

THINKING FROM LIMITED VIEWS: UNDERSTANDING VLMs SPATIAL MENTAL MODELING CAPABILITY

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Can Vision-Language Models (VLMs) imagine the full scene from just a few
012 views, like humans do? Humans form *spatial mental models* naturally, internal
013 representations of *unseen space*, to reason about layout, perspective, and motion.
014 Our MINDCUBE benchmark with 21,154 questions across 3,268 images
015 exposes this critical gap, where existing VLMs exhibit near-random performance.
016 Using MINDCUBE, we systematically evaluate how well VLMs build robust spatial
017 mental models through representing positions (cognitive mapping), orientations
018 (perspective-taking), and dynamics (mental simulation for “what-if” move-
019 ments). We then explore three approaches to help approximate spatial mental
020 models in VLMs, focusing on incorporating unseen intermediate views, natural
021 language reasoning chains, and cognitive maps. The significant improve-
022 ment comes from a synergistic approach, “map-then-reason”, that jointly trains
023 the model to first generate a cognitive map and then reason upon it. By training
024 models to reason over these internal maps, we boosted accuracy from 37.8% to
025 60.8% (+23.0%). Adding reinforcement learning pushed performance even fur-
026 ther to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental
027 models, actively constructing and utilizing internal structured spatial representa-
028 tions with flexible reasoning processes, significantly improves understanding of
029 unobservable space.

1 INTRODUCTION

030 For Vision-Language Models (VLMs) (OpenAI, 2024) to move beyond passive perception (Li et al.,
031 2023) to interact with partially observable environments (Yang et al., 2024), it is fundamental to
032 reason about unseen spatial relationships from limited views. Consider how effortlessly a human
033 can infer the layout of a room or the hidden objects behind furniture, all by integrating information
034 from several egocentric observations. For example, given the second viewpoint in Figure 1, human
035 can easily infer the unseen objects behind the “*plant*” are the “*tissue box*” and the “*hand sanitizer*”,
036 including their position, pose, and their relationship with objects that are not simultaneously visible.
037 We humans build and update a mental model of our surroundings, even when objects are out of sight.
038 This is enabled by a core cognitive function referred to as **spatial mental model** (Johnson-Laird,
039 1980; 1983): an internal representation of the environment that allows for consistent understanding
040 and inference about space, independent of the current viewpoint. VLMs, despite their impressive
041 progress, struggle to synthesize spatial information from limited views, maintain spatial consistency
042 across views, and reason about objects not directly visible (Ma et al., 2025a).

043 This gap calls for specialized evaluation settings, which must include: (a) reasoning with partial
044 observations where objects are occluded or out of view (such as “*hand sanitizer*” in the second
045 viewpoint in Figure 1), (b) maintaining cross-view consistency across shifting viewpoints (such as
046 through anchor objects “*plant*”), and (c) mental simulation to infer hidden spatial relationships (such
047 as “*what if turning left and moving forward*”). To fill this gap, we introduce MINDCUBE, featuring
048 21,154 questions and 3,268 images, organized into 976 multi-view groups through various types of
049 viewpoint transformations (i.e., ROTATION, AMONG, AROUND in Figure 2). We annotate questions
050 with a focus on objects that are not visible in the current query view. As shown in Figure 2, we
051 systematically design question types requiring “what-if” mental simulations from the given view
052 (such as “*what if turning to left*”), perspective taking (such as “*what if taking the sofa’s perspective*”),
053 complex relation reasoning queries (referencing either the agent or other objects).

Our extensive evaluations of 17 state-of-the-art VLMs on MINDCUBE reveal that both open-weight and closed-source models perform only marginally better than random guessing. This poor performance motivates a central question: **How can we facilitate spatial mental models to reason effectively from partial observations?**

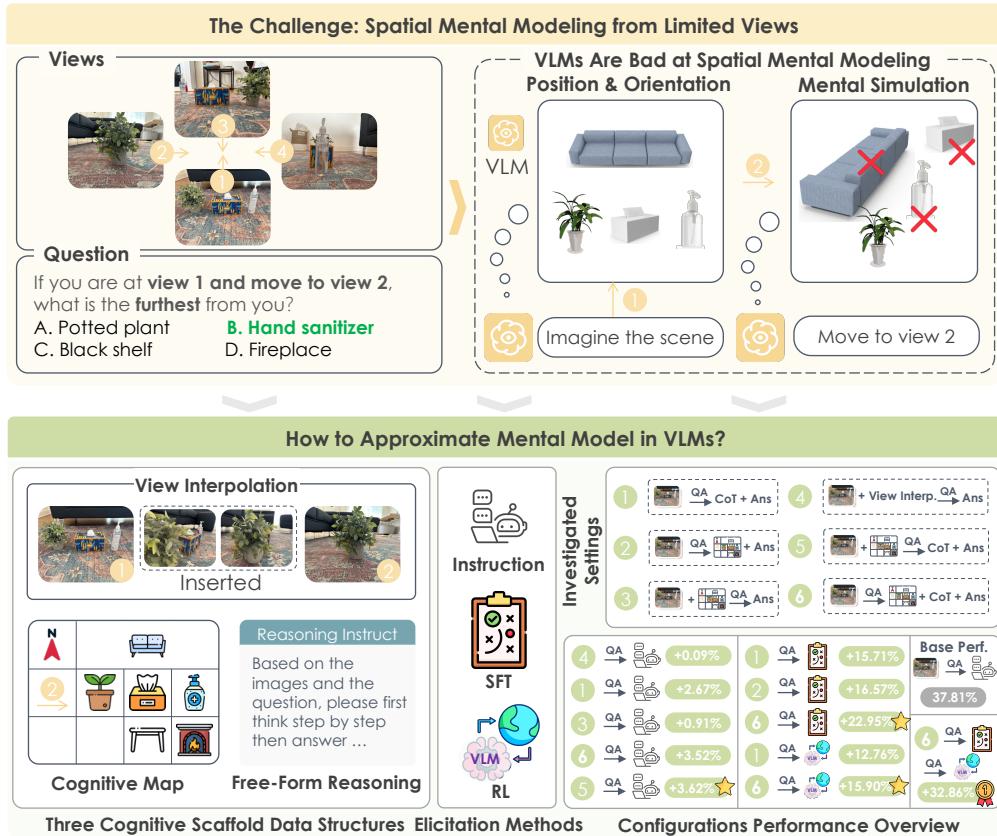


Figure 1: **Top:** VLMs cannot maintain a coherent mental model when evaluating on the MINDCUBE benchmark. **Bottom:** We study how we can help build spatial mental models through external (scaling of views, cognitive map input) and internal strategies (fine-tuning, cognitive map elicitation). We find joint cognitive map and reasoning setting yields the highest gain (+32.86%).

Inspired by spatial cognition (Ramakrishnan et al., 2025; Lee et al., 2025; Zha et al., 2025) operating through *visual imagery*, *linguistic reasoning*, or *explicit cognitive maps*, to build consistent spatial awareness across different views, we investigate three approaches to determine whether intermediate representations can assist approximating spatial mental models in VLMs. **View Interpolation** enhances the input by providing additional views and thereby offering more information using recorded video, which unexpectedly is not helpful, highlighting the importance of reasoning directly from *limited* views. **Free-form Natural Language Reasoning** verbalizes the mental simulation process, achieving performance gains (+2.7%). **Structured Cognitive Map** simulates global spatial memory from an allocentric (bird's-eye) perspective with orientation and view augmentation. Interestingly, providing ground truth cognitive maps directly to answer questions will not yield strong improvements (-5.81%), only actively engaging reasoning with a map achieves strong improvements (+3.62%). Despite the effectiveness of reasoning over maps, building accurate spatial mental models exhibit a significant bottleneck attributed to VLMs' intrinsic ability, evidenced by low Isomorphic Rates (< 10%) with ground truth maps during generation.

Recognizing this limitation, we train VLMs by constructing 10,000 reasoning chains and ground truth cognitive maps, investigating how to effectively guide spatial mental models toward achieving accuracy. While SFT on free-form reasoning chains proved more effective with a gain of +1.2%, guiding models to first build cognitive maps and then perform free-form reasoning over them achieved significantly better performance, resulting in a total gain of +8.5%, proving scaf-

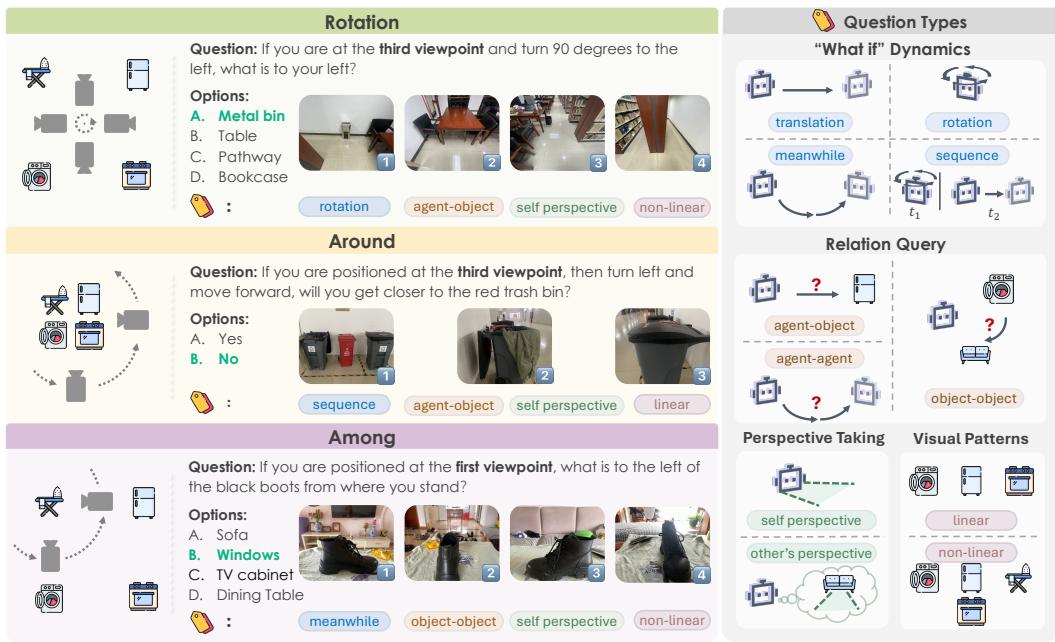


Figure 2: MINDCUBE taxonomy and examples. Left: Three camera movement patterns (ROTATION, AROUND, AMONG) with corresponding spatial QA examples. Right: Four-dimensional taxonomy categorizing MINDCUBE questions types.

folding spatial mental models via actively constructing and utilizing internal structured spatial representations with flexible reasoning processes is highly effective. We also use Reinforcement Learning (RL) to further boost post-SFT performance, guiding models to think in terms of building and reasoning over cognitive maps by injecting structured thinking before RL training, using our SFT model. This approach leads to a significant improvement, raising task accuracy from a baseline of 37.8% to 70.7%. Our empirical evidence substantiates a critical finding: **autonomously generating and leveraging internal mental representations help VLMs exhibit superior performance in spatial reasoning tasks, as compared to conventional approaches such as view interpolation or externally-supplied maps.**

2 MINDCUBE BENCHMARK AND EVALUATION

2.1 MINDCUBE BENCHMARK

Overview. We introduce MINDCUBE, a benchmark for evaluating VLMs’ spatial reasoning under partial observations and dynamic viewpoints. MINDCUBE features multi-view orthogonal images paired with spatial reasoning questions, enabling fine-grained analysis of spatial mental modeling performance. It targets key challenges such as maintaining object consistency across views and reasoning about occluded or invisible elements.

Settings. MINDCUBE incorporates three distinct settings—**Rotation**, **Around** and **Among** (visualized in left of Figure 2). In the **Rotation** setting, the challenge lies in interpreting multiple orthogonal views from a static and rotational observation point, requiring models to form a holistic understanding of the environment despite only incremental visibility shifts. The **Around** setting leverages occlusion to force VLMs to maintain object permanence even with partial visibility and to convert lateral (left-right) relations in frontal views into depth (front-back) cues in side views. The **Among** setting maintain spatial consistency and overcome visibility constraints as views are captured around a central object with adjacent ones, each view showing the central object positioned before one surrounding element. VLMs need to share information across views, deducing the overall spatial arrangement and relationships even when not all elements are visible simultaneously. Table 1 (left) summarizes the benchmark’s overall data distribution. Details on benchmark design about settings and taxonomies and curation are provided in the Appendix B, C and B.2.2.

162 Table 1: Left: MINDCUBE data statistics. The number next to the setting (ROTATION, AMONG,
 163 AROUND) means the total QA pairs. Numbers next to each dataset (e.g., Arkitscenes) mean QA
 164 pairs/image groups. For example, “865/53” for Arkitscenes in ROTATION means 865 QA pairs and
 165 53 image groups from it. Right: Performance of VLMs on MINDCUBE. Dark blue indicates the
 166 best result among all models and light blue indicates the second best result among all models.
 167

Rotation (1081)		Method	Overall	Rotation	Among	Around
Arkitscenes	865/53	<i>Baseline</i>				
Self collected	216/9	<i>Random (chance)</i>	32.35	36.36	32.29	30.66
		<i>Random (frequency)</i>	33.02	38.30	32.66	35.79
Img groups		<i>Open-Weight Multi Image Models</i>				
WildRGB-D	17500/710	LLaVA-Onevision-7B Li et al. (2024a)	47.43	36.45	48.42	44.09
DL3DV-10K	704/24	LLaVA-Video-Qwen-7B Zhang et al. (2024d)	41.96	35.71	43.55	30.12
		LongVA-7B Zhang et al. (2024c)	29.46	35.89	29.55	24.88
Among (18204)		mPLUG-Owl3-7B-241101 Ye et al. (2024)	44.85	37.84	47.11	26.91
DL3DV-10K	704/24	InternVL3-8B Zhu et al. (2025)	37.50	26.00	42.03	36.00
		Qwen2.5-VL-7B-Instruct Bai et al. (2025)	29.26	38.76	29.50	21.35
Img groups		Qwen2.5-VL-3B-Instruct Bai et al. (2025)	33.21	37.37	33.26	30.34
WildRGB-D	17500/710	DeepSeek-VL2-Small Lu et al. (2024)	47.62	37.00	50.38	26.91
DL3DV-10K	704/24	Gemma-3-12B-it Team et al. (2025)	46.67	38.39	48.38	34.63
		Mantis-8B (SigLip) Jiang et al. (2024)	41.05	37.65	40.23	50.99
Around (1869)		<i>Proprietary Models</i>				
DL3DV-10K	789/109	GPT-5-2025-08-07 OpenAI (2025)	47.59	93.33	34.17	41.63
Self collected	1080/71	Gemini-2.5-pro-2025-06 Team (2025)	47.05	85.50	25.95	38.40
		Claude-4-Sonnet-20250514 Anthropic (2025)	44.75	48.42	44.21	47.62
Img groups		<i>Spatial Models</i>				
DL3DV-10K	789/109	RoboBrain Ji et al. (2025)	37.38	35.80	38.28	29.53
Self collected	1080/71	SpaceMantis Chen et al. (2024a)	22.81	37.65	21.26	29.32
		Spatial-MLLM Wu et al. (2025a)	32.06	38.39	20.92	32.82
Img groups		Space-Qwen Chen et al. (2024a)	33.28	38.02	33.71	26.32

186 **Dataset Curation.** The MINDCUBE dataset was created through a pipeline: We first selected
 187 multi-view image groups matching our taxonomy’s movement patterns (Figure 2) and spatial crite-
 188 ria. These were then annotated with key spatial information. Finally, we algorithmically generated
 189 taxonomy-aligned questions with targeted distractors. Details are included in the Appendix B.1.

191 2.2 EVALUATION ON MINDCUBE

193 We evaluate VLMs’ spatial mental modeling abilities on MINDCUBE using a diverse set of models
 194 (Table 1, right; setup details in the Appendix C). Results reveal a striking performance gap: the
 195 best model, DeepSeek-VL2-Small, achieves only 47.62% accuracy, well above chance but far from
 196 human-level C.3. While some models show strength in specific areas—notably GPT-5 in ROTATION
 197 (93.33%) and Mantis-8B (SigLip) in AROUND (50.99-)—no single model excels across all cate-
 198 gories. We also observe that proprietary models generally outperform the open-source ones. Spatial
 199 fine-tuning also yielded varied outcomes without consistently reaching top performance. Overall,
 200 neither multi-image input nor spatial fine-tuning reliably improves spatial reasoning, raising a key
 201 question: **How can we help VLMs develop or approximate these crucial spatial reasoning ca-
 202 pabilities?**

203 3 WHICH SCAFFOLDS BEST GUIDE SPATIAL MENTAL MODELING?

205 To address the identified gap, we first evaluate whether structured data forms can scaffold spatial
 206 reasoning in frozen VLMs by approximating spatial mental models under limited views.

208 3.1 DATA STRUCTURES AS COGNITIVE SCAFFOLDS FOR SPATIAL MENTAL MODELS

210 We investigate whether certain data structures can act as cognitive scaffolds that help form spa-
 211 tial mental models in VLMs from limited visual observations. In cognitive science, spatial mental
 212 models are internal representations encoding the relative configuration of objects and viewpoints.
 213 Rather than metric-precise maps, they are schematic, manipulable constructs that support reason-
 214 ing across fragmented observations and unseen perspectives (Johnson-Laird, 1983; Tversky, 1993;
 215 Tversky et al., 1994; Tversky, 2003). For instance, humans can mentally simulate turning or infer
 what lies behind them, suggesting that such representations are flexible, incomplete, yet functionally

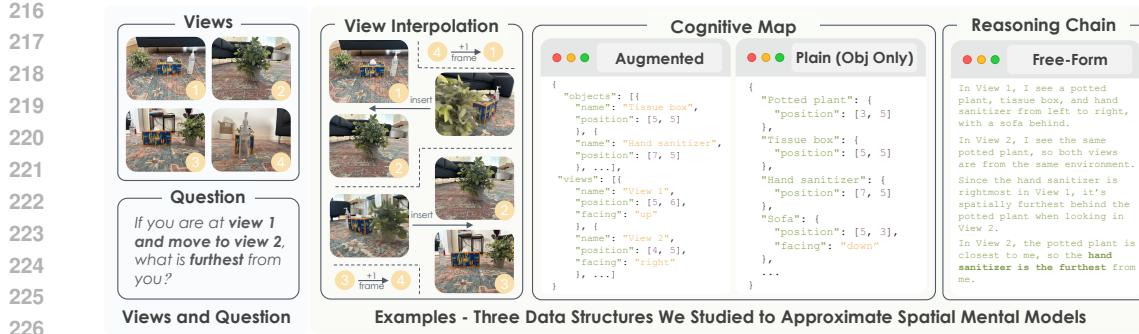


Figure 3: Grounded examples of our three data structures that approximate spatial mental models.

effective. Drawing on this literature, we define three data structures below (detailed introduction can be found in Appendix D.1), each targeting distinct cognitive properties (integration, transformation, inference) of spatial mental models, with grounded examples in Figure 3:

1. **View Interpolation.** Interpolating between sparse views introduces perceptual continuity, echoing the process of *mental animation* (Hegarty, 1992) and supporting internal transformation such as imagined rotation. This structure scaffolds the dynamic updating capability of spatial mental models. Figure 3 shows a one-frame inserting example that replaces the original question images.
2. **Augmented Cognitive Map.** A cognitive map is a 2D schematic representation of object layouts in space. Such maps resemble Tversky’s *cognitive collages* (Tversky, 1993), and they capture locally coherent but fragmented structures. Recent studies (Yang et al., 2024; Yeh et al., 2025) on VLM-based spatial intelligence typically adopt a *plain* form that only encodes object positions in a top-down view. We propose an *augmented* variant that incorporates discrete views, with both objects and views annotated by position and orientation, thereby approaching the relational consistency of *spatial mental models*.
3. **Free Form Reasoning.** Open-ended, step-by-step natural language reasoning offers a *procedural approximation* of how spatial models are constructed and queried. While less rigid than map-like structures, such reasoning reflects the inferential function of spatial mental models, especially under ambiguous or incomplete observations (Tversky et al., 1994).

3.2 EXPERIMENT SETUP

We conduct controlled experiments with fixed input formats to test whether structured scaffolds can help without retraining. Each condition introduces a different structure to support internal modeling.

Configurations and Evaluation Metrics. Each experiment is defined by two orthogonal axes: *Input Structure* (what spatial evidence VLMs receive) and *Output Format* (the required response type). As the experimental foundation of this paper, we begin with the ten possible configurations listed in Table 2, from which we investigate a representative subset. Specifically, our grounded cognitive maps are generated using the object arrangements annotation described in Section 2.1, and examples for all configurations are provided in the Appendix D.3. In the frozen VLMs evaluation setup, we exclude the Aug-CGMap-Out and Plain-CGMap-Out settings, as VLMs tend to conflate map generation with reasoning, even when instructed otherwise. Beyond evaluating task performance using QA accuracy, we also introduce two well-defined graph metrics for generated cognitive maps: (1) *Overall Similarity*, a weighted score combining directional and facing consistency; and (2) *Iso-morphic Rate*, measuring whether all pairwise object relations match the ground truth under optimal alignment. Full definitions are provided in the Appendix D.2.

Model and Evaluation Data We conduct all experiments using *Qwen2.5-VL-3B-Instruct* (Bai et al., 2025) with all evaluations performed on MINDCUBE-TINY, a diagnostic subset sampled from MINDCUBE, containing 1,050 questions in total. Detailed statistics are: 600 from AMONG, 250 from AROUND, and 200 from ROTATION.

270
 271
 272
 273
 274
 275
 Table 2: Input–output configurations used in all experiments. The suffix “-In” means the (augmented) cognitive map is given to the model as input, whereas “-Out” means the cognitive map is predicted as an intermediate output before answering. “Aug” indicates maps with object and camera annotations; “Plain” indicates maps without these augmentations. VI = View Interpolation, CGMap = Cognitive Map, FFR = Free-form reasoning. Figure 3 shows visual examples of the corresponding input structures.

Name	What the model receives (input)	What the model produces (output)
Raw-QA	Raw views + question text	Direct answer
VI-1	Raw views + 1 interpolated view + question text	Direct answer
VI-2	Raw views + 2 interpolated views + question text	Direct answer
FFR	Raw views + question text	Free-form reasoning → answer
Aug-CGMap-In	Augmented cognitive map (objects + camera) + question text	Direct answer
Aug-CGMap-Out	Raw views + question text	Augmented cognitive map → answer
Plain-CGMap-Out	Raw views + question text	Plain cognitive map → answer
Aug-CGMap-FFR-Out	Raw views + question text	Augmented cognitive map + free-form reasoning → answer
Plain-CGMap-FFR-Out	Raw views + question text	Plain cognitive map + free-form reasoning → answer
CGMap-In-FFR-Out	Augmented cognitive map (objects + camera) + question text	Free-form reasoning → answer

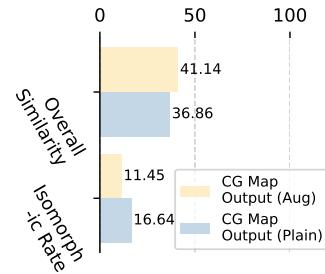
293 3.3 DO SCAFFOLDS IMPROVE SPATIAL MENTAL MODELING WITHOUT TRAINING?

294 We evaluate how well the seven input configurations defined in Table 2 support spatial mental modeling in VLMs under limited views, without any model updates. Results are shown in Table 3 (left).

295 **How far can structure alone go?** We begin with the baseline: raw input views and direct answering (Raw-QA), which achieves 37.81% accuracy. Adding interpolated views, which we hope to simulate smoother perceptual transitions, leads to no meaningful gain (↑ 0.09%). We include a further analysis on VI in Appendix E.3. Similarly, providing a pre-computed augmented cognitive map as direct input (Aug-CGMap-In) severely degrades performance to 32.00%. In contrast, enabling free-form reasoning (FFR) alone or combined with other settings provides a substantial boost to 41.33%. These results suggest: *structure alone, whether visual or spatial, is not enough*. Without engaging reasoning, VLMs struggle to leverage even well-formed spatial cues to improve spatial mental models.

306 Table 3: Left: QA accuracy (%) of *Qwen2.5-VL-3B-Instruct* on the MINDCUBE-TINY benchmark
 307 under different configs for frozen VLMs. Right: Graph metrics for two cog map output settings.

Config.	Overall	Rotation	Among	Around
Raw-QA	37.81	34.00	36.00	45.20
VI-1	37.90↑	35.50	37.33	41.20
VI-2	37.81—	35.50	36.50	42.80
Aug-CGMap-In	32.00↓	35.00	30.50	33.20
FFR	40.48↑	32.00	36.00	58.00
Aug-CGMap-FFR-Out	40.57↑	21.00	43.00	50.40
Plain-CGMap-FFR-Out	41.33↑	25.00	39.67	58.40
CGMap-In-FFR-Out	41.43↑	37.00	41.67	44.40



318
 319 **Can we prompt the model to think spatially?** The answer appears to be yes. Prompting the
 320 model to generate a cognitive map (Aug-CGMap-FFR-Out, Plain-CGMap-FFR-Out) before
 321 answering leads to further improvements over free-form reasoning alone (FFR) from 40.48% to
 322 41.43%. This suggests that generating a map may encourage the model to first form a global
 323 understanding of the scene, which in turn supports more structured reasoning. Both map forms have a
 great format-following ability, yet fail to generate accurate maps. Overall, augmented maps perform

worse. In Table 3 (Right), despite generating syntactically valid maps for both formats, similarity to grounded maps is low (< 50%), reflecting limited mapping ability. Notably, both augmented and plain maps have low isomorphism rates (0.10%, 7.43%). The reason that the isomorphic rate for augmented map setting is nearly zero is likely because the added view-level details increase generation errors. Detailed case examples can be found in the Appendix E.

329 ? Key Takeaways: Scaffolding Spatial Mental Models in *Frozen VLMs*

- 330 • *Explicit reasoning is crucial for improving performance.*
- 331 • *Reasoning acts as a necessary mechanism to ground spatial structure in frozen settings.*
- 332 • *Passive structures (like maps as input) alone and visual continuity offer little benefit.*

335 4 CAN WE TRAIN FOR THE EMERGENCE OF SPATIAL MENTAL MODELS VIA 336 VLMs' USE OF SCAFFOLDS?

339 So far, prompting frozen VLMs with external scaffolds, such as interpolated views or cognitive
340 maps, has yielded limited gains. These techniques fail to tackle the core limitation: VLMs do not
341 form internal spatial representations or reason through space effectively. To go further, we want to
342 know: Can supervised fine-tuning (SFT) and Reinforcement learning (RL) teach VLMs to build and
343 leverage spatial mental models from within?

344 4.1 DESIGNING A ROBUST EXPERIMENTAL FRAMEWORK

345 To ensure consistency and comparability, we inherit experimental configurations detailed in Sections
346 3.1 and 3.2. Specifically, we retain: (1) the two effective data scaffolds—Cognitive Maps (Object-
347 only / Object + Camera) and Free-Form Reasoning, (2) the base model *Qwen2.5-VL-3B-Instruct*,
348 (3) the evaluation benchmark MINDCUBE-TINY, and (4) all established evaluation metrics. View
349 interpolation is excluded due to its limited performance gains in earlier validations.

350 **SFT Task Configurations.** Drawing on insights from Section 3.3, we use selected configura-
351 tions from Table 2 to evaluate the incremental impact of cognitive map generation and free-form
352 reasoning in SFT. These include baseline QA without explicit reasoning (Raw-QA), reasoning
353 guided by generated maps only (Plain-CGMap-Out, Aug-CGMap-Out), reasoning-augmented
354 prompts (FFR), and a fully integrated setup that asks VLMs to generate both maps and reasoning
355 (Aug-CGMap-FFR-Out and Plain-CGMap-FFR-Out).

356 **RL Task Configurations and Reward Design.** We employ the VAGEN framework (Wang* et al.,
357 2025) for VLM policy optimization, using Group Relative Policy Optimization (GRPO) (Shao et al.,
358 2024) as our core algorithm. We evaluate three RL variants: (1) RL-FFR (from scratch),
359 which trains base model to produce free-form reasoning chains; (2) RL-Aug-CGMap-FFR-Out
360 (from scratch), which trains the model to jointly generate cognitive maps and reasoning; and
361 (3) RL-Aug-CGMap-FFR-Out (from SFT), which initializes from the strongest SFT check-
362 point. Detailed settings can be found in the Appendix G.1.

363 **Grounded Cognitive Maps and Free-Form Reasoning Chain.** Grounded cognitive maps are not
364 only used as the input in the Aug-CGMap-In and CGMap-In-FFR-Out setting for the frozen
365 VLMs in the Section 3.2, but also as the training and comparison data. We curate such grounded
366 cognitive maps through a template-based method, where we always select the front image in our
367 annotation as the “up” direction. We also manually constructed grounded reasoning chains using
368 detailed image annotations and structured question templates, ensuring logical coherence and clear
369 grounding in observable spatial relations (see an example in Figure 3). The detailed grounded cog-
370 nitive maps and reasoning data generation pipelines are shown in the Appendix F.1.1 and F.1.2.

373 4.2 DO THE EMERGENCE OF SPATIAL MENTAL MODELS TRULY BENEFIT FROM EXPLICIT 374 TRAINING?

375 We explore several SFT configurations (results shown in Table 4), guided by a series of core ques-
376 tions. Fine-tuning directly on raw QA pairs, without spatial supervision, raises accuracy from
377 37.81% to 52.28%. This suggests VLMs can absorb some spatial cues from QA data alone. We

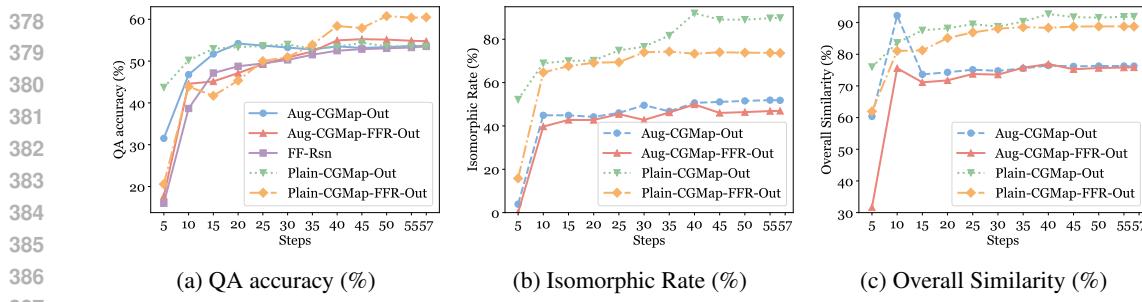


Figure 4: SFT per 5 step training performance on task accuracy and graph metrics.

use this setup as the baseline for evaluating methods that explicitly incorporate spatial structures. Primary modifications in SFT phase include adjusted training hyperparameters (detailed in the Appendix F.2) and the input-output configurations.

Table 4: QA accuracy (%) and cognitive map generation quality of *Qwen2.5-VL-3B-Instruct* under both SFT and RL on MINDCUBE-TINY. Both **FFR** and FFR refer to free-form reasoning. Bolded means the best within that training category (SFT or RL).

Config.	MINDCUBE-TINY QA Accuracy (%)				Generated Cognitive Map (%)	
	Overall	Rotation	Among	Around	Overall Sim.	Isom. Rate
SFT	Raw-QA	52.28	34.50	52.50	66.00	—
	FFR	53.52↑	36.00	54.67	64.80	—
	Aug-CGMap-Out	54.19↑	35.50	53.17	71.60	74.30
	Plain-CGMap-Out	54.38↑	35.50	53.50	71.60	91.73
	Aug-CGMap-FFR-Out	55.24↑	49.50	52.50	66.40	75.27
	Plain-CGMap-FFR-Out	60.76↑	47.50	62.33	67.60	88.79
RL	RL- FFR (from scratch)	50.57	36.50	49.33	64.80	—
	RL-Aug-CGMap-FFR-Out (from scratch)	52.19	32.00	52.00	68.80	57.03
	RL-Plain-CGMap-FFR-Out (from scratch)	53.71	33.00	53.66	70.40	47.60
	RL-Aug-CGMap-FFR-Out (from SFT)	70.67	53.00	76.83	70.00	85.53
	RL-Plain-CGMap-FFR-Out (from SFT)	70.67	48.00	79.17	68.40	85.79

Can structured approximations of mental models alone meaningfully improve performance?

As shown in Table 4, supervised fine-tuning on explicit cognitive maps, either *Augmented* or *Plain*, leads to substantial improvements in graph structure quality, with more than 30% gains in both overall similarity and Isomorphic rate. However, the effect on end-task accuracy remains limited. Both augmented maps (54.19%) and Plain maps (54.38%) offer only modest gains over the fine-tuned Raw-QA (52.28%). Similarly, directly **FFR** also yields a marginal gain (53.52%). This means that a scaffold alone is not sufficient to automatically translate into performance gains.

Generating both cognitive maps and free-form reasoning is the most effective approximation. Among all configurations, the combination of generating a plain map and then reasoning (Plain-CGMap-FFR-Out) yields performance gain (↑8.48% compared to Raw-QA-SFT), surpassing models that rely on only map generation or reasoning alone. This suggests a synergy between structured spatial modeling and natural language inference. The training dynamics reveal a crucial trade-off that explains this synergy. As shown in Figure 4 (b, c), models trained solely on map generation (Plain-CGMap-Out) learn the target structure very rapidly, quickly reaching near-perfect similarity and isomorphism. However, their QA accuracy soon plateaus (Figure 4a), suggesting the model learns the structure without fully grasping its functional utility. In contrast, the top-performing Plain-CGMap-FFR-Out model learns the map structure more slowly and never reaches the same level of structural perfection. Yet, its QA accuracy continues to increase and surpass all other configurations. This suggests that the joint pressure of the reasoning task forces the model not just to replicate a structure, but to build a functionally effective spatial representation, which can lead to improvement for overall spatial understanding despite being imperfect.

Key Takeaways: Explicit Training for the Emergence of Spatial Mental Models

- Joint cogmap and reasoning setting yields optimal performance through synergistic effects.
- Neither map generation nor reasoning alone largely outperforms the SFT QA baseline.

432 4.3 CAN REINFORCEMENT LEARNING FURTHER REFINE SPATIAL MENTAL MODELS?
433434 While SFT establishes a strong baseline for spatial mental modeling, emerging evidence from mod-
435 els like DeepSeek R1 (Guo et al., 2025) suggests reinforcement learning (RL) can offer additional
436 gains by optimizing behavior through outcome-driven feedback. We ask: Can reward-guided refine-
437 ment help VLMs build sharper spatial models and reason more effectively?438 RL lets a model *feel* the consequences of its spatial thoughts through reward, but does that feedback
439 alone forge a genuine “mental map,” or must we first teach the model what a map looks like? Table
440 4 summarizes three key settings and answers this question in two parts.441 **RL in a vacuum is not enough.** Training from scratch with sparse rewards provides insufficient
442 guidance for building robust spatial representations. When asked to produce free-form reasoning
443 (RL-FFR (from scratch)), the model achieves only 50.57% overall accuracy. This result,
444 while an improvement over initial baselines, confirms that task-level rewards alone are too unstruc-
445 tured to effectively teach spatial abstraction.446 **Structured outputs provide modest benefits when learned from scratch.** Introducing a cognitive
447 map structure for the policy to generate offers a scaffold for its reasoning. When starting from
448 scratch, the simpler RL-Plain-CGMap-FFR-Out configuration (53.71%) slightly outperforms
449 its augmented counterpart (52.19%) in QA accuracy. However, in both cases, the model fails to learn
450 meaningful geometry, with low similarity scores and near-zero isomorphism rates. This suggests
451 that without a prior concept of a “good” map, RL struggles to exploit the provided structural format,
452 even if it can learn to fill it out validly.453 **RL performs better when it trains from SFT checkpoint.** The most dramatic improvements occur
454 when warm-starting RL from an optimal SFT checkpoint. Both RL-Plain-CGMap-FFR-Out
455 (from SFT) and its augmented version reach an identical, impressive 70.67% overall QA accu-
456 racy. This represents a significant \uparrow 9.91% absolute gain over the best SFT model and a \uparrow 16.96%
457 gain over the best RL-from-scratch approach. Crucially, while both models achieve the same peak
458 accuracy, their underlying spatial representations differ. The Plain-CGMap variant produces geo-
459 metrically superior maps, with a much higher isomorphism rate (71.52% vs. 58.86%). This suggests
460 that while RL fine-tuning can guide different initial models to the same reasoning proficiency, start-
461 ing with a cleaner, simpler SFT scaffold (Plain) allows RL to better preserve and polish a geometri-
462 cally sound internal map. These results strongly indicate that RL’s primary role here is (1) polishing
463 and refining the strong priors learned during SFT, and (2) raising the performance ceiling of SFT,
464 enabling the model to break through previous plateaus to achieve near-oracle-level performance.465 **Key Takeaways: Reinforcement Learning for the Emergence of Spatial Mental Models**466

- *Combining cognitive maps with reasoning consistently improves all learning outcomes.*
- *Starting from scratch, RL provides only marginal gains for spatial reasoning; its true power*
467 *is unlocked when building upon a strong SFT foundation.*

471 5 RELATED WORKS
472473 **Spatial Cognition.** Spatial cognition encompasses skills like mental rotation, spatial visualiza-
474 tion, and object assembly, essential for perceiving and manipulating spatial relationships in both
475 2D and 3D environments (Xu et al., 2025b; Zha et al., 2025; Wang et al., 2025). At the core of
476 these abilities are Spatial Mental Models (SMMs) (Johnson-Laird, 1980; 1983), which are internal
477 representations that allow for consistent understanding of space. Recently, much effort has been
478 dedicated to evaluating spatial cognition in VLMs (Zhan et al., 2025; Ma et al., 2025a; Lee et al.,
479 2025; Zhang et al., 2025). Moreover, some methods are proposed to enhance spatial understanding,
480 such as coordinate-aware prompting (Cai et al., 2024), CoT reasoning (Ma et al., 2025b; Liu et al.,
481 2025b), explicit spatial representation alignment (Cheng et al., 2024; Chen et al., 2024a), and an
482 RL-based approach (Pan & Liu, 2025). However, existing benchmarks (Lee et al., 2025; Zhan et al.,
483 2025; Chen et al., 2025; Qi et al., 2025; Zhang et al., 2025; Ma et al., 2025a; Ramakrishnan et al.,
484 2025; Tang et al., 2025b; Fu et al., 2024; Yang et al., 2024; Zhang et al., 2024a) and approaches often
485 neglect the mental-level spatial reasoning that underpins human cognition, leaving a gap between
machine and human capabilities. To bridge this gap, a new approach is needed that trains VLMs

486 to reason about space not only through visual data but also through mental-level spatial reasoning,
 487 aligning more closely with human spatial cognition.
 488

489 **Multi Views understanding.** Multiview spatial understanding leverages multiple viewpoints to re-
 490 construct 3D structures and overcome single-view limitations. Efficient techniques optimize view
 491 processing, while reconstruction methods (Wang et al., 2025; Liu et al., 2025a; Fu et al., 2025; Qu
 492 et al., 2025), view synthesis methods (Sun et al., 2018; Zhang et al., 2024e; Sargent et al., 2023) and
 493 multiview equivariant learning (You et al., 2024) enhance geometric consistency. Topological repre-
 494 sentations like Zhang et al. (2024b) encode object relations for holistic reasoning, while frameworks
 495 such as Hong et al. (2023) advance open-vocabulary concept learning from multiview data via neu-
 496 ral fields and vision-language fusion. LMMs augmented with multiview inputs (Daxberger et al.,
 497 2025; Wu et al., 2025a; Fan et al., 2025; Zheng et al., 2025; Lee et al., 2025; Zhao et al., 2025; Xu
 498 et al., 2025a) demonstrate marked improvements in spatial tasks like geometric understanding and
 499 perspective taking. Yet, they struggle with multiview consistency understanding due to fragmented
 reasoning and 2D-to-3D projection ambiguities, leaving a gap for robust spatial AI.

500 6 CONCLUSION

501 We introduced MINDCUBE to study how VLMs can approximate spatial mental models from lim-
 502 ited views, a core cognitive ability for reasoning in partially observable environments. Moving be-
 503 yond benchmarking, we explored *how* internal representations can be scaffolded through structured
 504 data and reasoning. Our key finding is that *constructing and reasoning over self-generated cogni-*
 505 *tive maps*, rather than relying on view interpolation or externally provided maps, yields the most
 506 effective approximation of spatial mental models across all elicitation methods (input-output con-
 507 figurations, supervised fine-tuning, and reinforcement learning). Initializing RL from a well-trained
 508 SFT checkpoint further optimizes the process, pushing spatial reasoning performance to new limits.
 509

510 ETHICS STATEMENT

511 The MINDCUBE benchmark was developed using a combination of publicly available, anonymized
 512 datasets (ArkitScenes, WildRGB-D, DL3DV-10K) and self-collected imagery. For our self-collected
 513 data, care was taken to capture indoor and outdoor scenes without including personally identifiable
 514 information (PII) or sensitive content. All human annotators involved in the data curation and eval-
 515 uation phases were compensated at rates significantly exceeding their local minimum wage.
 516

517 We acknowledge several limitations and ethical considerations. The datasets used, while diverse,
 518 may not fully represent the vast range of global environments, potentially introducing geographic
 519 or cultural biases into the model’s spatial understanding. Furthermore, the training, fine-tuning, and
 520 evaluation of the large-scale Vision-Language Models discussed in this paper carry a significant
 521 computational and environmental cost. While our research is intended to advance the scientific un-
 522 derstanding of AI cognition, we recognize that technologies enhancing spatial reasoning in machines
 523 could have dual-use applications.
 524

525 526 REPRODUCIBILITY STATEMENT

527 To ensure the reproducibility of our findings, we have included our complete codebase for data
 528 processing, model training, and evaluation in the supplementary materials as a .zip archive. Further-
 529 more, the full MINDCUBE benchmark, encompassing all of our training data, test data, annotations,
 530 and evaluation protocols, will be released in a public repository to facilitate further research and
 531 verification by the community.
 532

533 534 REFERENCES

535 The HCRC Map Task Corpus. University of Edinburgh, n.d. URL <https://groups.inf.ed.ac.uk/maptask/>. Accessed: 2025-09-25.
 536 SemEval: International workshop on semantic evaluation. SemEval, n.d. URL <https://semeval.github.io/>. Accessed: 2025-09-25.
 537
 538

540 Anthropic. Claude 4 sonnet system card, May 2025. URL <https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf>. Version 20250514, ac-
 541 cessed 2025-06-23.
 542

543 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 544 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 545 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 546 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
 547 preprint *arXiv:2502.13923*, 2025.
 548

549 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Feigin, Peter Fu, Thomas Gebauer, Daniel
 550 Kurz, Tal Dimry, Brandon Joffe, Arik Schwartz, et al. Arkitscenes: A diverse real-world dataset
 551 for 3d indoor scene understanding using mobile rgb-d data. In *Thirty-fifth Conference on Neural*
 552 *Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021.

553 Wenxiao Cai, Yaroslav Ponomarenko, Jianhao Yuan, Xiaoqi Li, Wankou Yang, Hao Dong, and
 554 Bo Zhao. Spatialbot: Precise spatial understanding with vision language models. *arXiv* preprint
 555 *arXiv:2406.13642*, 2024.

556 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
 557 Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial rea-
 558 soning capabilities. *arXiv* preprint *arXiv:2401.12168*, 2024a. URL <https://arxiv.org/abs/2401.12168>.
 559

560 Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
 561 Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for vlms? an
 562 attention mechanism perspective on focus areas, 2025. URL <https://arxiv.org/abs/2503.01773>.
 563

564 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 565 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 566 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
 567 *Vision and Pattern Recognition*, pp. 24185–24198, 2024b.
 568

569 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 570 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision language models, 2024. URL
 571 <https://arxiv.org/abs/2406.01584>.
 572

Erik Daxberger, Nina Wenzel, David Griffiths, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai
 573 Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, and Peter Grasch. Mm-spatial: Exploring
 574 3d spatial understanding in multimodal llms, 2025. URL <https://arxiv.org/abs/2503.13111>.
 575

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 576 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multi-
 577 modal language model. In *Proceedings of the 40th International Conference on Machine Learn-
 578 ing*, pp. 8469–8488, 2023.
 579

Mengfei Du, Biniao Wu, Zejun Li, Xuanjing Huang, and Zhongyu Wei. Emb spatial-bench: Bench-
 580 marking spatial understanding for embodied tasks with large vision-language models, 2024. URL
 581 <https://arxiv.org/abs/2406.05756>.
 582

Zhiwen Fan, Jian Zhang, Renjie Li, Junge Zhang, Runjin Chen, Hezhen Hu, Kevin Wang,
 583 Huaizhi Qu, Dilin Wang, Zhicheng Yan, Hongyu Xu, Justin Theiss, Tianlong Chen, Jiachen Li,
 584 Zhengzhong Tu, Zhangyang Wang, and Rakesh Ranjan. Vlm-3r: Vision-language models aug-
 585 mented with instruction-aligned 3d reconstruction, 2025. URL <https://arxiv.org/abs/2505.20279>.
 586

Chuanyu Fu, Guanying Chen, et al. Maskgaussian: Differentiable mask pruning for efficient 3d
 587 gaussian rendering. In *CVPR*, 2025. URL <https://arxiv.org/abs/2506.02751>.
 588

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
 589 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
 590 not perceive. *arXiv* preprint *arXiv:2404.12390*, 2024.
 591

594 Ziyang Gong, Wenhao Li, Oliver Ma, Songyuan Li, Jiayi Ji, Xue Yang, Gen Luo, Junchi Yan, and
 595 Rongrong Ji. Space-10: A comprehensive benchmark for multimodal large language models in
 596 compositional spatial intelligence, 2025. URL <https://arxiv.org/abs/2506.07966>.

597 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 598 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 599 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

600 Mary Hegarty. Mental animation: Inferring motion from static displays of mechanical systems.
 601 *Journal of experimental psychology: learning, memory, and cognition*, 18(5):1084, 1992.

602 Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen, Joshua B. Tenenbaum, and Chuang Gan. 3d
 603 concept learning and reasoning from multi-view images, 2023. URL <https://arxiv.org/abs/2303.11327>.

604 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 605 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint*
 606 *arXiv:2307.05973*, 2023.

607 Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-
 608 temporal reasoning of relational keypoint constraints for robotic manipulation. *arXiv preprint*
 609 *arXiv:2409.01652*, 2024.

610 Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
 611 Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipu-
 612 lation from abstract to concrete. *arXiv preprint arXiv:2502.21257*, 2025.

613 Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and
 614 Li Yi. Omnispatial: Towards comprehensive spatial reasoning benchmark for vision language
 615 models, 2025. URL <https://arxiv.org/abs/2506.03135>.

616 Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max W.F. Ku, Qian Liu, and Wenhui Chen. Mantis:
 617 Interleaved multi-image instruction tuning. *Transactions on Machine Learning Research*, 2024,
 618 2024. URL <https://openreview.net/forum?id=skLtdUVaJa>.

619 Philip N Johnson-Laird. Mental models in cognitive science. *Cognitive science*, 4(1):71–115, 1980.

620 Philip Nicholas Johnson-Laird. *Mental models: Towards a cognitive science of language, inference,
 621 and consciousness*. Number 6. Harvard University Press, 1983.

622 Amita Kamath, Jack Hessel, and Kai-Wei Chang. What's "up" with vision-language models? in-
 623 vestigating their struggle with spatial reasoning, 2023. URL <https://arxiv.org/abs/2310.19785>.

624 Parisa Kordjamshidi, Martijn Van Otterlo, and Marie-Francine Moens. Spatial role labeling: To-
 625 wards extraction of spatial relations from natural language. *ACM Trans. Speech Lang. Pro-
 626 cess.*, 8(3), December 2011. ISSN 1550-4875. doi: 10.1145/2050104.2050105. URL <https://doi.org/10.1145/2050104.2050105>.

627 Phillip Y. Lee, Jihyeon Je, Chanho Park, Mikaela Angelina Uy, Leonidas Guibas, and Minhyuk
 628 Sung. Perspective-aware reasoning in vision-language models via mental imagery simulation,
 629 2025. URL <https://arxiv.org/abs/2504.17207>.

630 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 631 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 632 *arXiv:2408.03326*, 2024a.

633 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
 634 training with frozen image encoders and large language models, 2023. URL <https://arxiv.org/abs/2301.12597>.

635 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
 636 Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
 637 embodied decision making. *Advances in Neural Information Processing Systems*, 37:100428–
 638 100534, 2024b.

648 Yun Li, Yiming Zhang, Tao Lin, Xiangrui Liu, Wenxiao Cai, Zheng Liu, and Bo Zhao. Sti-bench:
 649 Are mllms ready for precise spatial-temporal world understanding?, 2025. URL <https://arxiv.org/abs/2503.23765>.
 650

651 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
 652 Andy Zeng. Code as policies: Language model programs for embodied control. In *2023 IEEE
 653 International Conference on Robotics and Automation (ICRA)*, pp. 9493–9500. IEEE, 2023.
 654

655 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 656 Zixun Yu, Yawen Lu, Xuanmao Li, Xingpeng Sun, Rohan Ashok, Aniruddha Mukherjee, Hao
 657 Kang, Xiangrui Kong, Gang Hua, Tianyi Zhang, Bedrich Benes, and Aniket Bera. DL3dv-10k:
 658 A large-scale scene dataset for deep learning-based 3d vision, 2023. URL <https://arxiv.org/abs/2312.16256>.
 659

660 Deku Liu, Yihan Zhang, Zhe Chen, et al. Citygaussianv2: Efficient and geometrically accurate
 661 reconstruction for large-scale scenes. In *ICLR*, 2025a. URL <https://arxiv.org/pdf/2411.00771.pdf>.
 662

663 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning, 2023. URL <https://arxiv.org/abs/2205.00363>.
 664

666 Yuecheng Liu, Dafeng Chi, Shiguang Wu, Zhanguang Zhang, Yaochen Hu, Lingfeng Zhang,
 667 Yingxue Zhang, Shuang Wu, Tongtong Cao, Guowei Huang, Helong Huang, Guangjian Tian,
 668 Weichao Qiu, Xingyue Quan, Jianye Hao, and Yuzheng Zhuang. Spatialcot: Advancing spatial
 669 reasoning through coordinate alignment and chain-of-thought for embodied task planning, 2025b.
 670 URL <https://arxiv.org/abs/2501.10074>.
 671

671 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
 672 Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
 673 Ruan. Deepseek-vl: Towards real-world vision-language understanding, 2024. URL <https://arxiv.org/abs/2403.05525>.
 674

675 Wufei Ma, Haoyu Chen, Guofeng Zhang, Yu-Cheng Chou, Celso M de Melo, and Alan Yuille.
 676 3dsrbench: A comprehensive 3d spatial reasoning benchmark, 2025a. URL <https://arxiv.org/abs/2412.07825>.
 677

679 Wufei Ma, Yu-Cheng Chou, Qihao Liu, Xingrui Wang, Celso de Melo, Jieneng Chen, Jianwen Xie,
 680 and Alan Yuille. Spatialreasoner: Towards explicit and generalizable 3d spatial reasoning, 2025b.
 681 URL <https://arxiv.org/abs/2504.20024>.
 682

682 OpenAI. Hello gpt-4o. Blog, 05 2024. URL <https://openai.com/index/hello-gpt-4o/>. Accessed: November 22, 2024.
 683

685 OpenAI. GPT-5 System Card. Technical report, OpenAI, aug 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. Accessed: 2025-08-10.
 686

687 Zhenyu Pan and Han Liu. Metaspacial: Reinforcing 3d spatial reasoning in vlms for the metaverse.
 688 *arXiv preprint arXiv:2503.18470*, 2025.
 689

690 Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spa-
 691 tial awareness in vision-language models, 2025. URL <https://arxiv.org/abs/2503.17349>.
 692

693 Yansong Qu, Jie Wang, et al. Drag your gaussian: Effective drag-based editing with score distillation
 694 for 3d gaussian splatting. In *SIGGRAPH Asia*, 2025. URL <https://arxiv.org/pdf/2501.18672.pdf>.
 695

696 Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Krahenbuehl, and Vladlen Koltun. Does
 697 spatial cognition emerge in frontier models?, 2025. URL <https://arxiv.org/abs/2410.06468>.
 698

700 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang,
 701 Eric Ryan Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, and Jiajun Wu. Zeronvs: Zero-shot
 novel view synthesis from a single real image. *arXiv:2310.17994*, 2023.

702 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 703 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 704 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

705 Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stan Birchfield. Ro-
 706 bospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics, 2025.
 707 URL <https://arxiv.org/abs/2411.16537>.

708 Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning Zhang, and Joseph J Lim. Multi-view to
 709 novel view: Synthesizing novel views with self-learned confidence. In *ECCV*, 2018.

710 Yihe Tang, Wenlong Huang, Yingke Wang, Chengshu Li, Roy Yuan, Ruohan Zhang, Jiajun Wu, and
 711 Li Fei-Fei. Uad: Unsupervised affordance distillation for generalization in robotic manipulation.
 712 *arXiv preprint arXiv:2506.09284*, 2025a.

713 Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang, Zhaofeng Wu, Wei Ma, Shenhao Wang,
 714 Yunhan Zheng, Zhan Zhao, and Jinhua Zhao. Sparkle: Mastering basic spatial capabilities
 715 in vision language models elicits generalization to spatial reasoning, 2025b. URL <https://arxiv.org/abs/2410.16162>.

716 Gemini Team. Gemini: A family of highly capable multimodal models, 2025. URL <https://arxiv.org/abs/2312.11805>.

717 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 718 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 719 report. *arXiv preprint arXiv:2503.19786*, 2025.

720 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 721 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann
 722 LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
 723 llms, 2024. URL <https://arxiv.org/abs/2406.16860>.

724 Barbara Tversky. Cognitive maps, cognitive collages, and spatial mental models. In *European
 725 conference on spatial information theory*, pp. 14–24. Springer, 1993.

726 Barbara Tversky. Structures of mental spaces: How people think about space. *Environment and
 727 behavior*, 35(1):66–80, 2003.

728 Barbara Tversky, Nancy Franklin, Holly A Taylor, and David J Bryant. Spatial mental models from
 729 descriptions. *Journal of the American society for information science*, 45(9):656–668, 1994.

730 Jianyuan Wang et al. Vggt: Visual geometry grounded transformer for universal 3d reconstruction.
 731 In *CVPR*, 2025.

732 Kangrui Wang*, Pingyue Zhang*, Zihan Wang*, Yaning Gao*, Linjie Li*, Qineng Wang, Hanyang
 733 Chen, Chi Wan, Yiping Lu, Zhengyuan Yang, Lijuan Wang, Ranjay Krishna, Jiajun Wu, Li Fei-
 734 Fei, Yejin Choi, and Manling Li. Reinforcing visual state reasoning for multi-turn vlm agents,
 735 2025. URL <https://github.com/RAGEN-AI/VAGEN>.

736 Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
 737 of llm reasoning: Are multi-agent discussions the key? *arXiv preprint arXiv:2402.18272*, 2024.

738 Wenqi Wang, Reuben Tan, Pengyue Zhu, Jianwei Yang, Zhengyuan Yang, Lijuan Wang, Andrey
 739 Kolobov, Jianfeng Gao, and Boqing Gong. Site: towards spatial intelligence thorough evaluation,
 740 2025. URL <https://arxiv.org/abs/2505.05456>.

741 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 742 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 743 neural information processing systems*, 35:24824–24837, 2022.

744 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
 745 in visual-based spatial intelligence. *arXiv preprint arXiv:2505.23747*, 2025a.

756 Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu Tan. Re-
 757 reinforcing spatial reasoning in vision-language models with interwoven thinking and visual draw-
 758 ing, 2025b. URL <https://arxiv.org/abs/2506.09965>.

759

760 Hongchi Xia, Yang Fu, Sifei Liu, and Xiaolong Wang. Rgbd objects in the wild: scaling real-world
 761 3d object learning from rgbd videos. In *Proceedings of the IEEE/CVF Conference on Computer
 762 Vision and Pattern Recognition*, pp. 22378–22389, 2024.

763

764 Runsen Xu, Weiyao Wang, Hao Tang, Xingyu Chen, Xiaodong Wang, Fu-Jen Chu, Dahua Lin, Matt
 765 Feiszli, and Kevin J. Liang. Multi-spatialmlm: Multi-frame spatial understanding with multi-
 766 modal large language models, 2025a. URL <https://arxiv.org/abs/2505.17015>.

767

768 Wenrui Xu, Dalin Lyu, Weihang Wang, Jie Feng, Chen Gao, and Yong Li. Defining and evaluating
 769 visual language models' basic spatial abilities: A perspective from psychometrics, 2025b. URL
<https://arxiv.org/abs/2502.11859>.

770

771 Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking
 772 in space: How multimodal large language models see, remember, and recall spaces, 2024. URL
<https://arxiv.org/abs/2412.14171>.

773

774 Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
 775 Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Compre-
 776 hensive benchmarking multi-modal large language models for vision-driven embodied agents. *arXiv
 777 preprint arXiv:2502.09560*, 2025a.

778

779 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen
 780 Chen, Haodong Duan, Xiangyu Yue, Dahua Lin, Tai Wang, and Jiangmiao Pang. Mmsi-bench:
 781 A benchmark for multi-image spatial intelligence, 2025b. URL <https://arxiv.org/abs/2505.23764>.

782

783 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 784 React: Synergizing reasoning and acting in language models. In *International Conference on
 785 Learning Representations (ICLR)*, 2023.

786

787 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
 788 Jingren Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large
 789 language models. *arXiv preprint arXiv:2408.04840*, 2024.

790

791 Chun-Hsiao Yeh, Chenyu Wang, Shengbang Tong, Ta-Ying Cheng, Rouyu Wang, Tianzhe Chu,
 792 Yuexiang Zhai, Yubei Chen, Shenghua Gao, and Yi Ma. Seeing from another perspective: Evalu-
 793 uating multi-view understanding in mllms. *arXiv preprint arXiv:2504.15280*, 2025.

794

795 Yang You, Yixin Li, Congyue Deng, Yue Wang, and Leonidas Guibas. Multiview equivariance
 796 improves 3d correspondence understanding with minimal feature finetuning, 2024. URL <https://arxiv.org/abs/2411.19458>.

797

798 Jirong Zha, Yuxuan Fan, Xiao Yang, Chen Gao, and Xinlei Chen. How to enable llm with 3d
 799 capacity? a survey of spatial reasoning in llm, 2025. URL <https://arxiv.org/abs/2504.05786>.

800

801 Weichen Zhan, Zile Zhou, Zhiheng Zheng, Chen Gao, Jinqiang Cui, Yong Li, Xinlei Chen, and
 802 Xiao-Ping Zhang. Open3dvqa: A benchmark for comprehensive spatial reasoning with multi-
 803 modal large language model in open space, 2025. URL <https://arxiv.org/abs/2503.11094>.

804

805 Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali
 806 Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. In *Thirty-Eighth Annual
 807 Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024a.

808

809 Juexiao Zhang, Gao Zhu, Sihang Li, Xinhao Liu, Haorui Song, Xinran Tang, and Chen Feng. Mul-
 810 tiview scene graph, 2024b. URL <https://arxiv.org/abs/2410.11187>.

810 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 811 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 812 *arXiv preprint arXiv:2406.16852*, 2024c.

813

814 Wenyu Zhang, Wei En Ng, Lixin Ma, Yuwen Wang, Jungqi Zhao, Allison Koenecke, Boyang Li, and
 815 Lu Wang. Sphere: Unveiling spatial blind spots in vision-language models through hierarchical
 816 evaluation, 2025. URL <https://arxiv.org/abs/2412.12693>.

817 Yuanhan Zhang, Jinning Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 818 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024d.

819

820 Yuxuan Zhang, Yifan Yang, Jing Zhang, Yifang Wang, Yijun Zhang, and Ming-Hsuan Yang.
 821 Viewcrafter: Taming video diffusion models for high-fidelity novel view synthesis. In *ECCV*,
 822 2024e.

823 Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao, Fanhang Man, Jinqiang Cui, Xin Wang,
 824 Xinlei Chen, Yong Li, and Wenwu Zhu. Embodied-r: Collaborative framework for activat-
 825 ing embodied spatial reasoning in foundation models via reinforcement learning, 2025. URL
 826 <https://arxiv.org/abs/2504.12680>.

827 Duo Zheng, Shijia Huang, Yanyang Li, and Liwei Wang. Learning from videos for 3d world:
 828 Enhancing mllms with 3d vision geometry priors, 2025. URL <https://arxiv.org/abs/2505.24625>.

829

830 Jensen Jinghao Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss,
 831 Philip Torr, Christian Rupprecht, and Varun Jampani. Stable virtual camera: Generative view
 832 synthesis with diffusion models. *arXiv preprint arXiv:2503.14489*, 2025.

833

834 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 835 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 836 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
 837 Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
 838 Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
 839 Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
 840 Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. In-
 841 ternalv3: Exploring advanced training and test-time recipes for open-source multimodal models,
 842 2025. URL <https://arxiv.org/abs/2504.10479>.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

Appendix

868

869

870

Table of Contents

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

A The Use of Large Language Models	18
B MINDCUBE Benchmark	18
B.1 Details for Data Collection and Annotation	18
B.2 Details of our MINDCUBE Benchmark	20
B.3 Comparison with existing spatial intelligence benchmarks	22
B.4 Discussions about other related areas	23
B.5 Examples	24
C Evaluation on MINDCUBE	25
C.1 Prompt Templates for Evaluation	25
C.2 Details in text only evaluation	25
C.3 Human Evaluation	27
C.4 Evaluation Setup	27
C.5 Analysis in settings	27
C.6 Failure case analysis	31
D Data Structures as Cognitive Scaffolds, Evaluation Metrics, and Input-Output Configurations	31
D.1 Data Structures as Cognitive Scaffolds	32
D.2 Evaluation Metrics	34
D.3 Prompts for All Input-Output Configurations	36
E Which Scaffolds Best Guide Spatial Thinking in Unchanged VLMs?	45
E.1 VLM Response Examples for Configurations in Section D.3	45
E.2 Additional Graph Metrics for Generated Graphs	47
E.3 Further Analysis on View Interpolation	48
E.4 Explicit Reasoning with Visual-of-Thought	49
F Can We Teach VLMs to Build and Leverage Spatial Representations?	50
F.1 Supervised Fine-Tuning Data Curation	50
F.2 Detailed Experimental Setup	52
F.3 VLM Response Examples After SFT for Configurations in Section D.3	56
F.4 Detailed Graph Metric Results for SFT Graph-Related Experiments	59
F.5 Which Part of VLM is the Bottleneck for Spatial Understanding?	59
F.6 Branching from Raw-QA SFT Checkpoint	60
F.7 Experiments on Other MLLMs	61
F.8 Prompt Sensitivity Analyses.	61
F.9 Exploring latent spatial representations.	62
F.10 Hyperparameter Tuning Results	62
F.11 Statistical Significance Analysis.	63
G Can Reinforcement Learning Further Refine Spatial Thought Processes?	63
G.1 Detailed Experimental Setup	63
G.2 RL Reward Design Ablation	64
G.3 VLM Response Examples After RL for Configurations in Section D.3	65

918 A THE USE OF LARGE LANGUAGE MODELS
919

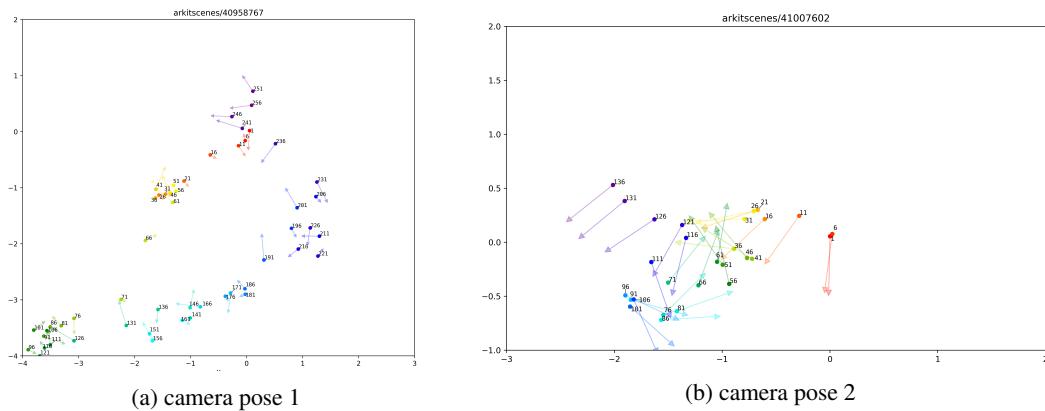
920 We used large language models (LLMs), including Google’s Gemini 2.5 Pro and OpenAI’s GPT-
921 5, as auxiliary tools to assist with writing, editing, and conducting the literature review for this
922 manuscript. All content was critically reviewed, fact-checked, and revised by the human authors
923 to ensure its scientific validity and originality. The authors are fully responsible for all statements
924 and conclusions presented in this paper. Specifically, we use LLMs for polishing our wording and
925 writing, and we use LLMs to retrieve several related works.

927 B MINDCUBE BENCHMARK
928929 B.1 DETAILS FOR DATA COLLECTION AND ANNOTATION
930

931 **Image Collection and Selection.** Our MINDCUBE benchmark comprises 3,268 images (2,302
932 indoor/outdoor images from publicly released dataset and 400 self-collected images), where we im-
933 plement a comprehensive image selection methodology encompassing four distinct view dynamics,
934 incorporating various data sources and processing procedures, as shown in Fig.2.

935 For rotation view dynamics, we implement a three-stage filtering strategy to extract meaningful
936 camera trajectories and key frames from ArkitScenes Baruch et al. (2021) dataset.

937 In the first stage, we analyze the top-down view of camera poses within each scene to identify two
938 types of trajectories: linear paths and small rotational arcs. A linear trajectory is characterized by
939 consistently oriented cameras exhibiting significant displacement perpendicular to their viewing di-
940 rection. A rotational arc trajectory is identified when three to four camera positions demonstrate
941 approximately 90-degree relative orientation changes while being distributed along an approximate
942 circular arc. The second stage focuses on selecting two critical frames from the previously identified
943

956 Figure 1: Examples of camera poses in ArkitScenes
957

958 translation segments. The selection criteria mandate that: (1) the camera movement direction must
959 be parallel to the object arrangement direction, (2) this movement should be aligned with the hori-
960 zontal axis, (3) the first frame should only capture objects A and B, while the second frame should
961 only capture objects B and C, and (4) both frames must be free from motion blur and exhibit clear
962 object visibility.

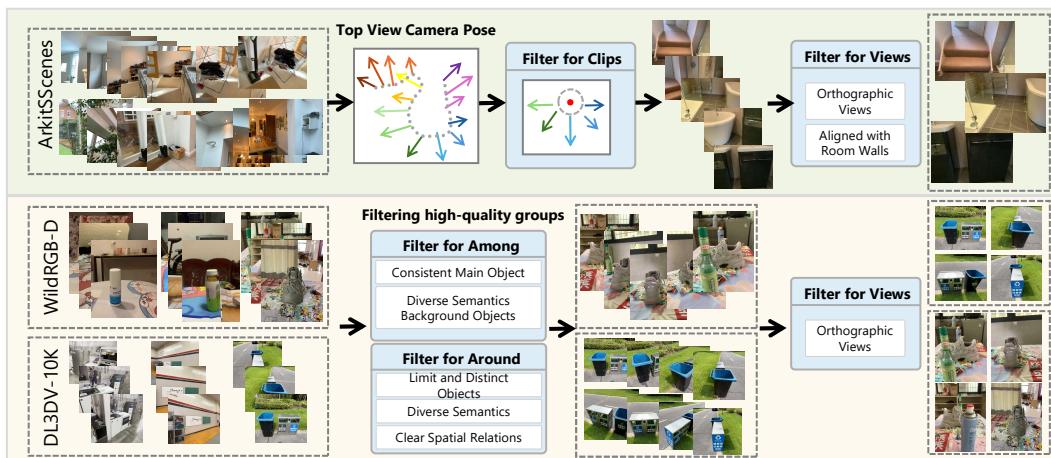
963 The third stage processes the rotation segments to extract three or four key frames. These frames
964 must satisfy several conditions: (1) the camera positions should appear to originate from a station-
965 ary rotating camera, even if slight circular movement exists, (2) the camera orientations should align
966 with standard cardinal directions (approximately 90 degrees apart), and (3) each frame should con-
967 tain no more than three semantically distinct primary objects that occupy over 50% of the frame area
968 relative to the background.

969 For among view dynamics, image groups are manually selected from DL3DV-10KLing et al. (2023)
970 and WildRGB-DXia et al. (2024) datasets. We employ a single-stage selection process to identify

972 four key frames representing cardinal viewpoints (front, left, right, and back) from 360-degree scene
 973 captures. The selection criteria are: (1) camera orientations must align with standard directions,
 974 ensuring that the central object, its background objects, and the camera’s line of sight are collinear
 975 and parallel or perpendicular to standard scene elements such as tables or walls, (2) we reject sets
 976 where three or more frames share identical semantic background information, and (3) we discard sets
 977 where three or more frames have severely occluded background objects that cannot be reconstructed
 978 from information in the other frames.

979 For around view dynamics, image groups are manually curated from the DL3DV-10KLing et al.
 980 (2023) dataset and assigned sequential identifiers. The front view (designated as view 1) must
 981 provide clear visibility of all relevant information. This view is established as the reference point
 982 for subsequent views in the sequence.

983 This structured approach to image selection and processing yields a rich dataset that supports sub-
 984 sequent model training and testing procedures. The methodology ensures comprehensive coverage
 985 of spatial relationships, occlusion states, and view-dependent object characteristics across multiple
 986 viewing scenarios.



1004 Figure 2: MINDCUBE Bench construction pipeline.
 1005
 1006
 1007

1008 **Data Annotation.** After collecting and filtering the images, we follow a two-phase paradigm for
 1009 annotation: We establish a systematic image annotation protocol to ensure data consistency and
 1010 accuracy. The annotation framework encompasses four key dimensions: spatial relationship identi-
 1011 fication, object grouping rules, semantic orientation determination, and occlusion level assessment.
 1012 We provide a pdf of the annotation interface in the supplementary material.

1013 Regarding spatial relationship identification, annotators are required to identify primary object enti-
 1014 ties within images and determine their spatial relationships. These relationships are primarily
 1015 categorized into two types: front-back relationships typically involving two primary objects, with
 1016 priority given to objects directly behind as key entities; and left-right relationships encompassing
 1017 two to four primary objects, where adjacent objects with front-back relationships can be considered
 1018 as a unified entity.

1019 To enhance annotation efficiency and semantic completeness, this study introduces object grouping
 1020 rules. Multiple objects can be annotated as a unified entity when they collectively form clear spatial
 1021 relationships with other primary objects. Each object may include attribute descriptors (e.g., color,
 1022 material) to enhance semantic expression. Combined object entities must maintain distinct spatial
 1023 relationships with other primary objects.

1024 For objects with definitive semantic fronts, the following information must be recorded: the object’s
 1025 inherent semantic front, the object’s orientation relative to the current viewpoint (aligned, reversed,
 leftward, rightward, etc.), and the object’s actual projected direction within the scene.

Occlusion levels are evaluated using a four-tier classification system: complete occlusion where the object is entirely invisible from the current viewpoint; major occlusion where primary object features are difficult to identify; minor occlusion where primary object features remain identifiable; and no occlusion where the object is fully visible. For cases of complete occlusion, the annotation system provides multi-view scene images, ensuring object visibility in at least one viewpoint to support subsequent cross-view question-answering system training.

This annotation protocol provides a structured semantic foundation for subsequent automated question-answer pair generation while ensuring data quality and consistency. Through this standardized annotation process, we effectively capture key information including spatial relationships, compositional features, semantic orientations, and occlusion states of objects within scenes.

Examples for automatic QA generation pipeline. Our automatic QA generation pipeline gener-

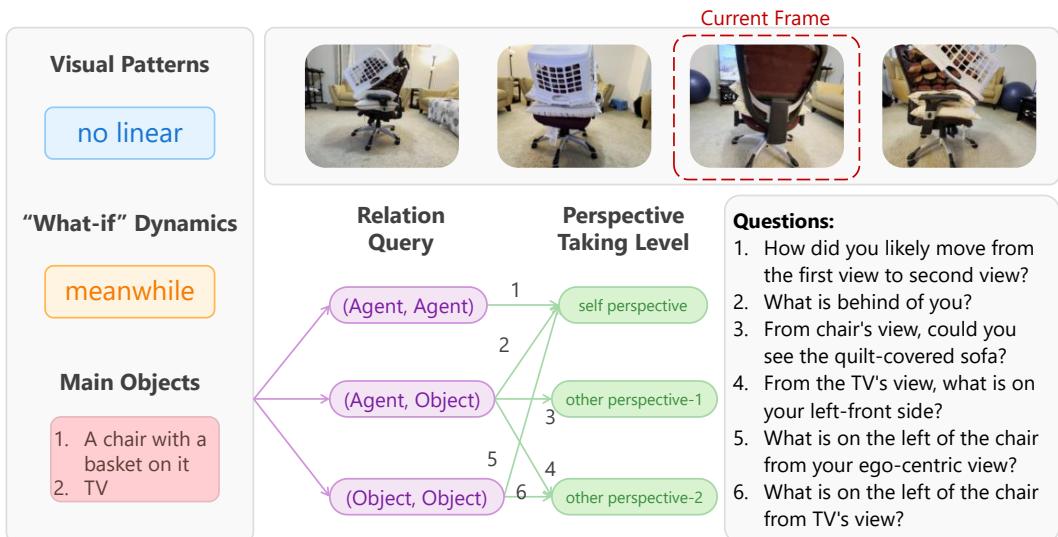


Figure 3: Example of different question-related label combinations to generate QA pairs.

ates different types of questions using combinations of labels. Each question's label combination is encoded in its ID (e.g., "among_group001_q1_1_1"), while the original object and label information is preserved in the meta_info field to track the context of question generation.

B.2 DETAILS OF OUR MINDCUBE BENCHMARK

B.2.1 THREE KINDS OF INVISIBILITY SETTINGS

Rotation. In this setting, our camera remains stationary while rotating in place, capturing 2 to 4 orthogonal views. In each view, a central object remains visible in the foreground, while all views maintain equal importance in the spatial representation.

We evaluate models' understanding of spatial invisibility by asking questions such as 'When positioned at a particular viewpoint, what should be to your left or right (given that each view only reveals what's directly ahead)?' or 'After rotating a quarter or half turn, what objects would be in front of you, to your left, behind you, or to your right?' We expect models to construct a comprehensive spatial understanding by leveraging the **sequential nature of the views and consistent spatial cues** across images (such as lighting direction), thereby demonstrating their ability to reason about the complete environment despite only having access to partial visual information from each viewpoint.

Around. In this setting, we leverage **occlusion** phenomena to force MLLMs beyond simple 2D spatial recognition. When viewing objects from different angles, some objects become partially or fully hidden, requiring models to:

- Maintain object permanence despite partial visibility

- Transform lateral relationships (left-right) from frontal views into depth relationships (front-back) for side views
- Integrate spatial information across multiple viewpoints to form a coherent 3D understanding

This approach prevents models from relying solely on direct visual cues and instead necessitates true 3D spatial reasoning by combining information from multiple perspectives.

Among. In this setting, the camera rotates around a central object, positioned between this central object and several surrounding objects. Four orthogonal views are captured, with each view showing the central object positioned in front of one of the surrounding objects.

This setup creates interesting visibility constraints across different perspectives. For instance, a surrounding object visible in one view may be invisible in another view because of the constraints imposed by the camera’s field of view. Through establishing consistency relationships between these views, we can infer the relative positions of objects not directly visible from certain perspectives. When an object is not visible from a particular viewpoint, consistency and spatial reasoning can determine its position relative to the central object.

All views hold equal status in this framework, allowing for bidirectional establishment of invisibility relationships. This creates a coherent spatial reasoning system where information from each perspective contributes to a complete understanding of the three-dimensional arrangement, even when direct visual confirmation is unavailable from certain angles.

B.2.2 LABEL TAXONOMY

We use image related labels for better analysis and question related labels for automatic QA generation with different label combinations.

Visual Patterns. In our taxonomy of spatial configurations, we classify visual patterns into distinct categories based on their geometric relationships. Linear arrangements refer to configurations where objects are positioned along a single axis, forming a collinear pattern. Non-linear arrangements, conversely, are characterized by objects positioned such that the connecting lines between adjacent pairs form 90-degree angles, creating rectilinear patterns. This binary classification serves as a fundamental attribute in our spatial relationship labeling scheme, enabling precise description and analysis of scene compositions across various domains.

“What if” Dynamics. “What if” Dynamics refers to the model’s capability to comprehend and reason about dynamic perspective changes occurring within images or posed questions. We conceptualize viewpoint transitions as combinations of translation and rotation operations, resulting in four distinct categories:

- Pure Translation: Cases where the viewpoint undergoes only translational movement without rotational change.
- Pure Rotation: Scenarios involving rotational transformation of the viewpoint while maintaining its positional coordinates.
- Simultaneous Translation-Rotation(Meanwhile): Instances where both translational and rotational operations occur concurrently.
- Sequential Translation-Rotation(Sequence): Cases where translation and rotation occur in sequence rather than simultaneously. Notably, in our dataset, this category is uniquely represented through textual descriptions in the questions rather than through explicit visual transformations.

The first three categories of “What if” dynamics are visually demonstrated through changes in view representation, while the sequential category requires models to interpret text-based descriptions of perspective changes. This taxonomy provides a systematic framework for evaluating spatial reasoning capabilities across diverse viewpoint transformation scenarios.

Relation Query. We define three distinct categories of relation queries that capture the fundamental nature of spatial reasoning tasks:

- 1134 • Agent-Agent: This pattern involves self-referential spatial positioning, where the observer
1135 must evaluate and potentially adjust their own position in space. It requires egocentric
1136 spatial reasoning and self-awareness of one’s location relative to environmental constraints.
1137
- 1138 • Agent-Object: This pattern focuses on determining the orientation of an observed object
1139 relative to the observer’s position. Unlike the P-P pattern, the emphasis here is on object
1140 perception rather than self-positioning, requiring the observer to make judgments about
1141 external entities while maintaining awareness of their own reference frame.
1142
- 1143 • Object-Object: This pattern involves reasoning about the spatial relationship between two
1144 discrete objects in the environment, independent of the observer’s position. This allocen-
1145 tric spatial reasoning requires understanding relative positioning, distance, and orientation
1146 between entities without necessarily using oneself as a reference point.
1147

1148 These categorizations provide a structured approach to analyzing the cognitive demands of different
1149 spatial reasoning tasks and can inform both the design of spatial question answering systems and the
1150 evaluation of human spatial cognition abilities.
1151

1152 Perspective Taking. We propose a label called ”Perspective Taking” that categorizes the complexity
1153 of viewpoint projection. This label distinguishes between three increasingly sophisticated levels of
1154 perspective reasoning:

- 1155 • Self Perspective: Reasoning based on the current camera view or the observer’s own view-
1156 point. This represents the baseline where no perspective shift is required.
1157
- 1158 • Other’s Perspective Taking-1: The ability to determine visibility relationships from another
1159 agent’s viewpoint. This involves understanding what objects are visible or occluded from
1160 a different viewpoint (e.g., determining whether a specific object is within the field of view
1161 of another camera). The another agent’s viewpoint is usually determined by an object with
1162 a clear orientation in the image.
1163
- 1164 • Other’s Perspective Taking-2: The ability to understand how spatial relationships transform
1165 when viewed from another agent’s perspective. This more advanced capability requires
1166 mental rotation and spatial transformation to reason about relative positions (e.g., deter-
1167 mining whether, from another viewpoint, object X appears to be positioned behind object
1168 Y).
1169

1170 This classification aligns with developmental psychology research on perspective-taking abilities,
1171 where Level-1 perspective taking typically develops earlier than the more cognitively demanding
1172 Level-2 perspective taking.
1173

1174 We provide performance across different categories and labels in Table1 and 2. Upon detailed
1175 analysis of model performance across various capabilities, certain trends emerge. The O-O (Object-
1176 Object) task within Relation Pattern also demonstrates generally lower scores across the board,
1177 suggesting it is a less tractable problem for current models. Notably, InternVL2-8B struggles with
1178 the sequence task, exhibiting the lowest score among all evaluated models in that category.
1179

1180 Regarding model stability, Mantis(SigLip) demonstrates robust performance in both Object Ar-
1181 rangement and Relation Pattern sections, indicating a consistent capability in these spatial reasoning
1182 tasks. Similarly, Qwen2.5-VL-7B-Instruct maintains relatively stable performance within Viewpoint
1183 Dynamics. In contrast, InternVL2-8B shows a broader instability, with consistently lower overall
1184 scores and considerable performance fluctuations across different sub-categories, highlighting areas
1185 for further improvement in its generalizability and robustness.
1186

1187 B.3 COMPARISON WITH EXISTING SPATIAL INTELLIGENCE BENCHMARKS

1188 To provide a clear and convenient overview of the current research landscape, we have compiled
1189 the detailed comparison table below. Our analysis suggests that higher-order cognitive abilities like
1190 Free-Form Reasoning (FFR), Perspective-Taking, and Consistency are crucial for advancing beyond
1191 simple spatial perception. Our MindCube framework is distinctive in its holistic integration of these
1192 diverse challenges. While our benchmark does not currently focus on fine-grained Quantitative
1193 questions, this was a deliberate design choice. Our priority is to address the more fundamental and
1194 pressing challenge of building a coherent mental model, rather than precise numerical calculation.
1195

Table 1: Performance of VLMs on MINDCUBE across categories.(Part 1)

Model	Overall	Object Arrangement		Perspective Taking		
		Linear	Perp.	Self	Level1	Level2
LLaVA-Video-7B-Qwen2	41.96	30.12	43.11	42.19	60.76	33.80
Mantis(SigLip)	41.04	50.99	40.08	41.20	54.43	35.41
GPT-4o	38.81	29.16	39.75	39.07	46.20	31.86
Qwen2.5-VL-3B-Instruct	33.21	30.34	33.49	32.96	46.84	36.28
LongVA-7B	29.46	24.88	29.91	28.81	51.90	39.83
Qwen2.5-VL-7B-Instruct	29.26	21.35	30.02	28.77	46.84	36.81
deepseek-vl2-small	47.62	26.91	49.63	48.32	56.33	31.11
Robobrain	37.38	29.53	38.14	37.56	55.06	30.57
Claude-sonnet-4	44.75	47.62	44.48	45.32	49.38	31.74
Space-Mantis	22.82	29.32	22.19	22.15	45.57	33.48
InternVL2-8B	18.68	13.11	19.22	17.89	64.56	27.99
Space-Qwen	33.28	26.32	33.95	33.06	46.84	35.63
LLaVA-Onevision-7B	47.43	44.09	47.75	48.04	51.27	33.48
Spatial-MLLM	32.06	20.92	33.13	31.79	46.84	35.20
mPLUG-Owl3-7B	44.85	26.91	46.59	45.15	60.13	35.74

Table 2: Performance of VLMs on MINDCUBE across categories.(Part 2)

Model	Relation Pattern			Viewpoint Dynamics		
	A-A	A-O	O-O	Rotation	Meanwhile	Sequence
LLaVA-Video-7B-Qwen2	36.22	57.61	26.67	35.71	30.12	73.45
Mantis(SigLip)	23.78	64.16	25.24	37.65	24.99	82.74
GPT-4o	49.30	48.38	16.70	32.65	31.09	59.73
Qwen2.5-VL-3B-Instruct	37.85	37.51	20.65	37.37	27.88	46.05
LongVA-7B	19.72	35.49	25.58	35.89	24.67	40.50
Qwen2.5-VL-7B-Instruct	31.41	34.67	15.63	38.76	22.87	43.76
deepseek-vl2-small	43.98	68.27	25.33	37.00	32.97	87.13
Robobrain	30.94	49.18	27.37	35.80	28.79	59.66
Claude-sonnet-4	41.78	67.25	15.85	48.42	34.76	69.53
Space-Mantis	28.18	17.03	20.89	37.65	24.98	14.46
InternVL2-8B	15.67	12.47	24.58	36.45	21.78	7.36
Space-Qwen	31.59	38.14	26.13	38.02	28.51	44.58
LLaVA-Onevision-7B	42.28	65.87	29.79	36.45	33.80	84.38
Spatial-MLLM	27.72	37.75	25.80	38.39	26.84	44.19
mPLUG-Owl3-7B	47.80	62.29	18.83	37.84	31.02	81.55

B.4 DISCUSSIONS ABOUT OTHER RELATED AREAS

Early research on spatial language and spatial role labeling largely originated from large-scale corpora like the HCRC Map Task Map (n.d.) (1990s), which analyzed how people use language to express and understand spatial relations through task-oriented dialogues. This line of work established the foundational framework for Spatial Role Labeling (SpRL), which categorizes sentence entities into a Trajector (the moving or described object), a Landmark (the reference point), and a Spatial Indicator (the preposition or verb indicating the relationship). Pioneering works in this field include that of Kordjamshidi et al. (2011). Subsequently, the field extensively explored computational models to automatically identify and extract these spatial role labels, giving rise to crucial shared tasks like SemEvalSem (n.d.).

In contrast to this past research, which was primarily based on text and symbolic representations, current work on spatial intelligence in multimodal large models is centered on learning and integrating spatial concepts directly from images, videos, and text. These models are no longer limited to simple Trajector-Landmark relation extraction. Instead, they can handle more complex, context-aware spatial reasoning through the joint understanding of vision and language, such as identifying the relative positions and dynamic changes of objects in a scene, thereby achieving a more human-like, visually grounded spatial cognition.

1242 Table 3: Comparison of MINDCUBE with existing spatial intelligence benchmarks
1243

1244 **Legend:** ✓ = Supported/Evaluated, ✗ = Not Supported/Evaluated, R = Real-world, S = Simulated, - = Not Applicable, Camera = Whether camera positions have specific spatial distribution in multi-view, FFR = Free Form Reasoning, Consistency = Spatial Consistency Perception from multiview images, Orientation = Awareness of Object Orientation

Benchmark	QA Pairs	Multi-view	Env.	Camera	Outdoor	Orientation	FFR	Perspective-Taking	Consistency
What's upKamath et al. (2023)	5K	✗	R	-	✗	✗	✗	✗	✗
VSRliu et al. (2023)	10K	✗	R	✗	✓	✓	✗	✗	✗
CV-BenchTong et al. (2024)	2.6k	✗	R	✗	✓	✗	✗	✗	✗
SpatialIRGPT-BenchCheng et al. (2024)	1.4K	✗	R	✗	✓	✓	✗	✗	✗
SpatialBot-BenchCai et al. (2024)	200	✗	R	-	✓	✗	✗	✗	✗
SAT	218k	✓	S	✓	✗	✓	✗	✓	✗
VSI-BenchYang et al. (2024)	5.1K	✓	R	✗	✗	✓	✓	✗	✗
RoboSpatialSong et al. (2025)	1M	✗	R	-	✗	✗	✗	✗	✗
EmbSpatial-BenchDu et al. (2024)	3.6k	✗	R	✗	✓	✗	✓	✓	✓
3DSRBenchMa et al. (2025a)	2.8k	✓	R	✗	✗	✓	✓	✗	✗
Spatial-MMRamakrishnan et al. (2025)	2.3K	✓	R/S	-	✗	✗	✗	✗	✓
STI-BenchLi et al. (2025)	2.1k	✓	R	✗	✗	✓	✗	✗	✗
OmniSpatialJia et al. (2025)	1.5k	✗	R/S	-	✓	✓	✓	✓	✓
SpaceE-10Gong et al. (2025)	6k	✗	S	✗	✗	✗	✗	✗	✗
MMSI-BenchYang et al. (2025b)	1k	✓	R	✓	✗	✗	✗	✗	✗
MindCube (Ours)	20k	✓	R	✓	✓	✓	✓	✓	✓

1260 B.5 EXAMPLES

1261 We show some examples in Figure 5, 6 and 4.

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

Figure 4: Example of among setting.

1296	Example of Around setting
1297	
1298	
1299	
1300	
1301	
1302	
1303	
1304	<p>View1(Front) View2(Left) View3(Right)</p>
1305	
1306	: meanwhile object-object self perspective linear
1307	
1308	Question: In the second image, what is the nearest object the nearest object behind of the black waste bin?
1309	
1310	Options: A. green waste bin B. blue waste bin C. shrubbery
1311	
1312	Question: In the third image, what is the nearest object behind of the blue waste bin.
1313	
1314	Options: A. green waste bin B. blue waste bin C. shrubbery
1315	
1304	: meanwhile object-object self perspective linear
1305	
1306	Question: If you are at the view of the second image now then you turn right and go straight, is the green waste bin be closer to you?
1307	
1308	Options: A. Yes B. No
1309	
1310	: meanwhile object-object self perspective linear
1311	
1312	Question: If you are at the view of the third image now, then you turn left and go straight, is the green waste bin be closer to you?
1313	
1314	Options: A. Yes B. No
1315	

Figure 5: Example-1 of around setting.

C EVALUATION ON MINDCUBE

C.1 PROMPT TEMPLATES FOR EVALUATION

Evaluation Prompt Prefix

Based on these images, answer the question based on this rule: You only need to provide ***ONE*** correct answer selecting from the options listed below. For example, if you think the correct answer is 'A. above' from 'A. above B. under C. front D. behind.', your response should only be 'A. above'.

The Question is:

C.2 DETAILS IN TEXT ONLY EVALUATION

In the text-only evaluation, we replace the original image input with corresponding textual descriptions and assess the performance of models based on these descriptions. The purpose of this evaluation is to highlight how much information may be lost or distorted when the visual input is substituted with text-based representations, and to demonstrate the crucial role of visual data in the models' performance.

We used two types of captions: **brief** and **dense**. The brief captions provide a concise overview of the image, while the dense captions offer a more detailed description with a focus on the spatial relationships between objects. Additionally, the models are evaluated using textual descriptions (text-only evaluation) based on these captions, with no access to the actual images.

Prompt for Brief Captioning

Describe this image briefly.

Prompt for Dense Captioning

Describe this image in detail, specifically focusing on the spatial relationship between objects.

Figure 6: Example-2 of around setting.

Text-only evaluation Prompt Prefix

You need to gather information about each image based on the descriptions I provide below, and answer the given questions using those textual descriptions, without directly viewing the images.

Image 1: <Caption 1>

11

Image N: <Caption N>

As shown in the Table 4, all three models exhibit a noticeable performance decline when replacing the original image input with its corresponding text-based description. Specifically, the brief captions cause the most significant performance drop. For instance, RoboBrain-8B experiences a 7.83% decrease with the brief captions, and LLaVA-OneVision-7B drops by 12.91% in the same condition. Even when using dense captions, which offer more detail, there is still a performance reduction, although the decrease is slightly less pronounced compared to brief captions. In conclusion, while textual descriptions can convey some information, they fail to capture the richness and intricacies of visual data, leading to a marked reduction in performance across all models.

1404
 1405 Table 4: Text-only (T) evaluation vs. original evaluation with image inputs (I). The results highlight
 1406 a significant performance drop when the original image input is replaced with the corresponding
 1407 text-based caption, particularly with the brief captions. In all cases, model performance decreases
 1408 notably, underscoring that our benchmark is *vision-centric*.
 1409

Model	Brief (T)	Dense (T)	Original (I)
RoboBrain-8B	33.92% <small>↓7.83%</small>	35.58% <small>↓6.17%</small>	41.75%
LLaVA-OneVision-7B	34.17% <small>↓12.91%</small>	35.92% <small>↓11.16%</small>	47.08%
Qwen2.5-VL-7B-Instruct	27.00% <small>↓5.33%</small>	28.75% <small>↓3.58%</small>	32.33%

1414 C.3 HUMAN EVALUATION

1415 We use our Tiny Benchmark—encompassing all task categories for evaluation by 5 human annota-
 1416 tors, each of whom independently answers every question. Here is the results5.

1417 Table 5: Comparison of Human and GPT-4 Performance (%)

Model/Annotator	GPT4-o	Human-max	Human-min	Human-avg
Accuracy	36.54	94.77	94.20	94.55

1424 This observation demonstrates the disparity in spatial reasoning capabilities between humans and
 1425 state-of-the-art multimodal large language models, where humans exhibit superior performance in
 1426 solving spatial problems that remain challenging for advanced AI systems.

1428 C.4 EVALUATION SETUP

1430 To comprehensively evaluate model performance, we conducted experiments on a diverse suite of
 1431 models. This suite includes models with native multi-image reasoning capabilities (e.g., LLaVA-
 1432 Onevision (Li et al., 2024a), LLaVA-Video (Zhang et al., 2024d), mPLUG-Owl3 (Ye et al., 2024),
 1433 InternVL2.5 (Chen et al., 2024b), QwenVL2.5 (Bai et al., 2025), LongVA (Zhang et al., 2024c),
 1434 DeepSeek-VL2 (Lu et al., 2024)), Gemma3 Team et al. (2025), models fine-tuned on interleaved
 1435 image-text data (e.g., Mantis (Jiang et al., 2024)), leading proprietary APIs (e.g., GPT-5, Claude-
 1436 4-Sonnet), and models specifically fine-tuned for spatial reasoning tasks (e.g., RoboBrain (Ji et al.,
 1437 2025), Space-Mantis (Chen et al., 2024a), Space-Qwen (Chen et al., 2024a), and Spatial-MLLM Wu
 1438 et al. (2025a)).

1439 C.5 ANALYSIS IN SETTINGS

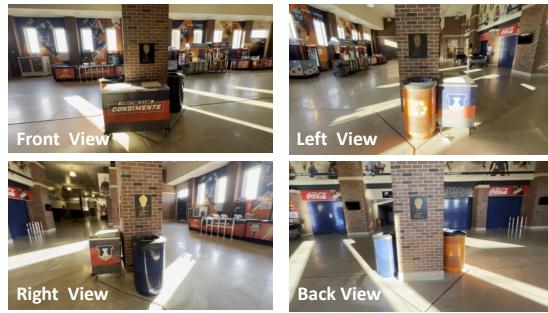
1440 C.5.1 AROUND

1441 First, we examine the relationship between occlusion degree and response accuracy across four
 1442 visibility levels (fully visible, mostly visible, mostly occluded, fully occluded) to determine whether
 1443 performance degrades proportionally with increasing occlusion. Second, we investigate the impact
 1444 of camera height variation within the same lateral viewpoint, as different vertical perspectives
 1445 yield distinct occlusion patterns that may challenge the model’s ability to maintain spatial coherence.
 1446 These paradigms evaluate whether models perform consistently when transferring spatial
 1447 relationships across viewpoints, particularly in scenarios with significant object size discrepancies
 1448 where smaller objects may be completely occluded from one angle but visible from another. This
 1449 multifaceted analysis approach enables a more nuanced understanding of MLLMs’ genuine 3D
 1450 spatial reasoning capabilities beyond simple pattern recognition of 2D visual cues. We mainly
 1451 evaluated GPT-4o and Qwen2.5-VL.
 1452

1453 **Occlusion Degree Analysis.** Our analysis reveals a notable correlation between occlusion
 1454 degree and model performance. Accuracy rates declined progressively with increasing occlusion,
 1455 with an average decrease of 50.7% between fully visible and fully occluded conditions ($p < 0.01$).
 1456 Interestingly, the performance degradation was non-linear, with a precipitous drop occurring
 1457 between the mostly visible and mostly occluded categories (28.7% decrease), suggesting a potential

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468

Around
*Complex
Arrange
-ment*



1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Question1: From the viewpoint presented in image 2, is there an blue trash can behind the brick-patterned column? A. Yes B. No.

Question2: From the viewpoint presented in image 3, is there an orange trash can behind the brick-patterned column? A. Yes B. No.

Answer1: In image 2, the viewpoint is from the left side of the brick-patterned column. Image 4 shows the back view of the column, where a blue trash can is visible. Therefore, from the viewpoint in image 2, the blue trash can is indeed behind the column.

Therefore, my answer is A. Yes.

Answer2: In image 3, the viewpoint shows a blue trash can next to the brick-patterned column. Image 4, which shows the back view, reveals an orange trash can next to the column. Therefore, from the viewpoint in image 3, the orange trash can is not visible because it is on the opposite side of the column.

Therefore, my answer is B. No.

GPT-4o Response

Figure 7: Example of complex spatial arrangement in around setting.

threshold effect in the models' spatial reasoning capabilities. Error analysis in Figure8 further revealed that models frequently defaulted to proximity-based guessing when confronted with heavily occluded objects, rather than leveraging cross-view information to reason about hidden spatial relationships.

Camera Height Impact Analysis. Varying camera heights significantly affected model performance through different occlusion patterns. High-angle perspectives yielded 24.8% higher accuracy than eye-level views by revealing tops of partially occluded objects and providing better scene context. This advantage was most pronounced in dense arrangements where top-down angles exposed spatial gaps between objects otherwise invisible from eye-level. Models clearly benefited from the holistic understanding afforded by elevated viewpoints, where global spatial relationships became more apparent. In contrast, eye-level perspectives with more severe occlusions led to poorer spatial reasoning, suggesting limited ability to mentally reconstruct hidden scene elements from partial visual information.

The integration of findings across all three dimensions indicates that current MLLMs possess partial but inconsistent 3D spatial reasoning capabilities. The models' performance appears heavily influenced by the visibility of key reference points across multiple viewpoints, suggesting a **reliance on visual correspondence matching rather than true 3D mental modeling**. The observed asymmetries in spatial transformation paradigms further support this hypothesis, as a robust 3D reasoning system would demonstrate consistent performance regardless of the specific transformation required.

C.5.2 AMONG

While the correctness of one single question indicates how often a model answers an isolated question correctly, it does not capture whether the model remains consistent when presented with objects with different visual attributes and different number of central objects while retaining the original peripheral scenes.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Around Different Height

Question: Based on these three images (image 1, 2, and 3) showing the same scene from different viewpoints (front, left, and right): From the viewpoint presented in image 3, is there a table behind the trash can? A. Yes B. No."

Answer1: In image 3, we see the trash can positioned against the wall with no visible table behind it. The angle of the shot **does not show** any part of a table behind the trash can.

Therefore, my answer is **B. No**.

Answer2: In image 3, we see a trash can placed against a wall with a partial view of the floor and part of another object that appears to be a table. The angle suggests that if there were a table behind the trash can, it would be visible or at least partially seen. However, the image only shows the trash can and part of the floor, **without any indication of a table** being present behind it.

Therefore, my answer is **B. No**.

Answer3: In image 3, we see the trash can positioned in front of a wall with a table visible behind it. The perspective **shows that the table is indeed located** behind the trash can when viewed from this angle.

Therefore, my answer is **A. Yes**.

Answer1: - In image 1, we see a table and chairs adjacent to the trash can near wall.
- In image 2, the view from the left shows the table extends from the wall, and the trash can is closely beside it.

- In image 3, the view from the right toward the trash can shows the area where the table is located.

From this viewpoint, while there's no direct view behind the trash can, based on the previous images that illustrate the spatial arrangement, the table should be visible next to the trash can, not directly behind it. Therefore, my answer is **B. No**.

Answer2: Image 1 shows a trash can to the right of a table with two chairs. Image 2 reinforces this by showing the table and chairs aligned along the wall, with the trash can just beyond the table. Image 3 shows the view from the side of the trash can, where the table is not visible directly behind it, suggesting it is adjacent rather than directly behind from this viewpoint. Therefore, my answer is **B. No**

Answer3: In image 1, a table is visible next to a trash can. Image 2 confirms the same table and trash can placement from a different angle. Image 3 shows the trash can in the foreground, and a table is visible directly behind it. Therefore, my answer is **A. Yes**.

Qwen-7B-Instruct Response

GPT-4o Response

Figure 8: Example of different camera heights' impact in around setting.

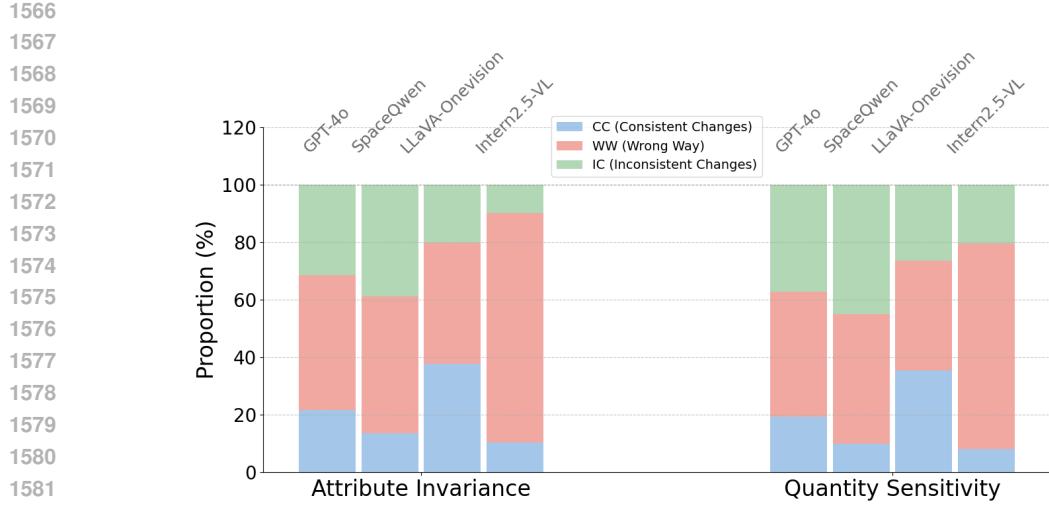


Figure 9: Paired question-answers inconsistency in two tests. We report the proportions of IC, CC and WW. Notably, SpaceQwen has a highest inconsistency (around 40%). GPT-4o and LLaVA-Onevision exhibit more balanced performance.

To investigate this, we also propose two different tests:

Attribute Invariance Test. We modify only the visual attributes (e.g., color, category) of the central object while keeping the spatial configuration of all objects unchanged, as shown in Figure 10. A robust spatial reasoning system should maintain consistent answers, as spatial relationships remain invariant despite superficial attribute changes.

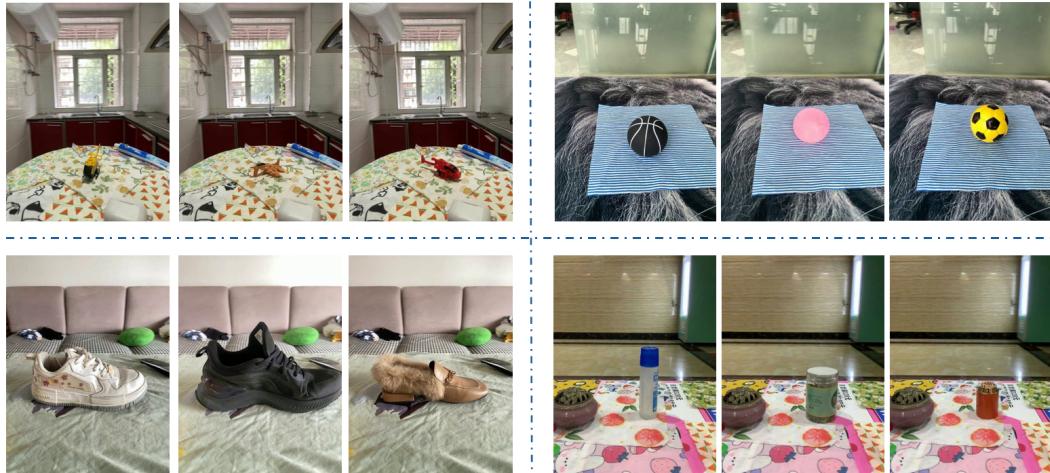


Figure 10: Examples in Attribute Invariance Test.

Quantity Sensitivity Test. We increase the number of central objects (e.g., from one to three) while retaining the original peripheral objects, as shown in Figure 11. This modification is hypothesized to enhance reasoning performance, as additional central objects provide more reference points for establishing cross-view correspondences and consistency.

We also propose to look into the proportions of paired questions in tests where the answers are inconsistent with one another. First, we classify each paired instance into three scenarios: 1) CC (Both Correct) when the model answers both the primary and paired question correctly, 2) WW (Both

Figure 11: Examples in Quantity Sensitivity Test.

Wrong) when it fails both versions, and 3) IC (Inconsistent) when the model answers one version correctly but fails the other.

As shown in Figure 9, we report the proportions of IC (in consistent) outcomes across 4 MLLMs in two tests — two open-source (Intern2.5-VL, LLaVA-Onevision), a spatial model (SpaceQwen) and a closed-source GPT-4o. We have several observations: 1) SpaceQwen exhibits notably high inconsistency score IC (around 40%) on both tasks, 2) LLaVA-Onevision remain fairly balanced inconsistency and high performance across tests, while InternVL vary significantly across tests.

Our systematic evaluation demonstrates MLLMs can achieve attribute-invariant spatial reasoning but struggle to utilize additional reference objects effectively. This highlights the need for: (1) enhanced geometric reasoning architectures, and (2) comprehensive benchmarks evaluating both attribute invariance and quantity sensitivity in 3D spatial understanding.

C.6 FAILURE CASE ANALYSIS

The observed pattern of errors indicates that models primarily rely on local relationship matching rather than inferring global spatial configurations, which represents a critical gap compared to human-like spatial reasoning abilities. Future architectural improvements should therefore focus on enhancing transitive spatial inference mechanisms and view-invariant scene representation to support more robust reasoning across multiple perspectives.

D DATA STRUCTURES AS COGNITIVE SCAFFOLDS, EVALUATION METRICS, AND INPUT-OUTPUT CONFIGURATIONS

In this section, we provide detailed descriptions of the three data structures employed as cognitive scaffolds to approximate spatial mental models in VLMs, followed by formal definitions of the evaluation metrics employed across all experiments. Furthermore, we show the prompts for all the input-output configurations that were used across the following experiments.

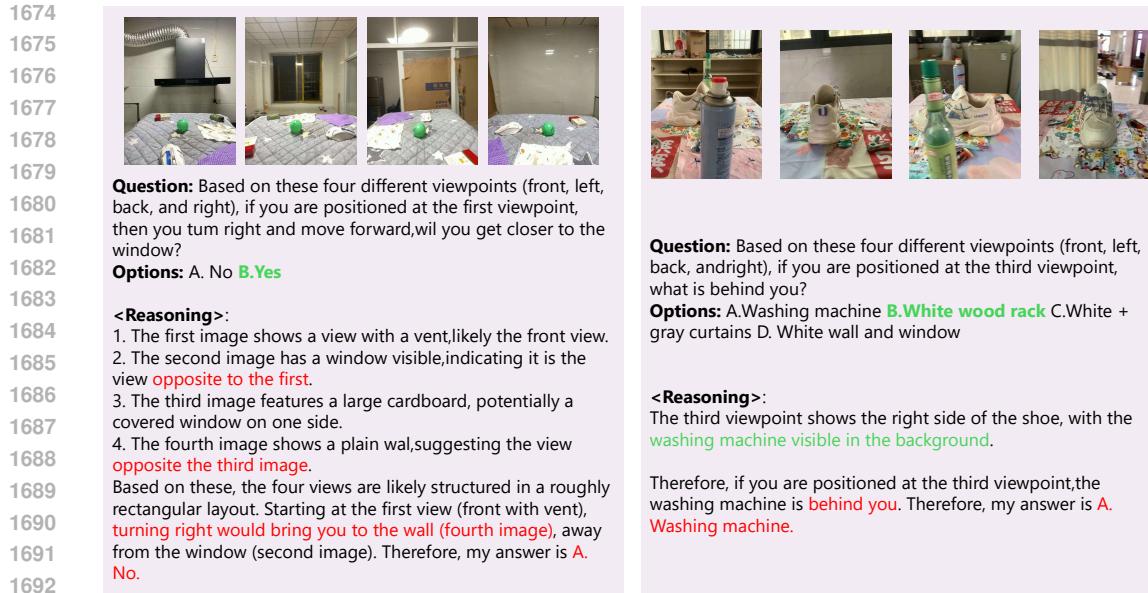


Figure 12: Failure case analysis. We show GPT4-o’s reasoning process. In case 1, the model is unable to establish the spatial location corresponding to each view; In case 2, the model confuses the subject of the “behind” relationship.

1693 D.1 DATA STRUCTURES AS COGNITIVE SCAFFOLDS

1700 The human ability to navigate and reason about space, especially with incomplete information, is
 1701 largely attributed to the formation of internal spatial mental models. These models, as extensively
 1702 studied in cognitive science, are not necessarily veridical, metric-perfect replicas of the environment.
 1703 Instead, they are often schematic and even distorted, yet functionally effective representations. These
 1704 models can be especially useful for understanding the environment spatial layouts for agentic set-
 1705 tings Yao et al. (2023); Wang et al. (2024), such as embodied scenarios Liang et al. (2023); Driess
 1706 et al. (2023); Huang et al. (2023; 2024); Li et al. (2024b); Yang et al. (2025a); Tang et al. (2025a).
 1707 Pioneering work by Barbara Tversky suggests that these internal constructs are more akin to “cog-
 1708 nitive collages” – flexible assemblies of spatial information gleaned from various perspectives and
 1709 experiences, rather than rigid, map-like blueprints Tversky (1993). These “cognitive collages” al-
 1710 low for the integration of fragmented observations and support reasoning across unseen perspectives.
 1711 Johnson-Laird Johnson-Laird (1983) posits that mental models, including those for space, serve as
 1712 “*structural analogs of the world*,” enabling individuals to simulate and infer spatial relationships,
 1713 such as determining the relative positions of objects from sequential descriptions (e.g., “A is to the
 1714 left of B; B is in front of C”). Research by Tversky Tversky et al. (1994) has also demonstrated that
 1715 individuals can construct rich, multi-dimensional mental representations even from linear, descrip-
 1716 tive texts, and subsequently query these models from various psychological viewpoints.

1717 Inspired by these cognitive theories, we explore three distinct data structures designed to act as
 1718 cognitive scaffolds for VLMs. When VLMs are presented with limited visual input, these structures
 1719 aim to approximate different facets of human spatial mental modeling: dynamic updating, integrated
 1720 spatial layout representation, and inferential reasoning.

1722 D.1.1 VIEW INTERPOLATION FOR DYNAMIC UPDATING

1724 Human spatial mental models are not static; they are continuously updated with new sensory infor-
 1725 mation and through mental simulation, such as imagining a change in viewpoint. To approximate
 1726 this dynamic updating and mental animation capability Hegarty (1992), we employ view interpo-
 1727 lation. This technique aims to bridge perceptual gaps between discrete, sparsely sampled views by
 generating intermediate visual frames.

Our Setting: In our experiments, view interpolation is implemented by inserting synthetic frames *between* consecutive views provided to the model. For instance, if "1 interpolated frame" is specified, one new frame is generated and inserted between an initial view V_n and the subsequent view V_{n+1} (e.g., between View 1 and View 2). Similarly, "2 interpolated frames" would mean two synthetic frames are inserted in sequence between V_n and V_{n+1} . For the interpolated frames, we either define a heuristic function to choose from the original datasets Baruch et al. (2021); Xia et al. (2024) where we sampled our data, or we use Stable Virtual Camera Zhou et al. (2025) to generate intermediate frames for those image groups without. This approach is intended to provide a smoother perceptual experience, potentially aiding the VLM in tracking object relations and maintaining spatial consistency across viewpoint shifts. (Refer to Figure 3 in the main paper for a conceptual illustration)

1739 D.1.2 COGNITIVE MAPS FOR INTEGRATED SPATIAL LAYOUTS

1741 A core aspect of spatial cognition is the ability to form an allocentric (world-centered) or survey-
 1742 like understanding of an environment, capturing the relative locations of objects. Tversky Tversky
 1743 (1993; 2003) highlights that such representations often involve different frames of reference and
 1744 hierarchical structures. Cognitive maps in our context are 2D schematic representations that attempt
 1745 to embody this integrated spatial layout.

Our Setting: We investigate two variants of cognitive maps, both represented as structured data (e.g., JSON-like objects), to capture the spatial layout:

- 1748 • We provide a 2D grid map of the scene that is related to the question to be answered.
- 1749 • The map uses a 10×10 grid, where $[0, 0]$ is the top-left corner and $[9, 9]$ is the bottom-
 1750 right corner (i.e., bird's-eye view).
- 1751 • Directions are defined as follows:
 - 1753 – up = towards the top of the grid (decreasing y-value)
 - 1754 – right = towards the right of the grid (increasing x-value)
 - 1755 – down = towards the bottom of the grid (increasing y-value)
 - 1756 – left = towards the left of the grid (decreasing x-value)
 - 1757 – inner = into the 2D map (perpendicular to the grid, pointing away from you)
 - 1758 – outer = out of the 2D map (perpendicular to the grid, pointing toward you)
- 1759 • The map contains:
 - 1760 – objects — a list of all important items in the scene with their position
 - 1761 – facing — indicating the direction an object is oriented (when applicable)
 - 1762 – views — representing different camera viewpoints in the scene
- 1764 • **Augmented Cognitive Map:** This version explicitly integrates the observer's perspective by
 1765 encoding the positions and orientations (facing directions) of the camera viewpoints
 1766 within the map, alongside the objects and their locations. For instance, as depicted in our
 1767 data examples (refer to Figure 3, Cognitive Map - Augmented panel), an augmented map
 1768 might define a list of objects with their name and position (e.g., "Tissue box": {
 1769 "position": [5, 5]}), and a separate list of views detailing each camera's name
 1770 (e.g., "View 1"), position (e.g., [3, 5]), and facing direction (e.g., "up").
- 1771 • **Plain Cognitive Map (Object Only):** This is a more simplified, object-centric representation. It
 1772 primarily focuses on the spatial locations of objects and, for some objects, their
 1773 intrinsic orientation (facing direction) from a top-down survey perspective, without explicitly
 1774 embedding camera view information within its structure. For example (refer to Figure 3,
 1775 Cognitive Map - Plain panel), a plain map might list objects like "Potted plant" with
 1776 its position (e.g., [5, 6]) and facing direction (e.g., "down"), and another object like
 1777 "Sofa" with only its position (e.g., [4, 5]). This type of map still allows for reasoning
 1778 about object-to-object relationships and, where specified, object orientations, but abstracts away
 the explicit camera viewpoints that generated the scene understanding.

1779 In both map types, coordinates represent positions on a 2D grid, and facing directions can be
 1780 categorical (e.g., "up", "down", "left", "right", "outer", "inner"). These structures
 1781 aim to provide the VLM with an explicit, albeit potentially imperfect, schematic of the environment
 that it can then learn to generate and utilize for spatial reasoning tasks.

1782 As for the format, our JSON format has been widely adopted as a computational model providing a
 1783 flexible structure for VLMs, designed to offer a bird’s-eye view representation encoding the relative
 1784 positions and orientations of objects Yang et al. (2024). This representation aligns, at a high level,
 1785 with the functional principles of cognitive maps in cognitive science. Our goal is to equip VLMs
 1786 with a scaffold that approximates the functional role of a cognitive map to enable explicit reasoning,
 1787 rather than replicating its exact neurological basis.

1788 The use of JSON is a principled choice for interfacing with text-native VLMs, following standard
 1789 practices for eliciting structured outputs. VLMs fundamentally operate on sequences of language
 1790 tokens, making JSON a naturally fitting text-based format. JSON provides a structured and
 1791 computationally effective means to evaluate complex spatial outputs, constituting one of the standard
 1792 methods for eliciting structured knowledge from LLMs and VLMs. Although differentiable vector-
 1793 ized representations represent a promising research direction, current integration attempts have been
 1794 widely recognized as ineffective, particularly owing to limitations in VLM comprehension.

1795

1796 D.1.3 FREE FORM REASONING

1797

1798 Spatial mental models are not just static representations; they are actively used for inference and
 1799 problem-solving Tversky et al. (1994). To approximate this procedural and inferential aspect, we
 1800 utilize free-form reasoning, implemented as a natural language Chain-of-Thought (CoT) Wei et al.
 1801 (2022) process. This encourages the VLM to externalize its step-by-step reasoning process when
 1802 deducing an answer to a spatial query.

1803

Our Setting: The VLM is prompted to generate a textual reasoning chain before outputting the
 1804 final answer. This process is guided by a three-step principle, exemplified by the reasoning chain
 1805 shown in Figure 3, the reasoning chain panel. For the steps shown in that example, they are: (1)
 1806 *Initial Observation and Grounding*: The model first processes each available view, identifying key
 1807 objects and their immediate spatial relationships within that specific viewpoint. For instance, the
 1808 example chain begins with: "In View 1, I see a potted plant, tissue box,
 1809 and hand sanitizer from left to right, with a sofa behind." This step
 1810 grounds the reasoning in direct visual evidence from individual perspectives. (2) *Cross-View
 1811 Integration and Environment Consolidation*: Next, the model attempts to identify consistent objects
 1812 or environmental cues across the different views to recognize that they depict the same underlying
 1813 3D scene. The example reasoning continues: "In View 2, I see the same potted
 1814 plant, so both views are from the same environment." This step is crucial
 1815 for building a unified understanding of the space from discrete observations. (3) *Question-Guided
 1816 Spatial Inference*: Finally, based on the specific question posed and the integrated understanding
 1817 from the previous steps, the model performs step-by-step logical and spatial inferences to arrive at
 1818 the answer. In the example, this involves relating the object positions across views relative to the
 1819 observer’s position in View 2: "Since the hand sanitizer is rightmost in View
 1820 1, it’s spatially furthest behind the potted plant when looking in
 1821 View 2.
 1822 In View 2, the potted plant is closest to me, so the hand
 1823 sanitizer is
 1824 the furthest from me."

1825

1824 D.2 EVALUATION METRICS

1826

1827 To quantitatively assess how these data structures affect the performance of VLMs in the spatial
 1828 mental modeling presented in MINDCUBE, and to evaluate the quality of the generated cognitive
 1829 maps, we employed the following metrics: (1) *QA Accuracy*, and (2) *Graph Metrics for Generated
 1830 Cognitive Maps*.

1831

1832 D.2.1 QA ACCURACY

1833

1834 QA Accuracy serves as the core metric for evaluating task performance. It quantifies the proportion
 1835 of questions that the vision-language model (VLM) answers correctly out of the total number of
 1836 questions. A higher QA Accuracy indicates better alignment between the model’s responses and the
 1837 ground truth.

1836

The metric is formally defined as:

1837

1838

1839

1840

$$\text{QA Accuracy} = \frac{N_{\text{correct}}}{N_{\text{total}}} \times 100\%$$

1841

where N_{correct} denotes the number of correctly answered questions, and N_{total} is the total number of questions evaluated.

1842

1843

D.2.2 GRAPH METRICS FOR COGNITIVE MAPS

1844

1845

1846

1847

To quantitatively evaluate the quality of a generated cognitive map, we use a set of structured graph-based metrics. The overall process consists of several key steps:

1848

1849

1850

1. **Validity Check.** First, we ensure that the generated map is syntactically and semantically valid—i.e., it has a correct JSON format, contains interpretable object positions, and includes at least one valid object.

1851

1852

1853

2. **Rotation Normalization.** Since we do not enforce a fixed orientation for generated maps (to allow for flexible generation from vision-language models), we evaluate the similarity between the generated map and the ground truth across a set of 3D rotations. We always choose the best-aligned rotation to compute our similarity scores.

1854

1855

1856

3. **Structural Matching.** We define a relation graph between object pairs in each map, capturing directional and proximity-based relationships. A core part of the evaluation is determining whether these relationships in the ground truth are preserved in the generated map.

1857

1858

1859

4. **Similarity Metrics.** We compute coverage (how many ground-truth objects are present), directional similarity (relative spatial relations), and facing similarity (object orientation). These are aggregated into an overall similarity score.

1860

1861

1862

5. **Rotation-Invariant Isomorphism.** We also evaluate whether a generated map is graph-isomorphic to the ground truth under any allowed 3D rotation, providing a strict measure of structural correctness.

1863

1864

Below, we provide precise mathematical definitions for each of these components.

1865

1866

1867

1868

1869

Notation. A *cognitive map* is a finite set of objects $\mathcal{O} = \{o_1, \dots, o_n\}$ where each object o_i is associated with (i) a 2-D position vector $p_i = (x_i, y_i) \in \mathbb{R}^2$ and (ii) an optional facing label $f_i \in \{\text{up}, \text{right}, \text{down}, \text{left}, \text{inner}, \text{outer}\} \cup \{\emptyset\}$. For two maps, we distinguish (1) the *ground-truth* map $(\mathcal{O}^*, p^*, f^*)$ and (2) a *generated* map $(\mathcal{O}^g, p^g, f^g)$.

1870

The set of objects that appear in both maps is $\mathcal{O}^c = \mathcal{O}^* \cap \mathcal{O}^g$.

1871

1872

1873

Extended directional relation. We define a directional or proximity-based relationship between any ordered object pair (o_i, o_j) based on their spatial arrangement and optional facing annotations. This relation is captured via the function:

1874

1875

$$\text{dir}(o_i, o_j) = \begin{cases} \text{right} & |x_j - x_i| > |y_j - y_i| \text{ and } x_j > x_i, \\ \text{left} & |x_j - x_i| > |y_j - y_i| \text{ and } x_j < x_i, \\ \text{down} & |y_j - y_i| \geq |x_j - x_i| \text{ and } y_j > y_i, \\ \text{up} & |y_j - y_i| \geq |x_j - x_i| \text{ and } y_j < y_i, \\ \text{inner} & \|p_j - p_i\|_2 < \delta \text{ and } (f_i = \text{inner} \vee f_j = \text{outer}), \\ \text{outer} & \|p_j - p_i\|_2 < \delta \text{ and } (f_i = \text{outer} \vee f_j = \text{inner}), \\ \emptyset & \text{otherwise,} \end{cases}$$

1884

with threshold $\delta = 0.5$ as in the implementation. These relations form a *relation matrix*:

1885

1886

1887

1888

Coverage. Coverage measures how many ground-truth objects are successfully retrieved in the generated map:

1889

$$\text{Cov} = \frac{|\mathcal{O}^c|}{|\mathcal{O}^*|} \in [0, 1].$$

1890
 1891 **Directional similarity.** We now evaluate how well the generated map preserves the directional
 1892 relationships among object pairs from the ground truth. Define:
 1893

$$\mathcal{P}^* = \{(o_i, o_j) \in \mathcal{O}^c \times \mathcal{O}^c \mid i \neq j, R^*(o_i, o_j) \neq \emptyset\}.$$

1894 Then the directional similarity score is given by:
 1895

$$S_{\text{dir}} = \frac{|\{(o_i, o_j) \in \mathcal{P}^* \mid R^g(o_i, o_j) = R^*(o_i, o_j)\}|}{|\mathcal{P}^*|} \in [0, 1],$$

1898 which corresponds to the proportion of directional relations in the ground truth that are correctly
 1899 matched in the generated map.
 1900

1901 **Facing similarity.** For objects with defined facing directions, we compare their orientation across
 1902 the two maps:
 1903

$$\mathcal{F}^* = \{o_i \in \mathcal{O}^c \mid f_i^* \neq \emptyset\}.$$

1904 Then:
 1905

$$S_{\text{face}} = \frac{|\{o_i \in \mathcal{F}^* \mid f_i^g = f_i^*\}|}{|\mathcal{F}^*|} \in [0, 1].$$

1907 **Overall similarity.** To aggregate the directional and facing similarities, we use a weighted combi-
 1908 nation:
 1909

$$S_{\text{overall}} = \alpha \cdot S_{\text{dir}} + (1 - \alpha) \cdot S_{\text{face}} \in [0, 1],$$

1910 where $\alpha = 0.7$ places greater emphasis on spatial layout than orientation.
 1911

1912 **Rotation-invariant isomorphism.** To ensure fair comparison regardless of orientation, we define
 1913 a set of 3D rotations: $\mathcal{R} = \{R_1, \dots, R_m\}$, including all 90° turns about the z -axis, and one 90° turn
 1914 about each of the x - and y -axes.
 1915

1916 We say the maps are *rotation-invariant isomorphic* if there exists a rotation such that their relation
 1917 matrices match completely:
 1918

$$\exists k \in \{1, \dots, m\} \forall o_i, o_j \in \mathcal{O}^* : R^*(o_i, o_j) = R_{(k)}^g(o_i, o_j),$$

1919 where $R_{(k)}^g$ is the relation matrix computed after applying R_k to the generated map.
 1920

1922 **Graph validity.** Finally, a generated map is deemed *valid* if: (1) It is well-formed JSON, (2) All
 1923 fields conform to expected formats and constraints, and (3) At least one object has a valid position.
 1924

1925 Together, the tuple $(\text{Cov}, S_{\text{dir}}, S_{\text{face}}, S_{\text{overall}}, \text{Iso}_{\text{rot}})$ provides a comprehensive, rotation-aware eval-
 1926 uation of how closely a generated cognitive map matches ground truth structure and orientation.
 1927

D.3 PROMPTS FOR ALL INPUT-OUTPUT CONFIGURATIONS

1929 Below, we provide all prompts for the input-output configurations we investigate in our work.
 1930

D.3.1 EXAMPLE FOR RAW-QA

1933 Example Prompt for Raw-QA

1941 [Task]
 1942 Your task is to analyze the spatial arrangement of objects in the scene by examining the
 1943 provided images, which show the scene from different viewpoints.

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front D. Behind', your response should **only** be '<answer>A. Above</answer>'.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back, and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in image 4, what is to the left of the white jar?

- A. Table with cups on it
- B. Clothes rack
- C. Bed sheet with a floral pattern
- D. White headboard

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show the scene from different viewpoints.

[Answer Instruction]

Please do step by step reasoning first, then give your final answer. For example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front D. Behind', your response should be this format: '<think>(replace with your reasoning here)</think><answer>A. Above</answer>'.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back, and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in image 4, what is to the left of the white jar?

- A. Table with cups on it
- B. Clothes rack
- C. Bed sheet with a floral pattern
- D. White headboard

D.3.3 EXAMPLE FOR VI-1 AND VI-2

Prompt for VI-1: View Interpolation with 1 Frame

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show the scene from different viewpoints.

[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front D. Behind', your response should **only** be '<answer>A. Above</answer>'.

[Question]

Based on these 8 images showing the white jar from different viewpoints (from front (image 1) to left (image 3), from left (image 3) to back (image 5), from back (image 5) to right (image 7), from right (image 7) back to front (image 1)), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in image 7, what is to the left of the white jar?

- A. Table with cups on it
- B. Clothes rack
- C. Bed sheet with a floral pattern
- D. White headboard

Prompt for VI-2: View Interpolation with 2 Frames

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show the scene from different viewpoints.

[Answer Instruction]

You only need to provide *ONE* correct answer selecting from the options listed below. For example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front D. Behind', your response should **only** be '<answer>A. Above</answer>'.

[Question]

Based on these 12 images showing the white jar from different viewpoints (from front (image 1) to left (image 4), from left (image 4) to back (image 7), from back (image 7) to right (image 10), from right (image 10) back to front (image 1)), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in image 10, what is to the left of the white jar?

- A. Table with cups on it
- B. Clothes rack
- C. Bed sheet with a floral pattern
- D. White headboard

D.3.4 EXAMPLE FOR AUG-CGMAP-IN

Prompt for Aug-CGMap-In: Grounded Augmented Cognitive Map as Input

2052

2053 [Task]

2054 Your task is to analyze the spatial arrangement of objects in the scene by examining the
 2055 provided images, which show the scene from different viewpoints. Also, we provide you a
 2056 cognitive map that shows the general layout for the scene. Please use the cognitive map to
 2057 reason and answer the question.

2058 [Answer Instruction]

2059 You only need to provide *ONE* correct answer selecting from the options listed below. For
 2060 example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front
 2061 D. Behind', your response should **only** be '<answer>A. Above</answer>'.

2062 [Cognitive Map Format]

2063 We provide you a 2D grid map of the scene that is related to the question you should answer.
 2064 Below is the description of the map:

- 2065 - The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- 2066 - The map is shown in the bird's view
- 2067 - Directions are defined as:
 - * up = towards the top of the grid (decreasing y-value)
 - * right = towards the right of the grid (increasing x-value)
 - * down = towards the bottom of the grid (increasing y-value)
 - * left = towards the left of the grid (decreasing x-value)
- 2068 - inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
- 2069 - outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- 2070 - "objects" lists all important items in the scene with their positions
- 2071 - "facing" indicates which direction an object is oriented towards (when applicable)
- 2072 - "views" represents the different camera viewpoints in the scene

2073 Below is the cognitive map of the scene related to the question. Please use it to reason and
 2074 answer the question.

```
2075     ````json
2076     {
2077       "objects": [
2078         {"name": "white jar", "position": [5, 5]},
2079         {"name": "bed sheet with a floral pattern",
2080           "position": [5, 8]},
2081         {"name": "white headboard", "position": [2, 5]},
2082         {"name": "clothes rack", "position": [5, 2]},
2083         {"name": "table with cups on it", "position": [8, 5]}
2084       ],
2085       "views": [
2086         {"name": "Image 1", "position": [5, 6], "facing": "up"},
2087         {"name": "Image 2", "position": [4, 5], "facing": "right"},
2088         {"name": "Image 3", "position": [5, 4], "facing": "down"},
2089         {"name": "Image 4", "position": [6, 5], "facing": "left"}
2090       ]
2091     }
2092   ````
```

2093 [Question]

2094 Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
 2095 points (front, left, back, and right), with each camera aligned with room walls and partially
 2096 capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
 2097 the white jar?

2098 A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
 2099 board

2100

2101

2102

2103

2104

2105

2106 D.3.5 EXAMPLE FOR AUG-CGMAP-OUT
21072108 Prompt for Aug-CGMap-Out: Ask VLM to Output Augmented Cognitive Map and Direct
2109 Answer2110 [Task]
2111

2112 Your task is to analyze the spatial arrangement of objects in the scene by examining the
2113 provided images, which show the scene from different viewpoints. You will then create a
2114 detailed cognitive map representing the scene using a 10x10 grid coordinate system.

2115 [Rules]
2116

1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a floral pattern, white headboard, clothes rack, table with cups on it}
2. Create a cognitive map with the following structure in the bird's view:
 - A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
 - up = towards the top of the grid (decreasing y)
 - right = towards the right of the grid (increasing x)
 - down = towards the bottom of the grid (increasing y)
 - left = towards the left of the grid (decreasing x)
 - inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
 - outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
3. Carefully integrate information from all views to create a single coherent spatial representation.

2117 [Answer Instruction]
2118

1. Given the provided views and main objects mentioned in the above rules, you ****MUST**** present your cognitive map in the following JSON format ****before your answer****:

```
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3138
3139
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3158
3159
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3188
3189
3189
3190
3191
3192
3193
3194
3195
3196
3197
3197
3198
3198
3199
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3278
3279
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3298
3299
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3378
3379
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3388
3389
3389
3390
3391
3392
3393
3394
3395
3396
3397
3397
3398
3398
3399
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3478
3479
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3489
3490
3491
3492
3493
3494
3495
3496
3497
3497
3498
3498
3499
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3578
3579
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3598
3599
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3678
3679
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3698
3699
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3798
3799
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3878
3879
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3898
3899
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3978
3979
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3998
3999
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4019
4020
4021
4022
4023
4024
4025
4026
4027

```

2160
 2161 is: <cogmap>(Replace with your cogmap here)</cogmap><answer>(Replace with your
 2162 answer here)</answer>". Your option must be from the available options.
 2163 [Question]
 2164 Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
 2165 points (front, left, back, and right), with each camera aligned with room walls and partially
 2166 capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
 2167 the white jar?
 2168 A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
 2169 board

2170 D.3.6 EXAMPLE FOR PLAIN-CGMAP-OUT

2172 Prompt for Plain-CGMap-Out: Ask VLM to Output Plain Cognitive Map and Direct
 2173 Answer

2181 [Task]

2182 Your task is to analyze the spatial arrangement of objects in the scene by examining the
 2183 provided images, which show the scene from different viewpoints. You will then create a
 2184 detailed cognitive map representing the scene using a 10x10 grid coordinate system.

2185 [Rules]

- 2186 1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
 2187 floral pattern, white headboard, clothes rack, table with cups on it}
- 2188 2. Create a cognitive map with the following structure in the bird's view:
 - A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner
 - up = towards the top of the grid (decreasing y)
 - right = towards the right of the grid (increasing x)
 - down = towards the bottom of the grid (increasing y)
 - left = towards the left of the grid (decreasing x)
 - Include positions of all objects from the specified categories
 - Estimate the center location (coordinates [x, y]) of each instance within provided categories
 - If a category contains multiple instances, include all of them
 - Object positions must maintain accurate relative spatial relationships
 - Combine and merge information from the images since they are pointing to the same scene, calibrating the object locations with grid coordinates accordingly
- 2189 3. Carefully integrate information from all views to create a single coherent spatial representation.

2190 [Answer Instruction]

- 2191 1. Given the provided views and main objects mentioned in the above rules, you **MUST**
 2192 present your cognitive map in the following JSON format **before your reasoning**:

```
2193     ````json
2194     {
2195         "object_category_1": {"position": [x, y]},
2196         "object_category_2": {"position": [x, y],
2197             "facing": "direction"},
2198             # if the object is asked for orientation
2199             ...
2200     }
2201     ````
```

- 2202 2. Next, provide *ONE* correct answer selecting from the options. Your answer field must
 2203 be in the format like "A. Above"

2214

2215 3. In general, your response's format should be like "Based on my observation, the answer
 2216 is: <cogmap>(Replace with your cogmap here)</cogmap><answer>(Replace with your
 2217 answer here)</answer>". Your option must be from the available options.

2218 [Question]

2219 Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
 2220 points (front, left, back, and right), with each camera aligned with room walls and partially
 2221 capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
 2222 the white jar?

2223 A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
 2224 board

2225

2226 D.3.7 EXAMPLE FOR PLAIN-CGMAP-FFR-OUT

2227

2228 Prompt for Plain-CGMap-FFR-Out: Ask VLM to Output Plain Cognitive Map and
 2229 Free-Form Reasoning

2230

2231 [Task]

2232 Your task is to analyze the spatial arrangement of objects in the scene by examining the
 2233 provided images, which show the scene from different viewpoints. You will then create a
 2234 detailed cognitive map representing the scene using a 10x10 grid coordinate system.

2235 [Rules]

- 2236 1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
 2237 floral pattern, white headboard, clothes rack, table with cups on it}
- 2238 2. Create a cognitive map with the following structure in the bird's view:
 - 2239 - A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner
 - 2240 - up = towards the top of the grid (decreasing y)
 - 2241 - right = towards the right of the grid (increasing x)
 - 2242 - down = towards the bottom of the grid (increasing y)
 - 2243 - left = towards the left of the grid (decreasing x)
 - 2244 - Include positions of all objects from the specified categories
 - 2245 - Estimate the center location (coordinates [x, y]) of each instance within provided categories
 - 2246 - If a category contains multiple instances, include all of them
 - 2247 - Object positions must maintain accurate relative spatial relationships
 - 2248 - Combine and merge information from the images since they are pointing to the same scene,
 2249 calibrating the object locations with grid coordinates accordingly
 - 2250 3. Carefully integrate information from all views to create a single coherent spatial repre-
 2251 sentation.

2252 [Answer Instruction]

- 2253 1. Given the provided views and main objects mentioned in the above rules, you **MUST**
 2254 present your cognitive map in the following JSON format **before your reasoning**:

```
2255     ````json
2256     {
2257         "object_category_1": {"position": [x, y]},
2258         "object_category_2": {"position": [x, y],
2259         "facing": "direction"},  

2260         # if the object is asked for orientation
2261         ...
2262     }
2263     ````
```

2268

2269 2. Next, please also provide your reasons step by step in details, then provide *ONE* correct
 2270 answer selecting from the options. Your answer field must be in the format like "A. Above"
 2271 3. In general, your response's format should be like "Based on my observation, the answer
 2272 is: <cogmap>(Replace with your cogmap here)</cogmap><think>(Replace with your
 2273 reasoning here)</think><answer>(Replace with your answer here)</answer>". Your op-
 2274 tion must be from the available options.

2275 [Question]

2276 Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
 2277 points (front, left, back, and right), with each camera aligned with room walls and partially
 2278 capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
 2279 the white jar?

2280 A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
 2281 board

2282 D.3.8 EXAMPLE FOR AUG-CGMAP-FFR-OUT

2283 Prompt for Aut-CGMap-FFR-Out: Ask VLM to Output Augmented Cognitive Map and
 2284 Free-Form Reasoning

2285 [Task]

2286 Your task is to analyze the spatial arrangement of objects in the scene by examining the
 2287 provided images, which show the scene from different viewpoints. You will then create a
 2288 detailed cognitive map representing the scene using a 10x10 grid coordinate system.

2289 [Rules]

- 2290 1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a
 2291 floral pattern, white headboard, clothes rack, table with cups on it}
- 2292 2. Create a cognitive map with the following structure in the bird's view:
 - 2293 - A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
 - 2294 - up = towards the top of the grid (decreasing y)
 - 2295 - right = towards the right of the grid (increasing x)
 - 2296 - down = towards the bottom of the grid (increasing y)
 - 2297 - left = towards the left of the grid (decreasing x)
 - 2298 - inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
 - 2299 - outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
 - 2300 - Include positions of all objects from the specified categories
 - 2301 - Estimate the center location (coordinates [x, y]) of each instance within provided categories
 - 2302 - If a category contains multiple instances, include all of them
 - 2303 - Each object's estimated location should accurately reflect its real position in the scene,
 2304 preserving the relative spatial relationships among all objects
 - 2305 - Combine and merge information from the images since they are pointing to the same scene,
 2306 calibrating the object locations accordingly
 - 2307 - Include camera positions and directions for each view
- 2308 3. Carefully integrate information from all views to create a single coherent spatial repre-
 2309 sentation.

2310 [Answer Instruction]

- 2311 1. Given the provided views and main objects mentioned in the above rules, you **MUST**
 2312 present your cognitive map in the following JSON format **before your reasoning**:

```
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
3097
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3148
3149
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3178
3179
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3188
3189
3189
3190
3191
3192
3193
3194
3195
3196
3196
3197
3198
3198
3199
3199
3200
3201
3202
3203
3204
3205
3206
3207
3207
3208
3209
3209
3210
3211
3212
3213
3214
3214
3215
3215
3216
3216
3217
3217
3218
3218
3219
3219
3220
3220
3221
3221
3222
3222
3223
3223
3224
3224
3225
3225
3226
3226
3227
3227
3228
3228
3229
3229
3230
3230
3231
3231
3232
3232
3233
3233
3234
3234
3235
3235
3236
3236
3237
3237
3238
3238
3239
3239
3240
3240
3241
3241
3242
3242
3243
3243
3244
3244
3245
3245
3246
3246
3247
3247
3248
3248
3249
3249
3250
3250
3251
3251
3252
3252
3253
3253
3254
3254
3255
3255
3256
3256
3257
3257
3258
3258
3259
3259
3260
3260
3261
3261
3262
3262
3263
3263
3264
3264
3265
3265
3266
3266
3267
3267
3268
3268
3269
3269
3270
3270
3271
3271
3272
3272
3273
3273
3274
3274
3275
3275
3276
3276
3277
3277
3278
3278
3279
3279
3280
3280
3281
3281
3282
3282
3283
3283
3284
3284
3285
3285
3286
3286
3287
3287
3288
3288
3289
3289
3290
3290
3291
3291
3292
3292
3293
3293
3294
3294
3295
3295
3296
3296
3297
3297
3298
3298
3299
3299
3300
3300
3301
3301
3302
3302
3303
3303
3304
3304
3305
3305
3306
3306
3307
3307
3308
3308
3309
3309
3310
3310
3311
3311
3312
3312
3313
3313
3314
3314
3315
3315
3316
3316
3317
3317
3318
3318
3319
3319
3320
3320
3321
3321
3322
3322
3323
3323
3324
3324
3325
3325
3326
3326
3327
3327
3328
3328
3329
3329
3330
3330
3331
3331
3332
3332
3333
3333
3334
3334
3335
3335
3336
3336
3337
3337
3338
3338
3339
3339
3340
3340
3341
3341
3342
3342
3343
3343
3344
3344
3345
3345
3346
3346
3347
3347
3348
3348
3349
3349
3350
3350
3351
3351
3352
3352
3353
3353
3354
3354
3355
3355
3356
3356
3357
3357
3358
3358
3359
3359
3360
3360
3361
3361
3362
3362
3363
3363
3364
3364
3365
3365
3366
3366
3367
3367
3368
3368
3369
3369
3370
3370
3371
3371
3372
3372
3373
3373
3374
3374
3375
3375
3376
3376
3377
3377
3378
3378
3379
3379
3380
3380
3381
3381
3382
3382
3383
3383
3384
3384
3385
3385
3386
3386
3387
3387
3388
3388
3389
3389
3390
3390
3391
3391
3392
3392
3393
3393
3394
3394
3395
3395
3396
3396
3397
3397
3398
3398
3399
3399
3400
3400
3401
3401
3402
3402
3403
3403
3404
3404
3405
3405
3406
3406
3407
3407
3408
3408
3409
3409
3410
3410
3411
3411
3412
3412
3413
3413
3414
3414
3415
3415
3416
3416
3417
3417
3418
3418
3419
3419
3420
3420
3421
3421
3422
3422
3423
3423
3424
3424
3425
3425
3426
3426
3427
3427
3428
3428
3429
3429
3430
3430
3431
3431
3432
3432
3433
3433
3434
3434
3435
3435
3436
3436
3437
3437
3438
3438
3439
3439
3440
3440
3441
3441
3442
3442
3443
3443
3444
3444
3445
3445
3446
3446
3447
3447
3448
3448
3449
3449
3450
3450
3451
3451
3452
3452
3453
3453
3454
3454
3455
3455
3456
3456
3457
3457
3458
3458
3459
3459
3460
3460
3461
3461
3462
3462
3463
3463
3464
3464
3465
3465
3466
3466
3467
3467
3468
3468
3469
3469
3470
3470
3471
3471
3472
3472
3473
3473
3474
3474
3475
3475
3476
3476
3477
3477
3478
3478
3479
3479
3480
3480
3481
3481
3482
3482
3483
3483
3484
3484
3485
3485
3486
3486
3487
3487
3488
3488
3489
3489
3490
3490
3491
3491
3492
3492
3493
3493
3494
3494
3495
3495
3496
3496
3497
3497
3498
3498
3499
3499
3500
3500
3501
3501
3502
3502
3503
3503
3504
3504
3505
3505
3506
3506
3507
3507
3508
3508
3509
3509
3510
3510
3511
3511
3512
3512
3513
3513
3514
3514
3515
3515
3516
3516
3517
3517
3518
3518
3519
3519
3520
3520
3521
3521
3522
3522
3523
3523
3524
3524
3525
3525
3526
3526
3527
3527
3528
3528
3529
3529
3530
3530
3531
3531
3532
3532
3533
3533
3534
3534
3535
3535
3536
3536
3537
3537
3538
3538
3539
3539
3540
3540
3541
3541
3542
3542
3543
3543
3544
3544
3545
3545
3546
3546
3547
3547
3548
3548
3549
3549
3550
3550
3551
3551
3552
3552
3553
3553
3554
3554
3555
3555
3556
3556
3557
3557
3558
3558
3559
3559
3560
3560
3561
3561
3562
3562
3563
3563
3564
3564
3565
3565
3566
3566
3567
3567
3568
3568
3569
3569
3570
3570
3571
3571
3572
3572
3573
3573
3574
3574
3575
3575
3576
3576
3577
3577
3578
3578
3579
3579
3580
3580
3581
3581
3582
3582
3583
3583
3584
3584
3585
3585
3586
3586
3587
3587
3588
3588
3589
3589
3590
3590
3591
3591
3592
3592
3593
3593
3594
3594
3595
3595
3596
3596
3597
3597
3598
3598
3599
3599
3600
3600
3601
3601
3602
3602
3603
3603
3604
3604
3605
3605
3606
3606
3607
3607
3608
3608
3609
3609
3610
3610
3611
3611
3612
3612
3613
3613
3614
3614
3615
3615
3616
3616
3617
3617
3618
3618
3619
3619
3620
3620
3621
3621
3622
3622
3623
3623
3624
3624
3625
3625
3626
3626
3627
3627
3628
3628
3629
3629
3630
3630
3631
3631
3632
3632
3633
3633
3634
3634
3635
3635
3636
3636
3637
3637
3638
3638
3639
3639
3640
3640
3641
3641
3642
3642
3643
3643
3644
3644
3645
3645
3646
3646
3647
3647
3648
3648
3649
3649
3650
3650
3651
3651
3652
3652
3653
3653
3654
3654
3655
3655
3656
3656
3657
3657
3658
3658
3659
3659
3660
3660
3661
3661
3662
3662
3663
3663
3664
3664
3665
3665
3666
3666
3667
3667
3668
3668
3669
3669
3670
3670
3671
3671
3672
3672
3673
3673
3674
3674
3675
3675
3676
3676
3677
3677
3678
3678
3679
3679
3680
3680
3681
3681
3682
3682
3683
3683
3684
3684
3685
3685
3686
3686
3687
3687
3688
3688
3689
3689
3690
3690
3691
3691
3692
3692
3693
3693
3694
3694
3695
3695
3696
3696
3697
3697
3698
3698
3699
3699
3700
3700
3701
3701
3702
3702
3703
3703
37
```

```

2322
2323     {"name": "object_name", "position": [x, y],
2324     "facing": "direction"},
2325     {"name": "object_without_orientation", "position": [x, y]}
2326   ],
2327   "views": [
2328     {"name": "View/Image 1", "position": [x, y],
2329     "facing": "direction"},
2330     {"name": "View/Image 2", "position": [x, y],
2331     "facing": "direction"}
2332   ]
2333   ````
```

2. Next, please also provide your reasons step by step in details, then provide *ONE* correct answer selecting from the options. Your answer field must be in the format like "A. Above" 3. In general, your response's format should be like "Based on my observation, the answer is: <cogmap>(Replace with your cogmap here)</cogmap><think>(Replace with your reasoning here)</think><answer>(Replace with your answer here)</answer>". Your option must be from the available options.

[Question]

Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back, and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in image 4, what is to the left of the white jar?

A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

D.3.9 EXAMPLE FOR CGMAP-IN-FFR-OUT

Prompt for CGMap-In-FFR-Out: Input VLM with Grounded Cognitive Map and Output with Free-Form Reasoning

[Task]

Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show the scene from different viewpoints. Also, we provide you a cognitive map that shows the general layout for the scene. Please use the cognitive map to reason and answer the question.

[Answer Instruction]

Please do step by step reasoning first, then give your final answer. For example, if you think the correct answer is 'A. Above' from 'A. Above B. Under C. Front D. Behind', your response should be this format: '<think>(replace with your reasoning here)</think><answer>A. Above</answer>'. [Cognitive Map Format]

We provide you a 2D grid map of the scene that is related to the question you should answer. Below is the description of the map:

- The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- The map is shown in the bird's view
- Directions are defined as:
 - * up = towards the top of the grid (decreasing y-value)
 - * right = towards the right of the grid (increasing x-value)

```

2376
2377 * down = towards the bottom of the grid (increasing y-value)
2378 * left = towards the left of the grid (decreasing x-value)
2379 * inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
2380 * outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
2381 - "objects" lists all important items in the scene with their positions
2382 - "facing" indicates which direction an object is oriented towards (when applicable)
2383 - "views" represents the different camera viewpoints in the scene
2384 Below is the cognitive map of the scene related to the question. Please use it to reason and
2385 answer the question.
2386
2387     ````json
2388     {
2389         "objects": [
2390             {"name": "white jar", "position": [5, 5]},
2391             {"name": "bed sheet with a floral pattern",
2392                 "position": [5, 8]},
2393             {"name": "white headboard", "position": [2, 5]},
2394             {"name": "clothes rack", "position": [5, 2]},
2395             {"name": "table with cups on it", "position": [8, 5]}
2396         ],
2397         "views": [
2398             {"name": "Image 1", "position": [5, 6], "facing": "up"},
2399             {"name": "Image 2", "position": [4, 5], "facing": "right"},
2400             {"name": "Image 3", "position": [5, 4], "facing": "down"},
2401             {"name": "Image 4", "position": [6, 5], "facing": "left"}
2402         ]
2403     }
2404     ````

2405 [Question]
2406 Based on these four images (image 1, 2, 3, and 4) showing the white jar from different view-
2407 points (front, left, back, and right), with each camera aligned with room walls and partially
2408 capturing the surroundings: From the viewpoint presented in image 4, what is to the left of
2409 the white jar?
2410 A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White head-
2411 board

```

2411 E WHICH SCAFFOLDS BEST GUIDE SPATIAL THINKING IN UNCHANGED 2412 VLMs?

2413
2414 The primary experimental setup for evaluating how different structural scaffolds can guide spatial
2415 reasoning in unchanged VLMs, has been comprehensively described in Section 3 of the main paper.
2416 This current section is dedicated to presenting qualitative examples of model outputs, serving as
2417 case studies for the different scaffolding configurations tested.

2418 For precise details on the input prompt structures and specific instructions provided to the Qwen2.5-
2419 VL-3B-Instruct for each experimental condition (e.g., Raw-QA, [FFR](#), Plain-CGMap-FFR-Out),
2420 please refer to Appendix D.3.

2421 E.1 VLM RESPONSE EXAMPLES FOR CONFIGURATIONS IN SECTION D.3

2422
2423 Output for Raw-QA: Input Prompt Refer to D.3.1

2424
2425 **C. Bed sheet with a floral pattern**

2430 Output for VI: Input Prompt Refer to D.3.3

2431

2432 **B. Clothes rack**

2433

2434

2435 Output for Aug-CGMap-In: Input Prompt Refer to D.3.4

2436

2437 **C. Bed sheet with a floral pattern**

2438

2439

2440 Output for FFR: Input Prompt Refer to D.3.2

2441

2442 <think>To determine what is to the left of the white jar from the viewpoint presented in
2443 image 4, let's analyze the scene:2444 - In image 4, the white jar is placed on a table covered with a pink tablecloth featuring heart
2445 patterns.

2446 - The table has a glass top and is positioned against a wall.

2447 - To the left of the jar, there is a piece of furniture that appears to be a bed or a bed frame.

2448 Given this information, the object to the left of the white jar is most likely a bed or a bed
2449 frame. </think>2450 <answer>**C. Bed sheet with a floral pattern**</answer>

2451

2452

2453 Output for Aug-CGMap-FFR-Out: Input Prompt Refer to D.3.8

2454

2455

```
```json
{
 "objects": [
 {"name": "white jar", "position": [150, 446],
 "facing": "left"},
 {"name": "bed sheet with a floral pattern",
 "position": [0, 317],
 "facing": "left"},
 {"name": "clothes rack", "position": [0, 108],
 "facing": "left"},
 {"name": "table with cups on it", "position": [188, 200],
 "facing": "left"},
 {"name": "white headboard", "position": [188, 317],
 "facing": "left"}
],
 "views": [
 {"name": "Image 1", "position": [0, 0], "facing": "left"},
 {"name": "Image 2", "position": [0, 0], "facing": "left"},
 {"name": "Image 3", "position": [0, 0], "facing": "left"},
 {"name": "Image 4", "position": [0, 0], "facing": "left"}
]
}
```

```

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

<CogMap>

<Your cognitive map>

<Reasoning>

From the viewpoint presented in image 4, we can see that the white jar is positioned in the foreground, facing left. The bed sheet with a floral pattern is located directly behind the white jar, covering the lower part of the image. The clothes rack is visible on the left side of the image, slightly above the bed sheet. The table with cups on it is situated further back, to the right of the white jar. The white headboard is also visible, but it is not as prominent as the other objects due to its position behind the bed sheet.

2484
 2485 Therefore, my answer is A. Table with cups on it.
 2486 </Answer>
 2487 Therefore, my answer is **A. Table with cups on it.**

2488
 2489
 2490
 2491 Output for Plain-CGMap-FFR-Out: Input Prompt Refer to D.3.7

2492 ```json
 2493 {
 2494 "white_jar": {"position": [150, 440], "facing": "left"},
 2495 "table_with_cups_on_it": {"position": [187, 260],
 2496 "facing": "right"}
 2497 }
 2498 ```\n
 2499
 2500 <CogMap>
 2501 <Your cognitive map>
 2502 <Reasoning>
 2503 From the viewpoint presented in image 4, we can see that the white jar is positioned on the
 2504 bed sheet with a floral pattern. The table with cups on it is located to the right of the white
 2505 jar, as indicated by its position in the image. The clothes rack is not visible in this particular
 2506 view, and the white headboard is not directly related to the white jar or the table with cups
 2507 on it. Therefore, the correct answer is A. Table with cups on it.
 2508 <Answer>
 2509 Therefore, my answer is **A. Table with cups on it.**

2510
 2511
 2512
 2513 Output for CGMap-In-FFR-Out: Input Prompt Refer to D.3.9

2514
 2515 **C. Bed sheet with a floral pattern**

E.2 ADDITIONAL GRAPH METRICS FOR GENERATED GRAPHS

To quantitatively assess the quality of the cognitive maps produced by our models, we employ a suite of graph-based metrics detailed in Section C.2.2. Table 6 presents a comparison of the cognitive maps generated by two of our methods: Aug-CGMap-FFR-Out and Plain-CGMap-FFR-Out.

The results highlight several key findings:

- **High Validity:** Both methods demonstrate a strong ability to generate syntactically and semantically valid maps, achieving high **Valid Rates** (**94.95%** for Plain-CGMap-FFR-Out and **92.57%** for Aug-CGMap-FFR-Out). This indicates that the models successfully learned the required JSON structure for the cognitive maps.
- **Structural Complexity:** Achieving perfect structural replication of the ground truth remains challenging, as shown by the modest **Isomorphism Rates**. The Plain-CGMap-FFR-Out method performs significantly better, with **7.43%** of its maps being structurally identical (isomorphic) to the ground truth, compared to a mere **0.10%** for the augmented map method.
- **Superior Similarity Performance:** A clear performance difference in semantic similarity is evident. The Aug-CGMap-FFR-Out method, which explicitly includes camera views, achieves a substantially higher **Overall Similarity (51.12%)** and is superior in representing both the relative directional relationships (**Avg. Dir. Sim. of 43.57%**) and the correct orientation of individual objects (**Avg. Facing Sim. of 68.75%**). In contrast, while Plain-CGMap-FFR-Out maintains higher validity and isomorphism, it lags behind in all three similarity metrics.

2538
 2539 Table 6: Comparison of graph metrics for cognitive maps generated by different methods. The met-
 2540 rics evaluate the quality of the generated maps against the ground truth. **Valid Rate**: percentage of
 2541 syntactically and semantically valid maps. **Isomorphism Rate**: percentage of maps that are struc-
 2542 turally identical (isomorphic) to the ground truth, accounting for rotation. **Overall Sim. (Similar-
 2543 ity)**: a weighted score combining directional and facing similarity ($S_{\text{overall}} = \alpha \cdot S_{\text{dir}} + (1 - \alpha) \cdot S_{\text{face}}$).
 2544 **Avg. Dir. Sim. (Average Directional Similarity)**: correctness of relative spatial relations between
 2545 objects. **Avg. Facing Sim. (Average Facing Similarity)**: correctness of object orientations. All
 2546 values are percentages (%).

| Method | Valid Rate | Isomorphism Rate | Overall Sim. | Avg. Dir. Sim. | Avg. Facing Sim. |
|---------------------|------------|------------------|--------------|----------------|------------------|
| Aug-CGMap-FFR-Out | 92.57 | 0.10 | 51.12 | 43.57 | 68.75 |
| Plain-CGMap-FFR-Out | 94.95 | 7.43 | 37.44 | 28.29 | 58.78 |

E.3 FURTHER ANALYSIS ON VIEW INTERPOLATION

To rigorously assess the impact of view interpolation and ensure fair comparison, we conducted extensive additional experiments covering view selection strategies, comparisons with optimal interpolation settings, and scaling laws across model sizes.

(1) Smart View Selection vs. Dense Interpolation. It’s possible that the dense interpolation might introduce redundancy by implementing an “Oracle View Selection” baseline. Using GPT-5 as a planner to select the top-2 most informative views from 4 images, we compared this “Smart Selection” against our dense interpolation setting on Qwen2.5-VL-7B. As shown in Table 7, the Smart Selection (36.80%) performs similarly to the standard 2-view setting but is significantly inferior to dense interpolation (47.40%). This suggests that intermediate views, often perceived as redundant, provide essential spatio-temporal continuity that high-performing models utilize to stitch scenes; aggressive filtering disrupts this chain.

| Method (Qwen2.5-VL-7B) | Top-2 Selection (Oracle) | Dense Interpolation (VI-4) |
|------------------------|--------------------------|----------------------------|
| Accuracy (%) | 36.80 | 47.40 |

Table 7: Comparison: Oracle View Selection vs. Dense Interpolation.

(2) Comparison with Optimal View Interpolation. To ensure fairness, we compared our Plain-CGMap against the best possible performance of the View Interpolation (VI) baseline on Qwen2.5-VL-3B. As detailed in Table 8, our method (Plain-CGMap-FFR-Out, 47.41%) outperforms the baseline even at its peak performance (VI-1, 46.47%). This confirms that the Cognitive Map provides a structural advantage over simply increasing visual frame density. Furthermore, adding standard Free-Form Reasoning (FFR) to interpolated views harms performance as density increases (dropping from 45.53% to 40.77%), indicating that the bottleneck lies in the perception ability to organize visual floods rather than reasoning capacity alone.

| Method (Qwen2.5VL-3B) | VI-0 (Raw) | VI-1 | VI-2 | VI-3 | VI-4 | VI-5 | VI-6 | VI-7 |
|-----------------------|--------------|--------------|-------|-------|-------|-------|-------|-------|
| Plain-CGMap-FFR-Out | 47.41 | 44.94 | 44.59 | 43.18 | 44.35 | 43.41 | 42.82 | 45.28 |
| RawQA | 43.76 | 46.47 | 45.53 | 44.94 | 44.35 | 44.24 | 45.18 | 44.59 |
| FFR | 45.53 | 43.71 | 43.83 | 41.65 | 41.00 | 40.36 | 40.89 | 40.77 |

Table 8: Comparison with Optimal View Interpolation (Qwen2.5-VL-3B).

(3) Scaling Analysis: Does View Interpolation Scale? We extended our evaluation to larger models, including Qwen2.5-VL-7B, Qwen3-VL-8B, Qwen3-VL-235B, and GPT-5, to test if higher capacity naturally resolves interpolation issues. Results for 7B/8B models (Table 9) show no consistent scaling law. While Qwen2.5-VL-7B benefits from density (peaking at VI-4), Qwen3-VL-8B exhibits unstable performance despite being architecturally advanced.

Moreover, for massive-scale models (Table 10), performance negatively correlates with view density. GPT-5 peaks at the sparse 1-frame setting (46.59%) and declines to 42.35% as density increases to

| Config | VI-0 | VI-1 | VI-2 | VI-3 | VI-4 | VI-5 | VI-6 | VI-7 |
|---------------|-------|-------|--------------|-------|--------------|-------|-------|-------|
| Qwen2.5-VL-7B | 37.80 | 34.90 | 35.60 | 45.30 | 47.40 | 46.50 | 46.80 | 46.80 |
| Qwen3-VL-8B | 33.80 | 36.60 | 37.60 | 35.20 | 35.30 | 33.90 | 35.80 | 35.80 |

Table 9: Scaling Analysis on Qwen2.5-VL-7B and Qwen3-VL-8B.

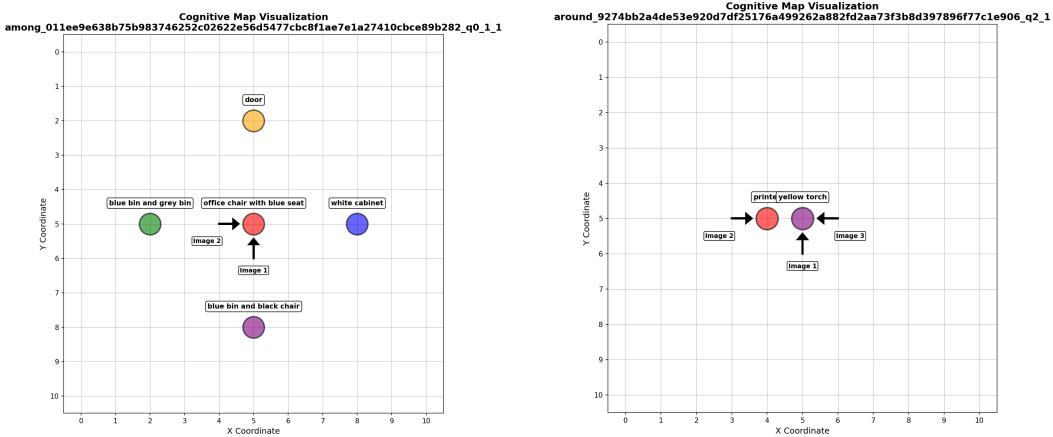
7 frames. Similarly, Qwen3-VL-235B drops to $\sim 36\%$ with interpolation. This suggests that without structured mapping, interpolation artifacts act as noise rather than useful signals, even for SOTA models.

| Model | VI-1 | VI-2 | VI-3 | VI-4 | VI-5 | VI-6 | VI-7 |
|----------------------|--------------|-------|-------|-------|-------|-------|-------|
| GPT-5 | 46.59 | 45.18 | 44.24 | 44.59 | 42.59 | 43.53 | 42.35 |
| Qwen3-VL-235B | 38.94 | 38.59 | 37.29 | 37.18 | 35.29 | 36.12 | 36.00 |

Table 10: Performance of Large-Scale Models (GPT-5, Qwen3-VL-235B) across view densities.

E.4 EXPLICIT REASONING WITH VISUAL-OF-THOUGHT

Explicit Visual Sketching via External Tools. While text-structured maps (e.g., JSON) introduce symbolic order, they fundamentally remain implicit token sequences. To bridge this gap, we investigated whether externalizing spatial map into *explicit visual representations* could further enhance reasoning. Inspired by ViLaSRWu et al. (2025b), we implemented a pipeline where the VLM interacts with an external plotting engine (Matplotlib) rather than generating text maps directly.



(a) Explicit Visual Map in Among Setting.

(b) Explicit Visual Map in Around Setting.

Figure 13: Comparison of Map Representations. The visual map, generated via external tools, renders objects and viewpoints onto a 10×10 grid, providing explicit geometric grounding.

We designed two visual-centric configurations:

- Visual-Map-as-Input (Img-CGMap-In):** Instead of ingesting raw JSON tokens, the model receives a rendered 10×10 grid image where objects and viewpoints are plotted explicitly. This tests the model’s ability to comprehend provided visual layouts.
- Visual-Map-for-Reasoning (Img-CGMap):** We adopt a multi-turn tool-use framework. The model first acts as a coder to generate drawing commands (e.g., `add(obj, [x, y])`), which are executed to render a visual sketch. This sketch is then fed back to

2646 the model as a new visual prompt to guide the final spatial reasoning. **The entire multi-**
 2647 **turn interaction pipeline and prompt design were strictly aligned with the ViSaLR**
 2648 **framework.**

| 2651 Configuration | 2652 Map Modality | 2653 Overall | 2654 Rotation | 2655 Among | 2656 Around |
|--------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|
| 2652 Raw-QA | 2653 - | 2654 37.81 | 2655 34.00 | 2656 36.00 | 2657 45.20 |
| 2653 CGMap-In (Original) | 2654 Text (JSON) | 2655 41.43 | 2656 37.00 | 2657 41.67 | 2658 44.40 |
| 2654 Img-CGMap-In (New) | 2655 Visual (Grid) | 2656 42.10 | 2657 31.50 | 2658 44.17 | 2659 45.60 |
| 2655 Plain-CGMap (Original) | 2656 Text (JSON) | 2657 41.33 | 2658 25.00 | 2659 39.67 | 2660 58.40 |
| 2656 Img-CGMap (New) | 2657 Visual (Grid) | 2658 43.13 | 2659 32.75 | 2660 41.13 | 2661 55.06 |

2659 Table 11: Performance comparison between implicit text-based maps (JSON) and explicit visual-
 2660 based maps (Image/Grid). Visual configurations consistently outperform their textual counterparts.

2661 **Results Analysis.** As shown in Table 11, visual map configurations consistently outperform their
 2662 textual counterparts. Specifically, `Img-CGMap` achieves an overall accuracy of **43.13%**, surpassing
 2663 the text-based `Plain-CGMap` (41.33%). Notably, the “Among” spatial relation benefits signifi-
 2664 cantly from the visual grid (41.13% vs. 39.67%), likely because relative positioning is more intuitive
 2665 in pixel space than in coordinate space. This experiment validates that leveraging external tools to
 2666 create explicit visual sketches grounds the model’s reasoning more effectively than symbolic text,
 2667 offering a promising direction for future development.

2670 F CAN WE TEACH VLMs TO BUILD AND LEVERAGE SPATIAL 2671 REPRESENTATIONS?

2672 In the main paper, we demonstrated that prompting frozen VLMs with external scaffolds offers
 2673 limited improvements. This highlighted a core limitation: the models themselves aren’t effectively
 2674 forming internal spatial representations or reasoning through space. To address this, we investigated
 2675 whether supervised fine-tuning (SFT) could teach VLMs to build and leverage these spatial models
 2676 internally. This section of the appendix provides further details on our SFT methodology, starting
 2677 with the crucial step of data curation.

2680 F.1 SUPERVISED FINE-TUNING DATA CURATION

2681 Effective SFT heavily relies on the quality and nature of the training data. To teach our VLMs the
 2682 desired spatial reasoning capabilities, we meticulously curated two primary types of data: cognitive
 2683 maps and free-form reasoning chains. These were designed to provide strong supervisory signals
 2684 for the model to learn how to represent and reason about space.

2687 F.1.1 COGNITIVE MAP GENERATION

2688 As discussed in Section D.1, cognitive maps serve as 2D schematic representations of object lay-
 2689 outs. For the SFT phase, we needed to generate ground truth cognitive maps that the VLM could
 2690 learn to produce. Our approach to generating these maps was grounded in the object arrangement
 2691 annotations described in Section B.1. We aimed for representations that were not only accurate but
 2692 also in a format that the VLM could feasibly learn to generate.

2693 The generation process was automated via a script that processes input JSONL files, where each
 2694 line item contains scene details including images and, crucially, `meta_info` describing the objects,
 2695 their potential orientations, and the camera viewpoint setup. For every item, the script first identifies
 2696 its specific spatial arrangement “setting” (e.g., “around,” “among,” “translation,” or “rotation”) by
 2697 parsing the item’s unique ID. Based on this setting, dedicated functions apply a set of predefined
 2698 rules and heuristics to determine the 2D coordinates (on a 10x10 grid) and facing directions for both
 2699 the objects and the camera views.

2700 For instance, in the "around" setting, objects (typically 2-4) are placed in a predetermined linear
 2701 arrangement near the grid's center (e.g., at coordinates like [4,5], [5,5]), and camera views are positioned
 2702 at cardinal directions relative to these objects, based on the specific camera angles pertinent to
 2703 the question. In the "rotation" setting, the camera is fixed at the center ([5,5]), and its facing direction
 2704 changes across views, while object positions are defined relative to the camera's current orientation.
 2705 Similar rule-based placements are implemented for "among" (objects in a cross or T-shape with
 2706 views from specific angles) and "translation" (objects arranged linearly to depict relationships like
 2707 "on" or "down to") settings. Object orientations, if applicable, are also assigned based on the input
 2708 `meta_info`.

2709 Finally, the generated layout of objects and views is formatted into a structured JSON string,
 2710 representing the cognitive map. This JSON cogmap, along with templated instructional prompts
 2711 (`cogmap_input` for VLM input format guidance and `cogmap_output` for VLM output task
 2712 description), is added to the original data item. The overall generation logic is summarized in Algo-
 2713 rithm 1.

Algorithm 1 Cognitive Map Generation

2714 **Require:** Dataset D containing items with spatial arrangement annotations
 2715 **Ensure:** Updated dataset with cognitive maps in JSON format

2716 1: **for all** $item \in D$ **do**

2717 2: $setting \leftarrow$ Extract setting type from $item.id$

2718 3: Initialize empty cognitive map $cogmap$ ▷ Position objects and views based on setting type

2719 4: **if** $setting = \text{"around"}$ **then**

2720 5: Position 2-4 objects in a line with coordinates like [4,5], [5,5], etc.

2721 6: Place views at cardinal positions based on camera angles

2722 7: **else if** $setting = \text{"among"}$ **then**

2723 8: Place center object at [5,5] and surrounding objects at [5,8], [2,5], [5,2], [8,5]

2724 9: Position views based on specified camera angles

2725 10: **else if** $setting = \text{"translation"}$ **then**

2726 11: Position objects according to their spatial relationships (e.g., "on", "down")

2727 12: Place views to highlight these spatial relationships

2728 13: **else if** $setting = \text{"rotation"}$ **then**

2729 14: Arrange objects based on rotation type (clockwise, counterclockwise, etc.)

2730 15: Fix camera at [5,5] with varying facing directions

2731 16: **end if** ▷ Add orientation information where applicable

2732 17: **for all** $object \in cogmap.objects$ **do**

2733 18: **if** $object$ has orientation **then**

2734 19: Add facing direction ("up", "down", "left", "right")

2735 20: **end if**

2736 21: **end for**

2737 22: Format $cogmap$ as structured JSON

2738 23: Add formatted cognitive map to $item$

2739 24: **end for**

2740 25: **return** Updated dataset D

2741 F.1.2 FREE-FORM REASONING GENERATION

2742 While cognitive maps provide a structured, global understanding of the scene, effective spatial reasoning
 2743 also involves a procedural, step-by-step thought process. To instill this capability in our
 2744 VLMs, we generated a dataset of grounded free-form reasoning chains. These chains were designed
 2745 to verbalize the mental simulation process required to answer the spatial questions in MINDCUBE.

2746 The generation of these reasoning chains was closely tied to the question-answer (QA) templates
 2747 developed in Section 2. For each specific setting (e.g., rotation, among, around), we manually
 2748 constructed reasoning chains following a consistent set of principles to ensure logical coherence and
 2749 clear grounding in the provided visual information and the question asked.

2754 The core principles guiding the generation of these reasoning chains were:
 2755

- 2756 1. **Initial Scene Understanding.** The reasoning begins by processing each input image individually.
 2757 This involves identifying key objects visible in that view and noting their explicit spatial
 2758 relationships with other objects within that same view. This step emulates the initial perceptual
 2759 intake a human might perform.
- 2760 2. **Cross-View Consistency and Environment Integration.** After individual view analysis, the
 2761 reasoning emphasizes that although different images are provided, they all depict the *same underlying spatial environment*. This is often achieved by identifying and highlighting an anchor
 2762 object or a consistent set of objects that appear across multiple views, thereby helping to establish
 2763 a unified mental model of the scene.
- 2764 3. **Question-Driven Inference.** With a foundational understanding of the scene established from
 2765 the views, the subsequent steps in the reasoning chain are directly guided by the specifics of the
 2766 question. This involves: (1) **Mental Simulation:** If the question involves a hypothetical change
 2767 in viewpoint or a "what-if" scenario (e.g., "what if you turn left?"), the reasoning chain explicitly
 2768 verbalizes this mental transformation. (2) **Perspective Taking:** If the question requires adopting
 2769 a different perspective (e.g., "from the sofa's perspective"), the reasoning chain articulates this
 2770 shift. (3) **Spatial Relationship Deduction:** The chain logically deduces the queried spatial
 2771 relationship by integrating information from the relevant views, applying spatial concepts (like
 2772 left-of, behind, further from), and referencing the established mental model of the scene.

2773 This structured approach to generating reasoning chains aimed to provide clear, step-by-step exam-
 2774 ples of spatial thought processes for the VLM to learn from. Figure 14, 15 and 16 show a template
 2775 example combined with the filled case for ROTATION, AMONG, AROUND, respectively.

2777 F.2 DETAILED EXPERIMENTAL SETUP

2778 In this section, we provide a more granular view
 2779 of the experimental parameters employed dur-
 2780 ing the Supervised Fine-Tuning (SFT) phase
 2781 of our research. As stated in the main
 2782 text, these experiments were designed to teach
 2783 Vision-Language Models (VLMs) to build and
 2784 leverage internal spatial representations. The
 2785 base model for these SFT experiments was
 2786 Qwen2.5-VL-3B-Instruct.

2787 We utilized a consistent training script for
 2788 all SFT experiments, ensuring comparability
 2789 across different configurations. The primary
 2790 variation across these runs was the specific
 2791 dataset used (datasets variable in the script),
 2792 corresponding to the different SFT task con-
 2793 figurations discussed in Section 4.1, such as
 2794 Aug-CGMap-Out. Other hyperparameters
 2795 were kept constant to isolate the effects of the
 2796 different training signals.

2797 The core training hyperparameters are summa-
 2798 rized in Table 12 and further detailed by the provided training script.

2799 The training was conducted using a distributed setup managed by `torchrun` and leveraged
 2800 DeepSpeed with a ZeRO Stage 3 optimization strategy for efficient full-parameter fine-tuning.
 2801 Specifically, we set `NPROC_PER_NODE` to 2, utilizing two NVIDIA H100 GPUs, though the
 2802 script template showed `CUDA_VISIBLE_DEVICES=0,1,2,3` and `NPROC_PER_NODE` default-
 2803 ing to 4, our table and resource claims point to 2 GPUs being used for these runs. The
 2804 `per_device_train_batch_size` was set to 4, and with `gradient_accumulation_steps`
 2805 at 32, this resulted in an effective batch size of 256.

2806 The learning rate was 1×10^{-5} with a cosine learning rate scheduler and a warmup ra-
 2807 tio of 0.03 over 3 training epochs. We enabled full fine-tuning of the vision encoder,

Table 12: Training hyperparameters for SFT ex-
 2775 periments with Qwen2.5-VL-3B-Instruct.

| Parameter | Value |
|----------------------|-----------------|
| Dataset size | 10,000 QA pairs |
| Epochs | 3 |
| Learning rate | 1e-5 |
| Scheduler | Cosine |
| Fine-tuning type | Full-parameter |
| Batch Size | 256 |
| GPUs used | 2 × NVIDIA H100 |
| Max image resolution | 90,000 pixels |
| Min image resolution | 784 pixels |
| Model Max Length | 8192 tokens |
| Weight Decay | 0 |
| Warmup Ratio | 0.03 |
| Max Grad Norm | 1 |
| Precision | BF16 |
| Optimizer | AdamW |

2808

2809

2810

2811

2812

2813

Rotation – Template Type 2

Template Reasoning Chain

This scene is observed using four images. In image 1, I can see `{object_in_front_view1}` as the main object in front of me. In image 2, I can see `{object_in_front_view2}` as the main object in front of me. In image 3, I can see `{object_in_front_view3}` as the main object in front of me. In image 4, I can see `{object_in_front_view4}` as the main object in front of me. Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1). From the perspective of image 4: '`{object_in_front_view4}`' is in front, '`{object_in_front_view1}`' is to the right, '`{object_in_front_view2}`' is behind, '`{object_in_front_view3}`' is to the left. After turning 90 degrees to the right: '`{object_in_front_view1}`' is now in front, '`{object_in_front_view2}`' is now to my right, '`{object_in_front_view3}`' is now behind, '`{object_in_front_view4}`' is now to my left. The object located to my behind is '`{object_in_front_view3}`'. Therefore, from the viewpoint of image 4, after a mental turn of 90 degrees to the right, the object to my behind is '`{object_in_front_view3}`'. The answer is {option}

2830

Question: If you are standing at the viewpoint presented in image 4 and turn 90 degrees to the right, what is to your behind ?

Options:

- A. Staircases
- B. Vanity unit
- C. Urinal
- D. Yellow signboard

:

rotation

agent-agent

self perspective

non-linear

Curated Reasoning Chain

This scene is observed using four images. In image 1, I can see yellow signboard as the main object in front of me. In image 2, I can see vanity unit as the main object in front of me. In image 3, I can see staircases as the main object in front of me. In image 4, I can see urinal as the main object in front of me. Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1). From the perspective of image 4: 'urinal' is in front, 'yellow signboard' is to the right, 'vanity unit' is behind, 'staircases' is to the left. After turning 90 degrees to the right: 'yellow signboard' is now in front, 'vanity unit' is now to my right, 'staircases' is now behind, 'urinal' is now to my left. The object located to my behind is 'staircases'. Therefore, from the viewpoint of image 4, after a mental turn of 90 degrees to the right, the object to my behind is 'staircases'. The answer is A. Staircases

2856

2857

2858

2859

2860

2861

Figure 14: Example reasoning chain template for ROTATION

2862

2863

2864

2865

2866

2867

2868 In this scene, I observe four images showing different perspectives. All images feature the {main_object} as
 2869 the main object. In image 1, I can see {main_object} in front of the {context_obj_V1}. In image 2, I can see
 2870 {main_object} in front of the {context_obj_V2}. In image 3, I can see {main_object} in front of the
 2871 {context_obj_V3}. In image 4, I can see {main_object} in front of the {context_obj_V4}. By observing the main
 2872 object and its surroundings across views, and noting the rotational changes, I establish their relationships.
 2873 Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
 2874 after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree
 2875 clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I construct a
 2876 complete spatial understanding: When I view {context_obj_V2} behind {main_object} in the second view, it
 2877 implies that in the first view, {context_obj_V2} is on the right side of {main_object}. Similarly, when I see
 2878 {context_obj_V4} behind {main_object} in the fourth view, it indicates that in the first view, {context_obj_V4} is
 2879 on the left side of {main_object}. To determine what lies behind me in the first view, I examine the opposite
 2880 view, which is the third view. As {context_obj_V3} is observed behind {main_object} in the third view, it means
 2881 that in the first view, {context_obj_V3} is positioned behind me. This way, I can fully comprehend the spatial
 2882 relationships of all objects in the entire scene from the perspective of image 1. So, from the perspective of
 2883 image 1: {context_obj_V2} is to the right of {main_object}, {context_obj_V3} is to my behind, and
 2884 {context_obj_V4} is to the left of {main_object}. The answer is {option}.

2885

2886 **Question:** From the viewpoint presented in image 1, what is to the right of the
 2887 black stool ?

2888

2889 **Options:**

- 2890 A. Desk
- 2891 B. **Office Area**
- 2892 C. Grey sofa
- 2893 D. Two chairs on the corridor

2894 meanwhile object-object self perspective non-linear

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

Curated Reasoning Chain

2916 In this scene, I observe four images showing different perspectives. All images feature the black stool as the
 2917 main object. In image 1, I can see black stool in front of the cabinet desk along a corridor. In image 2, I can
 2918 see black stool in front of the office area. In image 3, I can see black stool in front of the two chairs on the
 2919 corridor. In image 4, I can see black stool in front of the grey sofa. To identify the position change across
 2920 views, I focus on the main object's angle variation. Then, I analyze the angles and relative positions of other
 2921 objects on the platform to back up this observation. I understand that: Image 1 is the initial view. Image 2 is
 2922 captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise
 2923 rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees
 2924 from image 1). Through analyzing these perspective changes, I can construct a complete spatial
 2925 understanding: when I view office area behind black stool in the second view, it implies that in the first view,
 2926 office area is on the right side of black stool. Similarly, when I see grey sofa behind black stool in the fourth
 2927 view, it indicates that in the first view, grey sofa is on the left side of black stool. However, I am still uncertain
 2928 about what lies behind me in the first view. Then, I recognize that I can examine the opposite view to find
 2929 out. The opposite view of the first view is the third view. As two chairs on the corridor is observed behind black
 2930 stool in the third view, it means that in the first view, two chairs on the corridor is positioned behind me. This
 2931 way, I can fully comprehend the spatial relationships of all objects in the entire scene. So, from the
 2932 perspective of image 1: office area is to the right of black stool, two chairs on the corridor is to my behind,
 2933 grey sofa is to the left of black stool. The answer is B. office area

Figure 15: Example reasoning chain template for AMONG

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926

Around – Template Type 1

Template Reasoning Chain

I need to determine how I moved from the viewpoint in image 1 to the viewpoint in image 2. In image 1, I can see: {object1_view1}, {object2_view1} from left to right. In image 2, I can clearly see {anchor_object_view2}. I notice that {anchor_object_both_views} is visible in both images, but from different angles. I analyze how the viewpoint changed from image 1 to image 2: The {anchor_object_analysis}, which is visible in image 1, becomes more prominent in image 2. This suggests I moved {inferred_movement_description}. The changes in object visibility and positioning between images suggest I moved {final_inferred_movement}. Therefore, the answer is {option}

2938

2939
2940
2941

Question: Based on these two views showing the same scene, which direction did you move from the first view to the second view?

Options:

A. Forward-left
B. Forward-right

:

meanwhile

agent-agent

self perspective

linear

Curated Reasoning Chain

I need to determine how I moved from the viewpoint in image 1 to the viewpoint in image 2. In image 1, I can see: grey square planter, white square planter from left to right. In image 2, I can clearly see grey square planter. I notice that grey square planter is visible in both images, but from different angles. I analyze how the viewpoint changed from image 1 to image 2: The grey square planter, which is visible in image 1, becomes more prominent in image 2. This suggests I moved forward and toward the left side of the scene. The changes in object visibility and positioning between images suggest I moved forward and to the left. Therefore, the answer is A. Forward-left

2958

2959

Figure 16: Example reasoning chain template for AROUND

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970 MM-MLP, and the LLM components (--tune_mm_vision True --tune_mm_mlp True
 2971 --tune_mm_llm True). The maximum sequence length for the model was set to 8192 tokens
 2972 (--model_max_length 8192), and the maximum image input pixels were capped at 90,000
 2973 (--max_pixels 90000), with a minimum of 784. Gradient checkpointing was enabled to man-
 2974 age memory usage (--gradient_checkpointing True). Checkpoints were saved every 5
 2975 steps (--save_steps 5), keeping a total of 12 checkpoints (--save_total_limit 12).

2976 This consistent and robust experimental framework, detailed in Sections 3.1, 3.2, and herein, al-
 2977 lowed for a fair comparison of the different SFT strategies aimed at improving the spatial reasoning
 2978 capabilities of Qwen2.5-VL-3B-Instruct.
 2979

2980 **F.3 VLM RESPONSE EXAMPLES AFTER SFT FOR CONFIGURATIONS IN SECTION D.3**
 2981

2982 Output for Raw-QA: Input Prompt Refer to D.3.1
 2983

2984 <answer>**D. White headboard**</answer>
 2985

2987 Output for Aug-CGMap-Out: Input Prompt Refer to D.3.5
 2988

2989 Based on my observation, the answer is:
 2990

2991 <cogmap>
 2992 ```json
 2993 {
 2994 "objects": [
 2995 {"name": "white jar", "position": [5, 5]},
 2996 {"name": "bed sheet with a floral pattern",
 2997 "position": [5, 8]},
 2998 {"name": "white headboard", "position": [2, 5]},
 2999 {"name": "clothes rack", "position": [5, 2]},
 3000 {"name": "table with cups on it", "position": [8, 5]}
 3001],
 3002 "views": [
 3003 {"name": "Image 1", "position": [5, 6], "facing": "up"},
 3004 {"name": "Image 2", "position": [4, 5], "facing": "right"},
 3005 {"name": "Image 3", "position": [5, 4], "facing": "down"},
 3006 {"name": "Image 4", "position": [6, 5], "facing": "left"}
 3007]
 3008 }
 3009 '
 3010
 3011 </cogmap><answer>**C. Bed sheet with a floral pattern**</answer>
 3012

3013 Output for Plain-CGMap-Out: Input Prompt Refer to D.3.6
 3014

3015 Based on my observation, the answer is:
 3016

3017 <cogmap>
 3018 ```json
 3019 {
 3020 "white jar": {"position": [5, 5]},
 3021 "bed sheet with a floral pattern": {"position": [5, 8]},
 3022 "white headboard": {"position": [2, 5]},
 3023 "clothes rack": {"position": [5, 2]},
 3024 "table with cups on it": {"position": [8, 5]}
 3025 }
 3026 '
 3027

3024
 3025 </cogmap><answer>**B. Clothes rack** </answer>
 3026
 3027

3028 Output for **FFR**: Input Prompt Refer to D.3.2
 3029

3030 <think>In this scene, I observe four images showing different perspectives. All images
 3031 feature the white jar as the main object. In image 1, I can see white jar in front of the table
 3032 with cups on it. In image 2, I can see white jar in front of the bed sheet with a floral pattern.
 3033 In image 3, I can see white jar in front of the clothes rack. In image 4, I can see white jar
 3034 in front of the white headboard. To identify the position change across views, I focus on
 3035 the main object's angle variation. Then, I analyze the angles and relative positions of other
 3036 objects on the platform to back up this observation. I understand that: Image 1 is the initial
 3037 view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
 3038 after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
 3039 further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
 3040 perspective changes, I can construct a complete spatial understanding: when I view bed
 3041 sheet with a floral pattern behind white jar in the second view, it implies that in the first
 3042 view, bed sheet with a floral pattern is on the right side of white jar. Similarly, when I see
 3043 white headboard behind white jar in the fourth view, it indicates that in the first view, white
 3044 headboard is on the left side of white jar. However, I am still uncertain about what lies
 3045 behind me in the first view. Then, I recognize that I can examine the opposite view to find
 3046 out. The opposite view of the first view is the third view. As clothes rack is observed behind
 3047 white jar in the third view, it means that in the first view, clothes rack is positioned behind
 3048 me. This way, I can fully comprehend the spatial relationships of all objects in the entire
 3049 scene. So, from the perspective of image 4: table with cups on it is to the right of white jar,
 3050 bed sheet with a floral pattern is to my behind, clothes rack is to the left of white jar. So the
 3051 answer is B. Clothes rack</think><answer>**B. Clothes rack**</answer>

3052 Output for Aug-CGMap-FFR-Out: Input Prompt Refer to D.3.8
 3053

3054 Based on my observation, the answer is:
 3055 <cogmap>

3056 ```json
 3057 {
 3058 "objects": [
 3059 {"name": "white jar", "position": [5, 5]},
 3060 {"name": "bed sheet with a floral pattern",
 3061 "position": [5, 8]},
 3062 {"name": "white headboard", "position": [2, 5]},
 3063 {"name": "clothes rack", "position": [5, 2]},
 3064 {"name": "table with cups on it", "position": [8, 5]}
 3065],
 3066 "views": [
 3067 {"name": "Image 1", "position": [5, 6], "facing": "up"},
 3068 {"name": "Image 2", "position": [4, 5], "facing": "right"},
 3069 {"name": "Image 3", "position": [5, 4], "facing": "down"},
 3070 {"name": "Image 4", "position": [6, 5], "facing": "left"}
 3071]
 3072 }
 3073 ````

3074 </cogmap><think>In this scene, I observe four images showing different perspectives. All
 3075 images feature the white jar as the main object. In image 1, I can see white jar in front of the
 3076 table with cups on it. In image 2, I can see white jar in front of the clothes rack. In image 3,
 3077 I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white

3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097

jar in front of the white headboard. To identify the position change across views, I focus on the main object's angle variation. Then, I analyze the angles and relative positions of other objects on the platform to back up this observation. I understand that: Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I can construct a complete spatial understanding: when I view clothes rack behind white jar in the second view, it implies that in the first view, clothes rack is on the right side of white jar. Similarly, when I see white headboard behind white jar in the fourth view, it indicates that in the first view, white headboard is on the left side of white jar. However, I am still uncertain about what lies behind me in the first view. Then, I recognize that I can examine the opposite view to find out. The opposite view of the first view is the third view. As bed sheet with a floral pattern is observed behind white jar in the third view, it means that in the first view, bed sheet with a floral pattern is positioned behind me. This way, I can fully comprehend the spatial relationships of all objects in the entire scene. So, from the perspective of image 4: clothes rack is to the right of white jar, bed sheet with a floral pattern is to my behind, table with cups on it is to the left of white jar. So the answer is A. Table with cups on it.</think><answer>**A. Table with cups on it**</answer>

3098
 3099

Output for Plain-CGMap-FFR-Out: Input Prompt Refer to D.3.7

3100 Based on my observation, the answer is:

3101 <cogmap>

3102 ```json

3103 {

3104 "white jar": {"position": [5, 5]},
 3105 "bed sheet with a floral pattern": {"position": [5, 8]},
 3106 "white headboard": {"position": [2, 5]},
 3107 "clothes rack": {"position": [5, 2]},
 3108 "table with cups on it": {"position": [8, 5]}

3109 }
 3110 }
 3111 ,

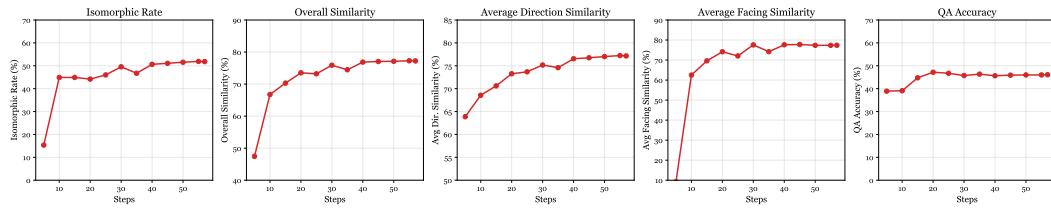
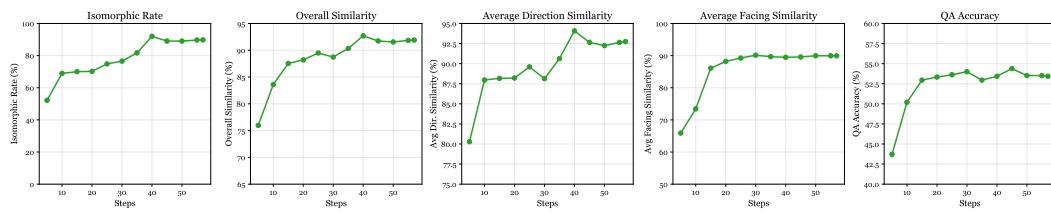
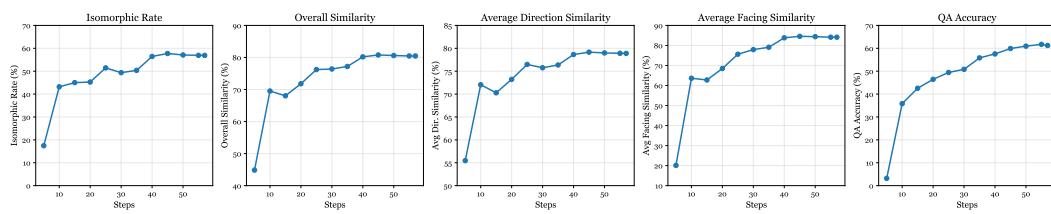
3112 </cogmap><think>In this scene, I observe four images showing different perspectives. All
 3113 images feature the white jar as the main object. In image 1, I can see white jar in front of the
 3114 table with cups on it. In image 2, I can see white jar in front of the clothes rack. In image 3,
 3115 I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white
 3116 jar in front of the white headboard. To identify the position change across views, I focus on
 3117 the main object's angle variation. Then, I analyze the angles and relative positions of other
 3118 objects on the platform to back up this observation. I understand that: Image 1 is the initial
 3119 view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is
 3120 after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
 3121 further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these
 3122 perspective changes, I can construct a complete spatial understanding: when I view clothes
 3123 rack behind white jar in the second view, it implies that in the first view, clothes rack is on
 3124 the right side of white jar. Similarly, when I see white headboard behind white jar in the
 3125 fourth view, it indicates that in the first view, white headboard is on the left side of white jar.
 3126 However, I am still uncertain about what lies behind me in the first view. Then, I recognize
 3127 that I can examine the opposite view to find out. The opposite view of the first view is the
 3128 third view. As bed sheet with a floral pattern is observed behind white jar in the third view,
 3129 it means that in the first view, bed sheet with a floral pattern is positioned behind me. This
 3130 way, I can fully comprehend the spatial relationships of all objects in the entire scene. So,
 3131 from the perspective of image 4: clothes rack is to the right of white jar, bed sheet with a
 3132 floral pattern is to my behind, table with cups on it is to the left of white jar. So the answer
 3133 is A. Table with cups on it.</think><answer>**A. Table with cups on it**</answer>

3132 **F.4 DETAILED GRAPH METRIC RESULTS FOR SFT GRAPH-RELATED EXPERIMENTS**
3133

3134 This section provides a detailed look at the Supervised Fine-Tuning (SFT) training dynamics to
3135 support the main paper’s conclusions. The figures below plot key metrics over training steps for four
3136 map-generation settings. A comparative analysis highlights that jointly training map generation and
3137 reasoning is the most effective strategy.

3138 When training on map generation alone, as in the Plain-CGMap-Out and Aug-CGMap-Out
3139 settings, the graph quality metrics show rapid convergence. However, the final QA accuracy is
3140 limited, reaching 54.38% for Plain-CGMap-Out and 54.19% for Aug-CGMap-Out.

3141 In contrast, the joint training approaches (Plain-CGMap-FFR-Out and
3142 Aug-CGMap-FFR-Out), despite a slower initial convergence on graph quality metrics, ultimately
3143 achieve far superior performance in task accuracy. The Plain-CGMap-FFR-Out setting
3144 proves to be the most effective, reaching a QA Accuracy of 60.00%. The Aug-CGMap-FFR-Out
3145 setting also yields strong results, with QA accuracy climbing to about 65%. This demonstrates the
3146 superiority of joint training for achieving high performance in both the final task accuracy and the
3147 quality of the generated spatial representations.

3156 **Figure 17: Training dynamics for the Aug-CGMap-Out setting.**
31573159 **Figure 18: Training dynamics for the Plain-CGMap-Out setting.**
31603168 **Figure 19: Training dynamics for the Aug-CGMap-FFR-Out setting.**
31693170 **F.5 WHICH PART OF VLM IS THE BOTTLENECK FOR SPATIAL UNDERSTANDING?**
3171

3172 To develop more efficient fine-tuning strategies, it is crucial to understand which component of a
3173 Vision-Language Model (VLM)—the vision encoder responsible for perception or the Large
3174 Language Model (LLM) responsible for reasoning—presents the primary bottleneck for spatial
3175 understanding. To investigate this, we conduct a bottleneck analysis by selectively fine-tuning different
3176 parts of the VLM and observing the impact on performance.

3177 We evaluate four distinct training configurations on the Raw-QA task, with results captured at an
3178 early stage of training (step 57) to assess the initial learning dynamics. The configurations are:

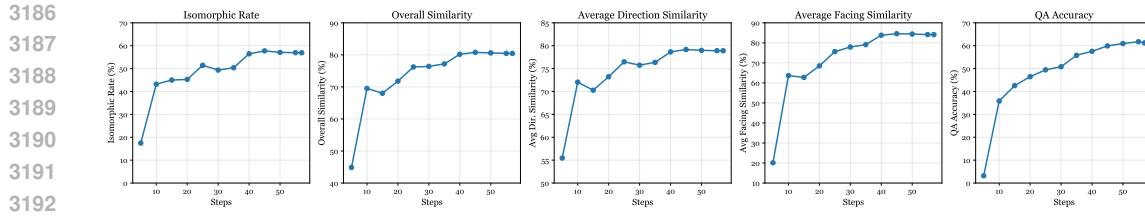


Figure 20: Training dynamics for the Plain-CGMap-FFR-Out setting, showing superior final performance.

(1) the baseline performance of the pre-trained model without any fine-tuning; (2) fine-tuning only the vision encoder while keeping the LLM frozen; (3) fine-tuning only the LLM while keeping the vision encoder frozen; and (4) the standard approach of fine-tuning all parts of the model.

Table 13: VLM Training Bottleneck Analysis (Step=57, in %). Performance is measured on the MINDCUBE-TINY benchmark under the Raw-QA setting.

| Training Method | Overall | Rotation | Among | Around |
|----------------------------------|---------|----------|-------|--------|
| Raw-QA (no fine-tuning) | 37.81 | 34.00 | 36.00 | 45.20 |
| Freeze LLM (Vision Encoder Only) | 37.81 | 30.50 | 37.00 | 45.60 |
| Freeze Vision Encoder (LLM Only) | 51.43 | 34.00 | 50.00 | 68.80 |
| Tune All Parts | 52.28 | 34.50 | 52.50 | 66.00 |

The results, presented in Table 13, offer several key insights. First, there is a dramatic performance leap from the no-fine-tuning baseline (37.81% overall), but only when the language model is trained. Methods involving LLM fine-tuning achieve over 51% accuracy, underscoring the necessity of adapting the model’s reasoning capabilities.

Most strikingly, the performance bottleneck is almost exclusively concentrated in the LLM. Tuning only the LLM (Freeze Vision Encoder) yields an overall accuracy of 51.43%, capturing nearly the full performance gain of end-to-end fine-tuning (52.28%). In stark contrast, tuning only the vision encoder (Freeze LLM) provides no improvement whatsoever over the baseline (37.81%). This indicates that the bottleneck is not shared between modules. For this spatial task, adapting the model’s language-based reasoning is critical, while adapting its visual perception is surprisingly ineffective.

Intriguingly, the fact that fine-tuning only the vision encoder fails to improve performance is in itself a significant finding. A possible explanation is that the pre-trained visual features are already sufficient to extract the necessary objects and their properties. The core challenge of the task seems to lie not in *what* is seen, but in *how to reason* about the spatial relationships across a series of views—a task primarily handled by the LLM. In conclusion, our analysis suggests that the most significant gains come from adapting the reasoning module. For efficient tuning, freezing the vision encoder and focusing solely on the LLM proves to be a highly effective strategy, achieving nearly top-tier performance at a fraction of the computational cost.

F.6 BRANCHING FROM RAW-QA SFT CHECKPOINT

In our main experiments, we fine-tuned the model for each specific task format starting from the base pre-trained VLM. A natural question arises: can a curriculum-based SFT approach further improve performance? Specifically, we investigate whether first fine-tuning the model on the simplest task format—‘Raw-QA’, which only requires outputting the final answer—can establish a better foundation for learning to leverage more complex reasoning formats.

To test this hypothesis, we conducted a set of branching experiments. We took the checkpoint from the model fully fine-tuned on the ‘Raw-QA’ task. Then, we used this specialized checkpoint as the initial weights for further fine-tuning on other scaffolding tasks, namely Aug-CGMap-In, FF

Rsn, and Aug-CGMap-FFR-Out. It is important to note that during this second stage of fine-tuning, the model’s output for all tasks was still constrained to be only the final answer option. This setup allows us to isolate the effect of the cognitive scaffolds on the model’s internal reasoning process, rather than its ability to generate complex text.

The results, presented in Table 14, show a consistent and notable improvement across all branched tasks compared to their counterparts trained from scratch. For example, both Aug-CGMap-In and Aug-CGMap-FFR-Out reach an impressive overall accuracy of 49.00%. Even the FF Rsn method benefits from this two-stage approach, with its overall accuracy rising to 46.82%. These findings suggest that a two-stage SFT strategy is highly effective. By first grounding the model in the fundamental objective of the task (i.e., finding the correct answer) and then teaching it to process and leverage more complex cognitive scaffolds, we can achieve superior spatial reasoning performance. This indicates that the model, once primed for the core task, becomes more adept at utilizing the provided spatial context, even if it does not explicitly generate the reasoning chain or cognitive map.

Table 14: Performance of various methods after being fine-tuned from a Raw-QA SFT checkpoint. This two-stage training approach led to performance gains across all methods. All accuracies are reported as percentages (%).

| Method | Overall | Rotation | Among | Around |
|-------------------|---------|----------|-------|--------|
| Raw-QA | 46.36 | 33.50 | 51.20 | 46.75 |
| Aug-CGMap-In | 49.00 | 35.50 | 53.20 | 50.50 |
| FF Rsn | 46.82 | 37.00 | 50.60 | 47.00 |
| Aug-CGMap-FFR-Out | 49.00 | 37.00 | 53.20 | 49.75 |

F.7 EXPERIMENTS ON OTHER MLLMs

Our core ‘map-then-reason’ insight generalizes across different Visual Language Model (VLM) families. We have conducted new experiments on InternVL3-2BZhu et al. (2025), and the results below (Table 15) show that the Aug-CGMap-FFR-Out and Plain-CGMap-FFR-Out settings outperform others by a large margin.

Table 15: Performance of InternVL3-2B after supervised fine-tuning. All accuracies are reported as percentages (%).

| Config. | Overall | Rotation | Among | Around | Overall Sim. | Isom. Rate |
|---------------------|---------|----------|-------|--------|--------------|------------|
| Raw-QA | 54.23 | 34.00 | 55.25 | 68.00 | - | - |
| FFR | 56.83 | 40.00 | 58.98 | 65.20 | - | - |
| Aug-CGMap-Out | 52.98 | 35.00 | 53.90 | 65.20 | 87.39 | 66.15 |
| Plain-CGMap-Out | 51.63 | 31.50 | 50.34 | 70.80 | 93.64 | 90.58 |
| Aug-CGMap-FFR-Out | 71.44 | 58.50 | 75.42 | 72.40 | 87.00 | 66.63 |
| Plain-CGMap-FFR-Out | 73.56 | 65.00 | 77.63 | 70.80 | 92.04 | 88.27 |

F.8 PROMPT SENSITIVITY ANALYSES.

To examine prompt sensitivity, we compared our structured representation (S) against a natural-language (NL) formulation for the three strongest variants. As shown in Table 16, results vary by format: for Plain-CGMap-FFR-Out, the structured prompt yields 41.33% versus 39.71% for NL, whereas for CGMap-In-FFR-Out, NL slightly outperforms S (43.43% vs. 41.43%). These findings demonstrate that the optimal prompt style is setting-dependent and support the principle that VLMs should flexibly adapt to diverse user inputs rather than rely on a single “perfect” format. Consequently, our paper reports results using one consistent and representative prompt variation.

3294 Table 16: Prompt Sensitivity Analysis: structured (S) vs. natural language (NL).
3295

| 3296 Configuration | 3297 Acc (S) | 3298 Acc (NL) |
|--------------------------|--------------|---------------|
| 3298 Aug-CGMap-FFR-Out | 40.57% | 37.43% |
| 3299 Plain-CGMap-FFR-Out | 41.33% | 39.71% |
| 3300 CGMap-In-FFR-Out | 41.43% | 43.43% |

3301
3302 F.9 EXPLORING LATENT SPATIAL REPRESENTATIONS.
33033304 Despite our primary focus on **explicit representations like different scaffolds**, we also investigated
3305 the model’s internal features to understand how it encodes spatial information and forms spatial
3306 mental models. To determine whether the model maintains latent spatial representations and encodes a
3307 viewpoint-invariant “neural line,” we conducted an experiment using 100 object triplets (front/left-
3308 /right views) from our MINDCUBE. We registered PyTorch forward hooks at the 10th LLM layer
3309 (11m.hidden_states) of our SFT model to capture these features. We performed three comple-
3310 mentary analyses.3311 **Pairwise similarity.** We calculated the cosine similarity and Pearson correlation coefficient (r) for
3312 activations of the same object across different views (**positive pairs**) and between different objects
3313 (**negative pairs**). The results in Table 17 show that both cosine similarity and Pearson correlation
3314 were higher for positive pairs compared to negative pairs in the layer-10 LM. This indicates that the
3315 model has a measurable, layer-wise spatial consistency for object identity across viewpoints.
3316

| 3317 Metric | 3318 Positive pairs | 3319 Negative pairs |
|----------------|---------------------|---------------------|
| 3319 Cosine | 0.9651 | 0.9160 |
| 3320 Pearson r | 0.2750 | 0.2046 |

3321 Table 17: Pairwise similarity results for positive and negative pairs.
33223323 **Stable-dimension search.** For each token dimension, we computed the variance across the three
3324 views. With only 64 stable dimensions (variance 4.15-6.01), the average cosine similarity across
3325 views was 0.931 ± 0.068 , which is significantly higher than random baselines. These low-variance
3326 dimensions act as shared neurons that remain nearly constant across different viewpoints. Their high
3327 pairwise cosine similarity confirms that the model has learned an invariant representation.
33283329 **Probing.** To further investigate whether the identified stable dimensions truly encode a robust,
3330 viewpoint-invariant representation, we conducted a probing experiment. We trained a simple linear
3331 classifier on the activations from the model’s 10th LLM layer. The task was to predict the direction
3332 of a 90-degree arc rotation for a given object. The training data consisted of pairs of activations
3333 corresponding to the front and left views of the objects, and the target label was either “clockwise”
3334 or “counter-clockwise.” This setup forced the classifier to learn the spatial relationship between the
3335 two viewpoints.3336 The classifier was then evaluated on a held-out test set of objects not seen during training. It achieved
3337 an impressive 85% accuracy, significantly outperforming the random chance baseline of 50%. This
3338 result provides strong evidence that the stable dimensions identified in our previous analysis are
3339 not merely statistical artifacts. Instead, they represent a meaningful and generalizable spatial code.
3340 The model’s ability to encode this type of relational information allows a simple linear probe to
3341 successfully infer a complex spatial transformation on entirely new objects, confirming that the
3342 latent representations are robust and useful for spatial mental modeling.
33433344 F.10 HYPERPARAMETER TUNING RESULTS
33453346 We conducted new hyperparameter tuning experiments to further validate our approach. Specifically,
3347 we performed a series of experiments to tune the hyperparameters for our Supervised Fine-Tuning
(SFT) settings, as detailed in Table 18.

As shown in the table, our original hyperparameter configuration of a learning rate of 10^{-5} , a batch size of 512, and a warmup ratio of 0.03 yielded the highest accuracy of 52.28%. The results from these experiments confirm that the hyperparameters used in our initial submission are effective and well-optimized for the task, further substantiating our claims.

Table 18: SFT Hyperparameter Tuning Results

| SFT (learning rate, batch size, warmup ratio) | Acc (%) |
|---|--------------|
| $(1 \times 10^{-5}, 512, 0.03)$ – Ours | 52.28 |
| $(2 \times 10^{-5}, 512, 0.03)$ | 51.71 |
| $(4 \times 10^{-5}, 512, 0.03)$ | 51.52 |
| $(1 \times 10^{-5}, 256, 0.03)$ | 50.86 |
| $(1 \times 10^{-5}, 1024, 0.03)$ | 51.90 |
| $(1 \times 10^{-5}, 512, 0.01)$ | 51.81 |
| $(1 \times 10^{-5}, 512, 0.10)$ | 50.67 |

F.11 STATISTICAL SIGNIFICANCE ANALYSIS.

We have re-run our key experiments with three independent random seeds to report mean \pm standard deviation and assess the robustness of our findings. Table 19a shows results for the frozen VLM configurations: the **FFR** variant achieves the highest overall accuracy ($40.35\% \pm 0.83$), outperforming the Raw-QA baseline ($36.19\% \pm 5.95$) and other mapping-reasoning variants. Table 19b summarizes the corresponding SFT configurations: here, Plain-CGMap-FFR-Out again attains the best accuracy ($56.79\% \pm 1.06$), confirming that “map-then-reason” remains the most effective approach under multiple runs.

Table 19: Performance comparison of various configurations.

(a) Frozen VLM configs: mean \pm std over 3 seeds.

| Configuration | Overall (%) |
|---------------------|------------------|
| Raw-QA | 36.19 ± 5.95 |
| Aug-CGMap-In | 33.78 ± 0.73 |
| FFR | 40.35 ± 0.83 |
| Aug-CGMap-FFR-Out | 37.87 ± 5.93 |
| Plain-CGMap-FFR-Out | 38.22 ± 2.67 |
| CGMap-In-FFR-Out | 37.59 ± 0.67 |

(b) SFT configs: mean \pm std over 3 seeds.

| Configuration | Overall (%) |
|---------------------|------------------|
| Raw-QA | 51.14 ± 0.90 |
| FFR | 51.27 ± 1.53 |
| Aug-CGMap-Out | 51.14 ± 1.16 |
| Plain-CGMap-Out | 52.35 ± 1.67 |
| Aug-CGMap-FFR-Out | 53.28 ± 1.34 |
| Plain-CGMap-FFR-Out | 56.79 ± 1.06 |

G CAN REINFORCEMENT LEARNING FURTHER REFINE SPATIAL THOUGHT PROCESSES?

As discussed in the main paper, while Supervised Fine-Tuning (SFT) establishes a strong foundation for spatial reasoning, reinforcement learning (RL) presents an avenue for further optimizing spatial thought processes through outcome-driven feedback. The core inquiry is whether guiding VLMs with rewards can lead to the development of more precise spatial mental models and enhanced reasoning capabilities. This section of the appendix provides a more detailed exposition of the experimental setup employed for the RL phase of our research. Additionally, we present case studies to offer qualitative insights into how RL refines the models’ spatial representations and reasoning chains.

G.1 DETAILED EXPERIMENTAL SETUP

For the reinforcement learning (RL) phase of our research, we employed the VAGEN framework. The core policy optimization algorithm used was Group Relative Policy Optimization (GRPO). To

3402 ensure consistency and allow for direct comparison with earlier stages of our work, key components
 3403 from the Supervised Fine-Tuning (SFT) experiments were retained. Specifically, the base Vision-
 3404 Language Model (VLM) for all RL configurations was Qwen2.5-VL-3B-Instruct, and evaluations
 3405 were performed on the MINDCUBE-TINY benchmark. All previously established evaluation met-
 3406 rics were also retained.

3407 In consideration of computational costs, each distinct RL configuration was trained for a duration of
 3408 0.5 epoch. The primary hyperparameters governing the RL training process were set as follows:

- 3410 • **Training Batch Size:** 32
- 3411 • **Maximum Prompt Length:** 1024 tokens
- 3412 • **Maximum Response Length:** 512 tokens
- 3413 • **Actor Learning Rate:** 1×10^{-6}
- 3414 • **Critic Learning Rate:** 1×10^{-5}
- 3415 • **Number of Trajectories per Rollout:** 8
- 3416 • **Maximum Turns per Trajectory:** 1

3417 As detailed in Section 5.1 of the main paper, we investigated three RL task configurations:

- 3420 1. **RL-FFR (from scratch):** The Qwen2.5-VL-3B-Instruct model was trained to generate free-form
 3421 reasoning chains without prior SFT for this specific task format.
- 3422 2. **RL-Aug-CGMap-FFR-Out (from scratch):** The model was trained to jointly produce aug-
 3423 mented cognitive maps and associated free-form reasoning, also starting from the base pre-trained
 3424 VLM.
- 3425 3. **RL-Aug-CGMap-FFR-Out (from SFT):** For this configuration, the RL training was initialized
 3426 using the weights from the strongest performing SFT checkpoint, specifically the Aug-CGMap-
 3427 FFR-Out SFT model.

3428 The reward function was designed to be sparse yet directly indicative of desired behaviors. A re-
 3429 ward of +1 was assigned if the model’s output was structurally valid (e.g., the generated cognitive
 3430 map adhered to the predefined schema). A more significant reward of +5 was given if the model
 3431 provided the correct final answer to the spatial reasoning question. This dual-component reward
 3432 was intended to steer the learning process towards generating both well-formed intermediate spatial
 3433 representations and achieving high end-task accuracy.

3438 G.2 RL REWARD DESIGN ABLATION

3439 A comprehensive reward ablation study can provide more convincing evidence for our approach.
 3440 Inspired by the Deepseek-R1 approachGuo et al. (2025), our reward design incorporates a dual-
 3441 component structure: a small score assigned for valid format generation and a larger score for correct
 3442 answer generation. This design encourages both structural correctness and factual accuracy in the
 3443 model’s output.

3444 To investigate the efficacy of this reward structure, we conducted an ablation study with three dif-
 3445 ferent reward configurations, as detailed in Table20. Our baseline, represented by a frozen Visual-
 3446 Language Model (VLM), achieved an accuracy of 40.57%. Our proposed setting, which assigns +1
 3447 for a valid format and +5 for a correct answer, achieved an accuracy of 50.57%. The “Answer Only”
 3448 setting, which assigns +5 for a correct answer but 0 for format, resulted in a similar accuracy of
 3449 50.76%. In contrast, the “Format Only” setting, which provides a score of +5 for a valid format but
 3450 0 for the answer, yielded a lower accuracy of 45.05%.

3451 These results confirm that the reward component for a correct answer is the most critical factor in
 3452 our RL reward design. The high value assigned to the correct answer score (+5) is highly effective
 3453 at improving the model’s performance, a finding that is consistent with recent work on RL for Large
 3454 Language Models.

3456

Table 20: RL Reward Ablation Study

3457

3458

| RL Reward Setting (format score, answer score) | Acc (%) |
|--|---------|
| Frozen VLM (baseline) | 40.57 |
| Our Setting (+1, +5) | 50.57 |
| Answer Only (+0, +5) | 50.76 |
| Format Only (+5, +0) | 45.05 |

3459

3460

3461

3462

3463

3464

3465

G.3 VLM RESPONSE EXAMPLES AFTER RL FOR CONFIGURATIONS IN SECTION D.3

3466

3467

Output for FFR: Input Prompt Refer to D.3.2

3468

3469

3470

3471

3472

3473

3474

3475

3476

<think>From image 4, the white jar is positioned on a surface with a floral-patterned bed sheet. To the left of the jar, there is a table with a pink tablecloth featuring heart shapes and a Hello Kitty design. There are also cups on the table. Therefore, the object to the left of the white jar is the table with the cups.</think><answer>**A. Table with cups on it**</answer>

3477

3478

Output for RL-Aug-CGMap-FFR-Out (from scratch): Input Prompt Refer to D.3.8

3479

```

<cogmap>
{
  "objects": [
    {"name": "white jar", "position": [265, 436],
     "facing": "left"}
  ],
  "views": [
    {"name": "View/Image 1", "position": [265, 436],
     "facing": "left"},
    {"name": "View/Image 2", "position": [265, 436],
     "facing": "left"},
    {"name": "View/Image 3", "position": [265, 436],
     "facing": "left"},
    {"name": "View/Image 4", "position": [265, 436],
     "facing": "left"}
  ]
}

```

3493

<Your cognitive map></cogmap>

3494

<think>The white jar is located in the center of the 10x10 grid, facing to the left. The clothes rack is to the left of the white jar, as seen in the image 2 view. The bed sheet with a floral pattern is located to the right of the white jar, as seen in the image 1 view. The white headboard is not visible in any of the provided images.

3495

3496

3497

3498

3499

3500

3501

3502

Based on the provided images, the white jar is located in the center of the 10x10 grid, facing to the left. The clothes rack is to the left of the white jar, as seen in the image 2 view. The bed sheet with a floral pattern is located to the right of the white jar, as seen in the image 1 view.

The white headboard is not visible in any of the provided images.</think><answer>**A.****Table with cups on it.**</answer>

3503

3504

3505

Output for RL-Aug-CGMap-FFR-Out (from SFT): Input Prompt Refer to D.3.8

3506

3507

3508

3509

Based on my observation, the answer is:

<cogmap>

```json

```

3510
3511
3512 {
3513 "objects": [
3514 {"name": "white jar", "position": [5, 5]},
3515 {"name": "bed sheet with a floral pattern",
3516 "position": [5, 8]},
3517 {"name": "white headboard", "position": [2, 5]},
3518 {"name": "clothes rack", "position": [5, 2]},
3519 {"name": "table with cups on it", "position": [8, 5]}
3520],
3521 "views": [
3522 {"name": "Image 1", "position": [5, 6], "facing": "up"},
3523 {"name": "Image 2", "position": [4, 5], "facing": "right"},
3524 {"name": "Image 3", "position": [5, 4], "facing": "down"},
3525 {"name": "Image 4", "position": [6, 5], "facing": "left"}
3526]
3527 }
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

</cogmap><think>In this scene, I observe four images showing different perspectives. All images feature the white jar as the main object. In image 1, I can see white jar in front of the clothes rack. In image 2, I can see white jar in front of the table with cups on it. In image 3, I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see white jar in front of the white headboard. To identify the position change across views, I focus on the main object's angle variation. Then, I analyze the angles and relative positions of other objects on the platform to back up this observation. I understand that: Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I can construct a complete spatial understanding: when I view table with cups on it behind white jar in the second view, it implies that in the first view, table with cups on it is on the right side of white jar. Similarly, when I see white headboard behind white jar in the fourth view, it indicates that in the first view, white headboard is on the left side of white jar. However, I am still uncertain about what lies behind me in the first view. Then, I recognize that I can examine the opposite view to find out. The opposite view of the first view is the third view. As bed sheet with a floral pattern is observed behind white jar in the third view, it means that in the first view, bed sheet with a floral pattern is positioned behind me. This way, I can fully comprehend the spatial relationships of all objects in the entire scene. So, from the perspective of image 4: clothes rack is to the right of white jar, table with cups on it is to my behind, bed sheet with a floral pattern is to the left of white jar. So the answer is C. Bed sheet with a floral pattern.</think><answer>C. Bed sheet with a floral pattern</answer>
```