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ABSTRACT

Despite their success in many domains, large language models (LLMs) remain
under-studied in scenarios requiring optimal decision-making under uncertainty.
This is crucial as many real-world applications, ranging from personalized rec-
ommendations to healthcare interventions, demand that LLMs not only predict
but also actively learn to make optimal decisions through exploration. In this
work, we measure LLMs’ (in)ability to make optimal decisions in bandits, a state-
less reinforcement learning setting relevant to many applications. We develop a
comprehensive suite of environments, including both context-free and contextual
bandits with varying task difficulties, to benchmark LLMs’ performance. Mo-
tivated by the existence of optimal exploration algorithms, we propose efficient
ways to integrate this algorithmic knowledge into LLMs: by providing explicit
algorithmic guided support during inference; and through knowledge distillation
via in-context demonstrations and fine-tuning, using synthetic data generated from
these algorithms. Impressively, these techniques allow us to achieve superior ex-
ploration performance with smaller models, surpassing larger models on various
tasks. We conducted an extensive ablation study to shed light on various factors,
such as task difficulty and data representation, that influence the efficiency of LLM
exploration. Additionally, we provide empirical measurements on the convergence
rate of different exploration strategies introduced.

1 INTRODUCTION

The rapid advance of LLMs has positioned them as valuable tools for a wide range of decision-making
tasks, including but not limited to personal assistants (Liu et al., 2024a), recommendation systems (Li
et al., 2023a), game-playing (Wang et al., 2023a;c), education (Nie et al., 2024; He-Yueya et al.,
2024), and healthcare (Singhal et al., 2023). In these tasks, LLMs function as agents that engage with
users or the environment in a dynamic interaction process. For example, at each time step, the LLM
suggests a pedagogical strategy or make a recommendation to a specific user, then receives feedback -
either explicit or implicit - in the form of rewards. Based on this feedback, the agent updates its beliefs
about the environment, e.g., underlying reward distributions, and adapts its strategies to maximize the
cumulative reward. These tasks differ fundamentally from classic prediction tasks where LLM is
used to predict a target. A decision making LLM only receives partial feedback, i.e., the reward for its
own actions, but not for others. Thus, it requires the LLM to effectively interact with the environment
and explore to discover the optimal action. Meanwhile exploring an unknown action which turns out
to have lower reward than the known ones lead to higher regret. The agent therefore needs to strike a
balance between exploration and exploitation. While the exploration-exploitation tradeoff has been
extensively studied in the pre-LLM era, particularly in the fields of bandits (Li et al., 2010; Slivkins
et al., 2019) and reinforcement learning (Mnih, 2013; Osband et al., 2013; Sutton, 2018), it is unclear
how LLMs approach this tradeoff when faced with uncertainty.

We study LLMSs’ in-context exploration capabilities under the simplified framework of bandits —
a stateless form of reinforcement learning that remains highly applicable to many domains. We
set up the LLM to interact with the environment over 7" rounds. In each round, it receives the full
history of its past interactions, the current state if provided and a set of actions, and is tasked with
selecting an action to maximize the cumulative reward. Ideally, the LLM should adaptively choose
an action in each round to learn the reward distributions of different actions and eventually converge
to consistently selecting the optimal action. We study LLM’s ability to do so in-context, without the
need to re-train, which we dubbed as in-context exploration.
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We first introduce BanditBench, a comprehensive suite of multi-arm bandit (MAB) (Slivkins et al.,
2019) and contextual bandit (CB) (Li et al., 2010) environments in natural language to rigorously
evaluate the decision-making capabilities of LLMs. Building on the pioneering work of Krishna-
murthy et al. (2024), we significantly expand the benchmark by incorporating a broader range of
tasks with varying complexities, including variations in the number of arms, reward distributions,
exploration difficulty, and different textual descriptions of environments. Additionally, we extend it to
CB environments, where rewards across arms depend on contextual features, to assess generalization
in LLM exploration.

To enhance LLM for exploration, we leverage known bandits algorithms such as UCB and Thompson
Sampling (Thompson, 1933), which have been proven "optimal"” under mild conditions. We inves-
tigate two approaches: (1) inference-time guided algorithmic support where summary statistics on
interaction history along with descriptions of bandits algorithms are provided in context for LLMs
to choose actions, and (2) algorithmic distillation via optimal demonstration data where “oracle”
trajectories from optimal bandit algorithms are provided as either in-context few-shot demonstration
or optimal behavior fine-tuning. We benchmarked off-the-shelf LLMs of different sizes, open-sourced
vs proprietary ones, and those enhanced by our approaches on BanditBench. Both approaches demon-
strate promising improvements over baseline methods that rely solely on raw interaction histories
presented as sequences of (action, reward) tuples. Furthermore, our results show that fine-tuning to
distill optimal exploration behavior leads to strong generalization across domains, enabling smaller
models to acheive superior exploration performance compared with larger models. We also perform
extensive ablation studies, revealing how training task difficulty, textual representation and algorithm
guide impact model performance. To gain deeper insights into the exploration efficiency of different
methods, we fit a parametric function to the observed regret patterns, allowing for a more rigorous
interpretation of exploration efficiencies of different LLMs and our proposed approaches.

Our contributions are threefold. First, we introduce BanditBench, an open-source benchmark designed
to evaluate LLM’s performance in both MAB and CB settings. Second, we propose methods to
enhance LLM’s decision-making capability by leveraging optimal algorithms, including algorithmic-
guided inference-time support and algorithmic distillation approach. Finally, we benchmark existing
LLMs, and those improved by our approaches on BanditBench, and shed light on the exploration
efficiency of the different algorithms.

2 RELATED WORK

Several prior works have investigated the use of LLMs for decision-making. In one category, there
are numerous works that deployed LL.Ms directly as agents in decision-making problems such as
games (Yao et al., 2023; Brooks et al., 2024; Shinn et al., 2024; Wang et al., 2023a; Xi et al., 2023).
However, fewer works have systematically evaluated LLMs’ capabilities in the general decision-
making setup, especially as they relate to classical concepts in decision-making like exploration.
Our work extends the research of Krishnamurthy et al. (2024), who examined LLMs’ exploration
capabilities in small-scale MAB tasks. Their findings, which showed positive results only with
substantial intervention, are consistent with our broader analysis across both MAB and CB tasks at
various scales. Mirchandani et al. (2023); Rahn et al. (2024); Felicioni et al. (2024) also evaluated the
ability of LLMs to learn in-context and solve bandit-like decision-making problems.

The line of research on using LLMs as optimizers faces many similar challenges as in-context decision
making, though applied to different tasks. Yang et al. (2024) explored the use of language models as
general-purpose optimizers for simple black-box optimization problems, such as prompt optimization,
highlighting a careful balance of exploration and exploitation was critical. Another relevant line of
research focused on in-context learning for decision-making and reinforcement learning (RL) with
domain-specific transformers. Laskin et al. (2022) distilled demonstrations from RL algorithms into
a transformer and showed that the transformer learns to imitate the RL process to solve new RL
tasks. Similarly, Lee et al. (2024) trained transformers with optimal action labels, showing that the
model learns to execute posterior sampling for RL (Osband et al., 2013) in-context, which tailors
exploration to the underlying distribution of RL tasks. This area has been further studied by Raparthy
et al. (2023); Lin et al. (2023). However, these studies focus on domain-specific decision-making,
whereas our paper examines general-purpose decision-making capabilities in language models. Our
inference-time guided algorithmic support shares a similar conceptual framework with recent efforts
to align LLMs at inference time. These include employing explicit value functions as prefix scorers
that trained via KL-regularized RL (Mudgal et al., 2023), and leveraging both implicit and explicit
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value functions to guide decoding at the token and chunk levels at inference time (Liu et al., 2024b).
In the realm of knowledge distillation, much of the research on LLMs has concentrated on chain-of-
thought (CoT) reasoning (Wang et al., 2023b; Li et al., 2023b), while Gandhi et al. (2024) focused on
search and backtracking. Most methods involve distilling outputs from a "teacher" model—either a
larger model or a slower, system-2 variant of the same model that employs various inference-time
techniques, such as search and self-consistency—into a student model (Yu et al., 2024). Instead, our
approach leverages diverse optimal trajectories directly from classical algorithms, allowing for the
efficient generation of abundant training data.

3 IN-CONTEXT EXPLORATION

In this section, we define the problem of In-Context Exploration (ICE), following the setup in
Krishnamurthy et al. (2024). An agent interacts with an environment by observing state information,
selecting actions, and collecting feedback. The goal of the agent is to maximize its cumulative reward
through multiple rounds of interactions. Specifically for ICE, the agent is an LLM and its history
of observations and interactions with the environment are kept in its context. The agent determines
its actions based on this context, rather than from updating its weights or executing hand-designed
exploration strategies.

Notation and Definitions. We primarily consider bandits, a simple class of environments that still
incorporate many fundamental challenges in decision-making. Here, we describe a framework that
encompasses both multi-armed bandits (MAB) and contextual bandits (CB). A bandit environment T
is defined as T = (X, A, R) where A defines a set of valid actions. X’ is the set of state information
(if any). R is the underlying reward distributions of actions, unknown to the agent. MAB and CB
tasks differ on whether the context x, is provided and used: in MAB, the reward depends solely on the
action, whereas in CB it depends on both the action and the context. The interaction between agent
and environment occurs over 7' € N steps. At each time step ¢ € [T, the environment reveals a new
observation' z; € X, the agent selects an action a; € A following its policy 7, and then a reward
ryt ~ R(x) is revealed. Given an LLM agent with policy 7, it determines its action a; ~ w(H[),
where Hf = (x1,a1,7]",...,2:) stores the historical actions picked by the same agent and the
corresponding environment feedback, which is sent as input context to the LLM.

Over T rounds, we measure the performance of an agent 7 on task 7 as its expected cumulative
reward, given by Jr(7) = E1 » {Zthl ry ‘} . The optimal policy 7* represents the agent that selects

the action with the highest average reward 7*(x) = arg max, E7 [r® | z]. A commonly used metric
to measure the performance of an agent or algorithm is regret.

Definition 1 (Cumulative Regret). The expected regret of a policy  under task T is: REG(w) =
Er « Z?:l(r?t — rf‘)] = Jy(7*) — Jr(m), where af = 7*(zy).

We expect good agents to have average regret that converges to zero (i.e. %REG EN 0), demonstrating
they eventually learn to be as good as the optimal policy. UCB and Thompson Sampling are two such
examples with sublinear regret.

Representing Histories In-Context. Developing an LLM agent suited for in-context decision-
making tasks also requires designing a robust textualization function ¢ that translates histories H]" for
the LLM to consume. The obvious baseline for ¢ is to simply record the Raw History (RH) from the
environments as a list of (context, action, reward) tuples directly as the context. In this representation,
the context length of ¢(H]) grows linearly with ¢, and RH contains all information. While RH
is a general textualization function that is applicable to any task 7, some advanced task-specific
textualization function can exist and yield better performance. For example, Krishnamurthy et al.
(2024) proposed a Summarized History function (SH) that compresses the history but still contain
sufficient information for a given task 7. RH and SH differ in how past interaction history are
represented to the LLM agent, as shown in Figure 1. At time step ¢, RH provides a complete list of
past interactions as (Time ¢’, Action Name a;/, Reward r/) for t’ = 0 - - - t. In contrast, SH provides
sufficient statistics of the past interactions. Specifically under MAB, SH utilizes the empirical mean

over each arm (i.e., E[r“] ,Va € A), the number of times each arm is being pulled up to time ¢, N;(a),

'In CB, context x is exogenous and independently sampled from a stationary distribution, they are not
affected by a, as in the full RL setting.
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Summarized History with Algorithm Guide

[Scenario Description] [Scenario Description]

[Instructions] [Instructions]

[List of Actions] [List of Actions]

Past Raw History: Summarized History:

Time 1, Action Name, reward 71 Action 1 Name, chosen n times, average reward ﬂl,
Time 2, Action Name, reward 72 exploration bonus v, exploitation bonus e .

Time 3, Action Name, reward r3 Action 2 Name, chosen n times, average reward ,EL2,
Time 4, Action Name, reward 74 exploration bonus vz, exploitation bonus es..
Which [Action] will you choose next? Which [Action] will you choose next?

Figure 1: The problem representation of in-context exploration in text. For Summarized History (SH),
the text in gray is presented. For Algorithm Guidance (AG), the text in pink and yellow are presented
along with the text in gray. For UCB, e; = ji!. Detailed prompts are provided in Appendix A.9.

and the current horizon ¢. In this paper, we consider good textualizations as ones satisfy “sufficiency”
and express using the following definition.

Definition 2 (Sufficient Textualization). Given a policy class T1, let TI* C II and TI™™ C 11 be the
sets of policies that take a history representation ¢(H,) using the textualization function ¢ and the
raw history Hy, respectively. Then the textualization function ¢ is sufficient if

lim | inf %REGW)— inf %REG(W"’W) =0.

T—oo |reelld qraw g TTraw

In other words, the best agent that uses the history representation can asymptotically achieve the
same average regret as one with the full raw history, meaning that the the textualization preserves all
the essential information needed for effective decision-making.

4 BANDITBENCH

We present BanditBench, an extensive suite of MAB (Slivkins et al., 2019) and CB (Li et al., 2010)
environments in natural language to benchmark in-context exploration capabilities of LLMs.

Multi-Arm Bandit In (stochastic) multi-arm bandit problems, we vary our environment configura-
tions primarily along two key dimensions: 1) action space, where we change the numbers of actions
K, and textual description associated with each action; 2) reward distributions, where we change
the parametric distribution of the reward, i.e., types of reward distributions, and the exploration
difficulty, characterized by the gap between the best-performing arm and the second-best arm. A
smaller gap makes it harder for the agent to distinguish between optimal and sub-optimal actions,
thereby increasing the exploration difficulty. In contrast to the setup in Krishnamurthy et al. (2024),
which focuses solely on MAB instances with Bernoulli reward distribution, our expanded setup
allows us to systematically analyze LLM performs across diverse environments with different action
spaces and reward structures.

The detailed configurations are shown in Appendix A.1. For the action space, we explore two
different sizes with K = 5 for small action space while K = 20 for large action space. We
also differentiate between two types of action descriptions, Videos represented as arbitrary two-
letter combinations with no semantic meaning such as “Video AA”, and Clothes, described using
semantically meaningful phrases such as “Supreme Sylvan Sandals”. Regarding reward distributions,
we evaluate two types: Bernoulli and Gaussian Bandit. For Bernoulli, the reward r € {0,1} are
binary with r** ~ Bernoulli(py), where py, is the mean for the k-th action. Following Krishnamurthy
et al. (2024), the best-performing arm has p;, := 0.5 + Ai,/2, while remaining arms have p, =
0.5 — Apin/2. The parameter A,,;, captures the exploration difficulty with a larger gap A, = 0.5
indicating easy tasks and 0.2 representing hard tasks. For Gaussian bandit, the rewards are continuous
with r% ~ AN (u, o). Here uy ~ N(0, o) represents the mean for each action and the variance o
captures difficulty of exploration. Following Sutton (2018), we study both ¢ = 1 and ¢ = 3.
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Contextual Bandit For contextual bandit, at each round ¢ € [T, the agent is presented with some
contextual feature  (which may consist both textual descriptions and numeric values) describing
the state (and action). The LLM agent 7 chooses an action a € A, and then a reward is received
r(x,a) which depends on both the context and the chosen action. We design the semi-synthetic
contextual bandit task based on the MovieLens dataset (Harper & Konstan, 2015), which consists of
approximately 10,000 real users’ movie ratings. The goal of the agent is to recommend a personalized
movie that a specific user will likely enjoy. In particular, the observations x include user-specific
features such as age, gender, occupation, and geographical location (county and state), and features
on the movies. The action space is limited to the top- K most-watched movies in the dataset, with
K = 10 for the easy setting and K = 30 for the more challenging setting. To construct the ground-
truth reward distribution, we perform low-rank approximation (Koren et al., 2009) on the user-movie
rating matrix P € RY*¥ | where N is the number of users. This is done by approximating P
with P = USV7T using singular value decomposition (SVD), yielding a user embedding matrix
U € RV*4 3nd a movie embedding matrix V' € RE*d TIn our case, we set d = 5 to be the dimension
of the embeddings. The ground-truth reward for user i and movie j is then computed as r; ; = u! ;.
At each time step, we provide textual contextual features alongside a S-dimensional user preference
vector u;. The task can be easily scaled up to include more movies, i.e., larger K. Further details
about the setup are in Appendix A.2.

5 LEARNING OPTIMAL EXPLORATION BEHAVIORS

Motivated by the existence of optimal algorithms for bandits, we aim to leverage these algorithms
to improve LLMs for exploration by: 1) incorporating algorithmic guidance during inference-time
(Section 5.1), 2) teaching optimal exploration through algorithmic distillation (Section 5.2). We show
that smaller models trained using algorithmic distillation can even outperform larger models, offering
a promising way to efficiently explore with lower inference cost.

Numerous algorithms have been developed to enable efficient exploration in both MAB (Auer, 2002)
and CB (Langford & Zhang, 2007; Li et al., 2010) settings. Among these, the Upper Confidence
Bound (UCB) algorithm—also known as optimism in the face of uncertainty—stands out for its
simplicity and theoretical guarantees. We focus on UCB as our optimal exploration algorithm for
both MAB and CB. Its clear and interpretable representation of both uncertainty and exploration
strategy also makes it well-suited for integration with existing LLMs. Our method can however
generalize to different algorithms easily.

UCB for Multi-Arm Bandit For MAB, at time step ¢, given the history {a, 7} _,, we define

N¢(a) as the number of times that action « is being selected up to time ¢. The empirical mean

. A Lia,, =a}Ty e
reward of arm a up to time ¢, denoted as fi;(a) := Z§':1 {Jf\ffi(a;t’ represents the exploitation

value, VPl (g ¢). The high-probability confidence interval also known as the exploration bonus

yexelore(q 1) = % , with « is the hyper-parameter controling the exploration-exploitation
trade-off. At each time step, UCB selects the arm that maximizes the sum of the exploitation value

and the exploration bonus, thereby choosing the arm with the highest upper confidence bound.

UCB for Contextual Bandit In CB, we consider the case of linear payoff (Li et al., 2010; Chu
etal., 2011), where the expected reward E[r{] is assumed to be linear w.r.t a d-dimensional feature
vector ¢, with some unknown coefficient vector 6%, i.e., E[r¢|z¢] = (2¢)76*. Ateach time-step, for
any arm a, the algorithm maintains the design matrix D, € RYt(®)*4 represents the feature data for
arm a up to time ¢, as well as the corresponding reward vector * € RV¢(@)_ Tt then estimates the 6 by
ridge regression. Moreover, the high-probability confidence interval of the reward estimate (J;,‘f)Té
is given by a\/(z¢)T (DT D, + M)~ 'z¢ with I, being the identity matrix. Following MAB, the
exploitation value is the reward estimate and the exploration bonus is the confidence bound around
it.

5.1 INFERENCE-TIME ALGORITHMIC GUIDED SUPPORT
In this section, we explore how to leverage UCB-type algorithms as inference-time support to improve
LLM’s in-context exploration performance.

Algorithmic Guided Support (AG) As discussed above, UCB-type algorithms operate by explic-
itly calculating the exploitation value VE*Pl°lt along with the exploration bonus VE*Plo® for each arm,
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and selecting the arm that maximizes the sum of two. These components, VEXPloit and 1/ Explore there.
fore provide the sufficient textualization needed for LLMs to make optimal decisions. Specifically,
in the MAB setup, during inference time at time step ¢, we provide the LLM with a list of tuples
(Vexploit(q, t), VePlore (g, t)) for each arm a € [K]. This representation is provided alongside other
essential information such as scenario descriptions, instructions, and the action set. For CB, during
inference-time, we explicitly maintain the design matrix D, and response vector 7 for each arm,
incorporating past interactions from the LLM up to that time ¢, using this to obtain the exploitation
value and exploration bonus. We then provide the LLM with a list of exploitation values and explo-
ration bonus for each arm a at current context z, similar to the MAB setup. Additionally, we record
the action features z{ as well as reward r; selected by the LLM, which will be used for the next round
of parameter updates. Compared with SH, which only provides the empirical mean and the number
of times each arm has been pulled, AG directly supplies semantically understandable exploitation
values and exploration bonuses. This explicit representation enables LLM to effectively balance
exploitation and exploration. Theoretically, the LLM only needs to perform addition and argmax,
rather than manipulating raw histories to discern the underlying reward distribution (or parameter 6
in CB). Another advantage is that AG is a type of inference-time support which works seamlessly for
both MAB and CB, while SH only works on MAB setup?.

5.2 ALGORITHMIC DISTILLATION VIA DEMONSTRATION AND FINE-TUNING

We further investigate the possibility of enhancing LLM exploration by leveraging a set of trajectories
generated by an oracle exploration algorithm in the BanditBench environment. This approach, called
algorithmic distillation, aims to distill the optimal exploration behavior from the oracle algorithm to
the LLM. In particular, we consider two approaches: in-context few-shot demonstration and optimal
behavior fine-tuning, both utilizing expert trajectories generated by the oracle algorithm. Compared
with Algorithmic Guide (AG), these approaches do not require understanding the oracle algorithms,
nor generating sufficient statistics based on oracle algorithms, thus can be applicable to black-box
algorithms as well.

Oracle Trajectory Generation We use UCB as the oracle algorithm to generate the trajecto-
ries. Following the notations defined in Section 3, the trajectories are in the form of tuples of
(p(HYCB), aV°B), where each tuple pairs the transformed representation of the history at time ¢ and
the action aECB from UCB. For MAB, we create trajectories from reward distributions that differ
from those used in evaluation. This assesses the LLM’s ability to generalize across different bandit
instances with the same underlying scenario but varying action-reward mappings. We further control
the data generation process by varying: (1). Action Description: trajectories are generated from
either "Video" or "Clothes" action descriptions; (2). Difficulty: we control the reward gap in the
Bernoulli bandit to create "easy" or "hard" instances; (3). Trajectory Textualization: trajectories are
represented either as RH or AG. For CB, we use a fixed dataset and evaluate the LLM’s performance
on a held-out set of users. While these users are unseen during training, their profiles and preferences
remain within the distribution of the training data. This evaluates the LLM’s ability to leverage prior
knowledge for effective exploration. In CB, we only vary the trajectory representation (RH or AG).
In both MAB and CB, each trajectory consists of a sequence of exploration steps: 300 steps for MAB
with K = 5 arms, 1000 steps for MAB with K = 20 arms, and 200 steps for CB. We generate 50
trajectories for each MAB domain configuration and 200 trajectories for CB, resulting in roughly
comparable training data sizes across the two environments.

In-Context Few-Shot Demonstration We first study whether demonstrating optimal exploration
trajectories from UCB as few-shot examples can improve the LLM’s ability to perform robust
exploration in bandit tasks. A key challenge in applying few-shot learning to decision-making tasks
like MAB is the increasing context length. Unlike supervised learning where context is typically fixed,
bandit actions depend on the entire past history or condensed history, which either grows linearly
with T" or K. This poses a challenge for LLMs, as their ability to effectively utilize information can
degrade with longer contexts. We sample 5 optimal trajectories from UCB into the LLM context
window as demonstrations. Our goal is to see whether the optimal exploration demonstrations can lead
to improved exploration performance. Detail demonstrations are provided in Appendix A.10.

2If we were to perform a similar analysis with LinUCB, RH would correspond to retaining all (context,
action, reward) information to estimate the parameter and calculate the uncertainty, while one possibility to
realize SH would be to construct the sufficient statistics using running mean and running covariance matrix in
LinUCB. These statistics however are much less interpretable for language models, we thus do not investigate it.
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Optimal Behavior Fine-Tuning (OFT) While in-context few-shot demonstration offers an
inference-time approach to guide the LLM’s exploration strategy, fine-tuning allows us to directly
optimize the model’s parameters for the task. In this approach, we utilize the UCB-generated trajecto-
ries as training data to adjust the LLM’s internal representations and decision-making mechanisms.
Specifically, we fine-tune the LLM by framing the exploration problem as a language modeling task,
where the goal is to predict the next action in the sequence. This is achieved by maximizing the
log-likelihood of the UCB actions given the history of interactions:

Lopr(m) = —E(¢(HECB),(L§JCB)~DOFT [log W(GECBW(HPCB))],

where 7 represents the LLM’s policy that we aim to optimize. This formulation encourages the LLM
to learn the underlying patterns and decision-making logic embedded within the UCB trajectories. By
predicting the next action in the sequence, the LLM effectively internalizes the optimal exploration
strategy demonstrated by the UCB algorithm. We discuss how OFT is different from behavior
cloning (Pomerleau, 1991) in the Appendix Section A.4.

5.3 EMPIRICAL EVALUATIONS

In this section, we empirically evaluate LLMs’ in-context exploration capabilities, using BanditBench.
We begin with introduing the setup, baselines and metrics in Section 5.3.1. Followed by this, in
section 5.3.2, we analyze the performance of inference-time guided support, in-context few-shot
demonstration and optimal behavior fine-tuning across various experimental settings, as well as
models with different sizes. Additionally, we perform extensive ablation studies around the impact of
task difficulty, textual representation of the oracle trajectories and inference-training representation
alignment.

5.3.1 SETUP AND BASELINES

Setup We evaluate the in-context exploration capabilities of various LLMs, including Gemma-2B,
Gemma-9B (Team et al., 2024), Gemini 1.5 Flash, and Gemini 1.5 Pro (Reid et al., 2024), on 16
MAB tasks (Table A1) and 2 CB tasks. For MAB tasks, the interaction horizon (7") differs based on
the size of the action space (K). We use 7" = 1000 for K = 30 and T' = 200 for K = 10. All CB
tasks use a constant horizon of T = 200 steps. To ensure statistically significance of the results, we
conduct 30 independent runs for each experimental setup.

Baselines We consider two baselines: Raw History (RH) and Summarized History (SH), as
suggested in Krishnamurthy et al. (2024). For CB, as we discussed that there is no trivial analogue of
SH, we thus focus solely on RH for CB tasks in this study as the baseline.

Metrics We report the relative performance of each model, aggregated across all environment
configurations. Simply averaging cumulative rewards across environments of different reward
distributions and horizons however obscure the comparison. We instead use the pair-wise win-rate to
compare the performances. We have 16 configurations for MAB and evaluated 32 models (4 LLMs
crossed with different methods), and 2 configurations for CB with 14 models (2 LLMs crossed with
different methods). The list of all the models are given in Appendix A.8. For each configuration, we
compute the cumulative reward over T steps and collect a distribution of cumulative rewards over
30 independent trials. We then calculate the pairwise win-rate by applying a Student’s ¢-test on the
reward distributions of any pair of configurations to determine if they are statistically significantly
different, with a significance level of p < 0.05. If one model has significantly higher reward than
the other, we consider it a win. If the difference is not statistically significant, the result is deemed
inconclusive and not counted as a win. For each model, we calculate its win rate against every other
model across all configurations. The overall win rate for a specific model is then determined by
averaging these win rates across all the models it compared with. Details are given in Appendix A.5.

5.3.2 RESULTS AND ABLATION STUDIES

Overall Performance Comparison Figure 2 presents a comparative overview of in-context few-
shot demonstration, optimal behavior fine-tuning, and inference-time algorithmic guidance perfor-
mance across various model sizes and training configurations. Few-shot demonstrations exhibited
contrasting effect on Gemini-1.5 Flash and Pro. While few-shot learning boosts the performance of
Flash beyond the best inference-time setup, it surprisingly hurts Pro’s performance in both MAB and
CB. Aligned with the observation in Zheng et al. (2024), our hypothesis is that few shot examples
we manually crafted could disrupt the CoT structure in these bigger models, which requires the
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Multi-Armed Bandit Contextual Bandit

Figure 2: The best achieved performance of each method in both MAB and CB. Note that we took a
max over different configurations. Sec A.8 has the full list of win-rates.

. Multi-Arm Bandit Contextual Bandit
Overall Win-Rate
Gemma-2B  Gemma-9B  Flash  Pro ‘ Flash Pro
Raw History (RH) 7.4 10.2 269 44.1 0.0 6.7
Summarized History (SH) 10.2 5.1 337 58.1 - -
Algorithmic Guided (AG) 4.7 4.0 313 578 | 433 60.0
UCB /LinUCB 87.9 \ 90.0

Table 1: Overall Win-Rate (%) of different inference-time algorithm guidance. Flash and Pro refer to
Gemini-1.5 Flash and Pro respectively.

few-shot examples to be carefully tuned in order to be helpful. Further analysis reveals the remarkable
effectiveness of optimal behavior fine-tuning. It significantly outperforms both few-shot and baseline
approaches in both MAB and CB across all model size, even larger ones. This robust improvement
highlights the effectiveness of directly optimizing model parameters for the exploration task. Notably,
the best fine-tuned Gemini-1.5 Flash model surpasses even the highest-performing Gemini-1.5 Pro
model. The significant advantage of fine-tuning over few-shot learning and baseline performance
highlights its potential as a key technique for enhancing LLM exploration capabilities.

Impact of History Textualization at Inference Time We examine how different inference-time
support techniques—namely RH, SH, and AG—influence model performance, each utilizing distinct
history textualization functions ¢, as introduced in Section 3. It is worth mentioning that in the
MAB setup, both SH and AG significantly reduce context length compared to RH, O(K) instead of
O(t). As illustrated in Table 1, leveraging inference-time support (i.e., SH and AG), significantly
enhances exploration performance across all models. This supports the intuition that effective in-
context exploration requires more than memorizing input-output pairs; it demands reasoning to
extract sufficient statistics from raw data and utilize them effectively for balancing exploration and
exploitation. However, the exact benefit of incorporating UCB-style information in the MAB setup
remains uncertain. We hypothesize that under MAB, the exploitation value and exploration bonus are
straightforward transformations of the empirical mean and the number of times each arm has been
pulled N;(a) and LLM has the capacity to learn the functional form efficiently. In CB, we compare
AG to RH and find a substantial improvement. This gap is particularly significant as learning the
exploitation value and exploration bonus in this scenario requires the model to implicitly solve ridge
regression and determine the appropriate functional form of the high-probability confidence bound,
making it a more complex reasoning task. The algorithmic guide approach can thus be seen as LLMs
calling external tools to compute sufficient statistics required for optimal exploration.

Impact of Task Difficulty in Oracle Trajectories We examine whether the choice of optimal
trajectories used in both in-context demonstration and optimal behavior fine-tuning significantly
affects the model’s performance during inference. To investigate this, we select trajectories from
two extreme setups. The easiest setup involves (Bernoulli, Video, Large A,,;n, K = 5), de-
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Figure 4: Impact of task difficulty and textual representation on algorithmic distillation. This
figure examines how different factors, such as task difficulty and textual representation of oracle
trajectories, influence the effectiveness of algorithmic distillation for LLM’s exploration capabilities.
All results are based on Gemini-1.5 Flash.

noted as De,sy. Conversely, the hardest setup denoted as Diyq utilizes (Bernoulli, Clothes, Small
Apin, K = 20). Figure 4a illustrates that the choice of optimal trajectories significantly im-
pacts the model’s performance, with a surprising contrast between the two algorithmic distillation
methods. In-context demonstration achieves a higher win-rate when using De,s, as demonstration
(0.487) compared to when using Dyyg (0.1). This suggests that the limited examples provided
in context may be insufficient for the model to effectively make use of demonstrations under the
higher complexity and subtle reward signals of the harder task. Conversely, fine-tuning exhibits
the opposite trend, with a higher win-rate when trained on Dy,q (0.636) compared t0 Deygy (0.1).
This implies that fine-tuning, with its extensive training data, might be

overfitting to the specific nuances of the training distribution, leading to Fewshot

>

poor generalization when faced with a different task structure. §

o o L 42.9
Impact of Textualization in Oracle Trajectories We further investi- -5
gate the effect of the textualization in the oracle trajectories. We consider = RH
two representations in MAB: RH and SH. The results in Figure 4b reveal % + 60.7
a clear contrast in how these representations affect the two algorithmic dis- & AG
tillation methods. For in-context demonstration, SH leads to significantly o RH AG
better performance (0.487 win-rate) compared to RH (0.267 win-rate). OFT
This suggests that providing concise, informative summaries of optimal g‘
exploration behavior is more effective for few-shot learning than present- € py| 28.6 64.3
ing the complete raw history. On the other hand, fine-tuning exhibits the -%
opposite trend. RH has a substantially higher win-rate (0.636) compared = RH
to SH (0.275). This indicates that fine-tuning benefits from the richer 8"\ "} g ¢
information present in complete action-reward sequences, allowing it to g AG

learn more nuanced patterns of the optimal exploration strategy. These RH AG
contrasting preferences for textual representation in oracle trajectories
highlight the nuanced ways in which fine-tuning and few-shot learning
interact with different types of information. Furthermore, in CB, we
observe a significant impact of incorporating algorithm-guided (AG) in-
formation into the oracle trajectories for fine-tuning. Augmenting RH
with AG details, including the exploitation value and exploration bonus,
leads to a dramatic improvement in win-rate, rising from 0.267 to 0.833 in Figure 4c. This sug-
gests that providing the LLM with explicit insights into the underlying decision-making process
of the oracle algorithm (UCB in this case), in addition to the complete action-reward sequence,
significantly enhances its ability to learn and generalize the optimal exploration strategy in the CB
environment.

Figure 3: Impact of Tex-
tual Representation at In-
ference.

Impact of Trajectory and Inference-time Representation Alignment Our experiments also re-
veal an interesting interplay between the presence of algorithm-guided information (AG) in both
the oracle trajectories and inference. In the CB setting, providing AG during inference consistently
boosts performance, regardless of whether AG was used in oracle trajectories. This is clearly demon-
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strated in Figure 3, where the right column (with AG at inference) exhibits higher win-rates than the
corresponding left column across all training conditions. This suggests that the LLM can effectively
leverage this information even if it wasn’t explicitly trained on it, highlighting the inherent value
of structured guidance for decision-making. Furthermore, we observe that incorporating AG into
few-shot demonstration improves exploration even when AG is absent during inference (e.g., Fewshot,
RH 0.033 to RH +AG 0.100). This indicates that exposing the LLM to AG during training, even in a
limited capacity, can enhance its ability to extract relevant patterns from RH. This might because AG
helps the LLM learn to focus on the most informative aspects of the history, which generalizes even
when AG is not provided during inference.

6 FUNCTIONAL INTERPRETATION OF LLM EXPLORATION BEHAVIOR

Gemma-2B Gemma-9B Gemini-1.5 Flash Gemini-1.5 Pro

0.0 w S A & Xa W
2 A
54 +
f 0.2 * + >%+ .
§ : % A LR A
4 AX
= + At A A
£O0.4 2, . A % + A A
@ ah x & + A A A s

6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0

Alpha (Sublinear Regret) Alpha (Sublinear Regret) Alpha (Sublinear Regret) Alpha (Sublinear Regret)

+ Oracle Behavior Fine-Tuning A Few-shot Demonstration X RH + AG + SH Y Optimal (UCB)

Figure 5: MAB in Easy (K'=5, A=0.5). We plot the estimated parameters « and 8. Smaller « and
indicate more efficient exploration to find the best arm. See Figure A1 for the MAB Hard setting.

In this section, we aim to conduct a more rigorous analysis of the LLM’s exploration efficiency using
the concept of regret REG (). Most bandit algorithms are evaluated by the behavior of REG(7) as
a function of T (i.e., number of interactions), either theoretically or empirically. Motivated by this,
our goal is to understand the exploration behaviors of various LLMs by characterizing their regret as
a function of T'. To achieve this, we adopt the following functional form to analyze the regret:

f(T)=MoAgﬂ+ﬂT+Az

The three parameters «, 5, A in the equation are all positive real numbers. A, is unconstrained. A,
captures the gap between best and second best arm, and would be replaced with a KL divergence or
Total Variance term for Gaussian bandit. This functional form provided intuitive interpretations for
the underlying parameters. Specifically, log(T") represents sublinear scaling of the regret, which is
known to be achieved by only the best bandit algorithms (e.g. UCB and Thompson Sampling). The
T scaling describes a linear growth or the inability of an agent to match the optimal policy 7*. This
means a strong algorithm should have « as small as possible, and have 5 = 0. This functional form
also allows us to see some growth behaviors in-between with positive o and 3. We use the curve fit
function in Scikit-learn (Pedregosa et al., 2011) to fit the cumulative regret curve of UCB and LLMs
coupled with different methods (i.e., inference-time guided support, in-context demonstration, and
optimal behavior finetuning). Results of the fitted « and 3 values are presented in Figure 5. For the
largest Pro models, applying effective inference-time support such as AG and SH can achieve nearly
sub-linear regret. More intriguingly, for Flash models, fine-tuning for optimal behavior significantly
boosts performance, enabling them to attain sub-linear regret with a lower a. In contrast, weaker
models such as Gemma 2B and 9B appear to remain in the linear regret regime.

7 CONCLUSION

In this work, we explored the in-context exploration capabilities of LLMs in bandit environments,
introducing BanditBench, a comprehensive benchmark designed to rigorously evaluate LLM’s perfor-
mance. Our evaluation reveals that LLMs struggle with in-context decision-making when relying
solely on raw interaction history, while inference-time support significantly improve performance.
Motivated by the presence of optimal algorithms in this domain, we investigated methods to integrate
these algorithms into LLMs through both algorithmic guided support and knowledge distillation via
synthesized demonstration data. Notably, these approaches even enable smaller models to outperform
larger ones in decision-making tasks. However, an optimality gap remains between LLMs and
classical optimal algorithms, highlighting the need for further research to bridge this gap.

10
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REPRODUCIBILITY STATEMENT

We provide comprehensive details regarding the setup of our benchmark, BanditBench, ensuring full
reproducibility based on the provided information. We are planning to open source BanditBench, as
well as the code for implementing AG, in-context demonstration and generating optimal behavior fine-
tuning data. We provide detailed documentation of the evaluation process, along with a comprehensive
list of inference-time and few-shot prompts being used. All models were evaluated using publicly
accessible versions.
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A APPENDIX

A.1 DETAILS ON MULTI-ARM BANDIT TASK

We have 16 configurations for the multi-arm bandit domain, shown at Table A1l.

Parameters

Reward Type

|

| Bernoulli | Gaussian
Exploration Difficulty \ Easy (Amin=0.5), Hard (Amin=0.2) \ Easy (o = 1), Hard (o = 3)

|

Number of Items/Actions Small (k = 5), Large (k = 20)

Videos, Clothes

Action Description

Table Al: Configuration of the MAB setup.

A.2 DETAILS ON CONTEXTUAL BANDIT TASK

We use the MovieLens-1M dataset (Harper & Konstan, 2015) to build the contextual bandit task. It
contains 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens
users who joined MovieLens in 2000. For each user, we have basic demographic information such as
age, gender, occupation, and zip code. We further convert zip code to the actual name of the county
and state and add these into the user profile description text. Each movie has a title and associated
genres. We present these information in the prompt as well.

LinUCB assumes that the reward model E[r|z, a] = 0% x, where § € R?, is linear (Chu et al., 2011).
Since we are trying to use synthetic environments to measure the performance of LLM against a
theoretically optimal algorithm, we have to build the contextual bandit task in a way that satisfies
the UCB assumption. An additional issue is that the context window of an LLM is still limited and
we want to limit the number of movies for LLM to choose to be 10 or 30. So, we first calculate
the popular movies by tracking how many times each movie is rated by users. We sort the list and
select the top K movies. Then, we build a user preference matrix P € RVN*K where N is the
number of users and K is the number of movies. To construct the ground-truth reward distribution,
we perform low-rank approximation on P. This is done by approximating P with P = UX VT using
singular value decomposition (SVD), yielding a user embedding matrix U € R™*? and a movie
embedding matrix V € RE*d 1n our case, we set d = 5 to be the dimension of the embeddings.
The ground-truth reward for user ¢ and movie j is then computed as 7; ; = u Sv;.

In order to present the full information that was provided to LinUCB to LLM as well, we include
the user preference vector in the prompt space, represented by a list of 5 floating point numbers. We
additionally add descriptions to indicate that this is a user preference vector. We show our full prompt
in Figure A9.

A.3 UCB aND LINUCB

In Table A2, we provide a detailed comparison about the exploitation values and exploration bonus
used in both UCB and LinUCB.

Algorithm | Task | Value of Arm
UCB | MAB Vi(a) = fir(a) + ar/log(t)/Ne(a)
—_  ——
V/ Exploit V/ Explore
LinUCB | CB | Vi(a,2) = af 0, + 0[] o(DI D + 1) 11,0
——
1/ Exploit 1/ Explore

Table A2: Calculation for the value of each arm/item. The decision rule is a* = arg max, V;(a, x).
A.4 ALGORITHM DISTILLATION AND BEHAVIOR CLONING

Optimal Behavior Fine-tuning (OFT) and Behavior Cloning (Pomerleau, 1991) share many similari-
ties. Although both approaches rely on maximum-likelihood learning, their objectives are different:
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OFT seeks to encode a dynamic, iterative refinement process, while BC focuses on replicating
static behavior. OFT is designed for algorithm distillation, focusing on capturing a sequence of self-
improvement behaviors, and generalization across any new test domains. In contrast, BC aims to learn
a policy by mimicking a static policy, with no iterative improvement between trajectories.

This difference becomes very clear when we think of an example. We have a deterministic Markov
policy 7 that we can use to create this dataset. We call this the sampling policy. To create a behavior
cloning dataset, Dpc, during dataset construction, for the same state s, the policy remains unchanged,
which the means 7(a|s) remains the same in the entire dataset. To create an algorithm distillation
dataset Do, the sampling policy is self-improving as the data collection continues, 7(a|s) changes
even for the same s between early and late trajectories of this dataset.

A.5 EXAMPLE OF WIN-RATE CALCULATION

In each scenario, we compute each model’s win-rate against all other models. For MAB, we have 16
configurations and 34 models. For CB, we have 2 configurations and 16 models. Finally, the model’s
overall win-rate is then determined by averaging its win-rates across all models. For example, in
MAB, if we only have 3 models: Gemma-2B, Gemini-1.5 Flash, and Pro. Gemini-1.5 Flash have
higher expected cumulative reward than Gemma-2B in 12 out of 16 configurations (12/16), but only
higher than Gemini-1.5 Pro in 4 out of 16 configurations (4/16), Gemini-Flash 1.5 will have an overall
win-rate, on average, 8/16=0.5.

A.6 DETAILS ON FITTING REGRET FUNCTION

We perform the same analysis with the cumulative regret function on MAB in Hard Difficulty setting.
We can see that in Figure A1, a lot less LLM models achieved 8 = 0, which means achieving the
desirable logrithmic sublinear regret that algorithms like UCB and Thompson Sampling have.

Gemma-2B Gemma-9B Gemini-1.5 Flash Gemini-1.5 Pro
= 0.00 W W * [ e
[
o +A
go.0s A 4 “a
go.10 g N
£ A
3 N | A + X 2 A
0151, X Y [ X, A A X A A,
8020l X% Al A a X + A A
6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0
Alpha (Sublinear Regret) Alpha (Sublinear Regret) Alpha (Sublinear Regret) Alpha (Sublinear Regret)

+ Oracle Behavior Fine-Tuning A Few-shot Demonstration X RH + AG 4+ SH Y Optimal (UCB)

Figure Al: MAB with Hard Difficulty (K=20, A=0.2). We plot the estimated parameters « and (3 of
our cumulative regret function. Smaller a and 3 indicate more efficient exploration to find the best
arm.

In the MAB-Hard setting, we can see that more models are having non-zero 3, describing linear
cumulative regret, which indicates lack of in-context self-improvement, as the model is not selecting
the optimal arm more and more frequently as 7" increases. However, even for the Hard setting,
we can see that generally Optimal Behavior Fine-Tuned models are doing better — two of the OFT
models

We also show a few figures of how well the learned function would predict the actual data. In
Figure A2, we show how the learned function f(7T) fit the actual empirical cumulative regret
curve.

In Figure A2, it is interesting to see that the function we choose exhibit the behavior of pushing either
a or 3 to 0, if either of the two describes the trend better. We note that although the fit is not perfect,
the MSE is relatively small compared to the data we are trying to fit. For a cumulative regret as large
as 100 at some time step T, our fitted function ccan still maintain an MSE of 0.22.

A.7 EVALUATION IMPLEMENTATION DETAILS

We run each model under each setting for 30 trials. We set the random seed to be the same as trial
id, starting from O to 29. This random seed determines the reward distribution for MAB and the
sequence of users the algorithm encounters in CB. For LLM calls, we use standard API calls and set
the sampling temperature of the LLM to 1.0.
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Figure A2: Examples of how our function fits different empirical cumulative regret curves.

A.8 FULL LIST OF MODELS

We provide a full list of models evaluated for MAB and CB. The model is represented using A —-
B with A being the model, with B being the inference-time technique.

MAB Models
1. Few-Shot Gemma-9B, (Bernoulli, Clothes, K = 20, Small A,,.;,) — RH 0.029
2. Few-Shot Gemma-2B, (Bernoulli, Clothes, K = 20, Small A,,,;,,) — RH 0.029
3. Gemma-9B — AG 0.041
4. Fewshot Gemma-2B with (Bernoulli, Video, K = 5, Large Ap,;,) — SH 0.043
5. Fewshot Gemma-2B with (Bernoulli, Clothes, K = 20, Small A,,.;,,) — SH 0.045
6. Fewshot Gemma-2B with (Bernoulli, Video, K = 5, Large A,,;,) =— RH 0.047
7. Gemma-2B = AG 0.049
8. Gemma-9B — SH 0.053
9. Fewshot Gemma-9B with (Bernoulli, Video, K = 5, Large A;;,) = RH 0.072
10. Gemma-2B — RH 0.076
11. Fewshot Gemma-9B with (Bernoulli, Clothes, K = 20, Small A,,,;,) — SH 0.088
12. Fewshot Gemma-9B with (Bernoulli, Video, K = 5, Large Ap,;,) — SH 0.092
13. OFT Flash with (Bernoulli, Video, K = 5, Large A;,) AG = AG 0.104
14. Gemma-2B — SH 0.105
15. Gemma-9B — RH 0.105
16. Fewshot Flash with (Bernoulli, Clothes, K = 20, Small A,,,;,) =— RH 0.152
17. Fewshot Flash with (Bernoulli, Video, K = 5, Large A,;;) = RH 0.275
18. Gemini-1.5 Flash =—> RH 0.277
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19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

OFT Flash with (Bernoulli, Clothes, K = 20, Small A,,.;,,) AG — AG
Gemini-1.5 Flash — AG

Gemini-1.5 Flash =— SH

Fewshot Pro with (Bernoulli, Video, K = 5, Large A;;,) = RH
Fewshot Pro with (Bernoulli, Clothes, K = 20, Small A,,.;,) — RH
Fewshot Flash with (Bernoulli, Clothes, K = 20, Small A,,.;,,) — SH
Gemini-1.5 Pro =— RH

Fewshot Flash with (Bernoulli, Video, K = 5, Large Ap,;,) =— SH
Fewshot Pro with (Bernoulli, Clothes, K = 20, Small A,,.;,,) — SH
OFT Flash with (Bernoulli, Video, K = 5, Large A,;;,) RH = RH
Fewshot Pro with (Bernoulli, Video, K = 5, Large A,;,) = SH
Gemini-1.5 Pro = AG

Gemini-1.5 Pro =— SH

OFT Flash with (Bernoulli, Clothes, K = 20, Small A,,.;,,) RH — RH
UCB

CB Models

1.

—_— = = = =
= o b =9

15.

D L o

Gemini-1.5 Flash =— RH
Fewshot Flash with RH =— RH
Fewshot Pro with RH —> RH
Gemini-1.5 Pro =— RH
Fewshot Flash with RH — RH
Fewshot Pro with RH — AG
OFT trained with RH —- RH
OFT trained with AG — RH
Fewshot Flash with RH — AG
Gemini-1.5 Flash — AG

. Fewshot Flash with AG — AG
. OFT trained with RH — AG
. Gemini-1.5 Pro — AG

OFT trained with AG =— AG
LinUCB

A.9 SCENARIO PROMPTS

0.283
0.322
0.348
0.381
0.391
0.430
0.455
0.502
0.525
0.545
0.564
0.596
0.600
0.656
0.906

0.000
0.036
0.071
0.071
0.107
0.250
0.286
0.286
0.429
0.464
0.607
0.643
0.643
0.893
0.964

We provide a set of prompts that are used in each scenario. For Multi-Arm Bandit, we include the
following prompts:

1. MAB, Bernoulli Bandit, K = 5, Raw History (RH), Video Action Description (Figure A3),

Clothes Action Description (Figure A4)

2. MAB, Bernoulli Bandit, K = 5, Algorithmic Guided Support (AG), Clothes Action De-

scription (Figure A5), Video Action Description (Figure A6)

3. MAB, Gaussian Bandit, K = 5, Raw History (RH), Video Action Description (Figure A7),

Clothes Action Description (Figure A8)
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For Contextual Bandit, we include the following prompts:
1. CB, K = 10, Raw History (RH) (Figure A9)

2. CB, K = 10, Raw History (RH) with Algorithmic Guided Support (AG) (Prompt Part 1
Figure A10, Prompt Part 2 Figure A11).

For OFT, we use the same prompt as shown in the figures above. The LLM generates the next action
token conditioned on the entire prompt, and we compute the negative log-likelihood loss over the
action tokens, with the action chosen by UCB/LinUCB algorithm.

A.10 EXAMPLES OF FEW-SHOT DEMONSTRATIONS

We provide examples of how few-shot prompt being used. We include few-shot demonstrations
from optimal exploration trajectories before past interaction history (without the task description and
instruction). We show two examples to illustrate that how few-shot demonstrations domain match
with the evaluation domain:

1. MAB, Benoulli Bandit, Video Action Description, K = 5, Raw History (RH), with Few-shot
Demonstrations from Video Action Description, K = 5, Raw History (RH) (Figure A12)

2. MAB, Benoulli Bandit, Video Action Description, K = 5, Raw History (RH), ith Few-shot
Demonstrations from Clothes Action Description, K = 5, Raw History (RH) (Figure A13)

1 You are a video recommendation system powered by a bandit algorithm for an online
streaming platform.

There are 5 videos available in your library, titled [A, B, AI, BS, EJ.

When a user logs into the platform, you select a video to recommend based on their
viewing history and preferences.

VRN

4 You aim to engage the user by recommending videos that they are likely to watch.

5 Each time a user watches a recommended video, you update your recommendation model to
refine future suggestions,

6 enhancing user satisfaction and platform engagement.

7

8 A good strategy to optimize for reward in these situations requires balancing exploration

9 and exploitation. You need to explore to try out all of the videos and find those
10 with high rewards, but you also have to exploit the information that you have to
11 accumulate rewards.

12

13 So far you have played 6 times with the following choices and rewards:

14 A video, reward 1

15 B video, reward 1

16 AI video, reward 1

17 BS video, reward 0

18 E video, reward 0

19 A video, reward 0

20

21 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT
EXPLANATION.

Figure A3: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History.
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N

16
17
18
19
20

You are an AI fashion assistant for an online boutique powered by a bandit algorithm
that offers a variety of clothing options from different brands.

There are 5 unique clothing items you can recommend, named [Midnight Mirage Trousers,
Opulent Oasis Overcoat, Infinite Impeccable Jacket, Supreme Spectrum Slippers,
Bejeweled Bloom Blazer].

When a customer visits the online store, you assess their style preferences and shopping
history to choose an item to suggest.

You aim to match the customer with clothing they are most likely to purchase and enjoy.
Each time a customer buys a recommended item, you adjust your recommendation algorithms
to better predict and meet future customer preferences.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the clothing brands and find
those

with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

So far you have played 6 times with the following choices and rewards:
Midnight Mirage Trousers item, reward @

Opulent Oasis Overcoat item, reward 1

Infinite Impeccable Jacket item, reward 1

Supreme Spectrum Slippers item, reward @

Bejeweled Bloom Blazer item, reward 0

Opulent Oasis Overcoat item, reward 1

Which item will you choose next? PLEASE RESPOND ONLY WITH Midnight Mirage Trousers,
Opulent Oasis Overcoat, Infinite Impeccable Jacket, Supreme Spectrum Slippers,
Bejeweled Bloom Blazer AND NO TEXT EXPLANATION.

ENSEOIN Y

11

12

14
15

16

Figure A4: Multi-Arm Bandit: Bernoulli, Clothing Action Description, K = 5, Raw History.

You are an AI fashion assistant for an online boutique that offers a variety of clothing
options from different brands.

There are 5 unique clothing items you can recommend, named

Stellar Sheen Shawl,

Faithful Fantasy Frock,

Supreme Sylvan Sandals,

Bespoke Bliss Blouse item,

Silk Spectrum Slip

When a customer visits the online store, you assess their style preferences and shopping
history to choose an item to suggest.

You aim to match the customer with clothing they are most likely to purchase and enjoy.
Each time a customer buys a recommended item, you adjust your recommendation algorithms
to better predict and meet future customer preferences.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the clothing brands and find
those

with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

So far you have played 4 times with the following choices and rewards:

Stellar Sheen Shawl item, 1 time, avg reward @, exploration bonus 1.00, exploitation
value 0.00

Faithful Fantasy Frock item, 1 time, avg reward 1, exploration bonus 1.00, exploitation
value 1.00

Supreme Sylvan Sandals item, 1 time, avg reward 0, exploration bonus 1.00, exploitation
value 0.00

Bespoke Bliss Blouse item, avg reward 0, exploration bonus 1.00, exploitation value 0.00
Silk Spectrum Slip item, 1 time, avg reward 0, exploration bonus 1.00, exploitation
value 0.00

Which clothes item will you choose next?

Action:

Figure AS: Multi-Arm Bandit: Bernoulli, Clothing Action Description, K = 5, Algorithmic Guide.
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11
12
13
14
15
16
17
18
19
20

21

22

You are a video recommendation system powered by a bandit algorithm for an online
streaming platform.

There are 5 videos available in your library, titled

AA

BS

BW

cQ

CcP

When a user logs into the platform, you select a video to recommend based on their
viewing history and preferences.

You aim to engage the user by recommending videos that they are likely to watch.
Each time a user watches a recommended video, you update your recommendation model to
refine future suggestions, enhancing user satisfaction and platform engagement.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the videos and find those
with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

So far you have played 4 times with the following choices and rewards:

AA video, 1 time, avg reward @, exploration bonus 1.00, exploitation value ©.00

BS video, 1 time, avg reward 1, exploration bonus 1.00, exploitation value 1.00

BW video, 1 time, avg reward 0, exploration bonus 1.00, exploitation value 0.00

CQ video, avg reward @, exploration bonus 1.00, exploitation value 0.00

CP video, 1 time, avg reward 0, exploration bonus 1.00, exploitation value 0.00
Which video will you choose next?

Action:

Figure A6: Multi-Arm Bandit: Beroulli, Video Action Description, K = 5, Algorithmic Guide.

16

18

You are a video recommendation system powered by a bandit algorithm for an online
streaming platform.

There are 5 videos available in your library, titled [A, CX, AF, AQ, SIJ.

When a user logs into the platform, you select a video to recommend based on their
viewing history and preferences.

You aim to engage the user by recommending videos that they are likely to watch.

Each time a user watches a recommended video, you update your recommendation model to
refine future suggestions,

enhancing user satisfaction and platform engagement.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the videos and find those

with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

So far you have played 6 times with the following choices and rewards:
A video, reward 2.0205556227286694

CX video, reward 5.046038662976072

AF video, reward -4.043037070451992

AQ video, reward 5.937910707405409

S video, reward -4.856036829535051

AQ video, reward 6.2468398842187405

Which video will you choose next? PLEASE RESPOND ONLY WITH A, CX, AF, AQ, S AND NO TEXT
EXPLANATION.

Figure A7: Multi-Arm Bandit: Gaussian, Video Action Description, ' = 5, Raw History.
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)

16
17
18
19

20

You are an AI fashion assistant for an online boutique powered by a bandit algorithm
that offers a variety of clothing options from different brands.

There are 5 unique clothing items you can recommend, named [Midnight Mirage Trousers,
Dapper Dreams Denim, Infinite Impeccable Jacket, Supreme Spectrum Slippers, Bejeweled
Bloom Blazer].

When a customer visits the online store, you assess their style preferences and shopping
history to choose an item to suggest.

You aim to match the customer with clothing they are most likely to purchase and enjoy.
Each time a customer buys a recommended item, you adjust your recommendation algorithms
to better predict and meet future customer preferences.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the clothing brands and find
those

with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

So far you have played 6 times with the following choices and rewards:
Midnight Mirage Trousers item, reward -3.701605707528312

Dapper Dreams Denim item, reward 1.4965799995904072

Infinite Impeccable Jacket item, reward 4.576557137862691

Supreme Spectrum Slippers item, reward -0.32883145604929176

Bejeweled Bloom Blazer item, reward 1.5907554114707747

Infinite Impeccable Jacket item, reward 6.534020380965033

Which item will you choose next? PLEASE RESPOND ONLY WITH Midnight Mirage Trousers,
Dapper Dreams Denim, Infinite Impeccable Jacket, Supreme Spectrum Slippers, Bejeweled
Bloom Blazer AND NO TEXT EXPLANATION.

Figure A8: Multi-Arm Bandit: Gaussian, Clothes Action Description, K = 5, Raw History.
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I You are an AI movie recommendation assistant for a streaming platform powered by a bandit
algorithm that offers a wide variety of films from different studios and genres.

2 There are 10 unique movies you can recommend, named

3 American Beauty (1999) (Comedy|Drama),

4 Star Wars: Episode IV - A New Hope (1977) (Action|Adventure|Fantasy|Sci-Fi),

5 Star Wars: Episode V - The Empire Strikes Back (1980) (Action]|Adventure|Drama|Sci-Fi|War),

6 Star Wars: Episode VI - Return of the Jedi (1983) (Action]|Adventure|Romance|Sci-Fi|War),

7 Jurassic Park (1993) (Action|Adventure|Sci-Fi),

8 Saving Private Ryan (1998) (Action|Drama|War),

9 Terminator 2: Judgment Day (1991) (Action|Sci-Fi|Thriller),

10 The Matrix (1999) (Action|Sci-Fi|Thriller),

11 Back to the Future (1985) (Comedy|Sci-Fi),

12 The Silence of the Lambs (1991) (Drama|Thriller)

13

14 When a user visits the streaming platform, you assess their demographic description to
choose a movie to suggest.

15You aim to match the user with movies they are most likely to watch and enjoy.

16 Each time a user watches a recommended movie, you adjust your recommendation algorithms to
better predict and meet future user preferences.

17 Your goal is to enhance the user’s viewing experience by providing personalized and engaging
movie suggestions.

18

19A good strategy to optimize for reward in these situations requires balancing exploration

20 and exploitation. You need to explore to try out different movies and find those

21 with high rewards, but you also have to exploit the information that you have to

22 accumulate rewards.

24 So far you have interacted 4 times with the most recent following choices and rewards:

25 Context: a person who is a 18-year-old man with an occupation of college/grad student and
live in Pulaski county, AR. The user has some numerical values that represent their
true implicit preference or taste for all movies: [-0.011492758058011532,
0.027099572122097015, -0.020118921995162964, -0.002230832353234291,
-0.003236030228435993].

26 Action: Saving Private Ryan (1998)

27 Reward: 4.735634 out of 5

28

29 Context: a person who is a 25-year-old man with an occupation of sales/marketing and live in
Solano county, CA. The user has some numerical values that represent their true
implicit preference or taste for all movies: [-0.00312434253282845,
0.0017211971571668983, 0.0015880014980211854, 0.012064018286764622,
0.009061760269105434].

30 Action: Jurassic Park (1993)

31 Reward: @ out of 5

3

33 Context: a person who is a 56-year-old man with an occupation of sales/marketing and live in
Jefferson county, KY. The user has some numerical values that represent their true
implicit preference or taste for all movies: [-0.009686884470283985,
0.028794225305318832, -0.011435767635703087, 0.006439171731472015,
-0.010343835689127445].

34 Action: Saving Private Ryan (1998)

35 Reward: 5 out of 5

36

37 Context: a person who is a 25-year-old man with an occupation of executive/managerial and
live in Washington county, DC. The user has some numerical values that represent their
true implicit preference or taste for all movies: [-0.010095382109284401,
0.010144174098968506, -0.01811344549059868, -0.009553882293403149,
-0.012143188156187534].

38 Action: Saving Private Ryan (1998)

39 Reward: 3.953174 out of 5

40

41

42 You have a new user: PLEASE RESPOND ONLY WITH A CHOICE of MOVIES LISTED ABOVE AND NO TEXT
EXPLANATION.

47

44 Context: This person is a 35-year-old man, working as a lawyer and live in Camden county,
NJ. The user has some numerical values that represent their true implicit preference or
taste for all movies: [-0.009149148128926754, -0.00417252816259861,
0.011747784912586212, -0.012008273974061012, -0.0064865672029554841].

45 Action:

46

Figure A9: Contextual Bandit: Movie Recommendation for movies, Raw History.
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1 You are an AI movie recommendation assistant for a streaming platform powered by a bandit
algorithm that offers a wide variety of films from different studios and genres.

2 There are 10 unique movies you can recommend, named

3 American Beauty (1999) (Comedy|Drama),

t Star Wars: Episode IV - A New Hope (1977) (Action|Adventure]|Fantasy|Sci-Fi),

5 Star Wars: Episode V - The Empire Strikes Back (1980) (Action|Adventure|Drama|Sci-Fi|War),

6 Star Wars: Episode VI - Return of the Jedi (1983) (Action|Adventure|Romance|Sci-Fi|War),

7 Jurassic Park (1993) (Action|Adventure|Sci-Fi),

8 Saving Private Ryan (1998) (Action|Drama|War),

9 Terminator 2: Judgment Day (1991) (Action|Sci-Fi|Thriller),

10 The Matrix (1999) (Action|Sci-Fi|Thriller),

11 Back to the Future (1985) (Comedy|Sci-Fi),

12 The Silence of the Lambs (1991) (Drama|Thriller)

13

14When a user visits the streaming platform, you assess their demographic description to
choose a movie to suggest.

15You aim to match the user with movies they are most likely to watch and enjoy.

16 Each time a user watches a recommended movie, you adjust your recommendation algorithms to
better predict and meet future user preferences.

17 Your goal is to enhance the user’s viewing experience by providing personalized and engaging
movie suggestions.

18

19A good strategy to optimize for reward in these situations requires balancing exploration

20 and exploitation. You need to explore to try out different movies and find those

21 with high rewards, but you also have to exploit the information that you have to

22 accumulate rewards.

24 So far you have interacted 2 times with the most recent following choices and rewards:

25 Context: a person who is a 18-year-old man with an occupation of college/grad student and
live in Pulaski county, AR. The user has some numerical values that represent their
true implicit preference or taste for all movies: [-0.011492758058011532,
©.027099572122097015, -0.020118921995162964, -0.002230832353234291,
-0.003236030228435993].

26 Side Information for decision making:

27 {"American Beauty (1999)": {"exploration value”: 0.018}, {"exploitation value”:0.000}}

28 {"Star Wars: Episode IV - A New Hope (1977)": {"exploration value": 0.018}, {"exploitation
value":0.0003}7}

29 {"Star Wars: Episode V - The Empire Strikes Back (1980)": {"exploration value”: 0.018},
{"exploitation value”:0.000}}

30 {"Star Wars: Episode VI - Return of the Jedi (1983)": {"exploration value”: 0.018},
{"exploitation value":0.000}}

31 {"Jurassic Park (1993)": {"exploration value”: 0.018}, {"exploitation value”:0.000}}

32 {"Saving Private Ryan (1998)": {"exploration value”: 0.018}, {"exploitation value":0.000}}

33 {"Terminator 2: Judgment Day (1991)": {"exploration value”: 0.018}, {"exploitation
value":0.000}3}

34 {"The Matrix (1999)": {"exploration value”: 0.0183}, {"exploitation value”:0.0003}}

35 {"Back to the Future (1985)": {"exploration value”: 0.018}, {"exploitation value”":0.000}}

36 {"The Silence of the Lambs (1991)": {"exploration value”: 0.018}, {"exploitation
value”:0.000}}

37 Action: The Silence of the Lambs (1991)

38 Reward: 4.121133 out of 5

39

40 Context: a person who is a 25-year-old man with an occupation of sales/marketing and live in
Solano county, CA. The user has some numerical values that represent their true
implicit preference or taste for all movies: [-0.00312434253282845,
©.0017211971571668983, 0.0015880014980211854, 0.012064018286764622,
0.0090617602691054347].

41 Side Information for decision making:

42 {"American Beauty (1999)": {"exploration value”: 0.008}, {"exploitation value":0.000}}

43 {"Star Wars: Episode IV - A New Hope (1977)": {"exploration value”: 0.008}, {"exploitation
value":0.0003}7}

44 {"Star Wars: Episode V - The Empire Strikes Back (1980)": {"exploration value": 0.008},
{"exploitation value":0.000}}

45 {"Star Wars: Episode VI - Return of the Jedi (1983)": {"exploration value”: 0.008},
{"exploitation value":0.000}}

46 {"Jurassic Park (1993)": {"exploration value”: 0.008}, {"exploitation value”:0.000}}

47 {"Saving Private Ryan (1998)": {"exploration value”: 0.0083}, {"exploitation value”:0.000}}

48 {"Terminator 2: Judgment Day (1991)": {"exploration value”: 0.008}, {"exploitation
value":0.000}3}

49 {"The Matrix (1999)": {"exploration value”: 0.008}, {"exploitation value”:0.0003}}

50 {"Back to the Future (1985)": {"exploration value”: 0.008}, {"exploitation value”":0.000}}

51 {"The Silence of the Lambs (1991)": {"exploration value”: 0.008}, {"exploitation
value":-0.000}}

52 Action: American Beauty (1999)

53 Reward: @ out of 5

54

Figure A10: Contextual Bandit: Movie Recommendation for 10 movies, with Algorithmic Guided
Support (Part 1)
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| Context: a person who is a 56-year-old man with an occupation of sales/marketing and live in
Jefferson county, KY. The user has some numerical values that represent their true
implicit preference or taste for all movies: [-0.009686884470283985,
0.028794225305318832, -0.011435767635703087, ©.006439171731472015,
-0.010343835689127445].

2 Side Information for decision making:

3 {"American Beauty (1999)": {"exploration value”: ©.017}, {"exploitation value”:-0.000}}

4 {"Star Wars: Episode IV - A New Hope (1977)": {"exploration value”: 0.017}, {"exploitation
value":0.000}3}

5{"Star Wars: Episode V - The Empire Strikes Back (1980)": {"exploration value”: 0.017},
{"exploitation value":0.000}}

6 {"Star Wars: Episode VI - Return of the Jedi (1983)": {"exploration value": 0.0173},
{"exploitation value”:0.000}}

7{"Jurassic Park (1993)": {"exploration value”: 0.017}, {"exploitation value":0.0003}}

8 {"Saving Private Ryan (1998)": {"exploration value”: 0.017}, {"exploitation value":0.000}}

9{"Terminator 2: Judgment Day (1991)": {"exploration value”: 0.017}, {"exploitation
value":0.000}}

10{"The Matrix (1999)": {"exploration value”: @.017}, {"exploitation value":0.000}}

11 {"Back to the Future (1985)": {"exploration value”: 0.017}, {"exploitation value":0.0003}}

12{"The Silence of the Lambs (1991)": {"exploration value”: 0.017}, {"exploitation
value":0.0053}}

13 Action: The Silence of the Lambs (1991)

14 Reward: 3.9708314 out of 5

15

16 Context: a person who is a 25-year-old man with an occupation of executive/managerial and
live in Washington county, DC. The user has some numerical values that represent their
true implicit preference or taste for all movies: [-0.010095382109284401,
0.010144174098968506, -0.01811344549059868, -0.009553882293403149,
-0.012143188156187534].

17 Side Information for decision making:

18 {"American Beauty (1999)": {"exploration value”: 0.014}, {"exploitation value”:0.000}}

19 {"Star Wars: Episode IV - A New Hope (1977)": {"exploration value”: 0.014}, {"exploitation
value":0.000}3}

20 {"Star Wars: Episode V - The Empire Strikes Back (1980)": {"exploration value”: 0.014},
{"exploitation value":0.000}}

21 {"Star Wars: Episode VI - Return of the Jedi (1983)": {"exploration value”: 0.014},
{"exploitation value”:0.000}}

22 {"Jurassic Park (1993)": {"exploration value”: 0.014}, {"exploitation value"”:0.000}}

23 {"Saving Private Ryan (1998)": {"exploration value”: 0.014}, {"exploitation value”:0.000}}

24 {"Terminator 2: Judgment Day (1991)": {"exploration value"”: 0.014}, {"exploitation
value":0.000}}

25 {"The Matrix (1999)": {"exploration value”: ©.014}, {"exploitation value":0.000}}

26 {"Back to the Future (1985)": {"exploration value”: 0.014}, {"exploitation value":0.0003}}

27 {"The Silence of the Lambs (1991)": {"exploration value”: 0.014}, {"exploitation
value":0.0063}7}

28 Action: The Silence of the Lambs (1991)

29 Reward: 1.0985798 out of 5

30

31

32 You have a new user: PLEASE RESPOND ONLY WITH A CHOICE of MOVIES LISTED ABOVE AND NO TEXT
EXPLANATION.

34 Context: This person is a 35-year-old man, working as a lawyer and live in Camden county,
NJ. The user has some numerical values that represent their true implicit preference or
taste for all movies: [-0.009149148128926754, -0.00417252816259861,
0.011747784912586212, -0.012008273974061012, -0.0064865672029554847].

35 Side Information for decision making:

36 {"American Beauty (1999)": {"exploration value”: 0.010}, {"exploitation value":0.000}}

37 {"Star Wars: Episode IV - A New Hope (1977)": {"exploration value”: ©0.010}, {"exploitation
value":0.000}}

38 {"Star Wars: Episode V - The Empire Strikes Back (1980)": {"exploration value”: 0.010},
{"exploitation value":0.000}}

39 {"Star Wars: Episode VI - Return of the Jedi (1983)": {"exploration value”: 0.010},
{"exploitation value”:0.000}}

40 {"Jurassic Park (1993)": {"exploration value”: ©.010}, {"exploitation value":0.000}}

41 {"Saving Private Ryan (1998)": {"exploration value”: 0.0103}, {"exploitation value”:0.0003}}

42 {"Terminator 2: Judgment Day (1991)": {"exploration value”: 0.010}, {"exploitation
value":0.0003}7}

43 {"The Matrix (1999)": {"exploration value": 0.010}, {"exploitation value”:0.0003}}

44 {"Back to the Future (1985)": {"exploration value”: 0.010}, {"exploitation value":0.000}}

45 {"The Silence of the Lambs (1991)": {"exploration value”: 0.010}, {"exploitation
value":-0.001%}}

46 Action:

47

Figure A11: Contextual Bandit: Movie Recommendation for 10 movies, with Algorithmic Guided
Support (Part 2)

24



Under review as a conference paper at ICLR 2025

w o

N

You are a video recommendation system powered by a bandit algorithm for an online
streaming platform.

There are 5 videos available in your library, titled [A, B, AI, BS, EJ.

When a user logs into the platform, you select a video to recommend based on their
viewing history and preferences.

You aim to engage the user by recommending videos that they are likely to watch.

Each time a user watches a recommended video, you update your recommendation model to
refine future suggestions,

enhancing user satisfaction and platform engagement.

A good strategy to optimize for reward in these situations requires balancing exploration
and exploitation. You need to explore to try out all of the videos and find those

with high rewards, but you also have to exploit the information that you have to
accumulate rewards.

Here are some examples of optimal actions under different scenarios. Use them as hints
to help you come up with better actions.

A video, reward 1
B video, reward 1
AI video, reward 1
BS video, reward 0
E video, reward 0
A video, reward 0

Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT
EXPLANATION.

A video, reward 1
B video, reward 1
AI video, reward 1
BS video, reward @
E video, reward 0
A video, reward 0
B video, reward 0
Al video, reward 1
Al video, reward 0

Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT
EXPLANATION.
Al

So far you have played 6 times with the following choices and rewards:
A video, reward 1

B video, reward 1

Al video, reward 1

BS video, reward @

E video, reward 0

A video, reward 0

Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT
EXPLANATION.

Figure A12: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History, with
In-context Few-shot Demonstrations from Bernoulli, Video Action Description, K = 5, Raw History.
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1 You are a video recommendation system powered by a bandit algorithm for an online
streaming platform.

There are 5 videos available in your library, titled [A, B, AI, BS, EJ.

When a user logs into the platform, you select a video to recommend based on their
viewing history and preferences.

4 You aim to engage the user by recommending videos that they are likely to watch.

Each time a user watches a recommended video, you update your recommendation model to
refine future suggestions,

6 enhancing user satisfaction and platform engagement.

w o

N

8 A good strategy to optimize for reward in these situations requires balancing exploration
9 and exploitation. You need to explore to try out all of the videos and find those

10 with high rewards, but you also have to exploit the information that you have to

11 accumulate rewards.

13 Here are some examples of optimal actions under different scenarios. Use them as hints
to help you come up with better actions.

14 S=========S=S=============

15 Midnight Mirage Trousers item, reward 1

16 Titanic Tempest Tunic item, reward @

17 Infinite Impeccable Jacket item, reward 1

18 Supreme Spectrum Slippers item, reward 0

19 Bejeweled Bloom Blazer item, reward 0

20 Midnight Mirage Trousers item, reward @

21

22 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT
EXPLANATION.

23 Infinite Impeccable Jacket

24 S = e e

25 Midnight Mirage Trousers item, reward 1

26 Titanic Tempest Tunic item, reward @

27 Infinite Impeccable Jacket item, reward 1

28 Supreme Spectrum Slippers item, reward 0

29 Bejeweled Bloom Blazer item, reward 0

30 Midnight Mirage Trousers item, reward @

31 Infinite Impeccable Jacket item, reward 0

32 Midnight Mirage Trousers item, reward @

33 Infinite Impeccable Jacket item, reward @

34

35 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT
EXPLANATION.

36 Titanic Tempest Tunic

38

39 So far you have played 6 times with the following choices and rewards:

40 A video, reward 1

41 B video, reward 1

42 Al video, reward 1

43 BS video, reward @

44 E video, reward 0

45 A video, reward 0

46

17 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT
EXPLANATION.

48

Figure A13: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History, with
Few-shot Demonstrations from Bernoulli, Clothes Action Description, K = 5, Raw History
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