} is visible in both images,
but from different angles. | analyze how the viewpoint changed from image 1 to image 2: The
{anchor_object_analysis}, which is visible in image 1, becomes more prominent in image 2. This
suggests | moved {inferred_movement_description}. The changes in object visibility and
positioning between images suggest | moved {final_inferred_movement}. Therefore, the answer is
{option}

Question: Based on these two views showing the same scene, which
Options:

A. Forward-left
B. Forward-right

@ 3 meanwhile agent-agent self perspective linear

{ JON ) Curated Reasoning Chain

| need to determine how | moved from the viewpoint in image 1 to the viewpoint in image 2. In
image 1, | can see: grey square planter, white square planter from left to right. In image 2, | can
clearly see grey square planter. | notice that grey square planter is visible in both images, but from
different angles. | analyze how the viewpoint changed from image 1 to image 2: The grey square
planter, which is visible in image 1, becomes more prominent in image 2. This suggests | moved
forward and toward the leff side of the scene. The changes in object visibility and positioning
between images suggest | moved forward and to the left. Therefore, the answer is A. Forward-left

Figure 16: Example reasoning chain template for AROUND
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MM-MLP, and the LLM components (—-tunemm_vision True —--tunemmmlp True
——tune_mm_11lm True). The maximum sequence length for the model was set to 8192 tokens
(-—model max_length 8192), and the maximum image input pixels were capped at 90,000
(-——max_pixels 90000), with a minimum of 784. Gradient checkpointing was enabled to man-
age memory usage (——gradient_checkpointing True). Checkpoints were saved every 5
steps (——save_steps 5), keeping a total of 12 checkpoints (——save_total_limit 12).

This consistent and robust experimental framework, detailed in Sections 3.1, 3.2, and herein, al-
lowed for a fair comparison of the different SFT strategies aimed at improving the spatial reasoning
capabilities of Qwen2.5-VL-3B-Instruct.

F.3 VLM RESPONSE EXAMPLES AFTER SFT FOR CONFIGURATIONS IN SECTION [D.3]
Output for Raw—QA: Input Prompt Refer to D.3.1

<answer>D. White headboard </answer>

Output for Aug-CGMap-Out: Input Prompt Refer to D.3.5

Based on my observation, the answer is:
<cogmap>

ANR YR

{

"objects": [

json

{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern",
"position": [5, 811},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 21},
{"name": "table with cups on it", "position": [8, 5]}
1,
"views": [
{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}

]

rrr

</cogmap><answer>C. Bed sheet with a floral pattern</answer>

Output for P1lain-CGMap-Out: Input Prompt Refer to D.3.6

Based on my observation, the answer is:
<cogmap>

ANRURY

{

json

"white jar": {"position": [5, 51},

"bed sheet with a floral pattern": {"position": [5, 81},
"white headboard": {"position": [2, 5]},

"clothes rack": {"position": [5, 21},

"table with cups on it": {"position": [8, 5]}
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</cogmap><answer>B. Clothes rack </answer>
& J

Output for : Input Prompt Refer to D.3.2

<think>In this scene, I observe four images showing different perspectives. All images
feature the white jar as the main object. In image 1, I can see white jar in front of the table
with cups on it. In image 2, I can see white jar in front of the bed sheet with a floral pattern.
In image 3, I can see white jar in front of the clothes rack. In image 4, I can see white jar
in front of the white headboard. To identify the position change across views, I focus on
the main object’s angle variation. Then, I analyze the angles and relative positions of other
objects on the platform to back up this observation. I understand that: Image 1 is the initial
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
perspective changes, I can construct a complete spatial understanding: when I view bed
sheet with a floral pattern behind white jar in the second view, it implies that in the first
view, bed sheet with a floral pattern is on the right side of white jar. Similarly, when I see
white headboard behind white jar in the fourth view, it indicates that in the first view, white
headboard is on the left side of white jar. However, I am still uncertain about what lies
behind me in the first view. Then, I recognize that I can examine the opposite view to find
out. The opposite view of the fist view is the third view. As clothes rack is observed behind
white jar in the third view, it means that in the first view, clothes rack is positioned behind
me. This way, I can fully comprehend the spatial relationships of all objects in the entire
scene. So, from the perspective of image 4: table with cups on it is to the right of white jar,
bed sheet with a floral pattern is to my behind, clothes rack is to the left of white jar. So the
answer is B. Clothes rack</think><answer>B. Clothes rack</answer>

Output for Aug—CGMap—-FFR-Out: Input Prompt Refer to D.3.8

Based on my observation, the answer is:
<cogmap>

ANR YR

{

"objects": [

json

{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern",
"position": [5, 81},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 21},
{"name": "table with cups on it", "position": [8, 5]}
1,
"views": [
{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}

]

rrr

</cogmap><think>In this scene, I observe four images showing different perspectives. All
images feature the white jar as the main object. In image 1, I can see white jar in front of the
table with cups on it. In image 2, I can see white jar in front of the clothes rack. In image 3,
I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white
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jar in front of the white headboard. To identify the position change across views, I focus on
the main object’s angle variation. Then, I analyze the angles and relative positions of other
objects on the platform to back up this observation. I understand that: Image 1 is the initial
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
perspective changes, I can construct a complete spatial understanding: when I view clothes
rack behind white jar in the second view, it implies that in the first view, clothes rack is on
the right side of white jar. Similarly, when I see white headboard behind white jar in the
fourth view, it indicates that in the first view, white headboard is on the left side of white jar.
However, I am still uncertain about what lies behind me in the first view. Then, I recognize
that I can examine the opposite view to find out. The opposite view of the fist view is the
third view. As bed sheet with a floral pattern is observed behind white jar in the third view,
it means that in the first view, bed sheet with a floral pattern is positioned behind me. This
way, I can fully comprehend the spatial relationships of all objects in the entire scene. So,
from the perspective of image 4: clothes rack is to the right of white jar, bed sheet with a
floral pattern is to my behind, table with cups on it is to the left of white jar. So the answer
is A. Table with cups on it.</think><answer>A. Table with cups on it</answer>

Output for P1ain-CGMap-FFR-Out: Input Prompt Refer to D.3.7

Based on my observation, the answer is:
<cogmap>

‘Y Yison
{
"white jar": {"position": [5, 51},
"bed sheet with a floral pattern": {"position": [5, 81},
"white headboard": {"position": [2, 51},
"clothes rack": {"position": [5, 2]},
"table with cups on it": {"position": [8, 5]}

rrrs

</cogmap><think>In this scene, I observe four images showing different perspectives. All
images feature the white jar as the main object. In image 1, I can see white jar in front of the
table with cups on it. In image 2, I can see white jar in front of the clothes rack. In image 3,
I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white
jar in front of the white headboard. To identify the position change across views, I focus on
the main object’s angle variation. Then, I analyze the angles and relative positions of other
objects on the platform to back up this observation. I understand that: Image 1 is the initial
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
perspective changes, I can construct a complete spatial understanding: when I view clothes
rack behind white jar in the second view, it implies that in the first view, clothes rack is on
the right side of white jar. Similarly, when I see white headboard behind white jar in the
fourth view, it indicates that in the first view, white headboard is on the left side of white jar.
However, I am still uncertain about what lies behind me in the first view. Then, I recognize
that I can examine the opposite view to find out. The opposite view of the fist view is the
third view. As bed sheet with a floral pattern is observed behind white jar in the third view,
it means that in the first view, bed sheet with a floral pattern is positioned behind me. This
way, I can fully comprehend the spatial relationships of all objects in the entire scene. So,
from the perspective of image 4: clothes rack is to the right of white jar, bed sheet with a
floral pattern is to my behind, table with cups on it is to the left of white jar. So the answer
is A. Table with cups on it.</think><answer>A. Table with cups on it</answer>
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F.4 DETAILED GRAPH METRIC RESULTS FOR SFT GRAPH-RELATED EXPERIMENTS

This section provides a detailed look at the Supervised Fine-Tuning (SFT) training dynamics to
support the main paper’s conclusions. The figures below plot key metrics over training steps for four
map-generation settings. A comparative analysis highlights that jointly training map generation and
reasoning is the most effective strategy.

When training on map generation alone, as in the P1ain-CGMap—-Out and Aug-CGMap-Out
settings, the graph quality metrics show rapid convergence. However, the final QA accuracy is
limited, reaching 54.38% for P1ain-CGMap-Out and 54.19% for Aug—-CGMap-Out.

In  contrast, the joint training  approaches (Plain-CGMap-FFR-Out  and
Aug-CGMap-FFR-Out), despite a slower initial convergence on graph quality metrics, ulti-
mately achieve far superior performance in task accuracy. The P1ain-CGMap—FFR-Out setting
proves to be the most effective, reaching a QA Accuracy of 60.00%. The Aug-CGMap-FFR-Out
setting also yields strong results, with QA accuracy climbing to about 65%. This demonstrates the
superiority of joint training for achieving high performance in both the final task accuracy and the
quality of the generated spatial representations.
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Figure 17: Training dynamics for the Aug—CGMap—-Out setting.
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Figure 18: Training dynamics for the P1ain—-CGMap-Out setting.
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Figure 19: Training dynamics for the Aug-CGMap—-FFR-Out setting.

F.5 WHICH PART OF VLM IS THE BOTTLENECK FOR SPATIAL UNDERSTANDING?

To develop more efficient fine-tuning strategies, it is crucial to understand which component of a
Vision-Language Model (VLM)—the vision encoder responsible for perception or the Large Lan-
guage Model (LLM) responsible for reasoning—presents the primary bottleneck for spatial under-
standing. To investigate this, we conduct a bottleneck analysis by selectively fine-tuning different
parts of the VLM and observing the impact on performance.

We evaluate four distinct training configurations on the Raw—QA task, with results captured at an
early stage of training (step 57) to assess the initial learning dynamics. The configurations are:
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Figure 20: Training dynamics for the Plain-CGMap—-FFR-Out setting, showing superior final
performance.

(1) the baseline performance of the pre-trained model without any fine-tuning; (2) fine-tuning only
the vision encoder while keeping the LLM frozen; (3) fine-tuning only the LLM while keeping the
vision encoder frozen; and (4) the standard approach of fine-tuning all parts of the model.

Table 13: VLM Training Bottleneck Analysis (Step=57, in %). Performance is measured on the
MINDCUBE-TINY benchmark under the Raw-QA setting.

Training Method Overall Rotation Among Around

Raw-QA (no fine-tuning) 37.81 34.00 36.00 45.20
Freeze LLM (Vision Encoder Only)  37.81 30.50 37.00 45.60
Freeze Vision Encoder (LLM Only) 51.43 34.00 50.00 68.80
Tune All Parts 52.28 34.50 52.50 66.00

The results, presented in Table [I3] offer several key insights. First, there is a dramatic perfor-
mance leap from the no-fine-tuning baseline (37.81% overall), but only when the language model is
trained. Methods involving LLM fine-tuning achieve over 51% accuracy, underscoring the necessity
of adapting the model’s reasoning capabilities.

Most strikingly, the performance bottleneck is almost exclusively concentrated in the LLM. Tun-
ing only the LLM (Freeze Vision Encoder) yields an overall accuracy of 51.43%, captur-
ing nearly the full performance gain of end-to-end fine-tuning (52.28%). In stark contrast, tuning
only the vision encoder (Freeze LLM) provides no improvement whatsoever over the baseline
(37.81%). This indicates that the bottleneck is not shared between modules. For this spatial task,
adapting the model’s language-based reasoning is critical, while adapting its visual perception is
surprisingly ineffective.

Intriguingly, the fact that fine-tuning only the vision encoder fails to improve performance is in
itself a significant finding. A possible explanation is that the pre-trained visual features are already
sufficient to extract the necessary objects and their properties. The core challenge of the task seems
to lie not in what is seen, but in how to reason about the spatial relationships across a series of
views—a task primarily handled by the LLM. In conclusion, our analysis suggests that the most
significant gains come from adapting the reasoning module. For efficient tuning, freezing the vision
encoder and focusing solely on the LLM proves to be a highly effective strategy, achieving nearly
top-tier performance at a fraction of the computational cost.

F.6 BRANCHING FROM Raw—QA SFT CHECKPOINT

In our main experiments, we fine-tuned the model for each specific task format starting from the
base pre-trained VLM. A natural question arises: can a curriculum-based SFT approach further im-
prove performance? Specifically, we investigate whether first fine-tuning the model on the simplest
task format—‘Raw-QA*, which only requires outputting the final answer—can establish a better
foundation for learning to leverage more complex reasoning formats.

To test this hypothesis, we conducted a set of branching experiments. We took the checkpoint from
the model fully fine-tuned on the ‘Raw-QA‘ task. Then, we used this specialized checkpoint as
the initial weights for further fine-tuning on other scaffolding tasks, namely Aug-CGMap-1In, FF
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Rsn, and Aug-CGMap-FFR-Out. It is important to note that during this second stage of fine-
tuning, the model’s output for all tasks was still constrained to be only the final answer option.
This setup allows us to isolate the effect of the cognitive scaffolds on the model’s internal reasoning
process, rather than its ability to generate complex text.

The results, presented in Table show a consistent and notable improvement across all branched
tasks compared to their counterparts trained from scratch. For example, both Aug—CGMap—-In
and Aug—-CGMap—-FFR-Out reach an impressive overall accuracy of 49.00%. Even the FF Rsn
method benefits from this two-stage approach, with its overall accuracy rising to 46.82%. These
findings suggest that a two-stage SFT strategy is highly effective. By first grounding the model
in the fundamental objective of the task (i.e., finding the correct answer) and then teaching it to
process and leverage more complex cognitive scaffolds, we can achieve superior spatial reasoning
performance. This indicates that the model, once primed for the core task, becomes more adept at
utilizing the provided spatial context, even if it does not explicitly generate the reasoning chain or
cognitive map.

Table 14: Performance of various methods after being fine-tuned from a Raw—QA SFT checkpoint.
This two-stage training approach led to performance gains across all methods. All accuracies are
reported as percentages (%).

Method Overall Rotation Among Around
Raw—QA 46.36 33.50 51.20 46.75
Aug-CGMap-1In 49.00 35.50 53.20 50.50
FF Rsn 46.82 37.00 50.60 47.00

Aug-CGMap—-FFR-Out 49.00 37.00 53.20 49.75

F.7 EXPERIMENTS ON OTHER MLLMsSs

Our core ‘map-then-reason‘ insight generalizes across different Visual Language Model (VLM)
families. We have conducted new experiments on InternVL3-2BZhu et al.[ (2025), and the results
below (Table[I5) show that the Aug—CGMap-FFR-Out and Plain-CGMap-FFR-Out settings
outperform others by a large margin.

Table 15: Performance of InternVL3-2B after supervised fine-tuning. All accuracies are reported as
percentages (%).

Config. Overall Rotation Among Around Overall Sim. Isom. Rate
Raw—QA 54.23 34.00 55.25 68.00 - -

FFR 56.83 40.00 58.98 65.20 - -
Aug-CGMap-0Out 52.98 35.00 53.90 65.20 87.39 66.15
Plain-CGMap-Out 51.63 31.50 50.34 70.80 93.64 90.58
Aug-CGMap-FFR-Out 71.44 58.50 75.42 72.40 87.00 66.63
Plain-CGMap-FFR-Out  73.56 65.00 77.63 70.80 92.04 88.27

F.8 PROMPT SENSITIVITY ANALYSES.

To examine prompt sensitivity, we compared our structured representation (S) against a natural-
language (NL) formulation for the three strongest variants. As shown in Table [T results vary by
format: for Plain-CGMap—-FFR-Out, the structured prompt yields 41.33% versus 39.71% for
NL, whereas for CGMap—-In-FFR-Out, NL slightly outperforms S (43.43% vs. 41.43%). These
findings demonstrate that the optimal prompt style is setting-dependent and support the principle
that VLMs should flexibly adapt to diverse user inputs rather than rely on a single “perfect” format.
Consequently, our paper reports results using one consistent and representative prompt variation.
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Table 16: Prompt Sensitivity Analysis: structured (S) vs. natural language (NL).

Configuration Acc (S) Acc (NL)
Aug-CGMap-FFR-Out 40.57%  37.43%
Plain-CGMap-FFR-Out 41.33%  39.71%
CGMap—-In-FFR-Out 41.43%  43.43%

F.9 EXPLORING LATENT SPATIAL REPRESENTATIONS.

Despite our primary focus on explicit representations like different scaffolds, we also investigated
the model’s internal features to understand how it encodes spatial information and forms spatial men-
tal models. To determine whether the model maintains latent spatial representations and encodes a
viewpoint-invariant ’neural line,” we conducted an experiment using 100 object triplets (front/left-
/right views) from our MINDCUBE. We registered PyTorch forward hooks at the 10th LLM layer
(11lm.hidden_states) of our SFT model to capture these features. We performed three comple-
mentary analyses.

Pairwise similarity. We calculated the cosine similarity and Pearson correlation coefficient (1) for
activations of the same object across different views (positive pairs) and between different objects
(negative pairs). The results in Table |17 show that both cosine similarity and Pearson correlation
were higher for positive pairs compared to negative pairs in the layer-10 LM. This indicates that the
model has a measurable, layer-wise spatial consistency for object identity across viewpoints.

Metric Positive pairs Negative pairs
Cosine 0.9651 0.9160
Pearson r 0.2750 0.2046

Table 17: Pairwise similarity results for positive and negative pairs.

Stable-dimension search. For each token dimension, we computed the variance across the three
views. With only 64 stable dimensions (variance 4.15-6.01), the average cosine similarity across
views was 0.931£0.068, which is significantly higher than random baselines. These low-variance
dimensions act as shared neurons that remain nearly constant across different viewpoints. Their high
pairwise cosine similarity confirms that the model has learned an invariant representation.

Probing. To further investigate whether the identified stable dimensions truly encode a robust,
viewpoint-invariant representation, we conducted a probing experiment. We trained a simple linear
classifier on the activations from the model’s 10th LLM layer. The task was to predict the direction
of a 90-degree arc rotation for a given object. The training data consisted of pairs of activations
corresponding to the front and left views of the objects, and the target label was either ’clockwise”
or “counter-clockwise.” This setup forced the classifier to learn the spatial relationship between the
two viewpoints.

The classifier was then evaluated on a held-out test set of objects not seen during training. It achieved
an impressive 85% accuracy, significantly outperforming the random chance baseline of 50%. This
result provides strong evidence that the stable dimensions identified in our previous analysis are
not merely statistical artifacts. Instead, they represent a meaningful and generalizable spatial code.
The model’s ability to encode this type of relational information allows a simple linear probe to
successfully infer a complex spatial transformation on entirely new objects, confirming that the
latent representations are robust and useful for spatial mental modeling.

F.10 HYPERPARAMETER TUNING RESULTS

We conducted new hyperparameter tuning experiments to further validate our approach. Specifically,
we performed a series of experiments to tune the hyperparameters for our Supervised Fine-Tuning
(SFT) settings, as detailed in TabldI8§]
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As shown in the table, our original hyperparameter configuration of a learning rate of 10~°, a batch
size of 512, and a warmup ratio of 0.03 yielded the highest accuracy of 52.28%. The results from
these experiments confirm that the hyperparameters used in our initial submission are effective and
well-optimized for the task, further substantiating our claims.

Table 18: SFT Hyperparameter Tuning Results

SFT (learning rate, batch size, warmup ratio) Acc (%)

(1x1075, 512, 0.03) — Ours 52.28
(2x1075, 512, 0.03) 51.71
(4% 1075, 512, 0.03) 51.52
(1x 105, 256, 0.03) 50.86
(1x1075, 1024, 0.03) 51.90
(1x1075, 512, 0.01) 51.81
(1x1075,512,0.10) 50.67

F.11 STATISTICAL SIGNIFICANCE ANALYSIS.

We have re-run our key experiments with three independent random seeds to report mean =+ stan-
dard deviation and assess the robustness of our findings. Table shows results for the frozen
VLM configurations: the FFR variant achieves the highest overall accuracy (40.35% + 0.83), out-
performing the Raw—QA baseline (36.19% +5.95) and other mapping-reasoning variants. Table[19b|
summarizes the corresponding SFT configurations: here, P1ain-CGMap-FFR-Out again attains
the best accuracy (56.79% =+ 1.06), confirming that “map-then-reason” remains the most effective
approach under multiple runs.

Table 19: Performance comparison of various configurations.

(a) Frozen VLM configs: mean =+ std over 3 seeds. (b) SFT configs: mean =+ std over 3 seeds.
Configuration Overall (%) Configuration Overall (%)
Raw—-QA 36.19 £5.95 Raw—-QA 51.14 £ 0.90
Aug-CGMap—-In 33.78 £0.73 FFR 51.27 £ 1.53
FFR 40.35 £ 0.83 Aug-CGMap-0Out 51.14 +£1.16
Aug-CGMap-FFR-Out 37.87 £5.93 Plain-CGMap-Out 52.35 + 1.67
Plain-CGMap-FFR-Out 38.22 4+ 2.67 Aug-CGMap-FFR-Out 53.28 £ 1.34
CGMap—-In-FFR-Out 37.59 £0.67 Plain-CGMap-FFR-Out 56.79 = 1.06

G CAN REINFORCEMENT LEARNING FURTHER REFINE SPATIAL THOUGHT
PROCESSES?

As discussed in the main paper, while Supervised Fine-Tuning (SFT) establishes a strong foundation
for spatial reasoning, reinforcement learning (RL) presents an avenue for further optimizing spatial
thought processes through outcome-driven feedback. The core inquiry is whether guiding VLMs
with rewards can lead to the development of more precise spatial mental models and enhanced
reasoning capabilities. This section of the appendix provides a more detailed exposition of the
experimental setup employed for the RL phase of our research. Additionally, we present case studies
to offer qualitative insights into how RL refines the models’ spatial representations and reasoning
chains.

G.1 DETAILED EXPERIMENTAL SETUP

For the reinforcement learning (RL) phase of our research, we employed the VAGEN framework.
The core policy optimization algorithm used was Group Relative Policy Optimization (GRPO). To
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ensure consistency and allow for direct comparison with earlier stages of our work, key components
from the Supervised Fine-Tuning (SFT) experiments were retained. Specifically, the base Vision-
Language Model (VLM) for all RL configurations was Qwen2.5-VL-3B-Instruct, and evaluations
were performed on the MINDCUBE-TINY benchmark. All previously established evaluation met-
rics were also retained.

In consideration of computational costs, each distinct RL configuration was trained for a duration of
0.5 epoch. The primary hyperparameters governing the RL training process were set as follows:

 Training Batch Size: 32

¢ Maximum Prompt Length: 1024 tokens
e Maximum Response Length: 512 tokens
* Actor Learning Rate: 1 x 10~6

* Critic Learning Rate: 1 x 10~°

¢ Number of Trajectories per Rollout: 8

¢ Maximum Turns per Trajectory: 1
As detailed in Section 5.1 of the main paper, we investigated three RL task configurations:

1. RL-FFR (from scratch): The Qwen2.5-VL-3B-Instruct model was trained to generate free-form
reasoning chains without prior SFT for this specific task format.

2. RL-Aug-CGMap-FFR-Out (from scratch): The model was trained to jointly produce aug-
mented cognitive maps and associated free-form reasoning, also starting from the base pre-trained
VLM.

3. RL-Aug-CGMap-FFR-Out (from SFT): For this configuration, the RL training was initialized
using the weights from the strongest performing SFT checkpoint, specifically the Aug-CGMap-
FFR-Out SFT model.

The reward function was designed to be sparse yet directly indicative of desired behaviors. A re-
ward of +1 was assigned if the model’s output was structurally valid (e.g., the generated cognitive
map adhered to the predefined schema). A more significant reward of +5 was given if the model
provided the correct final answer to the spatial reasoning question. This dual-component reward
was intended to steer the learning process towards generating both well-formed intermediate spatial
representations and achieving high end-task accuracy.

G.2 RL REWARD DESIGN ABLATION

A comprehensive reward ablation study can provide more convincing evidence for our approach.
Inspired by the Deepseek-R1 approachGuo et al.| (2025)), our reward design incorporates a dual-
component structure: a small score assigned for valid format generation and a larger score for correct
answer generation. This design encourages both structural correctness and factual accuracy in the
model’s output.

To investigate the efficacy of this reward structure, we conducted an ablation study with three dif-
ferent reward configurations, as detailed in Tablg20] Our baseline, represented by a frozen Visual-
Language Model (VLM), achieved an accuracy of 40.57%. Our proposed setting, which assigns +1
for a valid format and +5 for a correct answer, achieved an accuracy of 50.57%. The ”Answer Only”
setting, which assigns +5 for a correct answer but 0 for format, resulted in a similar accuracy of
50.76%. In contrast, the "Format Only” setting, which provides a score of +5 for a valid format but
0 for the answer, yielded a lower accuracy of 45.05%.

These results confirm that the reward component for a correct answer is the most critical factor in
our RL reward design. The high value assigned to the correct answer score (+5) is highly effective
at improving the model’s performance, a finding that is consistent with recent work on RL for Large
Language Models.
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Table 20: RL Reward Ablation Study

RL Reward Setting (format score, answer score) Acc (%)

Frozen VLM (baseline) 40.57
Our Setting (+1, +5) 50.57
Answer Only (+0, +5) 50.76
Format Only (+5, +0) 45.05

G.3 VLM RESPONSE EXAMPLES AFTER RL FOR CONFIGURATIONS IN SECTION[D.3]
Output for : Input Prompt Refer to D.3.2
<think>From image 4, the white jar is positioned on a surface with a floral-patterned bed

sheet. To the left of the jar, there is a table with a pink tablecloth featuring heart shapes and
a Hello Kitty design. There are also cups on the table. Therefore, the object to the left of the

white jar is the table with the cups. </think><answer>A. Table with cups on it</answer>

Output for RL-Aug-CGMap-FFR-Out (from scratch): Input Prompt Refer to
D.3.8

<cogmap>
{

"objects": [

{"name": "white jar", "position": [265, 436],
"facing": "left"}
1,
"views": [
{"name": "View/Image 1", "position": [265, 436],
"facing": "left"},
{"name": "View/Image 2", "position": [265, 436],
"facing": "left"},
{"name": "View/Image 3", "position": [265, 436],
"facing": "left"},
{"name": "View/Image 4", "position": [265, 436],
"facing": "left"}

]
}

<Your cognitive map></cogmap>

<think>The white jar is located in the center of the 10x10 grid, facing to the left. The
clothes rack is to the left of the white jar, as seen in the image 2 view. The bed sheet with a
floral pattern is located to the right of the white jar, as seen in the image 1 view. The white
headboard is not visible in any of the provided images.

Based on the provided images, the white jar is located in the center of the 10x10 grid, facing
to the left. The clothes rack is to the left of the white jar, as seen in the image 2 view. The bed
sheet with a floral pattern is located to the right of the white jar, as seen in the image 1 view.
The white headboard is not visible in any of the provided images.</think><answer>A.
Table with cups on it.</answer>

Output for RL-Aug-CGMap-FFR-Out (from SFT):Input Prompt Refer to D.3.8

Based on my observation, the answer is:
<cogmap>

ANA YUY

json
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"objects": [
{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern",

"position": [5, 8]},

{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 21},
{"name": "table with cups on it", "position": [8, 51}

1,

"views": [
{"name": "Image 1", "position":
{"name": "Image 2", "position":
{"name": "Image 3", "position":
{"name": "Image 4", "position":

"facing": "Up"},
"facing": "right"},
"facing”": "down"},
"facing": "left"}

~ 0~
~ ~

e e e
~

~

o U1 b U1
~
(G2 S N2 o)

~

]

rrs

</cogmap><think>In this scene, I observe four images showing different perspectives. All
images feature the white jar as the main object. In image 1, I can see white jar in front of the
clothes rack. In image 2, I can see white jar in front of the table with cups on it. In image 3,
I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white
jar in front of the white headboard. To identify the position change across views, I focus on
the main object’s angle variation. Then, I analyze the angles and relative positions of other
objects on the platform to back up this observation. I understand that: Image 1 is the initial
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
perspective changes, I can construct a complete spatial understanding: when I view table
with cups on it behind white jar in the second view, it implies that in the first view, table
with cups on it is on the right side of white jar. Similarly, when I see white headboard
behind white jar in the fourth view, it indicates that in the first view, white headboard is on
the left side of white jar. However, I am still uncertain about what lies behind me in the
first view. Then, I recognize that I can examine the opposite view to find out. The opposite
view of the fist view is the third view. As bed sheet with a floral pattern is observed behind
white jar in the third view, it means that in the first view, bed sheet with a floral pattern
is positioned behind me. This way, I can fully comprehend the spatial relationships of all
objects in the entire scene. So, from the perspective of image 4: clothes rack is to the right
of white jar, table with cups on it is to my behind, bed sheet with a floral pattern is to the left
of white jar. So the answer is C. Bed sheet with a floral pattern. </think><answer>C. Bed
sheet with a floral pattern</answer>
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