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Abstract
The customary approach for client-level differentially private federated learning (FL) is to add
Gaussian noise to the average of the clipped client updates. Clipping is associated with the following
issue: as the client updates fall below the clipping threshold, they get drowned out by the added noise,
inhibiting convergence. To mitigate this issue, we propose replacing clipping with normalization,
where we use only a scaled version of the unit vector along the client updates. Normalization
ensures that the noise does not drown out the client updates even when the original updates are small.
We theoretically show that the resulting normalization-based private FL algorithm attains better
convergence than its clipping-based counterpart on convex objectives in over-parameterized settings.

1. Introduction

The typical approach to client/user-level differentially private federated learning (FL), exemplified
by DP-FedAvg [15, 29], involves each client first computing its update as it would have been under
vanilla FedAvg[23], then clipping its norm to a pre-determined threshold, and adding noise to the
clipped update before sending it to the server. The level of added noise is always proportional to the
clipping threshold, with the proportionality constants depending on the desired level of privacy.

Our key insight is that this clipping-based approach has a fundamental issue: when the client
updates have small magnitudes much lesser than the clipping threshold, they are completely drowned
out by the added noise whose magnitude is always proportional to the clipping threshold. Based on
this insight, we propose a variant algorithm – one that does not clip the client updates, but instead
normalizes updates, i.e., rescales them to always have a fixed norm, before adding noise proportional
to this fixed norm for privacy. We call our modified method DP-NormFedAvg. The rescaling of
updates in DP-NormFedAvg ensures that client updates are never overwhelmed by the added noise,
even if the original updates are small.

We succinctly state the updates of FedAvg, DP-FedAvg with clipping and DP-NormFedAvg
in Table 1. DP-FedAvg with clipping and DP-NormFedAvg are stated in detail in Algorithm 1 Op-
tions (i) and (ii), respectively. We also show an example of the superior convergence of normalization
compared to clipping in Figure 1.
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Algorithm: FedAvg DP-FedAvg with Clipping DP-NormFedAvg

Client Sends: u umin(1, C
∥u∥2

) + Cζ Cu
∥u∥2

+ Cζ

Table 1: Summary of what each client in vanilla FedAvg, DP-FedAvgwith clipping and DP-NormFedAvg
sends to the server. Here, u is the client update of the vanilla FedAvg algorithm, ζ is Gaussian noise whose
variance depends on the desired privacy level and C is the clipping threshold/scaling factor.
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Figure 1: For a quadratic objective in the FL setting (described in Appendix F), function suboptimality
(i.e., f(w) − minw′ f(w′)) vs. round number on the left, and smoothed 2D projection of the trajectories
of DP-FedAvg with clipping (“Clip”) and DP-NormFedAvg (“Norm”) on the right. DP-NormFedAvg
reaches closer to the optimum and attains a smaller function suboptimality than DP-FedAvg with clipping.

Our main contributions are summarized next:
(a) In Section 3, we present DP-NormFedAvg (Alg. 1 Option (ii)) where we replace the usual
practice of update clipping by update normalization (i.e., using a scaled version of the unit vector
along the update) for bounding sensitivity in private FL. Our motivation for advocating normalization
is that normalization has a higher signal (viz., update norm) to noise ratio (SNR) than clipping
which should intuitively result in better convergence for normalization; this aspect is discussed
in Section 3.1. We provide convergence results for DP-NormFedAvg as well as the standard
algorithm of DP-FedAvg with clipping (Alg. 1 Option (i)) in the smooth convex case in Theorem 4.
In Section 4.1, we compare the convergence results of both algorithms, showing that normalization
has better asymptotic convergence than clipping in over-parameterized settings.
(b) In Appendix F and G, we demonstrate the superiority of normalization over clipping via exper-
iments on a synthetic quadratic problem as well as on three benchmarking datasets, viz., Fashion
MNIST, CIFAR-10 and CIFAR-100, respectively. For ε = 5, the improvement offered by normaliza-
tion over clipping w.r.t. test accuracy is > 2.8%, 2.1% and 1.5% for CIFAR-100, Fashion MNIST
and CIFAR-10, respectively; see Table 2 in Appendix G.

2. Preliminaries

Federated Learning (FL) Setting: There are n clients, each with their own decentralized data,
and a central server that has to train a model, parameterized by w ∈ Rd, using the clients’ data.
Suppose the ith client has m training examples drawn from some distribution Pi. Then the ith client
has an objective function fi(w) which is the average loss, w.r.t. some loss function, over its m
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samples, and the central server tries to minimize the average 1 loss f(w), over the n clients, i.e.,
f(w) := 1

n

∑n
i=1 fi(w). The setting where the data distributions of all the clients are identical, i.e.

P1 = . . . = Pn, is known as the “homogeneous” setting. Other settings are known as “heterogeneous”
settings. We are able to naturally quantify the effect of heterogeneity on convergence as follows.

Definition 1 (Heterogeneity) Let w∗ ∈ argminw′∈Rd f(w′) and ∆∗
i := fi(w

∗)−minw′∈Rd fi(w
′).

The system’s heterogeneity is quantified by some increasing function of {∆∗
i }ni=1.

The exact function of ∆∗
i ’s quantifying heterogeneity depends on the algorithm as well as data, and

this will become clear when we present the convergence results. Note that if the per-client distribu-
tions (i.e, Pi’s) are similar, then we expect the ∆∗

i ’s to be small indicating smaller heterogeneity.
Due to lack of space, we present the definitions of some standard concepts such as differential privacy
and the Gaussian mechanism in Appendix A.

Definition 2 (A Key Quantity) All the theoretical results in this paper are expressed in terms of
the following key quantity

ρ :=

√
qd log(1/δ)

nε
, (1)

where (ε, δ)-DP is the desired privacy level, n is the number of clients, d is the parameter dimension
and q is the absolute constant in Theorem 3. We also assume that n is sufficiently large so that ρ < 1.
Note that ρ increases as the level of privacy increases (i.e., ε and δ decrease), and vice versa.

Notation: Throughout the rest of this paper, we denote the ℓ2 norm by ∥.∥ (omitting the subscript 2).
Vectors and matrices are written in boldface. For any a ∈ N, we denote the set {1, . . . , a} by [a],
and the uniform distribution over {0, . . . , a} by unif[0, a]. For a function h and any point θ in its
domain Θ, the “suboptimality gap” at θ means h(θ)−minθ′∈Θ h(θ′).

The clipping function clip : Rd × R+ −→ Rd is defined as clip(z, c) := zmin(1, c
∥z∥); here, c

is known as the clipping threshold. The normalization function norm : Rd − {0d} × R+ −→ Rd

is defined as norm(z, c) := cz
∥z∥ ; here, c is the scaling factor and it is analogous to the clipping

threshold in the clip(.) function. Also, note that ∥clip(z, c)∥ ≤ ∥norm(z, c)∥ ≤ c.
Related Work: A concurrent work [33] analyzes DP-SGD with clipping and an operation similar to
normalization as we have defined in this work (we elaborate on the difference in Appendix B) in the
centralized setting for smooth non-convex objectives. In comparison, our theoretical results are for
convex objectives. We defer the rest of the related works to Appendix B due to lack of space.

3. DP-NormFedAvg: Differentially Private FL with Client-Update Normalization

In Algorithm 1, we jointly state DP-FedAvg with client-update clipping, which is the standard
algorithm for client-level private FL, and our proposed algorithm DP-NormFedAvg, which is
DP-FedAvg with client-update normalization (instead of clipping)2. Note that both these algo-
rithms only differ in line 9. Also, we call the parameter C in Algorithm 1 “clipping threshold” for
DP-FedAvg with clipping, and “scaling factor” for DP-NormFedAvg.

1. In general, each client may have different number of samples and this average is a weighted one with the weight of a
client being proportional to the number of samples it has. We consider the case of equal number of samples per client
for simplicity.

2. In Algorithm 1, we are using full gradients in the local updates for ease of analysis and to simplify presentation of
results. Our results can be extended to stochastic gradients as well.
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In contrast to (non-private) FedAvg (presented for completeness in Appendix A), each client
in the selected subset of clients in Alg. 1 sends its clipped or normalized update plus zero-mean
Gaussian noise (for differential privacy) to the server. The server then computes the mean of the
noisy clipped or normalized client updates that it received (i.e., ak) and uses it to update the global
model similar to FedAvg, except with a potentially different global learning rate (βk) than the local
learning rate (ηk). Based on Thm. 1 in [1], we now specify the value of σ2 required to make Alg. 1
(with either clipping or normalization) (ε, δ)-DP.

Theorem 3 ([1]) For any 0 < ε < O
(
r2K
n2

)
, Algorithm 1 is (ε, δ)-DP for σ2 = qKC2

( log(1/δ)
n2ε2

)
,

where q > 0 is an absolute constant.

The DP-SGD algorithm of [1] returns the last iterate (i.e., wK) as the output, and Theorem 1 in [1]
guarantees that the last iterate is (ε, δ)-DP by setting σ2 as above. But if the last iterate is (ε, δ)-DP,
then so is any other iterate (due to additivity of the privacy cost), from which Theorem 3 follows.

Algorithm 1 Option (i) is DP-FedAvg with Clipping, and Option (ii) is DP-NormFedAvg

1: Input: Initial point w0, number of rounds of communication K, number of local updates per
round E, local learning rates {ηk}K−1

k=0 , global learning rates {βk}K−1
k=0 , clipping threshold/scaling

factor C, client sampling probability in each round r/n and noise variance σ2.
2: for k = 0, . . . ,K − 1 do
3: Server sends wk to a random set Sk of clients, formed by sampling each client ∈ [n] with

probability r/n.
4: for client i ∈ Sk do
5: Set w(i)

k,0 = wk.
6: for τ = 0, . . . , E − 1 do
7: Update w

(i)
k,τ+1 ←− w

(i)
k,τ − ηk∇fi(w

(i)
k,τ ).

8: end for

9: Let u(i)
k =

(wk−w
(i)
k,E)

ηk
. // u(i)

k is client i’s update.

Option (i): g
(i)
k = clip

(
u
(i)
k , C

)
= u

(i)
k min

(
1, C

∥u(i)
k ∥

)
. // Clipping

Option (ii): g(i)
k = norm

(
u
(i)
k , C

)
=

Cu
(i)
k

∥u(i)
k ∥

. // Normalization

10: Send (g
(i)
k + ζ

(i)
k ) to the server, where ζ

(i)
k ∼ N (0d, rσ

2Id).
11: end for
12: Update wk+1 ←− wk − βkak, where ak = 1

r

∑
i∈Sk

(g
(i)
k + ζ

(i)
k ).

13: end for
14: Return wpriv = wk̃, where k̃ ∼ unif[0,K − 1].

Now, let us talk about why normalization might be a better choice than clipping.

3.1. Intuition of why Normalization may outperform Clipping

Intuitively, clipping has the following issue with respect to optimization: as the client update norms
decrease and fall below the clipping threshold, the norm of the added noise (which has constant
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expectation proportional to the clipping threshold, regardless of the client update norms) can become
arbitrarily larger than the client update norms, which should hamper convergence. This issue is not as
grave in DP-NormFedAvg because its update-normalization step ensures that the noise norm cannot
become arbitrarily larger than the normalized update’s norm, even if the original update’s norm is
small. In other words, the signal (i.e., update norm) to noise ratio (SNR) of clipping eventually falls
below that of normalization, due to which we expect normalization to have better convergence.

Having said all this, it is worth noting that if the client update norms are lower bounded by Clow,
then clipping with threshold C ≤ Clow is equivalent to normalization with the same scaling factor.

4. Convergence Results of DP-FedAvg with Clipping and DP-NormFedAvg

We now present convergence results for DP-FedAvg with clipping and DP-NormFedAvg for the
same choices of hyper-parameters in Alg. 1. The detailed results and their proofs for DP-FedAvg
with clipping and DP-NormFedAvg can be found in Appendices C and D. These results are for the
non-vacuous privacy regime (i.e., when ε is finite and δ < 1), where ρ =

√
qd log(1/δ)/nε > 0.

Theorem 4 (Convex) Suppose each fi is convex, L-smooth3 and G-Lipschitz4 over Rd. Pick
some γ > 0 and α ≥ 1. In Algorithm 1, choose E ≤ α

2ρ and set βk = ηk = ρ
2αL , C = GE

and K =
(2αγ

C

)
1
ρ2

. Sample k̃ ∼ unif[0,K − 1]. Then for any w∗ ∈ argminw′∈Rd f(w′) and
∆∗

i := fi(w
∗)−minw′∈Rd fi(w

′),
(a) Algorithm 1 Option (i), i.e. DP-FedAvg with clipping, has the following guarantee:(
2− ρE

α
− ρ2E2

α2

)
E
[
f(wk̃)− f(w∗)

]
≤ G

(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ︸ ︷︷ ︸

:=A (effect of initialization)

+
(3E
2α

)( 1
n

n∑
i=1

∆∗
i

)
ρ︸ ︷︷ ︸

:=B1 (effect of heterogeneity)

.

(2)
(b) Algorithm 1 Option (ii), i.e. DP-NormFedAvg, has the following guarantee:

(
2− ρ2E2

α2

)
E

[
1

n

n∑
i=1

(
GE

∥u(i)

k̃
∥

)
(fi(wk̃)− fi(w

∗))

]

≤ G
(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ︸ ︷︷ ︸

:=A (effect of initialization)

+
(E
α

)(G2

2L
+ E

[
1

n

n∑
i=1

(
GE

∥u(i)

k̃
∥

)
∆∗

i

]
ρE

α

)
ρ

︸ ︷︷ ︸
:=B2 (effect of heterogeneity)

. (3)

In the results above, we remind the reader that u(i)

k̃
is the ith client’s update at a random round number

k̃ (see line 9 in Algorithm 1).
Effect of initialization and heterogeneity: The convergence results above depend on two things:
(i) the distance of the initialization w0 from the optimum w∗, appearing in term A in both eq. (2)
and eq. (3), and (ii) the degree of heterogeneity which depends on the ∆∗

i ’s (as per Definition 1),
appearing in terms B1 and B2 in eq. (2) and eq. (3), respectively. A high (respectively, low) degree of

3. i.e., ∥∇fi(w1)−∇fi(w2)∥ ≤ L∥w1 −w2∥ ∀ w1,w2 ∈ Rd.
4. i.e., supw∈Rd ∥∇fi(w)∥ ≤ G. We assume Lipschitzness in Theorem 4 to simplify the presentation of results. The

detailed results in Appendices C and D do not assume Lipschitzness, but are messier.
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heterogeneity implies high (respectively, low) values of ∆∗
i ’s, which leads to worse (respectively,

better) convergence. Also, as we increase α in Theorem 4, i.e., increase the number of rounds K, the
effect of heterogeneity dies down for both clipping and normalization. However, the effect of the
initialization term (A) cannot be diminished by increasing α.

4.1. Asymptotic Comparison of DP-FedAvg with Clipping and DP-NormFedAvg

Let us theoretically compare clipping and normalization when the number of rounds K →∞, i.e.
asymptotically. The asymptotic comparison is reasonable in practice where training happens for
a very large number of rounds. In Theorem 4, recall that we set K =

(2αγ
ĈE

)
1
ρ2

, where α ≥ 1 is a
parameter of our choice; thus we can make K →∞ by choosing α→∞. Here we keep E = O(1).
Then, the asymptotic convergence bound of DP-FedAvg with clipping can be written as:

E

[
1

n

n∑
i=1

(fi(wk̃)− fi(w
∗))

]
︸ ︷︷ ︸

=E[f(wk̃)−f(w∗)]

≤ G

2

(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ, (4)

where k̃ ∼ unif[0,K − 1]. In comparison, the corresponding bound of DP-NormFedAvg is:

E

[
1

n

n∑
i=1

(
GE

∥u(i)

k̃
∥

)
︸ ︷︷ ︸

≥1

(fi(wk̃)− fi(w
∗))

]
≤ G

2

(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ. (5)

Note that the RHS of both equations is the same; the RHS depends only on the initialization as the
effect of heterogeneity is eliminated asymptotically. The only difference between the LHS of the
two equations is due to the

(
GE/∥u(i)

k̃
∥
)

terms in eq. (5). Note that
(
GE/∥u(i)

k̃
∥
)
≥ 1 because fi is

G-Lipschitz 5. So in situations where fi(wk̃) ≥ fi(w
∗) for all i ∈ [n], the LHS of eq. (5) is at least

as large the LHS of eq. (4); in this case, we expect the convergence of normalization to be at least as
good as that of clipping in private optimization (because both equations have the same RHS). An
example of such a situation is over-parameterization where each minimizer of f is also a minimizer
of all the fi’s but not the other way around [22]; this can be expected in the homogeneous case.

Due to lack of space, we defer the empirical results to Appendix F and G.

5. Conclusion

We proposed DP-NormFedAvg which normalizes client updates instead of clipping them. The-
oretically, we argued that DP-NormFedAvg should have better asymptotic convergence than
DP-FedAvg with clipping, at least in the over-parameterized case. Intuitively, this happens because
normalization has a higher signal (i.e., update norm) to noise ratio than clipping.

In this work, we did not theoretically compare normalization and clipping in general convex
settings where over-parameterization may not hold as well as in the nonconvex case. These limitations
pave the way for interesting future works.

5. ∥u(i)

k̃
∥ = ∥

∑E−1
τ=0 ∇fi(w

(i)

k̃,τ
)∥ ≤

∑E−1
τ=0 ∥∇fi(w

(i)

k̃,τ
)∥ ≤ GE, where the last inequality follows by using the

G-Lipschitzness of fi.
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Appendix A. More Preliminaries

Differential Privacy (DP): Suppose we have a set of datasets Dc and a query function h : Dc −→ X .
Two datasets D,D′ ∈ Dc are said to be neighboring if they differ in exactly one sample, and this is
denoted by |D − D′| = 1. A randomized mechanismM : X −→ Y is said to be (ε, δ)-DP, if for any
two neighboring datasets D,D′ ∈ Dc and for any measurable subset of outputsR ∈ Y ,

P(M(h(D)) ∈ R) ≤ eεP(M(h(D′)) ∈ R) + δ. (6)

Adding zero-mean Gaussian noise to the output of h(.) above is the customary approach to guarantee
DP. This is known as the Gaussian mechanism [13] and it is also employed in private optimization
[1]. We formally define the Gaussian mechanism next.

Definition 5 (Gaussian mechanism [13]) Suppose X (i.e., the range of the query function h above)
is Rp. Let ∆2 := supD,D′∈Dc:|D−D′|=1 ∥h(D)− h(D′)∥2. If we setM(h(D)) = h(D) +Z, where

Z ∼ N
(
0p,

2 log(1.25/δ)∆2
2

ε2
Ip
)

, then the mechanismM is (ε, δ)-DP.

We also state the famous FedAvg algorithm of [23] (with local updates using full gradients).

Algorithm 2 FedAvg [23]
1: Input: Initial point w0, number of rounds of communication K, number of local updates per

round E, local learning rates {ηk}K−1
k=0 and number of participating clients in each round r.

2: for k = 0, . . . ,K − 1 do

3: Server sends wk to a random set Sk of r clients chosen uniformly at random.

4: for client i ∈ Sk do

5: Set w(i)
k,0 = wk.

6: for τ = 0, . . . , E − 1 do

7: Update w
(i)
k,τ+1 ←− w

(i)
k,τ − ηk∇fi(w

(i)
k,τ ).

8: end for

9: Send wk −w
(i)
k,E to the server.

10: end for

11: Update wk+1 ←− wk − 1
r

∑
i∈Sk

(wk −w
(i)
k,E).

// (The above is equivalent to wk+1 ←− 1
r

∑
i∈Sk

w
(i)
k,E, so the clients

might as well just send the w
(i)
k,E’s.)

12: end for

Appendix B. Related Work

Differentially private optimization: Most differentially private optimization algorithms for training
ML models (both in the centralized and federated settings) are based off of DP-SGD [1], wherein

11
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the optimizer receives a Gaussian noise-perturbed average of the clipped per-sample gradients to
guarantee DP. Similar to and/or related to DP-SGD, there are several papers on private optimization
in the centralized setting [3–5, 8, 9, 11, 12, 14, 19, 20, 27, 28, 30, 31, 36] as well as in the federated
and distributed (without multiple local updates) setting [2, 15, 16, 21, 25, 26, 29]. DP-FedAvg
with clipping [15, 29] (stated in Algorithm 1 Option (i)) is the most standard private algorithm in
the federated setting for client-level DP. [4] show that in the convex Lipschitz centralized case, the
suboptimality gap bound of O(ρ) (recall ρ =

√
qd log(1/δ)/nε, as defined in Definition 2) bound is

tight.

Normalized gradient descent (GD) and related methods: In the centralized setting, [17] propose
(Stochastic) Normalized GD. This is based on a similar idea as DP-NormFedAvg – instead of using
the (stochastic) gradient, use the unit vector along the (stochastic) gradient for the update. Extensions
of this method incorporating momentum [10, 34, 35] have been shown to significantly improve the
training time of very large models such as BERT in the centralized setting. In the FL setting, [7]
propose Normalized FedAvg, where the server uses a normalized version of the average of client
updates (and not the average of normalized client updates, which is what we do) to improve training.
However, it must be noted here that these works perform (some kind of) normalization to accelerate
non-private training, whereas we are proposing normalization as an alternative sensitivity bounding
mechanism to improve private training compared to the usual mechanism of clipping.

Normalization operation of [33]: Given an update u, [33]’s normalized update is
(

u
∥u∥+r

)
for

some constant r > 0. Compared to our normalized update, viz.,
(

Cu
∥u∥

)
, note that [33] drop the

scaling factor C that we have, and instead they have a constant r in the denominator.

Appendix C. Detailed Result for DP-FedAvg with Clipping and its Proof
Theorem 6 (DP-FedAvg with Clipping) Suppose each fi is convex and L-smooth over Rd. Let
Ĉ := C

E , where C is the clipping threshold used in Algorithm 1 Option (i). For any w∗ ∈
argminw′∈Rd f(w′) and ∆∗

i := fi(w
∗) − minw′∈Rd fi(w

′) ≥ 0, Algorithm 1 Option (i) with
Ĉ ≥ 4

√
Lmaxj∈[n]∆

∗
j , βk = ηk = η =

( γ

ĈLEK

)
1
ρ and K >

( 2γ

ĈE

)
1
ρ , where γ > 0 is a constant

of our choice, has the following convergence guarantee:

E

[
1

n

n∑
i=1

(
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2− 2γ

ĈKρ
− 4γ2

Ĉ2K2ρ2

)
(fi(wk̃)−fi(w

∗))+1(∥u(i)

k̃
∥ > ĈE)

(3Ĉ∥u(i)

k̃
∥

8LE

))]

≤ Ĉ
(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ+

(
2γ

ĈKρ

)(
1 +

2γ

ĈKρ

)
E

[
1

n

n∑
i=1

1(∥u(i)

k̃
∥ ≤ ĈE)∆∗

i

]
,

with k̃ ∼ unif[0,K − 1].
Specifically, with K =

(2αγ
ĈE

)
1
ρ2

and E ≤ α
2ρ , where α ≥ 1 is another constant of our choice,

12



DIFFERENTIALLY PRIVATE FEDERATED LEARNING WITH NORMALIZED UPDATES

Algorithm 1 Option (i) has the following convergence guarantee:

E

[
1

n

n∑
i=1

(
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2−ρE

α
−ρ2E2

α2

)
(fi(wk̃)−fi(w

∗))+1(∥u(i)

k̃
∥ > ĈE)

(3Ĉ∥u(i)

k̃
∥

8LE

))]

≤ Ĉ
(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ+

(3E
2α

)( 1
n

n∑
i=1

∆∗
i

)
ρ.

Theorem 4 (a) is obtained by further assuming that each fi is G-Lipschitz and choosing Ĉ = G

above, in which case 1(∥u(i)

k̃
∥ ≤ ĈE) = 1.

C.1. Proof of Theorem 6

Proof Let us set ηk = βk = η for all k ≥ 0.

The update rule of the global iterate is:

wk+1 = wk − η
(1
r

∑
i∈Sk

clip
(
u
(i)
k , C

)
+ ζk

)
, (7)

where ζk = 1
r

∑
i∈Sk

ζ
(i)
k ∼ N (0d,

qK log(1/δ)C2

n2ε2
Id) and

u
(i)
k =

(wk −w
(i)
k,E)

η
=

E−1∑
τ=0

∇fi(w(i)
k,τ ). (8)

13
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Taking expectation with respect to the randomness in the current round, we get for any w∗ ∈
argminw′∈Rd f(w′):

E[∥wk+1 −w∗∥2] = E
[∥∥∥wk − η

(1
r

∑
i∈Sk

clip(u(i)
k , C) + ζk

)
−w∗

∥∥∥2] (9)

= ∥wk −w∗∥2 − 2ηESk

[1
r

∑
i∈Sk

⟨clip(u(i)
k , C),wk −w∗⟩

]
+ η2E

[∥∥∥1
r

∑
i∈Sk

clip(u(i)
k , C) + ζk

∥∥∥2]
(10)

= ∥wk −w∗∥2 + 1

n

n∑
i=1

−2η⟨clip(u(i)
k , C),wk −w∗⟩+ η2ESk

[∥∥∥1
r

∑
i∈Sk

clip(u(i)
k , C)

∥∥∥2]
(11)

+ η2
(qKd log(1/δ)C2

n2ε2

)
≤ ∥wk −w∗∥2 + 1

n

n∑
i=1

−2η⟨clip(u(i)
k , C),wk −w∗⟩+ η2ESk

[1
r

∑
i∈Sk

∥∥clip(u(i)
k , C)

∥∥2]
(12)

+ η2
(qKd log(1/δ)C2

n2ε2

)
= ∥wk −w∗∥2 + 1

n

n∑
i=1

{
−2η⟨clip(u(i)

k , C),wk −w∗⟩+ η2
∥∥clip(u(i)

k , C)
∥∥2︸ ︷︷ ︸

Ai

}
(13)

+ η2
(qKd log(1/δ)C2

n2ε2

)
.

Note that eq. (12) is obtained by using Fact 2. Let us examine Ai for each i.

Case 1: ∥u(i)
k ∥ > C. So we have clip(u(i)

k , C) = C

∥u(i)
k ∥

u
(i)
k . Thus,

Ai = −2ηC
〈 u

(i)
k

∥u(i)
k ∥

,wk −w∗
〉
+ η2C2 (14)

=
−C∥∥u(i)
k

∥∥(∥wk −w∗∥2 + η2
∥∥u(i)

k

∥∥2 − ∥wk − ηu
(i)
k︸ ︷︷ ︸

=w
(i)
k,E

−w∗∥2
)
+ η2C2, (15)

where the last step follows by using the fact for any two vectors a and b, ⟨a, b⟩ = 1
2

(
∥a∥2 + ∥b∥2−

∥a− b∥2). Next, notice that wk − ηu
(i)
k = w

(i)
k,E . Since fi is convex, we use Lemma 8 to get:

∥wk −w∗∥2 − ∥w(i)
k,E −w∗∥2 ≥ η

2L

E−1∑
τ=0

∥∇fi(w(i)
k,τ )∥

2 − 2ηE∆∗
i , (16)

for η ≤ 1
2L with ∆∗

i := fi(w
∗)−minw′∈Rd fi(w

′) ≥ 0. But:

∥∥u(i)
k

∥∥2 = ∥∥E−1∑
τ=0

∇fi(w(i)
k,τ )
∥∥2 ≤ E

E−1∑
τ=0

∥∥∇fi(w(i)
k,τ )
∥∥2. (17)

14
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The inequality above follows from Fact 2. Using this in eq. (16), we get:

∥wk −w∗∥2 − ∥w(i)
k,E −w∗∥2 ≥ η

2LE

∥∥u(i)
k

∥∥2 − 2ηE∆∗
i . (18)

Plugging this back in eq. (15), we get:

Ai ≤ −C
(
η2 +

η

2LE

)
∥u(i)

k ∥+ 2η

(
C

∥u(i)
k ∥

)
︸ ︷︷ ︸

<1

E∆∗
i + η2C2, (19)

for η ≤ 1
2L .

Let us choose C2 ≥ 16LE2maxj∈[n]∆
∗
j . Then, we have E∆∗

i ≤ C2

16LE ≤
C∥u(i)

k ∥
16LE . Using this

in eq. (19), we get:

Ai ≤ −C
(
η2 +

η

2LE

)
∥u(i)

k ∥+
ηC

8LE
∥u(i)

k ∥+ η2C2 (20)

= − 3ηC

8LE
∥u(i)

k ∥+ η2C (C − ∥u(i)
k ∥)︸ ︷︷ ︸

<0

(21)

≤ − 3ηC

8LE
∥u(i)

k ∥, (22)

for C ≥ 4E
√

Lmaxj∈[n]∆
∗
j and η ≤ 1

2L .

Case 2: ∥u(i)
k ∥ ≤ C. So we have clip(u(i)

k , C) = u
(i)
k . Thus,

Ai = −2η⟨u(i)
k ,wk −w∗⟩+ η2∥u(i)

k ∥
2 ≤ −2η ⟨u(i)

k ,wk −w∗⟩︸ ︷︷ ︸
Bi

+2η2LE2(fi(wk)− f∗
i ), (23)

for ηL ≤ 1; the inequality ∥u(i)
k ∥

2 ≤ 2LE2(fi(wk)− f∗
i ) (for ηL ≤ 1) is obtained from Lemma 9.

Now:

Bi = ⟨u(i)
k ,wk −w∗⟩ (24)

=

E−1∑
τ=0

⟨∇fi(w(i)
k,τ ),wk −w∗⟩ (25)

=

E−1∑
τ=0

{⟨∇fi(w(i)
k,τ ),w

(i)
k,τ −w∗⟩+ ⟨∇fi(w(i)

k,τ ),wk −w
(i)
k,τ ⟩} (26)

≥
E−1∑
τ=0

{fi(w(i)
k,τ )− fi(w

∗) + ⟨∇fi(wk),wk −w
(i)
k,τ ⟩+ ⟨∇fi(w

(i)
k,τ )−∇fi(wk),wk −w

(i)
k,τ ⟩}

(27)

≥
E−1∑
τ=0

{fi(w(i)
k,τ )− fi(w

∗) + fi(wk)− fi(w
(i)
k,τ )− L∥wk −w

(i)
k,τ∥

2} (28)

= E(fi(wk)− fi(w
∗))− L

E−1∑
τ=0

∥wk −w
(i)
k,τ∥

2. (29)

15
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Note that eq. (27) follows from the convexity of fi, while eq. (28) follows by once again using the
convexity of fi, the smoothness of fi as well as the Cauchy-Schwarz inequality.
Again, from Lemma 9, we have

∥wk −w
(i)
k,τ∥

2 ≤ 2η2Lτ2(fi(wk)− f∗
i ), (30)

for ηL ≤ 1. Using eq. (30) in eq. (29), we get

Bi ≥ E(fi(wk)−fi(w∗))−2η2L2
E−1∑
τ=0

τ2(fi(wk)−f∗
i ) ≥ E(fi(wk)−fi(w∗))−2η2L2E3(fi(wk)−f∗

i ).

(31)
Now using eq. (31) in eq. (23), we get

Ai ≤ −2ηE(fi(wk)− fi(w
∗)) + 4η3L2E3(fi(wk)− f∗

i ) + 2η2LE2(fi(wk)− f∗
i )

= −ηE
(
2− 2ηLE − 4η2L2E2

)
(fi(wk)− fi(w

∗)) + (2η2LE2 + 4η3L2E3)∆∗
i , (32)

for η ≤ 1
L .

Combining the results of Case 1 and 2, i.e. eq. (22) and eq. (32), we get

Ai ≤ 1(∥u(i)
k ∥ > C)

(
− 3ηC

8LE
∥u(i)

k ∥
)

+ 1(∥u(i)
k ∥ ≤ C)

(
− ηE(2− 2ηLE − 4η2L2E2)(fi(wk)− fi(w

∗)) + (2η2LE2 + 4η3L2E3)∆∗
i

)
,

(33)

for C ≥ 4E
√

Lmaxj∈[n]∆
∗
j and η ≤ 1

2L . Let us define Ĉ := C
E . Then eq. (33) can be re-written

as:

Ai ≤ −ηE

{
1(∥u(i)

k ∥ ≤ ĈE)
(
(2− 2ηLE − 4η2L2E2)(fi(wk)− fi(w

∗))
)

+ 1(∥u(i)
k ∥ > ĈE)

( 3Ĉ

8LE
∥u(i)

k ∥
)
− 1(∥u(i)

k ∥ ≤ ĈE)(2ηLE + 4η2L2E2)∆∗
i

}
, (34)

where Ĉ ≥ 4
√

Lmaxj∈[n]∆
∗
j and η ≤ 1

2L . Now using eq. (34) in eq. (13), we get:

E[∥wk+1 −w∗∥2] ≤ ∥wk −w∗∥2 − ηE

n

n∑
i=1

{
1(∥u(i)

k ∥ > ĈE)
( 3Ĉ

8LE
∥u(i)

k ∥
)

+ 1(∥u(i)
k ∥ ≤ ĈE)

(
(2− 2ηLE − 4η2L2E2)(fi(wk)− fi(w

∗))
)}

+ ηE(2ηLE + 4η2L2E2)
( 1
n

n∑
i=1

1(∥u(i)
k ∥ ≤ ĈE)∆∗

i

)
+ η2E2Ĉ2

(qKd log(1/δ)

n2ε2

)
. (35)
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Solving the above recursion after taking expectation throughout and some rearranging, we get:

1

K

K−1∑
k=0

E
[ 1
n

n∑
i=1

{
1(∥u(i)

k ∥ ≤ ĈE)
(
(2−2ηLE−4η2L2E2)(fi(wk)−fi(w∗))

)
+1(∥u(i)

k ∥ > ĈE)
(3Ĉ∥u(i)

k ∥
8LE

)}]
≤ ∥w0 −w∗∥2

ηEK
+ηEKĈ2

(qd log(1/δ)
n2ε2

)
+
2ηLE(1 + 2ηLE)

K
E

[
K−1∑
k=0

( 1
n

n∑
i=1

1(∥u(i)
k ∥ ≤ ĈE)∆∗

i

)]
.

(36)

Let us choose η = γ

ĈLEK
nε√

qd log(1/δ)
for some constant γ > 0. Note that we must have K >

2γ

ĈE
nε√

qd log(1/δ)
for our condition of ηL ≤ 1

2 to be satisfied. With that, we get:

1

K

K−1∑
k=0

E

[
1

n

n∑
i=1

{
1(∥u(i)

k ∥ ≤ ĈE)
(
2− 2γ

ĈK

nε√
qd log(1/δ)

− 4γ2

Ĉ2K2

n2ε2

qd log(1/δ)

)
(fi(wk)− fi(w

∗))

+ 1(∥u(i)
k ∥ > ĈE)

( 3Ĉ

8LE
∥u(i)

k ∥
)}]

≤
(L∥w0 −w∗∥2

γ
+

γ

L

) Ĉ√qd log(1/δ)

nε

+

(
2γ

ĈK

nε√
qd log(1/δ)

)(
1 +

2γ

ĈK

nε√
qd log(1/δ)

)
E

[(
1

K

K−1∑
k=0

( 1
n

n∑
i=1

1(∥u(i)
k ∥ ≤ ĈE)∆∗

i

))]
,

(37)

with Ĉ ≥ 4
√

Lmaxj∈[n]∆
∗
j .

The above equation is equivalent to:

E

[
1

n

n∑
i=1

{
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2− 2γ

ĈK

nε√
qd log(1/δ)

− 4γ2

Ĉ2K2

n2ε2

qd log(1/δ)

)
(fi(wk̃)− fi(w

∗))

+ 1(∥u(i)

k̃
∥ > ĈE)

( 3Ĉ

8LE
∥u(i)

k̃
∥
)}]

≤
(L∥w0 −w∗∥2

γ
+

γ

L

) Ĉ√qd log(1/δ)

nε

+

(
2γ

ĈK

nε√
qd log(1/δ)

)(
1 +

2γ

ĈK

nε√
qd log(1/δ)

)
E

[
1

n

n∑
i=1

1(∥u(i)

k̃
∥ ≤ ĈE)∆∗

i

]
, (38)

where k̃ ∼ unif[0,K−1]. Let us set K = 2αγ

ĈE

(
nε√

qd log(1/δ)

)2
in eq. (38), where α ≥ 1 is a constant

of our choice and E ≤ α
2

(
nε√

qd log(1/δ)

)
. That gives us:

E

[
1

n

n∑
i=1

{
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2−

(
E
√

qd log(1/δ)

αnε

)
−

(
E
√
qd log(1/δ)

αnε

)2)
(fi(wk̃)− fi(w

∗))

+ 1(∥u(i)

k̃
∥ > ĈE)

( 3Ĉ

8LE
∥u(i)

k̃
∥
)}]

≤ Ĉ
(L∥w0 −w∗∥2

γ
+

γ

L

)√qd log(1/δ)

nε

+ E

[
1

n

n∑
i=1

1(∥u(i)

k̃
∥ ≤ ĈE)︸ ︷︷ ︸
≤1

∆∗
i

]
E
√

qd log(1/δ)

αnε

(
1 +

E
√

qd log(1/δ)

αnε

)
︸ ︷︷ ︸

≤ 3
2 from our constraint on E

. (39)
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The final result follows by substituting ρ =

√
qd log(1/δ)

nε .

Appendix D. Detailed Result for DP-NormFedAvg and its Proof

Theorem 7 (DP-NormFedAvg) Suppose each fi is convex and L-smooth over Rd. Let Ĉ := C/E,
where C is the scaling factor used in Algorithm 1 Option (ii). For any w∗ ∈ argminw′∈Rd f(w′)

and ∆∗
i := fi(w

∗)−minw′∈Rd fi(w
′) ≥ 0, Algorithm 1 Option (ii) with Ĉ ≥ 4

√
Lmaxj∈[n]∆

∗
j ,

βk = ηk = η =
( γ

ĈLEK

)
1
ρ and K >

( 2γ

ĈE

)
1
ρ , where γ > 0 is a constant of our choice, has the

following convergence guarantee:

E

[
1

n

n∑
i=1

{
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2− 4γ2

Ĉ2K2ρ2

)( ĈE

∥u(i)

k̃
∥

)
(fi(wk̃)−fi(w

∗))+1(∥u(i)

k̃
∥ > ĈE)

(3Ĉ∥u(i)

k̃
∥

8LE

)}]

≤ Ĉ
(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ+ E

[
1

n

n∑
i=1

1
(
∥u(i)

k̃
∥ ≤ ĈE

){ γĈ

LKρ
+

(
ĈE

∥u(i)

k̃
∥

)
4γ2∆∗

i

Ĉ2K2ρ2

}]
,

with k̃ ∼ unif[0,K − 1]. Further, this result holds for any w∗ ∈ argminw′∈Rd f(w′).
Specifically, with K =

(2αγ
ĈE

)
1
ρ2

and E ≤ α
2ρ , where α ≥ 1 is another constant of our choice,

Algorithm 1 Option (ii) has the following convergence guarantee:

E

[
1

n

n∑
i=1

{
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2−ρ2E2

α2

)( ĈE

∥u(i)

k̃
∥

)
(fi(wk̃)−fi(w

∗))+1(∥u(i)

k̃
∥ > ĈE)

(3Ĉ∥u(i)

k̃
∥

8LE

)}]

≤ Ĉ
(L∥w0 −w∗∥2

γ
+

γ

L

)
ρ+

(E
α

)( Ĉ2

2L
+ E

[
1

n

n∑
i=1

1(∥u(i)

k̃
∥ ≤ ĈE)

(
ĈE

∥u(i)

k̃
∥

)
∆∗

i

]
ρE

α

)
ρ.

Theorem 4 (b) is obtained by further assuming that each fi is G-Lipschitz and choosing Ĉ = G

above, in which case 1(∥u(i)

k̃
∥ ≤ ĈE) = 1.

D.1. Proof of Theorem 7
Proof Let us again set ηk = βk = η, for all k ≥ 0.

Everything remains the same till eq. (13) in the proof of Theorem 6, with clip(.) replaced by
norm(.).

E[∥wk+1 −w∗∥2] ≤ ∥wk −w∗∥2 + 1

n

n∑
i=1

{
−2η⟨norm(u

(i)
k , C),wk −w∗⟩+ η2

∥∥norm(u
(i)
k , C)

∥∥2︸ ︷︷ ︸
Ai

}

+ η2
(qKd log(1/δ)C2

n2ε2

)
. (40)

Again, let us examine Ai for each i. Also, as used in the proof of Theorem 6, let Ĉ = C
E .

Case 1: ∥u(i)
k ∥ > ĈE. Everything remains the same as Case 1 in the proof of Theorem 6. Thus,

Ai ≤ −
3ηĈ

8L
∥u(i)

k ∥, (41)
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for ηL ≤ 1
2 and Ĉ ≥ 4

√
Lmaxj∈[n]∆

∗
j .

Case 2: ∥u(i)
k ∥ ≤ ĈE. Here:

Ai ≤

(
ĈE

∥u(i)
k ∥

)(
−2η ⟨u(i)

k ,wk −w∗⟩︸ ︷︷ ︸
Bi

)
+ η2Ĉ2E2. (42)

For ease of notation henceforth, let us define:

z
(i)
k :=

(
ĈE

∥u(i)
k ∥

)
. (43)

The bound for Bi remains the same as the one in the proof of Theorem 6 (in eq. (31)), i.e.,

Bi ≥ E(fi(wk)− fi(w
∗))− 2η2L2E3(fi(wk)− f∗

i ), (44)

for ηL ≤ 1. Using this in eq. (42), we get:

Ai ≤ −2ηEz
(i)
k

{
(fi(wk)− fi(w

∗))− 2η2L2E2(fi(wk)− f∗
i )
}
+ η2Ĉ2E2

= −2ηEz
(i)
k

{
(fi(wk)− fi(w

∗))(1− 2η2L2E2)− 2η2L2E2∆∗
i

}
+ η2Ĉ2E2. (45)

Combining the results of Case 1 and 2, i.e. eq. (41) and eq. (45), we get:

Ai ≤ ηE

{
1(∥u(i)

k ∥ ≤ ĈE)
(
4η2L2E2∆∗

i z
(i)
k + ηĈ2E

)
− 1(∥u(i)

k ∥ ≤ ĈE)(2− 4η2L2E2)z
(i)
k (fi(wk)− fi(w

∗))− 1(∥u(i)
k ∥ > ĈE)

(3Ĉ∥u(i)
k ∥

8LE

)}
, (46)

for ηL ≤ 1
2 and Ĉ ≥ 4

√
Lmaxj∈[n]∆

∗
j .

Now using the above bound in eq. (40), plugging in z
(i)
k = ĈE

∥u(i)
k ∥

, and following the same process

and choice of η = γ

ĈLEK
nε√

qd log(1/δ)
that we used in Theorem 6, we get:

E

[
1

n

n∑
i=1

{
1(∥u(i)

k̃
∥ ≤ ĈE)

(
2− 4γ2

Ĉ2K2

n2ε2

qd log(1/δ)

)( ĈE

∥u(i)

k̃
∥

)
(fi(wk̃)− fi(w

∗))

+ 1(∥u(i)

k̃
∥ > ĈE)

(3Ĉ∥u(i)

k̃
∥

8LE

)}]
≤
(L∥w0 −w∗∥2

γ
+

γ

L

) Ĉ√qd log(1/δ)

nε

+ E

[
1

n

n∑
i=1

1
(
∥u(i)

k̃
∥ ≤ ĈE

){ γĈ

LK

nε√
qd log(1/δ)

+
4γ2∆∗

i

Ĉ2K2

n2ε2

qd log(1/δ)

(
ĈE

∥u(i)

k̃
∥

)}]
, (47)

with k̃ ∼ unif [0,K − 1] and K > 2γ

ĈE
nε√

qd log(1/δ)
(so that ηLE ≤ 1

2 ). Now setting K =

2αγ

ĈE

(
nε√

qd log(1/δ)

)2
and ρ =

√
qd log(1/δ)

nε above, and using the fact that 1
(
∥u(i)

k̃
∥ ≤ ĈE

)
≤ 1 gives

us the final result.
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Appendix E. Lemmas used in the Proofs

Lemma 8 Suppose fi is convex and L-smooth over Rd. Let us set ηk ≤ 1
2L in round k of Algorithm

1. Then:

∥w(i)
k,E −w∗∥2 ≤ ∥wk −w∗∥2 − ηk

2L

E−1∑
τ=0

∥∇fi(w(i)
k,τ )∥

2 + 2ηkE∆∗
i ,

where ∆∗
i := fi(w

∗)−minw′∈Rd fi(w
′).

Proof Let us define f∗
i := minw′∈Rd fi(w

′). Then, ∆∗
i = fi(w

∗)− f∗
i .

For any τ ≥ 0, we have:

∥w(i)
k,τ+1 −w∗∥2 = ∥w(i)

k,τ −w∗∥2 − 2ηk⟨∇fi(w
(i)
k,τ ),w

(i)
k,τ −w∗⟩+ η2k∥∇fi(w

(i)
k,τ )∥

2

≤ ∥w(i)
k,τ −w∗∥2 − 2ηk(fi(w

(i)
k,τ )− fi(w

∗)) + η2k∥∇fi(w
(i)
k,τ )∥

2 (48)

≤ ∥w(i)
k,τ −w∗∥2 − 2ηk(fi(w

(i)
k,τ )− f∗

i ) + 2ηk (fi(w
∗)− f∗

i )︸ ︷︷ ︸
=∆∗

i

+η2k∥∇fi(w
(i)
k,τ )∥

2

(49)

≤ ∥w(i)
k,τ −w∗∥2 − ηk

L
∥∇fi(w(i)

k,τ )∥
2 + 2ηk∆

∗
i + η2k∥∇fi(w

(i)
k,τ )∥

2. (50)

Equation (48) follows by using the fact that each fi is convex. Equation (50) follows using Fact 1.

Now if we set ηk ≤ 1
2L , then we get:

∥w(i)
k,τ+1 −w∗∥2 ≤ ∥w(i)

k,τ −w∗∥2 − ηk
2L
∥∇fi(w(i)

k,τ )∥
2 + 2ηk∆

∗
i . (51)

Doing this recursively for τ = 0 through to τ = E − 1 and adding everything up gives us the desired
result.

Lemma 9 Suppose each fi is L-smooth over Rd and f∗
i := minw′∈Rd fi(w

′). Let us set ηk ≤ 1
L in

round k of Algorithm 1. Then:

∥wk −w
(i)
k,τ∥

2 ≤ 2η2kLτ
2(fi(wk)− f∗

i ) ∀ τ ≥ 1.

Thus, ∥∥u(i)
k

∥∥2 ≤ 2LE2(fi(wk)− f∗
i ).

Proof

∥wk −w
(i)
k,τ∥

2 =
∥∥∥ηk τ−1∑

t=0

∇fi(w(i)
k,t)
∥∥∥2 ≤ η2kτ

τ−1∑
t=0

∥∇fi(w(i)
k,t)∥

2, (52)

where the last step follows from Fact 2. Next, since fi is L-smooth, we have using Fact 1:

∥∇fi(w(i)
k,t)∥

2 ≤ 2L(fi(w
(i)
k,t)− f∗

i ).
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Applying this in eq. (52), we get:

∥wk −w
(i)
k,τ∥

2 ≤ 2η2kLτ
τ−1∑
t=0

(fi(w
(i)
k,t)− f∗

i ). (53)

But using the L-smoothness of fi, we have for any t ≥ 1:

fi(w
(i)
k,t)− f∗

i = fi(w
(i)
k,t−1 − ηk∇fi(w

(i)
k,t−1))− f∗

i (54)

≤ (fi(w
(i)
k,t−1)− f∗

i )− ηk∥∇fi(w
(i)
k,t−1)∥

2 +
η2kL

2
∥∇fi(w(i)

k,t−1)∥
2 (55)

≤ (fi(w
(i)
k,t−1)− f∗

i )−
ηk
2
∥∇fi(w(i)

k,t−1)∥
2, (56)

for ηkL ≤ 1. Doing this recursively (and recalling that w(i)
k,0 = wk), we get:

fi(w
(i)
k,t)− f∗

i ≤ (fi(wk)− f∗
i )−

ηk
2

t−1∑
t′=0

∥∇fi(w(i)
k,t′)∥

2 ≤ fi(wk)− f∗
i . (57)

Plugging this in eq. (53), we get:

∥wk −w
(i)
k,τ∥

2 ≤ 2η2kLτ
2(fi(wk)− f∗

i ). (58)

The upper bound on
∥∥u(i)

k

∥∥2 follows by recalling that u(i)
k = (wk −w

(i)
k,E)/ηk.

Lemma 10 Suppose each fi is L-smooth over Rd. Then in Algorithm 1, we have:

∥∇fi(w(i)
k,τ+1)∥

2 ≤ ∥∇fi(w(i)
k,τ )∥

2 −
( 2

ηkL
− 1
)
∥∇fi(w(i)

k,τ+1)−∇fi(w
(i)
k,τ )∥

2,

for any i ∈ [n], k ∈ {0, . . . ,K − 1} and τ ∈ {0, . . . , E − 1}.

Proof Since each fi is L-smooth, we have by using the co-coercivity of the gradient:

⟨∇fi(w(i)
k,τ+1)−∇fi(w

(i)
k,τ ),w

(i)
k,τ+1 −w

(i)
k,τ ⟩ ≥

1

L
∥∇fi(w(i)

k,τ+1)−∇fi(w
(i)
k,τ )∥

2. (59)

Now using the fact that w(i)
k,τ+1 −w

(i)
k,τ = −ηk∇fi(w

(i)
k,τ ) above, we get:

L⟨∇fi(w(i)
k,τ+1)−∇fi(w

(i)
k,τ ),−ηk∇fi(w

(i)
k,τ )⟩ ≥ ∥∇fi(w

(i)
k,τ+1)∥

2 + ∥∇fi(w(i)
k,τ )∥

2

− 2⟨∇fi(w(i)
k,τ+1),∇fi(w

(i)
k,τ )⟩. (60)

Rearranging the above a bit, we get:

(2− ηkL)⟨∇fi(w
(i)
k,τ+1),∇fi(w

(i)
k,τ )⟩ ≥ ∥∇fi(w

(i)
k,τ+1)∥

2 + (1− ηkL)∥∇fi(w
(i)
k,τ )∥

2. (61)
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But, we also have:

⟨∇fi(w(i)
k,τ+1),∇fi(w

(i)
k,τ )⟩ =

1

2

(
∥∇fi(w(i)

k,τ+1)∥
2+∥∇fi(w(i)

k,τ )∥
2−∥∇fi(w(i)

k,τ+1)−∇fi(w
(i)
k,τ )∥

2
)
.

(62)
Using this in eq. (61) and simplifying a bit, we get:

∥∇fi(w(i)
k,τ+1)∥

2 ≤ ∥∇fi(w(i)
k,τ )∥

2 −
( 2

ηkL
− 1
)
∥∇fi(w(i)

k,τ+1)−∇fi(w
(i)
k,τ )∥

2. (63)

This completes the proof.

Fact 1 ([24]) For an L-smooth function h : Rd −→ R with h∗ = minx∈Rd h(x) and L > 0,
∥∇h(x)∥2 ≤ 2L(h(x)− h∗).

Fact 2 For any p > 1 vectors {y1, . . . ,yp}, ∥
∑p

i=1 yi∥2 ≤ p
∑p

i=1 ∥yi∥2.

Fact 2 follows from Jensen’s inequality.

Appendix F. Synthetic Experiments

Here we compare DP-FedAvg with clipping and DP-NormFedAvg on a simple but illustrative
quadratic problem. We consider fi(w) = 1

2(w −w∗
i )

TQi(w −w∗
i ), where i ∈ [100] (so, n = 100)

and w ∈ R200 (so, d = 200). Further, w∗
i is drawn i.i.d. from N (0200, I200) and Qi = AiA

T
i ,

where Ai is a 200 × 20 matrix whose entries are drawn i.i.d from N (0, 1
202

); hence, Qi is a PSD
matrix with bounded maximum eigenvalue, due to which fi is convex and smooth.

We set (ε, δ) = (5, 10−6), K = 500 and E = 20 for this set of experiments. We consider two
different initializations with different distances from the global optimum w∗ – (i) I1: w0 = w∗ + z,
and (ii) I2: w0 = w∗ + z

5 , where each coordinate of z is drawn i.i.d. from the continuous uniform
distribution with support (0,1). We set ηk = βk = η for all rounds k, and also have full-device
participation. In Figure 2, we plot the function suboptimality (i.e., f(wk)− f(w∗) at round number
k) of DP-FedAvg with Clipping and DP-NormFedAvg for different values of η and clipping
threshold/scaling factor C, for I1 and I2. In Figure 3, for each round k, we plot the corresponding

SNR :=

∥∥ 1
r

∑
i∈Sk

g
(i)
k

∥∥∥∥ 1
r

∑
i∈Sk

ζ
(i)
k

∥∥ , where g
(i)
k and ζ

(i)
k are the clipped/normalized per-client update and per-

client noise, respectively, as defined in Algorithm 1. All plots are averaged over 3 independent runs.
For a fair comparison, in each run, the exact same noise vectors (sampled randomly at each round)
are used in both algorithms. The captions of Figures 2 and 3 discuss the results in detail. For further
illustration, in Figure 4, we show the 2D projection of the trajectories of DP-FedAvg with clipping
and DP-NormFedAvg for 1) C = 100 and η = 0.001, and 2) C = 50 and η = 0.003, both with
initialization I1. In both cases, note that DP-NormFedAvg reaches closer to the optimum than
DP-FedAvg with clipping.

These plots corroborate our theoretical predictions and intuition.
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Figure 2: Function suboptimality (i.e., f(wk)− f(w∗) at round number k) of DP-FedAvg with Clipping
and DP-NormFedAvg for different values of η (recall, ηk = βk = η for all rounds k) and clipping
threshold/scaling factor C, for I1 and I2 described in Appendix F. Specifically, “Clip(η)” and “Norm(η)” in the
legend denote DP-FedAvg with Clipping and DP-NormFedAvg with ηk = βk = η, respectively. All plots
are averaged over three independent runs. For C = {50, 100} and all values of η, normalization attains an
appreciably lower function suboptimality than clipping. For C = 40 and lower, normalization and clipping are
nearly equivalent, but clipping never does better than normalization. As mentioned before, if the client update
norms are lower bounded by Clow, then clipping with threshold C ≤ Clow is equivalent to normalization with
the same scaling factor.
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Figure 3: In the same setting and with the same notation as Figure 2, comparison of SNR :=

∥∥ 1
r

∑
i∈Sk

g
(i)
k

∥∥∥∥ 1
r

∑
i∈Sk

ζ
(i)
k

∥∥ ,

where g(i)
k and ζ

(i)
k are the clipped/normalized per-client update and per-client noise, as defined in Algorithm 1.

The SNR for only one value of η is shown here as the trend for other values of η is similar (and to avoid
congestion). As per our discussion in Section 3.1, the SNR of normalization is never lower than that of
clipping, explaining the superiority of the former. Also, similar to the trend in Figure 2, the improvement in
SNR of normalization is much higher for C = {50, 100} than C = 40.
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Figure 4: Smoothed 2D projection of the trajectories of DP-FedAvg with clipping and DP-NormFedAvg
for the cases of C = 100, η = 0.001 (left) and C = 50, η = 0.003 (right) with initialization I1 considered in
Figure 2.

Appendix G. Experiments on Datasets

We consider the task of private multi-class classification to compare DP-FedAvg with clipping
against DP-NormFedAvg; for brevity, we will often call them just clipping and normalization,
respectively. Our experiments are performed on three benchmarking datasets, Fashion-MNIST [32]
(abbreviated as FMNIST henceforth), CIFAR-10 and CIFAR-100, where the first two datasets have
10 classes each and the last one has 100 classes. Specifically, we consider logistic regression on
FMNIST, CIFAR-10 and CIFAR-100 with ℓ2-regularization; the weight decay value in PyTorch for
ℓ2-regularization is set to 1e-4. For FMNIST, we flatten each image into a 784-dimensional vector
and use that as the feature vector. For CIFAR-10 and CIFAR-100, we use 512-dimensional features
extracted from the last layer of a ResNet-18 [18] model pretrained on ImageNet. Similar to [23],
we simulate a heterogeneous setting by distributing the data among the clients such that each client
can have data from at most five classes. The exact procedure is described in Appendix H. For the
CIFAR-10 and CIFAR-100 (respectively, FMNIST) experiment, the number of clients n is set to
5000 (respectively, 3000), with each client having the same number of samples. The number of
participating clients in each round is set to r = 0.2n for all datasets, with 20 local client updates
per-round. We consider two privacy levels: ε = {5, 2} with δ = 10−5; note that ε = 5 (resp., 2)
corresponds to the low (resp., high) privacy regime. For clipping and normalization, the values of C
that we tune over are {500, 250, 125, 62.5, 31.25, 15.625}. Details about the learning rate schedule
are in Appendix H.

In Table 2, we show the comparison between clipping and normalization (in terms of test
accuracy) for the two aforementioned privacy levels as well as vanilla FedAvg (without any privacy)
as the baseline. The results reported here are the best ones for each algorithm by tuning over C and
the learning rates, and have been averaged over three different runs. In all cases, normalization is
clearly superior to clipping. It is worth noting that the improvement obtained with normalization is
more for the low privacy regime (i.e., ε = 5).
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(a)

Dataset Algorithm ε = 5 ε = 2

FMNIST
Clipping 75.59 (± 0.04) % 57.42 (± 0.08) %

Normalization 77.72 (± 0.10) % 58.32 (± 0.12) %
FedAvg (w/o privacy) 83.43 (± 0.02) %

(b)

Dataset Algorithm ε = 5 ε = 2

CIFAR-10
Clipping 82.63 (± 0.13) % 81.64 (± 0.15) %

Normalization 84.21 (± 0.19) % 82.53 (± 0.24) %
FedAvg (w/o privacy) 85.64 (± 0.06) %

(c)

Dataset Algorithm ε = 5 ε = 2

CIFAR-100
Clipping 56.53 (± 0.10) % 41.69 (± 0.21) %

Normalization 59.36 (± 0.17) % 43.12 (± 0.25) %
FedAvg (w/o privacy) 64.61 (± 0.07) %

Table 2: Avg. test accuracy (± 1 std.) over the last 5 rounds for (a) FMNIST, (b) CIFAR-10 and (c) CIFAR-100.
“Clipping” and “Normalization” denote DP-FedAvg with Clipping and DP-NormFedAvg, respectively. In
all cases, δ = 10−5. FedAvg, without DP, which is our baseline is at the bottom.

Appendix H. Experimental Details

First, we explain the procedure we have used to generate heterogeneous data for our FL experiments
in Appendix G. For each dataset (individually), the training data was first sorted based on labels and
then divided into 5n equal data-shards, where n is the number of clients. Splitting the data in this
way ensures that each shard contains data from only one class for all datasets (and because n was
chosen appropriately). Now, each client is assigned 5 shards chosen uniformly at random without
replacement which ensures that each client can have data belonging to at most 5 distinct classes.

Next, we specify the learning rate schedule for our experiments in Appendix G. We use βk = 0.5ηk
for all k. We employ the learning rate scheme suggested in [6] where we decrease the local learning
rate by a factor of 0.99 after every round, i.e. ηk = (0.99)kη0. We search the best initial local learning
rates η0 over {10−3, 2× 10−3, 4× 10−3, 8× 10−3, 10−2, 2× 10−2, 4× 10−2, 8× 10−2, 10−1, 2×
10−1, 4× 10−1, 8× 10−1} in each case. Server momentum = 0.8 is also applied.

All experiments are run on a single NVIDIA TITAN Xp GPU.
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