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Abstract

The high communication cost between the server and the clients is a significant
bottleneck in scaling distributed learning for overparametrized deep models. One
popular approach for reducing this communication overhead is randomized sketch-
ing. However, existing theoretical analyses for sketching-based distributed learning
(sketch-DL) either incur a prohibitive dependence on the ambient dimension [1]
or need additional restrictive assumptions such as heavy-hitters [2]. Nevertheless,
despite existing pessimistic analyses, empirical evidence suggests that sketch-DL is
competitive with its uncompressed counterpart – thus motivating a sharper analysis.
In this work, we introduce a sharper ambient dimension-independent convergence
analysis for sketch-DL using the second-order geometry specified by the loss
Hessian. Our results imply ambient dimension-independent communication com-
plexity for sketch-DL. We present empirical results both on the loss Hessian and
overall accuracy of sketch-DL supporting our theoretical results. Taken together,
our results provide theoretical justification for the observed empirical success of
sketch-DL.

1 Introduction

Distributed learning is a popular framework for training machine learning models, often deployed to
support large-scale deployments and to support privacy, among other systems goals [3, 4]. To this end,
distributed learning generally employs both server and client devices. Most standard implementations
are set up in rounds – in each round, clients participate by performing (multiple) local model updates
using their local data, then share the model updates with a server. The server aggregates the collected
local updates and broadcasts either the aggregate or the updated global model to the clients for the next
round. As a result of the system setup, distributed learning generally requires a high communication
overhead due to the frequent communication between the server and the clients [5]. Federated
learning – a popular distributed learning setup, further extends the generic setting to where clients’
data distribution may be non-i.i.d. and the clients may change over time – thus suffering from the
same costly communication. This communication overhead has motivated research in compressing
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the model updates [6, 7] through sparsification [8, 9, 10, 11, 12], quantization [13, 14, 15], low-
rank projection [16, 17, 18, 19], and sketching [2, 1, 20, 21, 22]. Among these, linear sketching
mechanisms have attracted significant attention due to their efficient and simple integration with
existing distributed and federated learning frameworks. For instance, unlike many sparsification
approaches [8, 11], sketching is an unbiased operation that does not require bias correction with
error feedback mechanisms [23] – especially as error feedback typically increases the memory cost
and the complexity of integrating differential privacy [24]. Moreover, the linearity of the sketching
operation makes it compatible with secure aggregation [25, 26] as opposed to the popular Top-r2

sparsification [8] or quantization methods [13] that break the linearity in aggregation.

Despite the rising interest in sketching for distributed and federated learning, the existing bounds on
the convergence error of sketching scale with the ambient dimension of the model [1] (i.e., in contrast
to the lower sketching dimension) which may be extremely large for modern overparameterized deep
models [27, 3, 28]. This dimension dependence has been a limitation of the sketching mechanisms
at scale, making them less attractive for modern deep models. We identify and demonstrate the
root cause of the dimension dependence of the standard optimization convergence analysis as
associated with the assumption of smoothness of the loss, commonly made in such analyses [1, 2].
Several modifications have been proposed to get rid of the dimension dependence. For instance,
Rothchild et al. [2] assume that the model updates at the clients have heavy hitters and, further, apply
a Top-r sparsification to break the dimension dependence. However, their heavy hitter assumption
may not hold in general, and the Top-r operation introduces a bias that is, in turn, eliminated via
error feedback. While their analysis requires these restrictive assumptions and modifications to
eliminate the dimension dependence, they also note that they actually do not observe a dimension
dependence empirically even without these restrictions – indicating that the theoretical analysis
of their sketching algorithm lacks behind its empirical success. Quoting from Appendix B.3 of
Rothchild et al. [2], “However, this dimensionality dependence does not reflect our observation
that the algorithm performs competitively with uncompressed SGD in practice, motivating our
assumptions and analysis”. Motivated by this mismatch between the existing analyses of sketching
for distributed learning (which impose dimension dependence) [2, 1] and its empirical success in
practice, we provide a substantially tighter analysis than the prior work and eliminate the dimension
dependence in sketching without imposing any unrealistic restrictive assumptions in the setup.

Our sharper analysis avoids the global smoothness assumption and utilizes the approximate restricted
strong smoothness (RSS) property of overparameterized deep models [29, 30, 31, 32, 33, 34], and
our results are in terms of the second order geometry of the loss. We present optimization results for
single-local step as well as K-local step distributed learning, and present bounds on communication
complexity based on the optimization results. We refer the reader to Table 1 for an overview of our
results. We do not restrict our analysis to any specific sketching matrix, and our results hold for
any sub-Gaussian sketching matrix. For instance, for computational benefits, one can use the popular
Count-Sketch [35] or Hadamard sketch [36] approaches, which are both examples of sub-Gaussian
sketching. Our contributions can be summarized as follows:

1. We identify and demonstrate the widely used global smoothness assumption of loss functions
as the root cause of the dimension dependence of sketching methods.

2. We provide a novel analysis for sketching in distributed and federated learning that eliminates
the ambient dimension dependence in the convergence error.

3. We are the first to break this dimension dependence without making restrictive assumptions
such as the heavy hitter assumption by Rothchild et al. [2].

4. We are again the first to do this without a Top-r sparsification step in the framework which
would have required additional measures to eliminate the bias.

5. We are the first to use more precise second-order properties of the loss of deep models,
e.g., approximate restricted strong smoothness, stable rank of predictor Hessian, to analyze
distributed and federated learning frameworks.

2We use Top-r instead of the more commonly used Top-k since we reserve the notation k to refer to the
local steps at clients.
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Analysis Iteration Complexity Assumption

This work
O
(

(1+ε)2csϱ
2+

clcH√
m [1+κ(ε2+2ε)]

µ(1−ε)2 log
(

L(θ0)−L(θ∗)
ϵ

))
PL, RSS

(Theorem 1)

Song et al. [1]
O
((

csϱ
2+

clcH√
m

)
p(1+ε)2

µ(1−ε)2 log
(

L(θ0)−L(θ∗)
ϵ

))
SC, β-smoothness

(Theorem E.1)

(a) K=1 local steps

Analysis Iteration Complexity Assumption

This work
O
(
ϱ2+

cH√
m

+
εκcH√

m

µ2(1−ε)2ϵ log
(

L(θ0)−L(θ∗)
ϵ

))
PL, RSS, Bounded Gradient

(Theorem 2)

Song et al. [1]
O
(
pβK
µ log

(
βE[∥θ0−θ∗∥2

2]
ϵ

))
SC, β-smoothness

(Theorem F.10 (σ=0))

(b) K>1 local steps

Table 1: Comparison of iteration complexities and assumptions with prior work. cs, cl are constants
defined in Assumption 3.2 and ϱ, cH are defined in Lemma C.1,Lemma C.2 respectively. Note that ϱ
and cH are O(poly(L)) and can be seen as independent of ambient dimension for wide networks.
Under our assumptions and setup (Section 3). According to Lemma C.4 the loss function L can be
shown to be β-smooth where β = O(ϱ2 + cH√

m
). SC refers to strong-convexity and PL refers to

PL-condition.

2 Related Work

Communication-Efficient Distributed Learning. The high cost of communicating model updates
between the clients and the server has motivated a recent interest in improving communication
efficiency in distributed and federated learning. One common strategy called FedAvg [20] enables
less frequent communication by letting the client perform multiple local iterations at every round.
Another common approach is to compress the model updates before the communication to reduce
the cost of each round. These efforts can broadly be categorized into sparsification [37, 9, 8],
quantization [38, 13, 14], low-rank factorization [17, 39, 16], sketching [2, 1, 40], and sparse
subnetwork training techniques [12, 41, 42, 43, 44]. While some of these compression methods
are already unbiased [13], many are biased and have to be combined with other mechanisms to
reduce the bias for better convergence [8, 2]. Linearity is another desired feature, as it simplifies the
implementation of distributed learning with security-promoting techniques like secure aggregation
(in the compressed dimension). Among the general compression approaches mentioned, sketching
stands out as a simple linear and unbiased operation, allowing for computations in the reduced
dimension before desketching. We do not propose a new compression method in this work but instead
provide a substantially improved convergence analysis for sketching-based frameworks that breaks
the dimension dependence–which explains why sketching would not explode the converge error in
large models.
Sketching. Over many years, sketching has been a fundamental tool for many applications, even
before the surge of deep learning in 2010s [45, 46, 47] for low-rank approximation [48], graph
sparsification [49], and least squares regression [50]. More recently, sketching has also found use
in distributed and federated learning frameworks to reduce the dimension of the model updates for
communication efficiency [40, 21, 2, 1, 22]. The linearity of these sketching-based frameworks
has led to their successful integration with secure aggregation and differential privacy as well [51,
52, 1]. Despite the empirical success of these sketching-based applications in distributed and
federated learning, the existing upper bounds on the convergence errors have a dependence on the
ambient dimension of the model–which limits their scalability to larger models. In this work, we
provide a tighter convergence analysis and get rid of the dimension dependence, suggesting the
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promise of sketching at scale. The closest to our work is by Rothchild et al. [2] who also provide a
dimension-independent convergence bound for their sketching algorithm, called FetchSGD (which
is a combination of Count-Sketch projection, Top-r sparsification, and bias reduction with error
feedback), under the assumption that the model updates have heavy-hitters. We note that both the
heavy-hitter assumption and the Top-r step (and the error feedback coming along to minimize
the bias) are necessary to get rid of the dimension dependence in their convergence analysis. We
avoid both of these restrictions. Our key contributions over FetchSGD are: (1) We do not make the
heavy-hitter assumption since it does not hold in general. (2) We do not require Top-r sparsification
to break the dimension dependence – this way, we have an unbiased sketching mechanism without
the need for error feedback, which would increase the memory cost and make the integration with
differential privacy mechanisms complicated.

Notation. For a quantity x, we use the notation xt to refer to the global variable at round t shared
by all the clients and the server, and xc,t to refer to the local variable for client c at round t. For
a positive integer n, [n] = {1, · · · , n}. We use Ip×p as the p × p identity matrix. We use E[·] for
expectation. For a vector x, we use ∥x∥ or ∥x∥2 to denote its L2 norm. For a matrix A, we use ∥A∥
or ∥A∥2 for the spectral norm of A. We use ∇θL(θ

′
) = ∂L

∂θ |θ=θ′ . For a random vector y, ∥y∥ψ2

denotes its sub-Gaussian norm [53]. The notations Õ(t), Ω̃(t), Θ̃(t) are the same as the common
O(t),Ω(t),Θ(t) but they hide the dependence on logarithmic terms. polylog(n) denotesO(logk(n))
for some k.

3 Sketching for Distributed Learning

We consider a distributed learning framework with C clients, each client c = 1, . . . , C having a
local dataset Dc = {xi,c, yi,c}nc

i=1 of size nc and a local loss Lc : Rp → R defined as Lc(θ) =
1
nc

∑nc

i=1 ℓ(yi,c, ŷi,c), where θ ∈ Rp is the parameter vector, ŷi,c := f(θ;xi,c) is the prediction of
the model for input xi,c, and ℓ : R× R→ R is a loss function that measures the error between ŷi,c
and the groundtruth yi,c. Our goal is to minimize the empirical loss L(θ):

L(θ) = 1

C

C∑
c=1

Lc(θ). (1)

Unlike much of the existing literature [2, 21, 1], our analysis does not ignore the fact that the predictor
f is a deep learning model – i.e., the loss Lc is not just an arbitrary smooth loss. The motivation
behind this focus is that many of the modern models being used in distributed learning are indeed
deep learning models. Interestingly, the losses associated with the deep learning models have a
certain second-order structure beyond basic smoothness which will be the key to our sharper analysis.
We also demonstrate that just assuming that the loss is smooth, as is typically done in most of the
existing literature [2, 21, 1], does not avail one of the sharper analysis we introduce – making the
dimension dependence unavoidable.

Following standard literature [31, 54, 55, 29], we consider a fully-connected feed-forward neural
network f of depth L, with widths m and activations α(l) for each layer l ∈ [L] := {1, . . . , L},
described as:

α(0)(x) = x,

α(l)(x) = ϕ

(
1

√
ml−1

W
(l)
t α(l−1)(x)

)
, ∀l ∈ [L] (2)

f(θ;x) = α(L+1)(x) =
1
√
mL

v⊤
t α

(L)(x),

where W (l)
t ∈ Rml×ml−1 is the layer-wise weight matrix for layer l ∈ [L] and vt ∈ RmL is the last

layer vector at iteration t, ϕ(·) is the smooth (pointwise) activation function, and m0 = dim(x) = d.
We denote the total set of parameters as

θt := ((W⃗
(1)
t )⊤, . . . , (W⃗t

(L)
)⊤,v⊤

t )
⊤ ∈ Rp. (3)
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For simplicity, we will assume that the width of all the layers is the same, i.e., ml = m for all
l ∈ [L], and thus p = (L− 1)m2 +md+m. We consider deep models with only one output, i.e.,
f(θ;x) ∈ R, but our results can be extended to multi-dimensional outputs.

As prevalent in literature [31, 29], we make the following assumptions regarding the activation
function ϕ, loss function ℓ, and the initialization parameter θ0 which hold true for the commonly used
activation functions, loss functions, and initializations used in practice.
Assumption 3.1 (Activation function). The activation ϕ is 1-Lipschitz, i.e., |ϕ′| ≤ 1, and βϕ-smooth,
i.e., |ϕ′′l | ≤ βϕ.

Assumption 3.2 (Loss function). The loss ℓi = ℓ(yi, ŷi) with ℓ′i =
dℓi
dŷi
, ℓ′′i = d2ℓi

dŷi
is (i) Lipschitz,

i.e., |ℓ′i| =≤ cl, and (ii) ℓ′′i and smooth ℓ′′i ≤ cs for some cl, cs > 0.

Assumption 3.3 (Initialization). We initialize θ0 with w(l)
0,ij ∼ N (0, σ2

0) for l ∈ [L] where σ0 =
σ1

2
(
1+

√
log m√
2m

) , σ1 > 0, and v0 is a random unit vector with ∥v0∥2 = 1.

3.1 Sketching-Based Distributed Learning

Random sketching [56, 57] is a compression technique that uses random projections to reduce the
dimensionality and helps speed up computations. These random linear mappings can be represented
by sketching matrices R ∈ Rb×p where typically b ≪ p. Examples of sketching matrices include
Count-Sketch [35], Subsampled Randomized Hadamard Transforms (SRHT) [58], and sparse John-
son–Lindenstrauss (JL) transforms [59]. In this work, we use sketching matrices to compress local
updates before sending them to the server and refer to the operation of recovering true gradient
vectors from the sketched updates as “desketching”.

We outline the sketching-based distributed learning framework in Algorithm 1. Each client receives a
random seed from the server to initialize the local parameters θc,1, and generate a sketching matrix R.
At each local step k ∈ [1, · · · ,K], each client performs local gradient descent (GD) over their local
dataset Dc. At each communication round, the client accumulates the changes over K-local steps,
sketches the local updates, and sends the sketched update to the server. The server then aggregates the
sketched changes and sends the aggregated sketched updates back to the clients. To update the local
parameters, each client needs to recover an unbiased estimate of the true vector from the aggregated
sketched update. We call this the desk (desketch) operation (Line 9), for which we use the transpose
of the sketching matrix R. Each client then desketches the received aggregated sketched updates
by applying desk and updates their local parameters. We refer to the sketching and desketching
operations using the sk and desk operators defined as:

sk := R ∈ Rb×p (Sketching) , (4)

desk := R⊤ ∈ Rp×b (Desketching) . (5)

While we use the same sketching matrix across communication rounds t = 1, . . . , T , in general,
using different matrices for each round does not affect the analysis.

Choice of sketching matrix: We use a (1/
√
b)-sub-Gaussian matrix as the choice of sketching matrix.

We say R ∈ Rb×p is a (1/
√
b)-sub-Gaussian matrix [60] if each row Ri is an independent mean-zero,

sub-Gaussian isotropic random-vector such that ∥Ri∥ψ2
≤ 1/

√
b. We assume E[R⊤R] = Ip×p.

From the above definition, we can see that for g1, g2 ∈ Rp

R(g1 + g2) = Rg1 +Rg2 (Linearity),

E
R∼Π

[R⊤Rg] = g (Unbiasedness). (6)

3.2 Limitations of the Existing Analyses

When analyzing the convergence rates of the sketching-based distributed learning frameworks,
previous works [1, 2] assume that the loss function L is β-smooth, i.e,

L(θ′) ≤ L(θ) + ⟨∇L(θ), θ′ − θ⟩+ β

2
∥θ′ − θ∥2 . (7)
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Algorithm 1 Sketching-Based Distributed Learning.
Hyperparameters: server learning rate ηglobal, local learning rate ηlocal.
Inputs: local datasets Dc of size nc for clients c = 1, . . . , C, number of communication rounds T .
Output: final model θT .

1: Broadcast a random SEED to the clients.
2: for t = 1, . . . , T do
3: On Client Nodes:
4: for c = 1, . . . , C do
5: if t = 1 then
6: Receive the random SEED from the server. Initialize the local model θc,1 ∈ Rp and

generate the sketching matrix R ∈ Rb×p (hence sk, desk) using the random SEED.
7: else
8: Receive sk(∆̄t−1) from the server.
9: Desketch and update the model parameters θt ← θt−1 + desk(sk(∆̄t−1)).

10: Assign the local model’s parameters θc,t ← θt to be updated locally.
11: end if
12: for k = 1, . . . ,K do
13: θc,t ← θc,t − ηlocal · ∇θLc(θc,t)
14: end for
15: ∆c,t ← θc,t − θt
16: Send sketched updates sk(∆c,t) to the server.
17: end for
18:
19: On the Server Node:
20: Receive sketched updates sk(∆c,t) from clients c = 1, . . . , C.
21: Aggregate: sk(∆̄t)← ηglobal · 1

C

∑C
c=1 sk(∆c,t)

22: Broadcast sk(∆̄t) to the clients.
23: end for

In the model updates based on sketching followed by desketching, the term ∥θ′−θ∥2 effectively yields
a term of the form ∥R⊤Rg∥22, where g ∈ Rp stands for a suitable gradient on the full model. While
E[R⊤Rg] = g, i.e., the desk-sk operation is unbiased, we unfortunately have ∥R⊤Rg∥22 = Θ(pb ∥g∥

2
2)

with high probability (see Lemma B.1 in Appendix ). Thus, such an analysis picks up a dimension
dependence Θ(p) which can be neutralized only if the sketching dimension is b = Ω(p). However,
such a high-dimensional projection will be ill-conceived as we will not get the benefits of the
sketching projection. We note that prominent recent work has all hit this dimension dependence. For
instance, Song et al. [1] have the dimension dependence in all their results including communication
complexity, and Rothchild et al. [2] discuss the dimension dependence in Appendix B.3 – and get
around the dependence by using Top-r components of the gradient vector, with an analysis having to
rely on heavy-hitter assumptions. Interestingly, Rothchild et al. [2] noted that the sketching-based
distributed deep learning approach seemed to work fine empirically without getting the adverse effect
of dimension dependence despite what their theoretical results (based on smoothness) suggest. Our
work sheds light on this discrepancy and proves (see Section 4) why the sketching-based distributed
learning approach in its simplest form (see Algorithm 1) does not pick up the dimension dependence.

3.3 Restricted Strong Smoothness (RSS)

In this section, we describe the RSS property, an interesting property of deep learning losses that
we use to derive dimension-independent convergence guarantees for sketch-DL. Using Taylor’s
expansion, the loss at θ = θ

′
can be written as:

L(θ
′
) = L(θt) + ⟨θ

′
− θt,∇θL(θt)⟩+

1

2
(θ

′
− θt)⊤∇2

θL(θ̃)(θ
′
− θt), (8)

where θ̃ = ϵθ
′
+ (1 − ϵ)θt, ϵ ∈ [0, 1] and ∇2

θL(θ̃) is the Hessian of the loss. Several prior works
[61, 62, 63] have studied the loss Hessian by decomposing the Hessian into the Gauss-Newton matrix
(G) and averaged Hessian of the predictors as (H):

∇2
θL(θ) := G+H, (9)
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G =
1

C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ
′′

i,c∇fi,c∇f⊤i,c

)
, (10)

H =
1

C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ
′

i,c∇2fi,c

)
=

1

C

(
1

nc

nc∑
i=1

Hi,c

)
, (11)

where ∇fi,c = ∇θf(θ;xi,c) and Hi,c = ℓ
′

i,c∇2fi,c = ℓ
′

i,c∇2
θf(θ;xi,c) respectively. Recent works

[55, 29, 31] have derived sharp upper bounds on the spectral norm of the predictor Hessian: ∥∇2f∥ =
Λmax(∇2f) = O(1/

√
m). This leads to the following restrcited smoothness property of deep

learning losses:

L(θ
′
) ≤ L(θt) + ⟨θ

′
− θt,∇θL(θt)⟩+

1

2C

C∑
c=1

1

nc

nc∑
i=1

ℓ
′′

i,c⟨∇fi,c, θ
′
− θt⟩2 +

c0√
m
∥θ

′
− θt∥2.

In contrast to the β-smoothness assumption which is common in optimization literature, this new
property shows that deep learning losses exhibit strong smoothness in a restricted set of directions.
The effect of strong smoothness suitably manifests for θ

′
such that | cos(θ′ − θt,∇fi,c)| ≥ κ > 0 for

a restricted set of directions. In other directions, the strong smoothness constant is O(1/
√
m), i.e., a

tiny value. For our analysis, we use an even sharper perspective on RSS based on the eigenvalues of
predictor Hessian, Hi,c = ℓ

′

i∇2fi,c. While the smoothness perspective based on the spectral norm
of O(1/

√
m) is promising, it implicitly assumes all directions have this level of smoothness which

would impact the analysis since there are p = O(Lm2) directions. Based on empirical evidence
[64, 65], most directions have smoothness much smaller than 1/

√
m, and an analysis based on the

eigenvalues of the Hi,c captures this sharper perspective as opposed to picking up a dependence on
the ambient dimension p.

4 RSS-based analysis for Sketching-based Distributed Learning

In this section, we analyze the convergence of the sketching-based distributed learning approach,
summarized in Algorithm 1, using the RSS property of deep learning losses and provide novel
dimension-independent convergence results. First, we state our key assumptions in Section 4.1 and
explain why they are well-supported by recent work. Then, we provide our novel analysis that
eliminates the dimension dependence for the single-local step (K = 1) case in Section 4.2. Next
in Section 4.3, we extend our analysis to the multiple-local step (K > 1) case. We conclude in
Section 4.4 by deriving the communication cost of Algorithm 1 under our novel convergence analysis.

4.1 Assumptions

Before we introduce the assumptions, we would like to recall a key property.

Definition 1. (PL condition) Consider a loss function L : Rp → R and the solution set X ∗ = {θ′
:

θ
′ ∈ argmin

θ
L(θ)} and we use L∗ to denote the corresponding minimum value. Then, L is said to

satisfy the Polyak-Łojasiewicz (PL) condition with constant µ if

1

2µ
∥∇θL(θ)∥2 ≥ L(θ)− L∗ .

Remark 4.1. PL condition [66] can be used to establish linear convergence of gradient descent while
still being weaker than strong convexity. One can show that if a function f is µ-strongly convex then
it also satisfies PL condition with the same constant µ. Recent literature has shown that wide neural
networks can be shown to satisfy some variant of PL condition [67, 68].

Relying on this recent evidence, we make the following assumption in our analysis.

Assumption 4.1. Loss function L(·) satisfies the PL condition with constant µ.

We further assume the following upper bound on the sum of eigenvalues of the Hi,c as follows:

7



Assumption 4.2. Let Λ1, ,Λ2, · · · ,Λp be the eigenvalues of the predictor Hessian Hi,c,t =

ℓ
′

i,c∇2f(θt;xi,c) for t ∈ [T ] and Λmax = max
i
|Λi| then there exists κ = O(1), such that∑p

j=1 |Λj | ≤ κΛmax.

Remark 4.2. Several works [69, 70, 71] have shown that the spectrum of loss Hessian follows a
bulk and outliers structure where the bulk can be attributed to H and follows power law trend [Figure
3(b), Figure 4 in Papyan [72]], motivating our assumption. Further empirical evidence is presented
in Appendix G (refer to Figure 2), showing that for common networks, κ is much smaller than p.

4.2 Single-Local Step (K = 1)

We now analyze the simpler setting where clients communicate their local updates after running
a single local update step (K = 1). In this case, there is no local drift, i.e., all clients share the
same local parameter vector. As a result, we can show that local update (Line 9 in Algorithm 1) can
be written as θt ← θt−1 + desk (sk(∇θL(θt−1))). We follow a similar analysis to Song et al. [1],
but we exploit the second order structure of the deep learning losses, which helps avoid picking up
dimension dependence due to the desk(sk(·)) operator. We state the main theorem below with the
full proof in Appendix D.1.
Theorem 1. (Informal version of Theorem D.1) Set K=1 in Algorithm 1. Under Assumptions 4.1,
and 4.2, for suitable constants ε, δ < 1, learning rate η = ηglobal · ηlocal independent of p, and

b = Ω
(

1
ε2 polylog(

Tp2

δ )
)

, with probability at least 1− δ, we have:

L(θT )− L(θ∗) ≤ (L(θ0)− L(θ∗)) e−µ(1−ε)ηT , (12)

where θ∗ is a minimizer of (1).

In Theorem 1 (which also implies linear convergence), the sketching dimension, b, depends on p only
polylogarithmically, which explains the competitive performance of the sketching-based distributed
learning frameworks with uncompressed GD without requiring any additional costly steps such as
Top-r sparsification (as done by Rothchild et al. [2]), which also introduces a bias that needs to be
suitably corrected.

4.3 Multiple-Local Step (K > 1)

Now, we provide the convergence result for Algorithm 1, for the more general case of multiple local
steps (K > 1) at each round. Unlike the single-local step, here, the local clients’ parameters drift
during K local steps and thus, we need to have additional assumptions to guarantee convergence. For
the purpose of our analysis, we assume that the gradient norms are bounded, i.e., ∥∇θℓ(θ)∥ ≤ G.
We refer the reader to Lemma C.2 in the Appendix for a more formal statement. We now present an
informal version of our theorem for the convergence of the multiple-local step case:
Theorem 2. (Informal version of Theorem D.2) Let ∥∇θℓ(θ)∥ ≤ G. Under Assumptions 4.1
and 4.2, for a suitable constants ϱ, cH and ε < 1, learning rate η = ηglobalηlocal <

1
2µK(1−ε) , and

b = Ω
(

1
ε2 polylog(

TNp2

δ )
)

, with probability at least 1− δ, we have:

L(θT )− L(θ∗) ≤ (L(θ0)− L(θ∗))e−2(1−ε)µηKT +
ηC2(ε,m, κ)KG

2

2µ
, (13)

where θ∗ is a minimizer of the problem 1, N is the number of training samples, and

C2(ε,m, κ) = O
(
ϱ2 +

cH√
m

)
+O

(
εκcH√
m

)
. (14)

We refer the reader to Appendix D.2 for the full proof.

4.4 Communication Efficiency

As a direct consequence of our analysis, we now provide an improved communication complexity for
Algorithm 1 compared to prior works [1] that build their analysis solely based on the smoothness
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assumption without taking advantage of the RSS property of the deep learning losses. With this,
we manage to eliminate the linear dependence of the communication complexity on the ambient
dimension p – providing a substantial improvement over the analysis of Song et al. [1]. Unlike
Rothchild et al. [2], we break this dependence without requiring a Top-r sparsification step or a
heavy-hitter assumption.

In the theorem below, we state the required number of communication bits to achieve an ϵ-optimal
solution based on our sharper convergence analysis in the previous sections.
Theorem 3. (Informal version of Theorem E.1) Under Assumptions 4.1 and 4.2, Algorithm 1 obtains
an optimal solution satisfying the error

L(θT )− L(θ∗) ≤ ϵ, (15)

using Õ
(
Cmax

{
1, C2(ε,m,κ)G

2

2µ2(1−ε)ϵ

}
log
(

L(θ0)−L(θ∗)
ϵ

))
bits of communication.

We provide the full proof in the Appendix. We state the result by Song et al. [1] for comparison:

O

(
βC

µ
max

{
p,

√
G2

µϵ

}
log

(
βE[∥θ0 − θ∗∥22]

ϵ

))
. (16)

Song et al. [1] assumes that the loss functionL is β-smooth and the expectation is over the randomness
of sketching. Note that our bound has only polylogarithmic dependence on dimension p. This shows
the efficacy of our approach in improving the overall communication complexity over prior works.

5 Experimental Results

In this section, we provide a comparison of the sketching approach in Algorithm 1 with other common
approaches such as local Top-r [8] and FetchSGD [2]. We note that both Local Top-r (as outlined
in Algorithm 2 in Appendix F) and FetchSGD are biased algorithms and they are typically used with
error feedback mechanisms to correct the bias. As the sub-Gaussian sketching matrix in Algorithm 1,
we use Count-Sketch. This means the only difference between FetchSGD without error feedback
and Count-Sketch is the extra global Top-r step at the server. We conducted our experiments on
NVIDIA Titan X GPUs on an internal cluster server, using 1 GPU per one run.

We train ResNet-18 [73] on CIFAR-10 dataset [74] that is i.i.d. distributed to 100 clients. Each client
performs 5 local gradient descent iterations (i.e., using full-batch of size 500) at every round. Figure 1
shows that Count-Sketch-based distributed learning approach in Algorithm 1 performs compet-
itively with FetchSGD. This result highlights the potential of sketching alone, without additional
modifications as in FetchSGD, to maintain competitive accuracy. Additionally, the error-feedback
free approach enables compatibility with Differential Privacy(DP) techniques which we leave as
future work.

Figure 1: Communication Efficiency. Count-Sketch algorithm in Algorithm 1 against local
Top-r [8] and FetchSGD [2], with and without error feedback. 100 clients run 5 local iterations with
full-batch at every round.

We note that we do not claim novelty of any of the methods discussed in this section as they have
been introduced [8, 40], improved [2], and analyzed [1] extensively in prior work. We present these
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empirical comparisons for completeness and to provide support for why a tight analysis of sketching
is important, given the mismatch between its empirical success and the dimension dependence in
existing convergence analysis as highlighted in Appendix B.3 of Rothchild et al. [2].

6 Discussion and Conclusion

We provide a significantly improved convergence analysis for sketching-based distributed learn-
ing frameworks by exploiting the properties of the deep learning losses, such as restricted strong
smoothness. This allows us to break the dimension dependence in the convergence error, and conse-
quently, the communication cost–a milestone prior work could not achieve due to relying only on the
smoothness assumption of the losses, i.e., ignoring the more special properties of “deep models.” By
breaking this dimension dependency in the convergence analysis and communication cost, we hope
to motivate the use of sketching for larger models. One of the many exciting future extensions is to
revisit the privacy analysis of private sketching mechanisms using our findings.

Limitations. We provide a sharper analysis for sketching in distributed learning. In future work,
we plan to extend our analysis to federated learning by allowing client dropout.

Broader Impact. This paper provides a tighter analysis for sketching-based distributed learning and
federated learning frameworks. We expect this work to be helpful for the community as it contributes
to the efforts in making machine learning models more decentralized, accessible, and trustworthy.
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A Sketching Guarantee

Lemma A.1. For a randomised matrix R ∈ Rb×p with i.i.d. subgaussian rows Ri, i.e. ∥Ri∥ψ2 ≤ κ
and E[RiRTi ] = Ip×p and for U, V ⊂ Rp, such that b = Ω( log

3(p|U ||V |/δ)
ε2 ) with probability atleast

1− δ, we have:
sup

u∈U,v∈V
|⟨Ru,Rv⟩ − ⟨u, v⟩| ≤ ε∥u∥∥v∥ (17)

Proof, We use the following lemma from [1]:
Lemma A.1 (Lemma D.24 from [1]). Let R ∈ Rb×p denote a random Gaussian matrix . Then for
any fixed vector h ∈ Rp and any fixed vector g ∈ Rp, the following properties hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| > log1.5(p/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Following a similar proof in [1], we can get a sub-Gaussian version of this lemma.
Lemma A.2. Let R ∈ Rb×p be a random sub-Gaussian matrix, with ψ2 norm of each entry bounded
by 1√

b
. Then we have

Pr

[
max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≥

c
√
log (n/δ)√

b

]
≤ Θ(δ)

Proof. Note for i ̸= j, R∗,i, R∗,j are two independent sub-Gaussian vectors. Let zk = Rk,iRk,j
and z = ⟨R∗,i, R∗,j⟩. Then according to the definition of sub-Gaussian random variables, zk ∈
SE
(
c21
b2 ,

c1
b

)
is a sub-exponential random variable with an absolute constant c1. Thus, we have

z =
∑b
k=1 zk ∈ SE

(
c21
b ,

c1
b

)
, by sub-exponential concentration Lemma B.7 in [1] we have

Pr [|z| ≥ t] ≤ 2 exp(−c2bmin
{
t2, t

}
)

Picking t = c3
√

log (p2/δ) /b, we have

Pr

[
|⟨R∗,i, R∗,j⟩| ≥

c
√
log (p/δ)√

b

]
≤ δ/p2

Taking the union bound over all (i, j) ∈ [p]× [p] and i ̸= j, we complete the proof.

Then following the same proof with the only difference to apply Lemma A.2 instead of Lemma D.18
in [1], we can get the following sub-Gaussian version of Lemma D.24 in [1].
Lemma A.3. Let R ∈ Rb×p denote a random sub-Gaussian matrix, with ψ2 norm of each entry
bounded by 1

b . Then for any fixed vector h ∈ Rp and any fixed vector g ∈ Rp, the following properties
hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| > c log1.5(p/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Based on Lemma A.3, we have:
Theorem A.1. Let R ∈ Rb×p denote a random sub-Gaussian matrix, with ψ2 norm of each entry

bounded by 1
b . Then for any G,H ⊂ R and b = C log3(p|G||H|/δ

′
)

ϵ2 we have,

Pr
R∼Π

[
sup

g∈G,h∈H
|(g⊤R⊤Rh)− (g⊤h)| > ϵ∥g∥2∥h∥2

]
≤ Θ(δ) (18)

Proof. Taking union bound over g ∈ G, h ∈ H in the bound of Lemma A.3,

δ|G||H| ≤ δ
′
,
c log1.5(p/δ)√

b
≤ ϵ (19)

=⇒ b ≥ C log3(p|G||H|/δ′
)

ϵ2
(20)
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B Dimension dependence

Theorem B.1. [Theorem 5 in Banerjee et al. [75]] Let X be a design matrix with independent
isotropic sub-Gaussian rows, i.e., |||Xi|||ψ2

≤ κ and E[XiX
T
i ] = Ip×p. Then, for absolute constants

η, c > 0, with probability at least (1− 2 exp(−ηw2(A))), we have

sup
u∈A

∣∣∣∣ 1n ||Xu||2 − 1

∣∣∣∣ = sup
u∈A

∣∣∣∣∣ 1n
n∑
i=1

⟨Xi, u⟩2 − 1

∣∣∣∣∣ ≤ c
w(A)√
n
. (21)

Lemma B.1. Fix a vector g ∈ Rp. For a sketching matrix R defined earlier, we have for some
constants η1, η2 with probability at least 1− 2 exp(−η1ϵ2b)− 2 exp(−η2ϵ2p),

∥R⊤Rg∥22 ≥ (1− ϵ)2 p
b
∥g∥2 (22)

Proof. We consider the set of all gradients G = {gi|i = 1, 2, · · ·T}.
We consider a finite set A = {ui : ui = gi

∥gi∥2
∀i = 1, 2, · · ·T}, Gaussian width w(A) =

O(
√
log |G|).

Using Theorem 5 [75],

Pr

[
sup
g∈G

∣∣∥Rg∥22 − ∥g∥2∣∣ ≥ c1w(A)√
b
∥g∥2

]
≤ 2 exp(−ηw2(A)) (23)

Similarly, we can define B = {hi : hi = Rgi∀i = 1, 2, · · ·T}, Gaussian width w(B) =

O(∥R∥
√
log |G|).

Pr

[
sup
g∈G

∣∣∣∣ bp∥R⊤Rg∥22 − ∥Rg∥2
∣∣∣∣ ≥ c2w(B)√

p
∥Rg∥2

]
≤ 2 exp(−ηw2(B)) (24)

Taking ϵ = max
{
c1
w(A)√

b
, c2

w(B)√
p

}
,

Pr

[
sup
g∈G

∣∣∥Rg∥22 − ∥g∥22∣∣ ≥ ϵ∥g∥22] ≤ 2 exp(−η1ϵ2b)) (25)

Pr

[
sup
g∈G

∣∣∣∣ bp∥R⊤Rg∥22 − ∥Rg∥2
∣∣∣∣ ≥ ϵ∥Rg∥2] ≤ 2 exp(−ηϵ2p) (26)

Succintly, we can write 1− 2 exp(−η1ϵ2b)− 2 exp(−η2ϵ2p)

∥R⊤Rg∥22 ≥ (1− ϵ)2∥g∥22 (27)

C Background

We state some useful results from [29]:

Lemma C.1 (Hessian Spectral Norm Bound, Theorem 4.1 and Lemma 4.1 in Banerjee et al. [29] ).
Under Assumptions 3.2 and 3.3, for any x ∈ X , θ ∈ BSpec

ρ,ρ1 (θ0), with probability at least (1− 2(L+1)
m ),

we have

∥∇2
θf(θ;x)∥2 ≤

cH√
m

and ∥∇θf(θ;x)∥2 ≤ ϱ , (28)
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where,

cH = L(L2γ2L + LγL + 1) · (1 + ρ1) · ψH ·max
l∈[L]

γL−l + LγLmax
l∈[L]

h(l) ,

γ = σ1 +
ρ√
m
, h(l) = γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1,

ψH = max
1≤l1<l2≤L

{
βϕh(l1)

2 , h(l1)

(
βϕ
2
(γ2 + h(l2)

2) + 1

)
, βϕγ

2h(l1)h(l2)

}
,

ϱ2 = (h(L+ 1))2 +
1

m
(1 + ρ1)

2
L+1∑
l=1

(h(l))2γ2(L−l).

Lemma C.2 (Loss bounds, Lemma 4.2 of Banerjee et al. [29]). Under Assumptions 3.2 and 3.3,
for γ = σ1 +

ρ√
m

, each of the following inequalities hold with probability at least
(
1− 2(L+1)

m

)
:

ℓ(θ0) ≤ c0,σ1
and ℓ(θ) ≤ cρ1,γ for θ ∈ BFrob

ρ,ρ1 (θ0), where ca,b = 2
∑N
i=1 y

2
i + 2(1 + a)2|g(b)|2 and

g(a) = aL + |ϕ(0)|
∑L
i=1 a

i for any a, b ∈ R.

Lemma C.3 (Loss gradient bound, Corollary 4.1 in Banerjee et al. [29]). Under Assumptions 3.2
and 3.3, for θ ∈ BFrob

ρ,ρ1 (θ0), with probability at least
(
1− 2(L+1)

m

)
, we have ∥∇θℓ(θ)∥2 ≤

2
√
ℓ(θ)ϱ ≤ 2

√
cρ1,γϱ, with ϱ as in Lemma C.1 and cρ1,γ as in Lemma C.2.

Lemma C.4 (Local Smoothness, Theorem 5.2 in Banerjee et al. [29]). Under Assumptions 3.2 and
3.3, with probability at least (1− 2(L+1)

m ), ∀θ, θ′ ∈ BFrob
ρ,ρ1 (θ0),

ℓ(θ′) ≤ ℓ(θ) + ⟨θ′ − θ,∇θL̂(θ)⟩+
β

2
∥θ′ − θ∥22 , with β = csϱ

2 +
cHcl√
m

, (29)

D Analysis of Convergence

L(θ) = 1

C

C∑
c=1

Lc(θ) =
1

C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ(yi,c, f(θ;xi,c))

)
(30)

∇θL(θ) =
1

C

C∑
c=1

∇θLc(θ) =
1

C

(
1

nc

nc∑
i=1

ℓ
′

i,c∇θf(θ;xi,c)

)
(31)

∇2
θL(θ) =

1

C

C∑
c=1

 1

nc

 nc∑
i=1

ℓ
′′

i,c∇θf(θ;xi,c)∇θf(θ;xi,c)⊤ +

nc∑
i=1

ℓ
′

i,c∇2
θf(θ;xi,c︸ ︷︷ ︸
Hi,c(θ)

)


 (32)

where ℓ
′

i, ℓ
′′

i are the first and second order derivatives of the point-wise losses. For an iterate θt−1, by
the second-order Taylor expansion of the empirical loss around θt−1 we have,

L(θt) = L(θt−1) + ⟨∇θL(θt−1), θt − θt−1⟩+
1

2
(θt − θt−1)

⊤∇2
θL(θt−1)(θt − θt−1) (33)

Using 32,

L(θt) = L(θt−1) + ⟨∇θL(θt−1), θt − θt−1⟩︸ ︷︷ ︸
T1

+
1

2C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ
′′

i,c ⟨∇θf(θt−1;xi,c), θt − θt−1⟩2
)

︸ ︷︷ ︸
T2

+
1

2C

C∑
c=1

(
1

nc

nc∑
i=1

(θt − θt−1)
THi,c(θt − θt−1)

)
︸ ︷︷ ︸

T3

(34)

where, Hi,c = Hi,c(θt−1) for brevity.
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D.1 Single-step scheme (K=1)

Theorem D.1. Under assumptions 4.1 and 4.2, setK = 1 in Algorithm 1. For a suitable constant ε <

1, η = ηglobalηlocal =
2(1− ε)

((1 + ε)2csϱ2 + cHcl/
√
m(1 + κ(2ε+ ε2)))

and b = Ω
(

1
ε2 log

3(p2NT/δ)
)

with probability at least 1− δ, we have:

L(θT )− L(θ∗) ≤ (L(θ0)− L(θ∗)) e−µ(1−ε)ηT (35)

where θ∗ is the minimizer of the problem 1.

Proof.

θt − θt−1 = −ηglobal desk

(
1

C

C∑
c=1

sk (ηlocal∇θLc(θt−1))

)
= −η desk sk∇θL(θt−1) (36)

where η = ηglobalηlocal for notation simplicity.

D.1.1 Bounding T1

⟨θt − θt−1,∇θL(θt−1)⟩ = −η⟨desk sk∇θL(θt−1),∇θL(θt−1)⟩ (37)
= −η⟨R∇θL(θt−1), R∇θL(θt−1)⟩ (38)
a
≤ −η∥∇θL(θt−1)∥22 + ηε1∥∇θL(θt−1)∥22 (39)

where, a follows from A.1 for some for suitable choice of ε1.

D.1.2 Bounding T2

nc∑
i=1

ℓ
′′

i,c⟨θt − θt−1,∇θf(θt−1;xi,c)⟩2 (40)

≤η2
nc∑
i=1

ℓ
′′

i,c

[
⟨∇θL(θt−1),∇θf(θt−1;xi,c)⟩2 + ε22ϱ

2∥∇θL(θt−1)∥22 + 2⟨∇θL(θt−1),∇θf(θt−1;xi,c)⟩ε2ϱ∥∇θL(θt−1)∥2
]

(41)

≤ η2
nc∑
i=1

ℓ
′′

i,c

[
⟨∇θL(θt−1),∇θf(θt−1;xi,c)⟩2 + ϱ2ε22∥∇θL(θt−1)∥22 + 2ϱ2ε2∥∇θL(θt−1)∥22

]
(42)

≤ η2
nc∑
i=1

ℓ
′′

i,c

[
⟨∇θL(θt−1),∇θf(θt−1;xi,c)⟩2 + ϱ2

(
ε22 + 2ε2

)
∥∇θL(θt−1)∥22

]
(43)

≤ η2
nc∑
i=1

ℓ
′′

i,c⟨∇θL(θt−1),∇θf(θt−1;xi,c)⟩2 + η2ϱ2(

nc∑
i=1

ℓ
′′

i,c)
(
ε22 + 2ε2

)
∥∇θL(θt−1)∥22 (44)

≤ η2
nc∑
i=1

ℓ
′′

i,c(1 + ε2)
2ϱ2∥∇θL(θt−1)∥2 (45)

Thus,

1

2C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ
′′

i,c ⟨∇θf(θt−1;xi,c), θt − θt−1⟩2
)
≤ η2

2
(1 + ε2)

2
csϱ

2∥∇θL(θt−1)∥22 (46)

for some for suitable choice of ε2.
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D.1.3 Bounding T3

Using eigen-decomposition of Hi,c,

(θt − θt−1)
⊤Hi,c(θt − θt−1) =

p∑
j=1

Λj,i,c⟨θt − θt−1,vj,i,c⟩2 (47)

where Λj,i,c,vj,i,c for j ∈ [1, · · · , p] are the eigen-values and eigen-vectors of Hi,c respectively.
Now,

⟨θt − θt−1,vj,i,c⟩ = −η⟨desk sk∇θL(θt−1),vj,i,c⟩ (48)
≤ −η⟨∇θL(θt−1),vj,i,c⟩+ ηε3∥∇θL(θt−1)∥2 (49)

p∑
j=1

Λj,i,c⟨θt − θt−1,vj,i,c⟩2 (50)

≤
p∑
j=1

Λj,i,c

{
⟨∇θL(θt−1),vj,i,c⟩2 + 2ε3∥∇θL(θt−1)∥2⟨∇θL(θt−1),vj,i,c⟩+ ε23∥∇θL(θt−1)∥22

}
(51)

≤
p∑
j=1

Λj,i,c

{
⟨∇θL(θt−1),vj,i,c⟩2 + (ε23 + 2ε3)∥∇θL(θt−1)∥22

}
(52)

≤
p∑
j=1

Λj,i,c⟨∇θL(θt−1),vj,i,c⟩2 +

 p∑
j=1

|Λj,i,c|

 (ε23 + 2ε3)∥∇θL(θt−1)∥22 (53)

≤ Λmax,i,c

p∑
j=1

⟨∇θL(θt−1),vj,i,c)⟩2 +

 p∑
j=1

|Λj,i,c|

 (ε23 + 2ε3)∥∇θL(θt−1)∥22 (54)

≤ clcH√
m
∥∇θL(θt−1)∥2 +

κclcH√
m

(ε23 + 2ε3)∥∇θL(θt−1)∥2 (55)

where, Λmax,i,c = ∥Hi, c∥ =
∣∣∣ℓ′i,c∣∣∣ ∥∇2f∥ = clcH√

m
Thus,

1

2C

C∑
c=1

(
1

nc

nc∑
i=1

(θt − θt−1)
⊤Hi,c(θt − θt−1)

)
≤ η2cHcl

2
√
m

(1 + κ(2ε3 + ε23))∥∇θL(θt−1)∥22

(56)
for some for suitable choice of ε3.

D.1.4 Combining T1, T2, T3

Combining T1, T2, T3, we get:
L(θt) ≤ L(θt−1)− η∥∇θL(θt−1)∥22 + ηε1∥∇θL(θt−1)∥22 (57)

+
η2

2
(1 + ε2)

2
csϱ

2∥∇θL(θt−1)∥22 +
η2cHcl
2
√
m

(1 + κ(2ε3 + ε23)∥∇θL(θt−1)∥22 (58)

≤ L(θt−1)−
[
η − ηε1 −

η2

2
(1 + ε2)

2
csϱ

2 − η2cHcl
2
√
m

(1 + κ(2ε3 + ε23))

]
∥∇θL(θt−1)∥22

(59)

Using PL condition,
L(θt) ≤ L(θt−1) (60)

−
[
η − ηε1 −

η2

2
(1 + ε2)

2
csϱ

2 − η2cHcl
2
√
m

(1 + κ(2ε3 + ε23))

]
2µ (L(θt−1)− L(θ∗))

(61)
L(θt)− L(θ∗) ≤ (1− β) (L(θt−1)− L(θ∗)) (62)
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where,

β = 2µη

(
1− ε1 −

η

2
((1 + ε2)

2
csϱ

2 +
cHcl√
m

(1 + κ(2ε3 + ε23))

)
(63)

Setting η <
2(1− ε1)

(1 + ε2)2csϱ2 +
cHcl√
m
(1 + κ(2ε3 + ε23))

gives a contraction map. If we iterate this

recursion, we get:

L(θt)− L(θ∗) ≤ (1− β)t (L(θ0)− L(θ∗)) (64)

Set

ε1 = ε2 = ε3 = ε , η =
2(1− ε)

((1 + ε)2csϱ2 + cHcl/
√
m(1 + κ(2ε+ ε2)))

(65)

we get

L(θT )− L(θ∗) ≤ (1− µ(1− ε)η)T (L(θ0)− L(θ∗)) (66)

≤ (L(θ0)− L(θ∗)) e−µ(1−ε)ηT (67)

D.1.5 Choice of sketching dimension b:

Using A.1, for each step t ∈ [0, · · ·T ], union bounding over T1, T2 and T3 and over all T time-steps,

Union bounding over all T time-steps, we get

b = Ω

(
1

ε2
log3(p2NT/δ)

)
(68)

where N =
∑C
i=1 nc is the number of training samples.

D.2 Multi-step scheme

Theorem D.2. Let ∥∇θℓ(θ)∥ ≤ G. Under Assumption 4.1, for a suitable constant ε < 1, η =
ηglobalηlocal <

1
2µK(1−ε) and b = Ω

(
1
ε2 log

3(p2NT |C||K|/δ)
)
, with probability at least 1 − δ, we

have:

L(θT )− L(θ∗) ≤ (L(θ0)− L(θ∗))e−2(1−ε)µηKt +
ηC2(ε,m, κ)KG

2

2µ(1− ε)
(69)

where θ∗ is the minimizer of the problem 1. And,

C2(ε,m, κ) =
1

1− ε

[(
csϱ

2 +
cHcl√
m

)
(1 + ε) +

1

2
cs (1 + ε)

2
ϱ2 +

clcH
2
√
m

+
1

2

(
2ε+ ε2

) clκcH√
m

]
(70)
(71)

where, ϱ and cH are defined in Lemma C.1.

Proof. We assume that the gradients at each time step t are bounded i.e ∥∇θL(θ)∥2 ≤ G for some
suitable constant G.

First, we introduce some notation: In the K-step case since the parameters are shared only in the
sync step, we define θc,t,k ∈ Rp as the local parameters for the client c at time step t and step
k ∈ [1, 2, · · · ,K]. Based on the sync step in Alg: 1, we can see that θc,t,0 is the same for all clients
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c ∈ C and thus, we denote it as θt, i,e. θc,t,0 = θt∀c ∈ C. Thus, we can write the update in the sync
step as:

θt − θt−1 = −ηglobal desk

(
1

C

C∑
c=1

sk

(
ηlocal

K−1∑
k=0

∇θLc(θc,t−1,k)

))
(72)

= −ηglobalηlocal

(
1

C

C∑
c=1

(
K−1∑
k=0

desk sk∇θLc(θc,t−1,k)

))
(73)

= − η
C

(
C∑
c=1

(
K−1∑
k=0

desk sk∇θLc(θc,t−1,k)

))
(74)

where,
η = ηglobalηlocal (75)

Similar to D.1, we can bound T1, T2 and T3 in 34 as:

D.2.1 Bounding T1

⟨∇θL(θt−1), θt − θt−1⟩ (76)

= ⟨∇θL(θt−1),−
η

C

C∑
c=1

K∑
k=1

desk sk∇θLc(θt−1,c,k)⟩ (77)

= −η⟨R∇θL(θt−1),
1

C

C∑
c=1

K∑
k=1

R∇θLc(θt−1,c,k)−KR∇θL(θt−1) +KR∇θL(θt−1)⟩ (78)

= −ηK⟨R∇θL(θt−1), R∇θL(θt−1)⟩ (79)

− η

C

C∑
c=1

⟨R∇θL(θt−1),

K∑
k=1

[R(∇θLc(θt−1,k,c)−R∇θL(θc,t−1,0))]⟩ (80)

≤ −ηK(1− ε1)∥∇θL(θt−1)∥2 + η · ηlocal

(
csϱ

2 +
cHcl√
m

)
(1 + ε2)K

2G2 (81)

where,

∥∇θL(θt−1,k,c)−∇θL(θt−1,c,0)∥ ≤
(
csϱ

2 +
cHcl√
m

)
∥θt−1,k,c − θt−1,c,0∥ (82)

≤
(
csϱ

2 +
cHcl√
m

)
∥
K∑
k=1

−ηlocal∇θL(θt−1,k,c)∥ (83)

≤ ηlocal

(
csϱ

2 +
cHcl√
m

)
KG (84)

D.2.2 Bounding T2

⟨∇θf(θt−1;xi), θt − θt−1⟩2 =

〈
∇θf(θt−1;xi),−

η

C

C∑
c=1

K−1∑
k=0

desk sk∇θLc(θc,t−1,k)

〉2

(85)

=
η2

C2

(
C∑
c=1

K−1∑
k=0

⟨∇θf(θt−1;xi),desk sk∇θLc(θc,t−1,k)⟩

)2

(86)

≤ η2(1 + ε3)
2ϱ2K2G2 (87)

for some suitable choice of ε2 and b which we set later. Thus,

1

2C

C∑
c=1

(
1

nc

nc∑
i=1

ℓ
′′

i,c ⟨∇θf(θt−1;xi), θt − θt−1⟩2
)
≤ η2

2
cs (1 + ε3)

2
ϱ2K2G2 (88)
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D.2.3 Bounding T3

Using eigen-decomposition,

(θt − θt−1)
T∇2

θHi,c(θt − θt−1) =

p∑
j=1

Λj,i,c⟨θt − θt−1,vj,i,c⟩2 (89)

where Λj,i,c,vj,i,c for j ∈ [1, · · · , p] are the eigen-values and eigen-vectors of Hi,c =

ℓ
′

i∇2
θf(θt−1;xi) respectively.

⟨θt − θt−1,vj,i,c⟩2 = η2⟨ 1
C

C∑
c=1

K−1∑
k=0

desk sk∇θLc(θc,t−1,k),vj,i,c⟩2 (90)

≤ ⟨ 1
C

C∑
c=1

K−1∑
k=0

∇θLc(θc,t−1,k),vj,i,c⟩2 + ε24∥
1

C

C∑
c=1

K−1∑
k=0

∇θLc(θc,t−1,k)∥2

(91)

+ 2ε4∥
1

C

C∑
c=1

K−1∑
k=0

∇θLc(θc,t−1,k)∥2 (92)

≤

〈
1

C

C∑
c=1

K−1∑
k=0

∇θLc(θc,t−1,k),vj,i,c

〉2

+ (ε24 + 2ε4)K
2G2 (93)

for suitable choice of ε4 and b.

1

2C

C∑
c=1

 1

nc

nc∑
i=1

 p∑
j=1

Λj,i,c⟨θt − θt−1,vj,i,c⟩2
 (94)

≤ 1

2C

C∑
c=1

 1

nc

nc∑
i=1

 p∑
j=1

Λj,i,c


〈

1

C

C∑
c=1

K−1∑
k=0

∇θLc(θc,t−1,k),vj,i,c

〉2

+ (ε24 + 2ε4)K
2G2




(95)

≤ η2

2

clcH√
m
K2G2 +

η2

2

(
2ε4 + ε24

) clκcH√
m

K2G2 (96)

D.2.4 Combining T1, T2, T3:

Combining T1, T2 and T3, we get,

L(θt) ≤ L(θt−1)− ηK(1− ε1)∥∇θL(θt−1)∥2 + η · ηlocal

(
csϱ

2 +
cHcl√
m

)
(1 + ε2)K

2G2

+
η2

2
cs (1 + ε3)

2
ϱ2K2G2 +

η2

2

clcH√
m
K2G2 +

η2

2

(
2ε4 + ε24

) clκcH√
m

K2G2 (97)

≤ L(θt−1)− ηK(1− ε1)∥∇θL(θt−1)∥22

+ η

[
ηlocal

(
csϱ

2 +
cHcl√
m

)
(1 + ε2) +

η

2
cs (1 + ε3)

2
ϱ2 +

η

2

clcH√
m

+
η

2

(
2ε4 + ε24

) clκcH√
m

]
K2G2

(98)

Using PL condition and iterating over this recursion we have:

L(θT )− L(θ∗) ≤ (1− 2µηK(1− ε1))T (L(θ0)− L(θ∗)) + η2C2(ε,m, κ)
1− (1− 2µηK(1− ε1))T

1− (1− 2µηK(1− ε1))
(99)

≤ (L(θ0)− L(θ∗))e−2(1−ε)µηKT +
ηC2(ε,m, κ)KG

2

2µ
(100)
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where η ≤ 1
2µK(1−ε) . For simplicity, let ηglobal = 1 i.e. η = ηlocal and ε1 = ε2 = ε3 = ε. And,

C2(ε,m, κ) =
1

1− ε

[(
csϱ

2 +
cHcl√
m

)
(1 + ε) +

1

2
cs (1 + ε)

2
ϱ2 +

clcH
2
√
m

+
1

2

(
2ε+ ε2

) clκcH√
m

]
(101)

C2(ε,m, κ) = O(ϱ2 +
cH√
m
) +O(εκcH√

m
) (102)

D.2.5 Choice of sketching dimension b:

Using A.1, for each step t ∈ [0, · · ·T ], union bounding over T1, T2 and T3, Union bounding over all
T time-steps, we get

b = Ω

(
1

ε2
log3(p2NT |C||K|/δ)

)
(103)

where N =
∑C
i=1 nc is the number of training samples.

E Communication Efficiency

Theorem E.1. If Theorem 2 holds, then with Õ
(
Cmax

{
1, C2(ε,m,κ)G

2

2µ2(1−ε)Kϵ

}
log
(

L(θ0)−L(θ∗)
ϵ

))
bits

of communication, with w.p at least 1− δ Algorithm: 1 outputs an ϵ-optimal solution θT satisfying:

L(θT )− L(θ∗) ≤ ϵ (104)

Proof. Setting η = min{ 1
2µK(1−ε) ,

ϵµ
C2(ε,m,κ)KG2 } and T = 1

2µηK(1−ε) log
(

2(L(θ0)−L(θ∗))
ϵ

)
, we

have:

exp(−2µηK(1− ε)T )(L(θ0)− L(θ∗)) ≤
ϵ

2
(105)

ηC2(ε,m, κ)KG
2

2µ
≤ ϵ

2
(106)

=⇒ (L(θt)− L(θ∗)) ≤ (1− 2µηK(1− ε))T (L(θ0)− L(θ∗)) +
ηC2(ε,m, κ)KG

2

2µ
≤ ϵ (107)

The total number of communication bits are given as:

CbT = Õ
(
Cmax

{
1,
C2(ε,m, κ)G

2

2µ2(1− ε)ϵ

}
log

(
L(θ0)− L(θ∗)

ϵ

))
(108)

where, Õ hides poly-log dependence.

F Additional Experimental Details & Results

We provide the overview of the local Top-r baseline in Algorithm 2.
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Algorithm 2 Local Top-r-based Distributed Learning.
Hyperparameters: server learning rate ηglobal, local learning rate ηlocal.
Inputs: local datasets Dc of size nc for clients c = 1, . . . , C, number of communication rounds T .
Output: final model θT .

1: Broadcast a random SEED to the clients.
2: for t = 1, . . . , T do
3: On Client Nodes:
4: for c = 1, . . . , C do
5: if t = 1 then
6: Receive the random SEED from the server. Initialize the local model θc,1 ∈ Rp using the

random SEED.
7: else
8: Receive ¯̂

∆t−1 from the server.
9: Update the model parameters θt ← θt−1 +

¯̂
∆t−1.

10: Assign the local model’s parameters θc,t ← θt to be updated locally.
11: end if
12: for k = 1, . . . ,K do
13: θc,t ← θc,t − ηlocal · ∇θLc(θc,t)
14: end for
15: ∆c,t ← θc,t − θt
16: Send Top-r sparsified updates ∆̂c,t ← Top-r(∆c,t) to the server.
17: end for
18:
19: On the Server Node:
20: Receive Top-r sparsified updates ∆̂c,t from clients c = 1, . . . , C.
21: Aggregate them ¯̂

∆t ← ηglobal · 1
C

∑C
c=1 ∆̂c,t

22: Broadcast ¯̂
∆t to the clients.

23: end for

G Additional Results on Spectral Density of Predictor Hessian

Figure 2: Estimate κ̂ of κ =
∑p

i=1|Λi|/Λmax of Hi for a fixed training input across training epochs.
Dataset : 1000 samples from CIFAR-10 dataset. Model: ResNet-18. The model has 1.1 × 107

parameters. Loss function: Binary Cross Entropy(BCE) Loss.

This section presents empirical results verifying our assumption on the sum of absolute eigenvalues
of the predictor Hessian (Assumption 4.2). Since it is infeasible to compute all eigenvalues for
deep models like ResNet-18, we rely on numerical approximations introduced in several prior
works [69, 76]. SLQ is a technique in numerical linear algebra to estimate the ESD of large
matrices. The complete algorithm can be found in Algorithm 3. We use PyHessian ( Ghorbani et al.
[69]), an open-source implementation of SLQ for our experiments. We keep the default parameters
nv = 10,m = 100 for the plots as they have been shown to be of high accuracy. We train a ResNet-18
from scratch model to classify 1000 samples from two classes of CIFAR-10. We use a learning rate
of 1e− 3, SGD as the optimizer and and perform GD. We use a fix training sample to plot the ESD
of predictor Hessian H(θ;xi) = ℓ

′

i∇2
θf(θ;xi) for two choices of loss functions : BCE (Binary Cross
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(a) Epoch 500 (b) Epoch 1000 (c) Epoch 1500

Figure 3: Spectral Density of Predictor Hessian :H(θ,xi) = ℓ
′

i∇2
θf(θ;xi) for a fixed training input

across training epochs. Dataset : 1000 samples from CIFAR-10 dataset. Model: ResNet-18. The
model has 1.1× 107 parameters. Loss function: Binary Cross Entropy(BCE) Loss.

Algorithm 3 Stochastic Lanczos Quadrature for ESD Computation (Ghorbani et al. [69])

1: Input: Parameter: θ, degree m, and nv .
2: Compute the gradient of θ by backpropagation, i.e., compute gθ =

df(θ;xi)
dθ .

3: for i = 1, 2, . . . , nv do
4: {Different Seeds}
5: Draw a random vector v from N (0, 1) and normalize it (same dimension as θ).
6: Get the tridiagonal matrix T through Lanczos algorithm.
7: Compute τ (i)k and λ̃(i)k from T .
8: ϕziσ =

∑q
k=1 τkf(λ̃k; t, σ)

9: end for
10: Return ϕ(t) = 1

nv

∑nv

l=1

(∑q
i=1 τ

(l)
i f(λ̃

(l)
i ; t, σ)

)

Entropy) and MSE (Mean Squared Loss). We compute the spectrum by backpropagating through
the output layer instead of the loss. From the results in Figure 3, we note that a bulk of eigenvalues
are close to zero, and the spectral density decays quickly far from zero, i.e., most of the eigenvalues
are tiny. To verify our assumption numerically, we estimate the sum of absolute eigenvalues from
the spectrum in Figure 2. Our results for the estimate κ̂ of κ =

∑p
i=1/Λmax for a fixed training

sample are shown in Figure 2. As we can see from the Figure 2, for a ResNet-18 model, the constant
κ̂ ≊ 4000 << 1e7 (model size),

Given the approximate density as a normalized histogram, we compute the empirical average and
estimate κ̂ an approximation to κ =

∑
|Λi|/Λmax as p× the empirical average. Our results for κ̂ are

presented in Figure 24.
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Figure 4: Epoch: 0 Figure 5: Epoch: 200 Figure 6: Epoch: 400

Figure 7: Epoch: 600 Figure 8: Epoch: 800 Figure 9: Epoch: 1000

Figure 10: Epoch: 1200 Figure 11: Epoch: 1400 Figure 12: Epoch: 1600

Figure 13: Spectral Density of Predictor Hessian :H(θ,xi) = ℓ
′

i∇2
θf(θ;xi) for a fixed training input

across training epochs. Dataset : 1000 samples from CIFAR-10 dataset. Model: ResNet-18. The
model has 1.1× 107 parameters. Loss function: Binary Cross Entropy(BCE) Loss.

27



Figure 14: Epoch: 0 Figure 15: Epoch: 200 Figure 16: Epoch: 400

Figure 17: Epoch: 600 Figure 18: Epoch: 800 Figure 19: Epoch: 1000

Figure 20: Epoch: 1200 Figure 21: Epoch: 1400 Figure 22: Epoch: 1600

Figure 23: Spectral Density of Predictor Hessian :H(θ,xi) = ℓ
′

i∇2
θf(θ;xi) for a fixed training input

across training epochs. Dataset : 1000 samples from CIFAR-10 dataset. Model: ResNet-18. The
model has 1.1× 107 parameters. Loss function: Mean Squared Error (MSE).

(a) κ̂ for BCE Loss (b) κ̂ for MSE Loss

Figure 24: Estimate κ̂ of κ =
∑p

i=1|Λi|/Λmax over training iterations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All of our claims are supported by our theoretical and empirical results
throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations throughout the paper and also in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Proof sketched are provided right after theorem statements and the full proofs
are given in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Due to confidentiality constraints, we are unable to share the code at this time,
but we provide sufficient details to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide implementation details in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Computing spectral density for predictor Hessian is computationally de-
manding. Therefore, we repeated the experiments only once with a randomly selected
homogeneous subset of the dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion on broader impact in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited the models and datasets in Sections 1 and 5 and in the
appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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