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ABSTRACT

Single-cell RNA sequencing (scRNA-Seq) is a powerful tool to explore cellular
heterogeneity in healthy and diseased states, yet its translation into clinical
insights has been limited. To bridge the gap between detailed cellular analysis and
broader patient-level representations usable for phenotyping, we introduce a novel
transformer-based architecture capable of embedding single-cell data into mean-
ingful patient-level embeddings. This approach utilizes a self-supervised learning
phase to construct integrative patient representations, which are then refined using
contrastive learning techniques. On a dataset covering 7 million cells across 1223
individuals with diverse disease states, we show that learned embeddings are
meaningful representations for a variety of downstream analytical tasks. Here,
our approach proves robust against unbalanced datasets and shows indications of
learning similarities between related diseases, such as COVID-19 and flu.

1 INTRODUCTION

Recent improvements in single-cell technologies have significantly improved our understanding of
cellular diversity and its implications on human health. This progress is largely attributable to the abil-
ity to profile heterogeneous cell populations across various modalities at single-cell resolution. Driven
by advances in deep learning and mass sequencing, downstream analytical approaches now facilitate
detailed examination of gene expression (Soneson & Robinson, 2018), cellular pathways (Luecken &
Theis, 2019b), composition (Buettner et al., 2021), and inter-cellular communication (Dimitrov et al.,
2022), fostering not only an enriched understanding of cellular states (Dann et al., 2023) and disease
mechanisms (Kuppe et al., 2022; Hoeft et al., 2023; Schreibing et al., 2022; Pekayvaz et al., 2024),
but also holding promise for developing therapeutic interventions (Dann et al., 2024; Bartfai et al.,
2012; Van de Sande et al., 2023; Amrute et al., 2022).

Furthermore, the application of single-cell methodologies extends beyond cellular and cluster anal-
ysis (Keener, 2019). Indeed, there is a pressing need to develop techniques to draw patient-level
conclusions from such analyses, thereby enhancing the clinical utility of single-cell data for patient
stratification (Leader et al., 2021; Khaliq et al., 2022), drug-target discovery (Van de Sande et al.,
2023) and, overall, precision medicine. Although single-cell datasets are inherently high-dimensional,
recent advances in representation learning (Vaswani et al., 2017) have succeeded in distilling these
complexities into meaningful representations that preserve biological integrity on the cell level, such
as scGPT (Cui et al., 2024) and Geneformer (Theodoris et al., 2023). Yet, the potential of such
embeddings to also facilitate patient-level comparisons remains largely underexplored as there are
only few concrete methods to learn and analyze such higher layer abstractions (Joodaki et al., 2024;
Chen et al., 2020; Liu et al., 2024).

Here, we propose a novel method designed to generate patient-level embeddings from single-cell
transcriptomics data. Sourcing data from multiple cells and the BERT architecture (Devlin et al.,
2019), we refer to this method as multi-cell BERT (mcBERT). Our approach addresses the critical
need for a cohesive, patient-centric representation. By employing a novel training pipeline that
integrates a transformer encoder and multiple data sources, our method processes individual cell gene
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counts to produce a compact, disease-capturing patient vector that condenses relevant information
learned from single-cell gene expressions. Specifically, the training of our model involves an initial
patient-level pretraining phase using a self-supervised data2vec methodology (Baevski et al., 2022),
which does not require additional metadata beyond a donor identifier. This phase prepares the model
to accurately map single-cell data to patient identities, setting the stage for downstream disease-
specific comparative analyses. We fine-tune our pipeline using principles from contrastive learning to
show that the learned representations are meaningful, specifically, to extract patient-level clinically
relevant phenotypical information from individual tissues.

We validated mcBERT across multiple datasets—encompassing over 7 million cells from diverse
tissues and pathological conditions (see Table 1)—demonstrate its efficacy in integrating data,
mitigating batch effects, and delineating diseases within a disease-oriented latent space. This method
to derive patient-level representations from raw cellular data marks a significant contribution toward
the practical application of single-cell technologies in disease diagnosis and treatment stratification.

2 METHOD

To learn meaningful patient-level representations, mcBERT leverages the BERT framework (Devlin
et al., 2019), well-known in Natural Language Processing (NLP). The architecture and training
methods of mcBERT are designed for calculating a patient-level representation expressing the donors’
phenotype based on its single-cell RNAseq expressions of a tissue. More formally, given a patient
represented by its normalized single-cell RNAseq readouts Msc ∈ Rmgenes×ncells consisting of
n randomly selected single cells expressed by their m most Highly Variable Genes (HVG), the
objective is to project the data to a patient-level vector e ∈ Rdembd whose embedding space defines
the donor-specific phenotype. That is, two patients A and B with similar phenotypes are projected to
embeddings eA and eB exhibiting a high similarity score S(x, y) with S(eA, eB) = 1, while a third
dissimilar donor C should be projected to eC with S(eC , eA) = 0 and S(eC , eB) = 0 (see Fig. 1).

2.1 ARCHITECTURE

After determining the organ-specific m HVGs and randomly selecting n cells, the first processing
step of mcBERT is embedding the cells individually. Here, a cell embedding layer features a linear
transformation with an input size of 2 + m and an output size of d with d < m, simplifying
computation in subsequent attention layers. Here, the input dimensionality of 2 +m is determined
by one one-hot encoding for the classification token and the masking token which is needed for
the self-supervised learning stage and the m HVGs. Unlike traditional BERT (Devlin et al., 2019),
we omit positional embeddings, making the model positionally invariant. Related methods like
PILOT (Joodaki et al., 2024) and Harmony (Korsunsky et al., 2019) utilize Principal Component
Analysis (PCA) for dimensionality reduction (Heumos et al., 2023). PCA exclusively relies on
the statistical properties of the input, the different genes of numerous cells, and represents them
through linear combinations. However, our approach replaces PCA with a fully connected layer
without activation function, which serves as a learnable dimensionality reduction tool, similar to
scBERT (Yang et al., 2022).

Next, we process the condensed cell representations through a transformer encoder. Specifically, we
feed all of the sampled cells of one donor through multiple subsequent self-attention layers, capable
of extracting important correlations across the cells and genes via multiple layers of abstraction.

Post-encoding, we obtain n cell embeddings. To consolidate these embeddings into a single patient-
level vector, we apply global average pooling across all embeddings, a method also employed in
vision transformers (Dosovitskiy et al., 2021) and offering comparable efficacy to using the [CLS]
token. The final embedding vector represents the aggregated gene expression profile, prepared for
downstream tasks focused on disease-specific embeddings.

2.2 TRAINING

mcBERT undergoes a two-stage training process on this data. Initially, we employ an unsupervised
learning strategy similar to data2vec (Baevski et al., 2022) to capture patient-level correlations
across multiple single-cell sequences. Subsequently, the model is fine-tuned using a semi-supervised
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Figure 1: Overview of the patient-level training and embedding process using mcBERT using
n = 1023 cells, the top m = 1000 HVGs, and an embedding dimensionality of d = 288.

contrastive learning approach, aiming to cluster donors with similar diseases closer in the embedding
space, as indicated by higher cosine similarity.

Self-Supervised Masked Learning. Self-supervised learning (SSL) generally helps to discover
underlying structures and correlations in datasets without a specified training target and is widely used
for pretraining single-cell neural networks. Unlike cell-based transformer models that commonly
employ masking strategies for training on gene correlations in single cells (Yang et al., 2022; Cui et al.,
2024), our approach raises this masking strategy to the patient level, focusing on the training of cell
interrelationships in a self-supervised manner. We adopt a masking strategy akin to data2vec (Baevski
et al., 2022), aiming for an initial contextual understanding at the patient level involving over a
thousand single cells.

Drawing parallels with Natural Language Understanding (NLU), the training of the student model
utilizes a smooth L1 loss combined with the Adam optimizer and a learning rate of 1 × 10−5. We
randomly mask 15 % of input cells, following the suggestions of data2vec for text processing (Baevski
et al., 2022). The loss function compares the student’s embeddings of masked cells against the
teacher’s embeddings of the same, unmasked cells:

Ldata2vec(yc, f
s
c (x)) =

{
1
2 (yc − f s

c(x))
2/β |yc − f s

c (x)| ≤ β

|yc − f s
c (x)| − 1

2β otherwise
(1)

This self-supervised method, proven effective in other pretraining contexts (Assran et al., 2023),
enables the model to predict masked cell representations accurately using the contextual information
from remaining unmasked cells, fostering an understanding of patient-specific cell interrelations.
This general understanding allows for further training on more specific tasks.

Supervised Contrastive Learning. Using the resulting patient-level embeddings eA and eB , we
conduct patient comparisons by calculating the cosine similarity and distance:
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SC(eA, eB) =
eA ∗ eB

||eA|| ∗ ||eB ||
(2)

dC(eA, eB) = 1− SC(eA, eB) (3)

We then apply a contrastive cosine embedding loss function:

Lcos_sim(eA, eB) =

{
(1− SC(eA, eB))

2 if same disease
max(0, (SC(eA, eB)))

2 otherwise
(4)

Here, for each patient in the dataset, we randomly select a second patient, such that it has a 50 %
probability of belonging to the same disease class. As for unsupervised training, we select n random
cells stratified by cell type. These cells are separately processed by the model, before comparison via
the contrastive loss function.

While this standard contrastive learning setting is commonly applied for, e.g., embeddings of sentences
as done in Sentence-BERT (Reimers & Gurevych, 2019), it often exhibits unstable training behavior
and less globally meaningful embeddings, as only two random data samples are compared based on
which the network is tuned. When not only the bilateral relationship of the training instances but
all general labels (like diseases) are known, one can use all of the labels of one training batch and
train on pushing apart patients with different diseases while pulling together the same instances, as
proposed with the Supervised Contrastive (SupCon) loss (Khosla et al., 2021). Given the instability
of traditional contrastive learning and the availability of disease labels, we employ the SupCon loss
function. Hyperparameter testing indicates that choosing an AdamW optimizer (Loshchilov & Hutter,
2019), together with a learning rate of 1 × 10−5 and a batch size of 48, yields good performance and
the most stable training behavior. Furthermore, with respect to the selected scRNA-seq datasets, a
number of n = 1023 cells is a viable choice, as the selected datasets contain at least a median of
1023 cells per donor. However, if a donor is represented by less than 1023 cells, oversampling is used
to compensate. For the number of top HVGs, m = 1000 has been experimentally shown to be a good
value for cellular representativeness.

3 RESULTS

mcBERT is designed to embed complex transcriptomics data from hundreds of sequenced single cells
from an individual patient into a low-dimensional vector that encapsulates the donor’s phenotype. To
evaluate our method, we conduct analyses using diverse single-cell datasets derived from multiple
tissues (see Table 1), highlighting the broad, universal applicability and flexibility of our approach.

Primary tasks include evaluating disease similarity directly through the mean cosine similarity across
patient embeddings in which, optimally, a cosine similarity of 0 is achieved for patients with dissimilar
diseases and a score of 1 with the same disease. Next, precise disease classification based on the local
cosine neighborhood of a patient is evaluated via a k-nearest neighbor classifier using accuracy as a
score. Finally, the overall clustering quality is analyzed using the Silhouette score (Rousseeuw, 1987)
to estimate the global clustering qualities ranged from -1 (worst) to 1 (best) based on the separation
of the clusters and the Adjusted Random Index (ARI) (Rand, 1971). Given the number of different
diseases of the embedded patients, a hierarchical clustering with average linkage based on the cosine
distance first separates the patients into clusters which are then compared with the actual disease
labels. The ARI is delimited by 0 for worst clustering results and 1 for best clustering results. These
metrics are designed to assess the model’s capability not only to distinguish between diseases but also
to generalize across different datasets and diverse biological characteristics of the analyzed tissues.

To validate the resulting model, we begin with experiments on single datasets to establish the
baseline effectiveness of patient-level embeddings. Progressively, we increase the complexity of our
evaluations by incorporating multiple datasets from varied laboratories to ascertain the robustness
and generalizability of mcBERT. This strategy includes testing the model on previously unseen
datasets and diseases, thereby verifying its ability to capture and generalize meaningful biological
signatures rather than merely memorizing dataset-specific anomalies. Given the utilization of diverse
datasets covering multiple tissues, these systematic experiments demonstrate the utility of the learned
embeddings for summarizing findings from single-cell data to a patient level.
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Figure 2: Baseline embeddings (left) versus mcBERT embeddings (right) of the first experiment only
using one heart tissue dataset (Reichart et al. (2022), 566k cells from 70 donors) visualized using
a cosine similarity UMAP. The healthy and diseased patients are well separated, with ACM and
DCM forming two sub-clusters among the disease cluster, reflecting the feasibility of patient-centered
embeddings using mcBERT.

3.1 SINGLE DATASET

We evaluate the capability of raw gene counts from single cells to stratify patients based on dis-
ease status using a cardiac tissue dataset comprising 70 donors categorized as Healthy, Dilated
Cardiomyopathy (DCM), and Arrhythmogenic Cardiomyopathy (ACM). The dataset is split into
training, validation, and testing subsets (70 %, 10 %, and 20 %, respectively) in a stratified way to
maintain proportional representation across disease categories. We conduct evaluations under 5-fold
cross-validation. After training, we select the best non-overfitted model based on the validation set,
which is subsequently used for embedding the donors of the test dataset. For this data, Fig. 2 shows
the cosine similarity topology of one fold of the embeddings via UMAP dimensionality reduction,
indicating good separability of healthy and diseased patients, as well as between different diseases.

Using the same cells per patient, we compare the performance of mcBERT against a baseline that uses
the average cosine similarities of the raw gene counts, providing a naïve patient-level representation.
The baseline approach exhibits poor clustering performance, with an ARI score of only 0.02 and
a Silhouette score of 0.03, indicating a largely random similarity topology among patients. This is
further evidenced by the high cosine similarity among patients with different diseases (0.717) that
is close to the cosine similarity of patients of the same diseases (0.774), undermining the potential
of raw inputs to effectively distinguish between disease states. Conversely, mcBERT demonstrates
superior clustering capabilities, achieving an ARI of 0.766 and significantly improved mean cosine
similarities within the same disease (0.889) and significantly reduced similarities across different
diseases (0.555). The Silhouette score of 0.635 regarding the whole embedding space underlines
these capabilities. These metrics illustrate the enhancement in the model’s ability to embed disease
characteristics meaningfully and stay consistent when expanding the experiment to leave-one-dataset-
out cross-validation (compare Table 3).

This first experiment showed that raw gene counts of 1023 single-cell data potentially exhibit sufficient
information to separate healthy from diseased donors, and the proposed mcBERT architecture with
the training method is suitable to extract the relevant correlations inside the gene counts. Therefore,
in the following, more complex experiments are conducted to explore the limits and potentials of
both mcBERT and the training procedure.

3.2 INTEGRATING MULTIPLE DATASETS

Mixing multiple datasets for training single-cell models requires addressing inherent challenges such
as inconsistent cell-type annotations and technical batch effects (Korsunsky et al., 2019). To assess
mcBERT’s data integration capabilities, we use the union of all our heart tissue datasets and only
standardize cell-type annotations but otherwise, perform no harmonization of gene counts or further

5



Published at LMRL Workshop at ICLR 2025

UMAP1

U
M

A
P2

UMAP1

U
M

A
P2

Baseline embeddings mcBERT embeddings

a)

b)

c)

d)

UMAP1

U
M

A
P2

UMAP1

U
M

A
P2

Figure 3: Baseline (a,b) versus mcBERT (c,d) embeddings of multiple heart tissue datasets colored
by disease (a,c) and dataset origins (b,d). While local dataset-specific clusters are observed in the
baseline, mcBERT correctly embeds the diseases across multiple datasets (see Table 3).

batch correction. We resort to the same stratified-splitting configuration and 5-fold cross-validation
as before.

Fig. 3) visualizes the embeddings colored by disease and dataset, respectively. Comparing mcBERT
with our baseline highlights the baseline’s inability to contextualize disease embeddings beyond
local dataset characteristics, evidenced by a ARI score of 0.05 which takes into account the global
embedding in contrast to a seemingly well-performing model indicated by a k-NN accuracy of
0.72. This inability underscores the need for a more sophisticated approach, such as that offered by
mcBERT.

Comparatively, the fine-tuned embeddings demonstrate improved clustering across datasets, forming
well-clustered groups by disease state, with subclusters for related conditions, such as Hypertrophic
Cardiomyopathy (HCM), DCM, and ACM for the heart datasets, or COVID-19 together with
Influenza for the PBMC datasets. As these clusters consist of samples from heterogeneous datasets
for those disease conditions covered in multiple datasets, this clustering indicates that mcBERT
effectively captures and transfers cell-biological knowledge rather than technical batch artifacts or
further dataset-specific features.

Applying mcBERT’s pretraining and fine-tuning methodology to samples from kidney, lung, and
Peripheral Blood Mononuclear Cell (PBMC) datasets (see Fig. 4) yields consistent results with
those from heart tissues, validating our method’s capability to generalize across different biological
contexts. Despite the raw input baseline showing relatively high k-NN classification accuracy,
significant improvements can be observed in all other metrics. For example, on average, the fine-
tuned mcBERT increases the margin of the mean cosine similarity between the same and differently
diseased patients from 0.063 to 0.455, demonstrating the model’s effectiveness in overcoming batch
effects and integrating multi-tissue datasets. However, this effect cannot be observed when using
the model directly after the pretraining stage, showing both the necessity of the supervised learning
stage and the inability to directly derive disease-related information in a self-supervised setting with
data2vec.
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Figure 4: Patient-level mcBERT embeddings of different tissue datasets. a) PBMC, b) Kidney, and
c) Lung colored with respect to the patient phenotype. Overall, we observe that mcBERT embeddings
can be used to cluster phenotypically similar patients (see Table 3).

3.3 CELL EMBEDDINGS

Typical single-cell analysis frameworks (Wolf et al., 2018; Luecken & Theis, 2019b; Stuart et al.,
2019; Svensson et al., 2020) use unsupervised clustering techniques to identify groups of cells
with potentially similar properties such as cell lineage, cell state (Xu et al., 2023), and pathway
activity (Aibar et al., 2017). These properties reflect the baseline and dysregulated disease states
of groups of cells and are thus vital aspects for disease-centric patient-level neural networks. At
the single-cell level, these properties are expressed through, for example, slight changes in gene
expressions upon which clustering analyses can be based (Luecken & Theis, 2019a; Zhang et al.,
2023). To enable mcBERT to learn biologically relevant cell representations, it processes hundreds of
cells simultaneously and contextualizes them in the transformer Encoder. Furthermore, the variation
in cell-type distribution across donors, both natural and introduced through training randomization,
ensures that the embeddings generated by mcBERT are not merely reflections of statistical cell
distributions.

Besides the transformer consuming multiple cells at once, the training is tailored to the concept of
clustering cell types based on the similarity of gene-expression values. It involves a pretraining phase
in which, through cell masking, mcBERT learns typical gene distributions across multiple cells for
different phenotypes. This data2vec-like approach requires that the transformer discerns relevant
information from surrounding cells to accurately predict the masked cells. This method’s impact
is evident when analyzing the integration of the gene-wise dataset; for instance, three independent
PBMC datasets initially integrate poorly, showing a scaled iLISI score of 0.076 (larger is better, see
Appendix A.3 for an overview of metrics). However, post pretraining, this score improves to 0.325
without any dataset-origin information of the donors while maintaining a scaled cLISI score of 0.987
(see Fig. 5). The benefit of this pretrained cell embedding is underlined by the little to no changes of
it after fine-tuning (compare Fig. 5 mid versus right). To effectively predict the phenotypes of the
patients, the fine-tuned mcBERT does not separate the cells again to e.g., pick up dataset-specific
batch effects, but relies on using the integrated cell embeddings, emphasizing the distilled biological
knowledge.

Thereby, mcBERT demonstrates its capability to transfer knowledge from samples within one dataset
to others at the cell level by embedding similar cell types across datasets in a comparable manner.
We attribute this capability primarily to the masking strategy employed during pretraining, which
focuses on learning from the cellular context within a donor’s sample to predict the embedding of
masked cells, highlighting the importance of this self-supervised training phase.
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Figure 5: PBMC cell embedding of the first linear layer of mcBERT before training (a, b), after
pretraining (c, d), and with subsequent supervised fine-tuning (e, f). Cells are colored by the dataset
(a, c, e) and the cell types (b, d, f, legend omitted for clarity). The cell embeddings show clear
dataset-wise disparities in the raw gene counts, which are corrected by the pretraining step and stay
consistently corrected after fine-tuning.

Additionally, this step further helps to prevent early overfitting during fine-tuning and contributes to a
meaningful patient-level embedding. By setting a low learning rate during fine-tuning, the model
avoids re-learning dataset-specific technical drifts, ensuring that disease characteristics not present in
the training dataset do not skew the embeddings. This approach results in consistent iLISI scores and
UMAP visualizations between the pretrained and fine-tuned phases, as shown in Fig. 5).

4 CONCLUSION

Traditional scRNA-seq methods typically focus on cell-type level analyses, which leads to challenges
in identifying sample-level features and comprehensive sample-vs-sample comparisons. To bypass
these limitations, we introduce mcBERT, a novel method that mitigates this situation by abstracting
from cell-level to patient-level information via embeddings that represent single-cell data per sample.
These embeddings enable patient-level comparisons that can be used to differentiate samples based
on their disease phenotype.

Specifically, mcBERT transforms normalized raw, high-dimensional single-cell gene expression
data into manageable, low-dimensional representations per patient while preserving biological
expressiveness. Thereby, and in combination with advancements from NLU and self-supervised
learning, mcBERT enables meaningful phenotypical interpretations from single-cell datasets with
direct clinical implications.

mcBERT demonstrates robust versatility across tissue types, extracting features from diverse datasets
without prior data integration. Notably, the model clusters diseases with similar pathologies closely
together, e.g., COVID-19 and flu, and abstracts from batch effects inherent in different datasets
without requiring prior integration. We find this methodology to generalize well to novel data and
disease classes, offering a significant advancement in the representation of complex, high-dimensional
single-cell gene expression data. To our knowledge, mcBERT is one of the first methods to use
transformers for systematically deriving patient-level insights from cell-level data. It shows potential
for disease and phenotype detection and is readily available (see code). Although the high costs
of scRNA-seq limit its routine clinical use, future integration of explainable AI techniques with
mcBERT might contribute to an in-depth analysis of the model’s decision-making processes. This
analysis helps identify expressive cell types, states, and genes that can then be further utilized as
marker genes for accurate and more cost-effective disease testing and drug discovery.
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MEANINGFULNESS STATEMENT

We consider a meaningful representation to capture concise and useful abstractions from biological
concepts, increasing their availability to (data-driven) analytical processes and beyond. Specifically,
we show that our learned representations not only effectively describe the donor’s disease state but,
more importantly, that the embedded vector space is coherent in a way that similar disease states
are correctly projected onto a similar representation, which directly increases meaningfulness for
clinical use cases. This coherence is expressed by representations of similar diseases being similarly
embedded by the model even without explicit training on such similarities.
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A APPENDIX

A.1 DATASET DETAILS

See Table 1.

A.2 ARCHITECTURE DETAILS

The exact architectural details of mcBERT are shown in Table 2. Before processing the cells by the
model, the precomputed 1000 HVGs are selected per tissue datasets. After the relatively lightweight
dimensionality reduction step consisting of a single linear layer, a normalization layer, and a dropout
layer with a dropout rate of 10 %, most of the computation falls to the transformer encoder. Here, each
of the 12 consecutive transformer blocks contains 12 attention heads and has a hidden dimensionality
of 288.

The final global average pooling layer is used to reduce the contextualized cell matrix to a single
patient-level vector. The learning of a donor’s cell correlations during the self-supervised training
phase is not aimed at a single patient-level vector, that is why the pooling layer is omitted during the
pretraining phase.

A.3 EVALUATION METRICS

We evaluate the trained models on three different application tasks: (1) the direct patient similarity
of the same and different disease class; (2) the disease classification using k-NN in relation to the
training dataset; (3) the clustering using a hierarchical clustering approach.

The patient comparison task is the most natural task the model can be evaluated on as the contrastive
loss used during fine-tuning trains the model specifically on this task. For numeric evaluation, we
separately evaluate the mean cosine similarity of the test against the training samples for donors from
the same class and from different classes, respectively. That is, we evaluate how close the trained
model maps the donors’ embeddings next to other donors belonging to the same disease on the one
hand and how far they are mapped away from different diseases on the other hand. The formal
definitions of the two metrics are:

∼
SC =

1

N ∗M

N∑
i

M∑
j

disease(i)∼disease(j)

SC(e
train
i , etestj ) (5)

≁
SC =

1

N ∗M

N∑
i

M∑
j

disease(i)≁disease(j)

SC(e
train
i , etestj ) (6)

where SC is the cosine similarity and e denotes the patient-level embedding. Ideally, a mean cosine
similarity of 1 is achieved for patients with the same disease and 0 for different diseases.
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Table 1: All datasets used for the evaluation studies of mcBERT.

Tissue Name #Donors #Cells Median
#Cells/
Donor

Disease Labels

Heart

Litviňuková et al.
(2020)

14 199,312 13,129 Healthy

Simonson et al.
(2023)

15 89,529 6,076 Long-term Ischemic, Healthy

Kuppe et al. (2022) 20 189,349 8,494 Healthy, Myocardial Infarction
Koenig et al. (2022) 38 216,972 5,298 Healthy, DCM
Chaffin et al. (2022) 42 560,696 12,349 Healthy, HCM, DCM
Reichart et al.
(2022)

70 566,809 8,007 Healthy, DCM, ACM

Kidney

Muto et al. (2021) 5 19,985 3,804 Normal
Wilson et al. (2022) 11 39,176 2,996 Normal, Type 2 Diabetes

Mellitus
adpkd1: Muto et al.
(2022)

13 125,034 9,892 Control, ADPKD

Kuppe et al. (2021) 15 51,849 1,493 Healthy, CKD
kpmp: Lake et al.
(2023)

36 200,338 4,995 DKD, H_CKD, AKI, Ref,
COV_AKI

PBMC

PBMC1: Ahern
et al. (2022)

124 836,148 6,312 COVID-19, Normal, Influenza

PBMC2: Yoshida
et al. (2022)

75 422,220 5,232 Normal, COVID-19,
Post-COVID-19 Disorder

PBMC3: Perez
et al. (2022)

261 1,263,676 4,075 Normal, Systemic Lupus
Erythematosus

Lung Human Lung Cell
Atlas (Full)
Sikkema et al.
(2023)

484 2,282,447 3,249 Normal, Pulmonary Fibrosis,
Squamous Cell Lung Carcinoma,
COVID-19, Lung
Adenocarcinoma, Chronic
Obstructive Pulmonary Disease,
Pulmonary Sarcoidosis,
Pneumonia,
Lymphangioleiomyomatosis,
Interstitial Lung Disease, Cystic
Fibrosis, Chronic Rhinitis,
Pleomorphic Carcinoma, Lung
Large Cell Carcinoma,
Hypersensitivity Pneumonitis,
Non-Specific Interstitial
Pneumonia

Total 1223 7,063,540
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Table 2: The mcBERT pipeline is subdivided into the different embedding steps.

Output size Number of
parameters

Details of Step

Pre-
Selected
Genes

(1024, 1002) - -

Cell Em-
bedding

(1024, 288) 288,864 1x Linear Layer
(1024, 288) 576 1x LayerNorm
(1024, 288) - 1x Dropout, p=0.1

Transformer
Encoder

(1024, 288) 25,282,944 12x Attention Blocks (12x Heads each)

(Pooling) (1, 288) - 1x Global Average Pooling∑
- 25,572,384 -

For the second application task, the disease classification, the k-NN algorithm is used with k=5 and
the cosine distance as the distance metric to determine the closest related donor. As k-NN relies on
known data points to classify new samples, the samples from the training sets were taken and act as a
database to classify the new donors. After classification by the k-NN algorithm, the accuracy can be
determined. However, if the disease is not known in the training database, the accuracy is always 0 %
and would distort the mcBERT metrics and is therefore not taken into account.

Lastly, to evaluate the global topology of our patient-level embedding, we employ a hierarchical
clustering approach using agglomerative clustering with an average linkage criterion and cosine
similarity as the distance metric and the number of unique diseases as the number of clusters. Similar
to the patient-level distance evaluation of PILOT (Joodaki et al., 2024), the adjusted random index
(ARI) (Rand, 1971) of the clustering is calculated to determine the clustering result. In combination
to the hierarchical clustering, the silhouette coefficient (Rousseeuw, 1987) of the embedding is
calculated using the cosine distance.

Calculating the integration scores of the raw and embedded cells, respectively, is based on the Local
Inverse Simpson’s Index (LISI) as defined in (Korsunsky et al., 2019) using the scib Python library.
Here, for better comparability, the cell-type LISI (cLISI) and integration LISI (iLISI) are scaled
between 0 and 1. The given cLISI values are inverted so that 0 indicates a high variability of cell
types and 1 indicates a good separation of cell types, instead of the original definition of cLISI where
a higher value reflects a high degree of mixing of cell types.

A.4 DETAILED METRICS OF EXPERIMENTS

Table 3 contains the cross-validated metrics for the conducted experiments. For the first experiment
shown in the table, only the dataset by (Reichart et al., 2022) was used. The leave-one-dataset-out
cross-validation (LOOCV) averages over all runs where a different testing set was used and the model
trained for the remaining datasets. The remaining experiments incorporate all selected datasets shown
in Table 1 for the specified tissue.
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Table 3: Averaged results of the cross-validation metrics of all experiments. D2V denotes the
pre-training stage using Data2Vec, FT the fine-tuning and LOOCV the leave-one-dataset-out cross
validation.

Methodology Silhouette
Score

ARI ∼
SC

≁
SC

k-NN
Accuracy

Heart
single
dataset

Baseline 0.034 0.018 0.774 0.717 0.757

D2V + FT 0.635 0.766 0.889 0.555 0.814

Heart
LOOCV

Baseline −0.063 0.065 0.700 0.666 0.483
D2V + FT 0.608 0.824 0.858 0.319 0.586

Heart
All

Baseline −0.063 0.055 0.729 0.683 0.769
D2V −0.076 0.207 0.857 0.806 0.679
FT −0.126 0.000 1.000 1.000 0.718

D2V + FT 0.561 0.789 0.868 0.312 0.819

Kidney
All

Baseline −0.188 0.103 0.554 0.504 0.682
D2V −0.101 0.132 0.524 0.487 0.592
FT −0.336 0.077 0.925 0.875 0.556

D2V + FT 0.566 0.845 0.773 0.205 0.761

Lung
All

Baseline −0.272 0.110 0.284 0.223 0.695
D2V −0.204 −0.018 0.716 0.724 0.604
FT 0.262 0.632 0.811 0.387 0.747

D2V + FT 0.188 0.504 0.666 0.396 0.759

PBMC
All

Baseline 0.078 0.388 0.900 0.808 0.785
D2V 0.017 0.004 0.791 0.765 0.750
FT −0.032 0.423 0.941 0.647 0.723

D2V + FT 0.412 0.538 0.855 0.428 0.828
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