
DEAL: Data-Efficient Active Learning for
regression under drift

Béla H. Böhnke[0000−0002−3779−3409] bela.boehnke@kit.edu, Edouard
Fouché[0000−0003−0157−7648], and Klemens Böhm[0000−0002−1706−1913]

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Current work on Active Learning (AL) tends to assume that
the relationship between input and target variables does not change,
i.e., the oracle is static. However, oracles can be stream-like and exhibit
concept drift, which requires updating the learned relationship. Standard
drift detection and adaption methods rely on constantly observing the
target variables, which is too costly in AL. Current work on AL for
regression has not addressed the challenge of frequently drifting oracles.
We propose a new AL method that estimates its error due to drift by
learning statistics about how often and how severe drift occurs, based
on a Gaussian Process model with a time-variant kernel. Whenever the
estimated error reaches a user-required threshold, our model measures
the target variables and recalibrates the learned relationship as well as
the drift statistics. Our drift-aware model requires up to 20 times fewer
measurements than widely used methods.

Keywords: Concept Drift · Active Learning · Regression.

1 Introduction

Active Learning (AL) refers to data collection methods aimed at estimating
the relationship between input and target variables under the assumption that
measurement of the variables is expensive. Therefore, AL seeks to estimate the
relationship with as few measurements as possible. Our setting, in particular,
is the one of stream-based AL [26]. Stream-based AL assumes input variables
arrive as a continuous stream X, e.g., sensor data like temperature and humidity
acquired for real-time environmental monitoring. A learner observes the stream
at time ti, resulting in one potential query xi. The learner then decides whether
to perform a query, i.e., to measure the target variable Y like soil quality for
agriculture, or not. While the cost of observing the stream X is negligible, mea-
suring the target is expensive. Many scenarios share this assumption [26], such
as industrial process control, resource allocation for environmental monitoring,
or demand forecasting for energy management [4].

AL methods often omit details of how the target variable is measured. This
abstraction is called oracle. In practice, such oracles can drift: Evolving, unob-
servable environmental parameters can affect the relationship between input and



2 Béla H. Böhnke et al.

target variables over time. This phenomenon of changing relationships between
variables is known as concept drift (CD).

CD poses a significant challenge to statistical models, requiring frequent re-
calibration to maintain estimation error below a user-required threshold. How-
ever, conventional methods for drift correction, like continuous model recalibra-
tion or drift detection by monitoring the target variables, are impractical for AL
due to the high cost of observing the target variable.
(1) The first challenge arises from this mismatch between the goal of AL of
reducing measurements and the need for additional measurements for model
recalibration, which requires an AL method that can adjust for drift without
continuously monitoring the drifting variables. While such drift-correcting AL
methods exist for classification tasks, many real-world scenarios involve continu-
ous target variables requiring regression models. These regression scenarios lack
adequate AL methods [25,31], highlighting a gap in current AL research.
(2) The second challenge becomes clear when comparing classification and re-
gression tasks under drift. Classification only has to monitor a fixed number of
class distributions. In contrast, regression has to estimate the model error due
to drift for each point in a continuous input space, target space, and time.
(3) The final challenge is an appropriate selection of the measurement time
based on the estimated error, ensuring that the error due to drift remains below
a user-required threshold.

We contribute by proposing DEAL, the first AL regression method that learns
data efficiently under oracles that exhibit frequent drift while keeping the esti-
mation error below a user-required threshold. DEAL estimates its own error due
to drift, using a Gaussian process model (GP) with a time-variant kernel. The
GP learns the drift behavior, i.e., the time-dependent distribution of the target
variable. Figure 1 shows that DEAL queries the oracle whenever the estimated
error exceeds a user-required threshold. DEAL uses the new data to recalibrate,
and combines it with the old data to update the learned drift behavior. In this
way, DEAL minimizes the number of measurements required for drift correction.

Time t

P
re

di
ct

ed
y Measurements

Ground
Truth y

Estimated Error
Prediction

Required ThresholdX = x

Fig. 1: DEAL estimates its error and measures once the error reaches the user-
required threshold. The input value x of the data stream X is kept constant for
better visualization, the target y still varies due to frequent incremental drift.



DEAL: Data-Efficient Active Learning for regression under drift 3

We evaluate DEAL against multiple baselines, on multiple drift-affected time
series, and provide the code1 for reproduction.

2 Related Work

To our knowledge, existing stream-based AL methods for regression (e.g., [1,10,
12,25,28,29,31,32]) do not consider drift, i.e., the oracle is assumed to be static.
Such methods stop learning once the regression model performs well and never
start learning again, even if the model performance decreases due to drift. We
show this undesirable behavior in our experiments.

There exist AL methods that consider drift [13–16, 18, 19, 22, 24, 27, 33, 35–
37], but they are restricted to classification. Further, to apply [14, 18, 22, 24,
35, 37] a user needs to set a measurement budget and additional parameters
without knowing drift behavior, and the resulting estimation error. Improper set
parameters lead to either too costly or inaccurate models. Drift behavior that
changes causes the same problem because the methods cannot adapt. Further,
those methods primarily monitor the distribution of input variables per class.
This is intractable for regression and impedes the transfer to the regression case.

There exist change detection methods that can adapt to changing drift behav-
ior. For example, AAIL [24] detects changes in the input variables and measures
the target variable at each change. While the authors claim that AAIL adapts to
concept drift (CD), it can only adapt to covariance shift. Covariance shift only
refers to changes in the distribution of the input variables, which is cheap to
observe, while CD describes a change in the relationship between the input and
target variables. AAIL can be adapted to regression tasks, and we include an
adaptation in our experiments. Drift detection approaches not designed for AL,
as surveyed in [7, 9, 20, 34], typically assume that the target variables are cheap
to observe, which violates a basic assumption of AL. Thus, such approaches
require additional methods for strategic under-sampling of the target variable,
essentially what the existing AL techniques for drifting oracles do.

In summary, the only methods viable in practice to deal with drift in AL
regression is some form of under-sampling with consecutive measurements at a
user-defined frequency, as in [4–6]. A poor frequency choice leads to missed drift
or higher measurement costs. We use such a method as one of several baselines.

3 Problem statement and Notation

Random Functions F : x 7→ F (x) associate each value xi of a variable x ∈ R with
a random variable F (xi) [3]. As such, a random function extends the notion of
random variables to a continuous function space. Sample Functions f(x)← F (x)
are functions f : x 7→ f(x) drawn from a random function F (x).

Stochastic Processes S or random processes are random functions S : t 7→
S(t) where t ∈ T is interpreted as time with domain T = R+ [3]. Brownian
1 https://github.com/bela127/alsbts-experiments

https://github.com/bela127/alsbts-experiments


4 Béla H. Böhnke et al.

Motions B are stochastic processes B : t 7→ B(t) [3] characterized by random
increments δB(δt) = B(t + δt)−B(t)∀t, where these increments follow the nor-
mal distribution δB(δt) ∼ N (0, δt). Gaussian Processes (GP) are stochastic pro-
cesses defined as GP(x) ∼ N (m(x), v(x)), illustrating that the random function
GP(x) comes from a normal distribution with mean m(x) and variance v(x) both
depending on x [17]. One often uses GPs as a probabilistic prior over functions.

Kernel Functions k(x, x′), also called covariance functions, can define a GP
instead of using a mean and variance function. The Radial Basis Function (RBF)
Kernel k(x, x′) = v · exp

(
− (x−x′)2

2·l2

)
, has two parameters: v ∈ R+ (target vari-

ance) scaling the target of the random function, and l (length scale) determin-
ing function smoothness. The Brownian (Bridge) Kernel k(t, t′) = vb ·min(t, t′),
with points in time t, t′ has a variance parameter vb ∈ R+, which translates to
the drift speed, i.e., it scales δB(δt) by vb [17].

Observed Data Streams or time series are sample functions x(t)← X | t ∈ T.
Here, X is a random input variable, called the stream, and x(t) provides a distinct
value xi = x(ti), drawn from X at a point in time ti. Covariance Shift is present if
the distribution of the stream changes over time. Such a time-dependent stream
is, in fact, a random process, and one writes X(t).

Concepts, i.e., the relations between input and target variables, are repre-
sented as random functions C : x 7→ C(x) = Y . If a concept depends on time,
it is represented as C : (x, t) 7→ C(x, t). By definition, Concept Drift (CD) is
present if ∃t1, t2 : C(x, t1) ̸= C(x, t2), where t1 ̸= t2 are two points in time [7].

Oracles are models for data-generating processes with concept C. A query is
a request q(ti)← Q to an oracle to return the current value yi = ci ← C(q(ti), ti)
of the target variable. Q is the stream of performed queries. The input stream
X is the stream of possible queries.

Stream-based active learning (AL) [26] iteratively observes the value xi of the
stream X and only performs a query if the uncertainty vest of the prediction yest

exceeds a certain user-required threshold vtarget. The learner then recalibrates
the model using the resultant measurement yi. This is known as uncertainty
sampling, which is a typical way to decide whether to query or not.

Algorithm 1 The Common vs Our Adapted Stream-Based AL-Cycle
1: procedure Common(vtarget, Model)
2: while running do
3: xi ← X
4: yest :=Model.estimate(xi)
5: ▷ yest only for evaluation.
6: vest := Model.variance(xi)
7: if vest >= vtarget then
8: ▷ Uncertainty sampling.
9: yi := Oracle.query(xi)

10: DataPool.add(xi, yi)
11: Model.train(DataPool)

1: procedure Adapted(vtarget, Model)
2: while running do
3: xi, ti ← X,time()
4: yest := Model.estimate(xi, ti)
5: ▷ yest only for evaluation.
6: vest := Model.variance(xi, ti)
7: if vest >= vtarget then
8: ▷ Uncertainty sampling.
9: yi := Oracle.query(xi, ti)

10: DataPool.add(xi, ti, yi)
11: Model.train(DataPool)



DEAL: Data-Efficient Active Learning for regression under drift 5

4 Our Method: DEAL

4.1 The Adapted Stream-Based AL Cycle

We slightly modify the Stream-based active learning cycle (see Algorithm 1), so
that in addition to observing the stream X, we also observe the current time ti.
DEAL’s estimation model then takes the time ti into account when estimating its
variance vest to include the additional uncertainty caused by drift (Lines 3 to 6).
Whenever the uncertainty reaches the threshold, DEAL recalibrates (Line 9
to 11) with a new data point (xi, yi). Here, the drifting oracle provides yi.

To estimate the uncertainty caused by drift, we require one assumption about
the drift behavior: We assume that drift occurs frequently, i.e., within a time
series with length tend, at least nc changes occur. Here nc needs to be large
enough to learn sufficient statistics of the drift behavior.

4.2 Our Drift-Aware Estimation Model

In contrast to methods like discussed in [14, 18, 22, 37], which perform measure-
ments without modeling the drift behavior, we are the first to learn statistics
about the drift behavior. These statistics enable us to measure in adaptive time
intervals in which drift of a certain magnitude may occur. We derive the statistics
from a Gaussian process model (GP) according to the following prior:

Definition 1. The Brownian drift prior is given by C(x, t) = I(x) + W (x) ∗B(t),
with a Brownian motion prior B(t) as drift behavior, and random function pri-
ors I(x) and W (x) independent of any drift thereby constant over t. Here, W (x)
is a weighting term that defines the impact of B(t) on C(x, t) at a position x.

The intuition behind using a Brownian prior B(t) for the drift behavior is that
the combination of many, small, random, and independent external influences
results in a combined Brownian overall drift. Further, this model can capture
drift with larger changes after a random time, as long as changes occur frequently.
Such frequent drift is common in practice, like: (1) Drift due to displacement of
machine elements caused by vibration. (2) Drift in large networks, such as the
electrical grid, where nodes can (dis)connect from the network at random times.

We instantiate the GP with a kernel composition according to the three
components I(x), W (x), B(t), from Definition 1, i.e., one kernel per component.
We model the drift behavior B(t) with the Brownian kernel [17]. Because of its
universal approximation property [21], we use distinct RBF kernels to model
I(x) and W (x). In general, the choice of kernels is a parameter that one can
easily tune to match prior knowledge about the data or drift. For the sake of
generality, we stick to our choice in this study. Further, we enforce that both
RBF kernels have the same length scale and variance, which reduces the number
of learnable parameters and makes learning more stable. This reduction assumes
similar smoothness of I(x) and W (x) and the resulting learned function. DEAL’s
parameters are Brownian variance vb, RBF variance vr, RBF length scale lr.



6 Béla H. Böhnke et al.

The only hyperparameter DEAL takes is a user-required threshold vtarget.
DEAL trains according to Algorithm 1. Every time the variance vest estimated
by DEAL becomes greater than vtarget, DEAL measures the target value (Line 9)
and adds it to the training set. DEAL then estimates the most likely kernel pa-
rameters with GPy’s [8] gradient-based maximum likelihood optimizer (Line 11).
We use the standard optimizer configuration with 5 restarts, 4 times with ran-
dom kernel parameters, and once with the most likely kernel parameters from
the previous iteration. In the first iteration, we initialize the kernel parameters
vb, vr, and lr with random values and use an initial training set of measurements
from the first 10 time steps. We use this initialization for each baseline as well.

In AL, training complexity tends to be neglected, because the oracle usually
is much more expensive than the active learning decision-making. We use the
standard GP model from GPy, with a complexity of O(n2), where n is the
training set size. Since n is kept small, the actual runtime is consistently low.2

5 Experimental Design

5.1 Baselines

We consider the following baselines as competitors for DEAL:
Consecutive Measurement (CM): This approach carries out measure-

ments at regular user-specified time intervals of size δtmeas. The approach is
sensitive to δtmeas and does not adapt to the data-generating process. In our ex-
periments, we evaluated values of δtmeas ∈ [1, 20], with logarithmic increments.

Classic AL (CAL): This standard AL approach with uncertainty sampling
yields an estimate and an estimation variance. It uses a Gaussian process (GP)
with an RBF kernel and kernel parameters length scale l and variance v. Unlike
CM, the GP can automatically adjust these parameters using maximum likeli-
hood estimation in the same way DEAL does. But unlike DEAL, this approach
does not model the data behavior over time, i.e., it assumes a static oracle. To
obtain a strong baseline, we initialized the GP with kernel parameters identical
to the parameters of the ground truth data, see 5.2. Given enough data, the
RMSE of such an approach approaches zero on a stream with no noise or drift.

Change Ideal (CI): This approach is an adaptation of AAIL [24], which
uses change detection on the input variables X. Whenever CI detects a change
in X, it measures y. To make our evaluation independent of any specific detec-
tor and obtain a strong baseline, we simulate an “ideal” detector. It uses the
(normally unobservable) ground truth to correctly and immediately report any
change in X. This baseline has no configurable parameters.

Change Error (CE): There are three types of errors in change detectors:
undetected change, detection without an actual change, and delayed detection.
To study their effect, we created variants of CI using an imperfect “pseudo”
2 Note one can reduce the complexity of DEAL down to O(n · i) (with learning epochs

i≪ n ), by using gradient-based GP models and batch training. Further, one can cap
the number of measurements used for training, reducing the factor n to a constant.



DEAL: Data-Efficient Active Learning for regression under drift 7

change detector which lets us control each error type with three parameters:
pwrong is the proportion of spurious detection at any time. pmiss is the chance
of discarding a correct detection. stdoffset is the standard deviation of a normal
distribution. For any detected change, we take the absolute value of a random
point from this distribution as an offset to delay detection.

In our experiments, we vary these parameters independently according to the
given interval and step size while keeping the others at the given default value:

Interval Step Size Default
pwrong [0, 0.10] 0.005 0.015
pmiss [0, 0.80] 0.05 0.015

stdoffset [0, 15] 1 1

5.2 Evaluation Data

Stream mining frameworks such as MOA [2] and River [23] focus on stream
classification, as indicated by the streams they offer. We investigate regression
which is why we require time series of the form: gt(t) = ((t, x(t)), c(x(t), t)).
Here t ∈ T is the time, x(t) ← X | t ∈ T the observed input stream, and
c(x(t), t) | t ∈ T the observed values of the target variable.

We generate c(x(t), t)) with a Gaussian process (GP) according to the follow-
ing priors, where Csin(x(t), t)) and Crbf (x(t), t)) are adaptions from classification
to regression used in [11] and [30], and similar to River RBF streams:

Cb(x(t), t)) = RBF(x | lgr, vgr) + RBF(x | lgr, vgr) ∗B(t | vgb) (1)
Csin(x(t), t)) = RBF(x | lgr, vgr) + RBF(x | lgr, vgr) ∗ Sin(t | s ∗ vgb) (2)
Crbf (x(t), t)) = RBF(x | lgr, vgr) + RBF(x | lgr, vgr) ∗ RBF(t | s ∗ vgb) (3)
Cmix(x(t), t)) = RBF(x | lgr, vgr) + RBF(x | lgr, vgr) ∗ RBF(t | s ∗ vgb)

+ RBF(x | lgr, vgr) ∗ Sin(t | s ∗ vgb)
+ RBF(x | lgr, vgr) ∗B(t | vgb) (4)

Cbmix(x(t), t)) = RBF(x | lgr, vgr) + RBF(x | lgr, vgr) ∗B(t | vgb)
+ RBF(x | lgr, vgr) ∗B(t | vgb)
+ RBF(x | lgr, vgr) ∗B(t | vgb) (5)

Here lgr, vgr, vgb are kernel parameters, chosen as follows: lgr = 0.1; vgr =
0.25; vgb ∈ {0, 0.005, 0.01, 0.02}. From these parameters vgb controls the drift
speed, s = 2000 scales vgb so that each prior has a similar drift speed for a given
vgb. We visualize example time series drawn from such priors in Figure 2. For
evaluation one time series is tend = 1000 simulation units (su) long. The input
stream x(t) changes nc ∈ {50, 100, 200, 400} times within this 1000 su time
frame, with the time of a change tc ← U [0, tend] and x(tc) ← U [−1, 1]. While
tested on the [−1, 1] range our method is compatible with any value range.



8 Béla H. Böhnke et al.

Fig. 2: Example time series sampled from the random function priors. Here, we
show c(x(t), t)) normalized for better visualization.

5.3 Evaluation Metrics

For DEAL and every baseline on every dataset, we perform the following: We
evaluate all parameter configurations 50 times, each time on a different time se-
ries. For each time series, we compute the RMSE of the estimation yest against
the ground truth and the total number of measurements Nm performed across
each time series. We plot the RMSE over the Nm for all different configurations
and different time series. Additionally, we calculated the percentage of measure-
ments a competitor (DEAL) saves compared to a baseline (the CM baseline):

Definition 2. The saved data is sd = (Mb(e)−Mc(e))/Mb(e), where Mb(e)
and Mc(e) are the number of measurements a baseline and a competitor need to
reach the same mean RMSE value e for the first time.

6 Evaluation

6.1 Comparison of DEAL Against Baselines

Figure 3a shows the RMSE against the number of measurements Nm for DEAL
and the four baselines (with two variants of CAL and three variants of CE)
across a variety of parameter configurations. We can see that DEAL ( ) needs
on average fewer measurements to achieve lower RMSE than any configuration
of any baseline (e.g., Nm = 100 for average RMSE = 0.25). Next, DEAL has less
variance across the 50 time series than the baselines. This means for any fixed
vtarget, DEAL adapts better to the individual behavior of a time series, while the
baselines depend on how well their parameters match the time series behavior.
The ideal change detector CI ( ) shows a similar error as DEAL at Nm = 200.



DEAL: Data-Efficient Active Learning for regression under drift 9

(a) (b)

Fig. 3: Baseline comparison; 3a the relationship between Nm and RMSE for all
parameters of the respective approach given in the legend and across different
time series; 3b data gain against CM baseline.

But, CI ’s measurement count depends directly on the input stream’s change
frequency. Thus, CI will still carry out the same number of measurements (more
than needed), even if a higher error would be acceptable. Further, as soon as
the change detector is imperfect, as with CE (with offset , missed and wrong

detections) we observe a sharp increase in RMSE and its variance. The CAL
approach ( ) fails because once it reaches the given error threshold, it stops
collecting data, never aware of any possible drift. Forcing CAL to collect 100
measurements regardless of the error threshold ( ) causes it to learn an average
value, rather than the correct relationship between the variables.

The CM baseline is the only baseline that allows users to indirectly control
the RMSE by choosing the measurement time interval δtmeas. DEAL can directly
control the user-required error thresholds vtarget. For any other baseline, control
of the resulting estimation error via a parameter is not possible. Figure 3b shows
for a given RMSE how much data DEAL can save compared to CM. In regions
of low error (RMSE ∈ [0.1, 0.35]), DEAL saves over 95% data compared to CM.
Moving to regions of higher error (RMSE > 0.5), we observe a slow decline in
saved data. We hypothesize that this is because the larger the allowed error, the
less benefit a precisely selected measurement (time based on drift behavior) has,
compared to manual selection δtmeas of CM. The drop in saved data (RMSE ∈
[0.3, 0.45]) for Csin and Crbf is due to their periodic nature, which is why CM
performs acceptable even without dynamic adaption.

6.2 Impact of the User-Required Error Threshold

The true estimation error RMSE should be close to the user-required standard
deviation stdtarget = √vtarget, so that the user can trust the model predictions. In
Figure 4a, the dotted line shows such proportional behavior. For small thresh-
olds stdtarget < 0.25, DEAL overestimates the actual error. For higher errors



10 Béla H. Böhnke et al.

stdtarget > 0.25, it underestimates the error. At all times, the actual error is
close to the given threshold and behaves nearly proportionally as required.

(a) (b)

(c)

Fig. 4: Impact of the user-required error threshold; 4a average RMSE for a
given threshold; 4b average amount of measurements per time step (for different
thresholds); 4c average amount of required measurements for a given threshold.

Figure 4b shows the number of measurements DEAL performs per time step
(simulation unit su), depending on the user-required error threshold. In the
early stages (the first 100 su), DEAL performs more measurements because it
needs to calibrate. Roughly after tconv = 200 su, it takes a constant number of
measurements per su, just enough to reach the error threshold. The variance
of the number of measurements tends to decrease with time. Namely, the more
data DEAL has seen, the closer its learned parameters are to the true ones.

Figure 4c shows how many measurements per su (m̄su) DEAL requires to
reach a given error threshold vtarget. As expected, if a user requires a lower
estimation error, more measurements are needed to reach that error. To provide
an estimation (dotted line) of this relation, we used a genetic function fitter.
This relationship aids in estimating the required measurements and associated
costs of reaching the user-required error threshold.



DEAL: Data-Efficient Active Learning for regression under drift 11

7 Conclusion

The relationship between input and target variables may drift due to environ-
mental influences that are not observed. If the target variable is continuous, its
prediction is a regression task. Current work on active learning tends to focus
on classification, and the resulting methods do not easily translate to regression.

We proposed DEAL, a method that adapts the frequency of measurements to
the drifting relationship, to reach a given user-required error threshold. DEAL
models drift by predicting the target variable and estimating the variance of
that prediction at arbitrary points in time. DEAL requires, on average, 20 times
fewer measurements over the full range of user-required error thresholds than
the CM baseline used in practice, in particular for frequently drifting streams.

Acknowledgments This work was supported by the German Research Foun-
dation (DFG) as part of the Research Training Group GRK 2153: Energy Status
Data – Informatics Methods for its Collection, Analysis, and Exploitation and
by the Baden-Württemberg Foundation via the Elite Program for Postdoctoral
Researchers.

This preprint has not undergone peer review or any post-submission improve-
ments or corrections. The Version of Record of this contribution is published in
“Data Science: Foundations and Applications”, and is available online at:

978-981-97-2266-2 15

References

1. Bachman, P., Sordoni, A., Trischler, A.: Learning algorithms for active learning.
In: ICML (2017)

2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. (2010)

3. C., K.F.: Introduction to stochastic calculus with applications. WSPC (2005)
4. Carne, G.D., Buticchi, G., Liserre, M., Vournas, C.: Load control using sensitivity

identification by means of smart transformer. IEEE Trans. Smart Grid (2018)
5. Carne, G.D., Buticchi, G., Liserre, M., Vournas, C.: Real-time primary frequency

regulation using load power control by smart transformers. IEEE Trans. Smart
Grid (2019)

6. Dong, H., Jin, M., Ren-mu, H., Z.Y., D.: A real application of measurement-based
load modeling in large-scale power grids and its validation. IEEE Trans. Power
Systems (2009)

7. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (2014)

8. GPy: A gaussian process framework in python. http://github.com/SheffieldML/
GPy (since 2012)

9. Iwashita, A.S., Papa, J.P.: An overview on concept drift learning. IEEE Access
(2019)

10. Iwata, T.: Active learning for regression with aggregated outputs. CoRR (2022)
11. João, G., Pedro, M., Gladys, C., Pedro, R.: Learning with drift detection. In: artif.

intell. adv. – SBIA (2004)

http://dx.doi.org/10.1007/978-981-97-2266-2_15
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


12 Béla H. Böhnke et al.

12. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In:
NIPS (2017)

13. Krawczyk, B., Cano, A.: Adaptive ensemble active learning for drifting data stream
mining. In: IJCAI (2019)

14. Krawczyk, B., Pfahringer, B., Wozniak, M.: Combining active learning with con-
cept drift detection for data stream mining. In: IEEE BigData (2018)

15. Kurlej, B., Wozniak, M.: Learning curve in concept drift while using active learning
paradigm. In: ICAIS (2011)

16. Kurlej, B., Wozniak, M.: Active learning approach to concept drift problem. Log.
J. IGPL (2012)

17. Lindgren, G., Rootzen, H., Sandsten, M.: Stationary Stochastic Processes for Sci-
entists and Engineers. T&F (2013)

18. Liu, S., Xue, S., Wu, J., Zhou, C., Yang, J., Li, Z., Cao, J.: Online active learning
for drifting data streams. IEEE Trans. Neural Networks Learn. Syst. (2023)

19. Liu, W., Zhang, H., Ding, Z., Liu, Q., Zhu, C.: A comprehensive active learning
method for multiclass imbalanced data streams with concept drift. Knowl. Based
Syst. (2021)

20. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: A review. IEEE Trans. Knowl. Data Eng. (2019)

21. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. (2006)
22. Mohamad, S., Sayed Mouchaweh, M., Bouchachia, A.: Active learning for data

streams under concept drift and concept evolution. In: ECML-PKDD (2016)
23. Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zoui-

tine, A., Gomes, H.M., Read, J., Abdessalem, T., et al.: River: machine learning
for streaming data in python. JMLR (2021)

24. Park, C.H., Kang, Y.: An active learning method for data streams with concept
drift. In: IEEE BigData (2016)

25. Riquelme, C., Johari, R., Zhang, B.: Online active linear regression via threshold-
ing. In: AAAI (2017)

26. Settles, B.: Active Learning. Springer Cham (2012)
27. Shan, J., Zhang, H., Liu, W., Liu, Q.: Online active learning ensemble framework

for drifted data streams. IEEE Trans. Neural Networks Learn. Syst. (2019)
28. Stefano, M., Bruno, S.: An active-learning algorithm that combines sparse poly-

nomial chaos expansions and bootstrap for structural reliability analysis. Struct.
Saf. (2018)

29. Turab, L., V., B.P., Dezhen, X., Ruihao, Y.: Active learning in materials science
with emphasis on adaptive sampling using uncertainties for targeted design. Npj
Comput. Mater. (2019)

30. Viktor, L., Barbara, H., Wersing, H.: Knn classifier with self adjusting memory for
heterogeneous concept drift. In: ICDM (2016)

31. Wu, D., Lin, C., Huang, J.: Active learning for regression using greedy sampling.
Inf. Sci. (2019)

32. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: CVPR (2019)
33. Zhang, H., Liu, W., Shan, J., Liu, Q.: Online active learning paired ensemble for

concept drift and class imbalance. IEEE Access (2018)
34. Zliobaite, I.: Learning under concept drift: an overview. CoRR (2010)
35. Zliobaite, I., Bifet, A., Holmes, G., Pfahringer, B.: MOA concept drift active learn-

ing strategies for streaming data. In: WAPA. JMLR Proceedings (2011)
36. Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with evolving

streaming data. In: ECML/PKDD (3) (2011)



DEAL: Data-Efficient Active Learning for regression under drift 13

37. Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting
streaming data. IEEE Trans. Neural Networks Learn. Syst. (2014)


	DEAL: Data-Efficient Active Learning for regression under drift

