
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAXIMUM NEXT-STATE ENTROPY FOR EFFICIENT RE-
INFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Maximum entropy algorithms have demonstrated significant progress in Rein-
forcement Learning (RL), which offers additional guidance in the form of en-
tropy, which is particularly beneficial in tasks with sparse rewards. Nevertheless,
current approaches grounded in policy entropy encourage the agent to explore di-
verse actions, yet they do not directly help the agent explore diverse states. In
this study, we theoretically reveal the challenge of optimizing the next-state en-
tropy of the agent. To address this limitation, we introduce Maximum Next-State
Entropy (MNSE), a novel method that maximizes next-state entropy through an
action mapping layer following the inner policy. We provide a theoretical analy-
sis demonstrating that MNSE can maximize next-state entropy by optimizing the
action entropy of the inner policy. We conduct extensive experiments on vari-
ous continuous control tasks and show that MNSE can significantly improve the
exploration capability of RL algorithms.

1 INTRODUCTION

Maximum entropy RL algorithms have demonstrated remarkable performance across various do-
mains, including games (Gao et al., 2018), robotic control (Haarnoja et al., 2018a;b), and au-
tonomous navigation (Sun et al., 2022). The maximum entropy framework enhances policy explo-
ration and robustness by optimizing both reward and policy entropy simultaneously (Ziebart et al.,
2008; 2010). Recent advancements adapt the temperature dynamically (Hu et al., 2021)to improve
the trade-off between reward and entropy. Meanwhile, Deep Soft Policy Gradient (DSPG) Shi et al.
(2019) integrates soft policy gradients with the soft Bellman equation to address stability issues in
off-policy learning.

However, maximizing policy entropy may not directly help the agent explore diverse states due to
redundancy in the action space. For example, in real-world tasks, actuators often exhibit saturation
and dead zone issues due to design redundancies or equipment aging (Galuppini et al., 2018; Bai,
2002). This leads to a redundant action space, where multiple actions can result in the same state.

If we cannot deal with this issue, the nonlinear actuators can reduce control accuracy, thereby
significant degrading the control performance.

To help the agent directly explore diverse states, current researchers propose novelty-based explo-
ration methods, such as random network distillation (Burda et al., 2018) and pseudo-count tech-
niques (Lobel et al., 2023; Machado et al., 2020). These methods aim to drive agents toward dis-
covering more diverse states by directly evaluating the novelty of a state and incorporating it as
an exploration bonus into the extrinsic reward. Current novelty-based and pseudo-count exploration
methods have achieved considerable success across various domains. However, it is unclear whether
state diversity can provably benefit maximum entropy RL and how to bridge the gap under theoreti-
cal guarantees, which naturally leads to the following question:

How can we maximize the next-state entropy of the RL agent in a principled way?

To answer this question, we start with the analysis of next-state entropy. Intuitively, if the policy
is non-redundant, we can optimize the next-state entropy by optimizing policy entropy. However,
the condition of non-redundant policy is hard to meet in the stochastic transition case. To solve
this issue, we first introduce the inner policy and reversible action mapping layer. Then, we rigor-
ously derive the gap between the next-state entropy and the policy entropy of the inner policy. We
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demonstrate that by optimizing both the action mapping layer and inverse dynamics model, we can
maximize the next-state entropy by optimizing the inner policy entropy. In practice, our method
also achieves superior performance. We conduct extensive experiments on various environments,
including MuJoCo (Todorov et al., 2012) and Meta-World (Yu et al., 2020). Results show that our
algorithm performs better than baselines.

2 RELATED WORK

Maximum Entropy Reinforcement Learning has been widely adopted for improving policy ex-
ploration and robustness in RL. Early work introduced Soft Actor-Critic (SAC) (Haarnoja et al.,
2018c;d), an off-policy actor-critic algorithm that formalizes MaxEnt RL by balancing the goals of
maximizing expected return and policy entropy. Deep Soft Policy Gradient (DSPG) by (Shi et al.,
2019) integrates soft policy gradients with the soft Bellman equation to address stability issues in
off-policy learning. Count-Based Soft Q-Learning (CBSQL) by (Hu et al., 2021) adapts the tem-
perature dynamically to improve the trade-off between reward and entropy. Additionally, Han &
Sung (2021) propose a max-min entropy framework to improve exploration in model-free learning
by promoting low-entropy state visitation.

Action Representation. Extensive efforts have been made to effectively represent actions within
large action spaces. Zahavy et al. (2018b) propose a method that directly identifies redundant or irrel-
evant actions using external elimination signals provided by the environment, removing them from
the sampling process in text-based games. Tennenholtz & Mannor (2019) adopt a negative sampling
procedure, leveraging expert demonstrations to better understand the action space. However, valu-
able prior information is often scarce and expensive, limiting the scalability of these approaches.
Chandak et al. (2019) demonstrates how to learn and utilize action representations without rely-
ing on prior knowledge by embedding them within the policy structure to train agents effectively.
Similarly, Metz et al. (2017) introduces a novel approach to discretize high-dimensional continuous
action spaces by sequentially combining one-dimensional discrete actions.

Exploration is a cornerstone of reinforcement learning, with various strategies enhancing agents’
ability to learn from complex environments. For example, the Go-Explore strategy (Ecoffet et al.,
2019) advocates for a phased approach to overcoming challenging exploration dilemmas. Count-
based methods (Bellemare et al., 2016) capitalize on environmental novelty by employing pseudo-
counts. Disagreement-based exploration (Pathak et al., 2019) harnesses the variance in model pre-
dictions to propel the agent toward exploration. Curiosity-driven exploration mechanisms, such as
ICM (Pathak et al., 2017), utilize prediction errors to incentivize exploration. RND (Burda et al.,
2018) employs a novel neural network to generate intrinsic rewards based on the prediction error of
environmental dynamics, driving the agent towards unexplored territories. NGU (Badia et al., 2020)
integrates intrinsic motivation with an episodic memory mechanism to encourage the revisitation of
novel states, promoting long-term exploration.

State Entropy Maximization aims to learn a reward-free policy in which state visitations are uni-
formly distributed across the state space, thus promoting robust policy initialization and efficient
adaptation. Additionally, when task rewards are available, incorporating state entropy as an intrinsic
reward has proven to be an effective approach for enhancing exploration. Lee et al. (2019) propose
optimizing the state marginal distribution to align with a target distribution, effectively enhancing
exploration. Building on this idea, Islam et al. (2019) introduce entropy regularization based on
the marginal state distribution, achieving superior state space coverage in complex domains. Fur-
ther advancements include the work of Guo et al. (2021), who incorporate geometry-aware Shannon
entropy of state visitations in both discrete and continuous domains, framing exploration as a compu-
tationally tractable problem. Additionally, Hazan et al. (2019) provide a provably efficient algorithm
for state entropy maximization, leveraging a black-box planning oracle. Expanding on these meth-
ods, Liu & Abbeel (2021) maximize a particle-based entropy in an abstract representation space,
demonstrating human-level performance in navigating complex environments.

3 BACKGROUND

Reinforcement Learning. We consider the Markov Decision Processes (MDPs) as the model pro-
cess, defined by the tuple (S,A,P, r, γ), where S is a state space, A is an action space, γ ∈ [0, 1)
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is the dicount factor and P : S ×A → Dist(S), r : S → [rmin, rmax] are the transition function and
reward function, respectively. We assume a fixed distribution µ0 as the initial state distribution. The
goal of an RL agent is to learn a policy π(a | s) under dataset D, which maximizes the expectation
of a discounted cumulative reward: J(π) = Eµ0,π [

∑∞
t=0 γ

trt]. For any policy π, the corresponding
state-action value function is Qπ(s, a) = E[

∑∞
k=0 γ

krt+k|St = s,At = a, π].

Maximum Policy Entropy. Different with standard reinforcement learning, maximum policy en-
tropy reinforcement learning aims to augment the objective with the expected entropy of the policy:

J(π) = Eµ0,π

[ ∞∑
t=0

γt (rt + αH(π(· | st)))

]
, (1)

where α is a temperature parameter, determining the relative importance of the entropy term against
the reward, and thus controls the stochasticity of the optimal policy.

4 ANALYSIS OF NEXT-STATE ENTROPY

How do we maximize the state entropy of the agent? Current approaches have been to encourage
exploration by adding bonus rewards related to the new state (Burda et al., 2018; Badia et al., 2020;
Zhang et al., 2021). Adding an exploration bonus has achieved considerable success, while theoret-
ical analysis of the state entropy has not been explored well. To bridge this gap, in this section, we
theoretically analyze the optimization objective of the next-state entropy. Firstly, we define the next-
state entropy as H(St+1 | St = s, π), which represents the entropy of the next state after executing
policy π in state s.

Definition 4.1 (Next-State Entropy). We define the next-state entropy under policy π following state
s by

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼P (·|s,a) log [P
π(s′ | s)] (2)

where Pπ(s′ | s) =
∫
a∈A π(a | s)P (s′ | s, a). The next-state entropy, as defined above, measures

the diversity of the subsequent states under the policy π. In classical entropy-regularized reinforce-
ment learning, the policy entropy is often used to encourage diversity in the actions taken. However,
these two concepts are not generally equivalent.

In this section, we will illustrate the discrepancy between policy entropy and next-state entropy
during policy updates in an illustrative example (Section 4.1) and then reveal their relationship under
both deterministic (Section 4.2) and stochastic transitions (Section 4.3) with theoretical analysis.

4.1 TOY EXAMPLE

The maximum entropy RL framework is often credited with improving exploration efficiency and
promoting more diverse state visitation, particularly in sparse reward settings. However, through the
following illustrative example, we demonstrate that optimizing policy entropy alone can be ineffi-
cient in certain cases, especially when there is redundancy in the action space.

Consider a one-step MDP with a deterministic transition, where st+1 = max(at, 0), which means
actions less than zero are redundant. We assume an initial policy πpolicy 1 is a Gaussian policy with a

mean less than zero: πpolicy(a) = 1√
2πσ

exp
(
− (a−µ)2

2σ2

)
, µ < 0. The corresponding policy entropy

is given by:
H(πpolicy(· | st)) = log(

√
2πeσ), (3)

which is independent of the mean µ. As shown in the Figure 1 (Left), updating the policy by
maximizing policy entropy alone leads to increased variance σ. However, since the mean of the
Gaussian distribution remains unchanged, there is still more than a 50% probability (the gray area)
that actions sampled from the updated policy will be less than zero, leading to the same next state.

1In Section 4.1, to avoid confusion between the policy π and the mathematical constant π, we denote the
policy by πpolicy .
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0

𝜇

policy update by maximizing policy entropy  

Ƹ𝜇
0 0

𝜇

policy update by maximizing next-state entropy  

Ƹ𝜇
0

𝜇

Figure 1: Probability distribution of policy π. For a one-step MDP with a deterministic transition
st+1 = max(at, 0), the gray area shows the probability of actions leading to the same next state.
Left: Policy update under maximum policy entropy by increasing variance σ. Right: Policy update
under maximum next-state entropy by increasing both variance σ and mean µ.

In contrast, the next-state entropy can be mathematically expressed as:

H (St+1|St = s, πpolicy) = log(
√
2πeσ)︸ ︷︷ ︸

policy entropy

+

{
Φ(
µ

σ
) log σ −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz

}
, (4)

where φ(z) = e−z2/2
√
2π

is the probability density function of the standard normal distribution, and
Φ(x) =

∫ x
−∞ φ(z)dz is its cumulative distribution function. The Equation 4 highlights that next-

state entropy is influenced not only by the policy entropy but also by an additional term associated
with µ. Notably, when we assume σ > 1 in the toy example, the variable µ positively correlates
with next-state entropy. A detailed proof and numerical analysis are provided in Appendix A. As
illustrated in the Figure 1 (Right), policy updates driven by next-state entropy increase both the
variance σ and the mean µ, significantly reducing the probability of sampling actions less than zero,
which decreases redundancy in the next states and enhance state diversity.

4.2 DETERMINISTIC CASE

Section 4.1 demonstrates the superiority of next-state entropy over policy entropy in terms of ex-
ploration. To better understand the relationship between next-state entropy and policy entropy, we
start with an MDP with deterministic transitions. As discussed by Baram et al. (2021), the following
corollary provides insights into the equivalent relationship between next-state entropy and policy
entropy under deterministic case:

Corollary 4.2. Let M be a deterministic MDP with a transition function T : S × A → S. If
T (s, a) ̸= T (s, a′) ,∀s ∈ S,∀a, a′ ∈ A, then

H(St+1 | St = s, π) = H(π(· | st)) , ∀s ∈ S

This corollary indicates that, in the deterministic case, if there are no redundant actions in the action
space A, next-state entropy and policy entropy are equivalent. Therefore, recent studies (Zahavy
et al., 2018a; Tennenholtz & Mannor, 2019; Zhong et al., 2024) have focused on eliminating re-
dundant actions in the action space A and significantly enhance the exploration and performance in
various domains.

4.3 STOCHASTIC CASE

Similarly, in the stochastic case, we can define a non-redundant policy and reveal the relationship
between next-state entropy and policy entropy. Firstly, we define the non-redundant policy as fol-
lows:

Definition 4.3 (Non-Redundant Policy). Given a stochastic MDP with a transition dynamics P , π
is a non-redundant policy if

∀s, s′ ∈ S, ∀ai, aj ∈ {a ∈ A | π(a | s) > 0}, P (s′ | s, ai) ∗ P (s′ | s, aj) = 0.

4
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In the stochastic case, we define π as a non-redundant policy only if there is an absolutely non-
intersection between probability distribution P (s′ | s, a) of possible actions sampling from π. In
other words, for any reachable next state s′, only one action can lead to it under a non-redundant
policy. Under the above strong assumption on policy π, we can reveal the relationship between
next-state entropy and policy entropy in the stochastic case:
Theorem 4.4. If π is a non-redundant policy, then

H(St+1 | St = s, π) = H(π(· | s)) +Hmodel, (5)

where Hmodel = Ea∼π(·|s)H(St+1 | St = s, a) is the entropy of the dynamics model.

Proof. Please refer to Appendix B for the detailed proof.

The entropy of the dynamics model Hmodel represents an inherent property of the system. Suppose
we treat this term as a constant c. In that case, the above equation reveals that in the case of stochastic
transitions, as long as the policy is non-redundant, next-state entropy is equivalent to policy entropy.

5 METHOD

Based on the analysis in Section 4, we can directly optimize state entropy by maximizing the entropy
of the non-redundant policy. However, constructing a non-redundant policy in the stochastic transi-
tion setting is extremely challenging since we must strictly satisfy the Definition 4.3. To solve this
issue, we decompose the overall policy into an inner policy πi and a parameterized, reversible ac-
tion mapping layerf . Based on this framework, we rigorously derive the gap between the next-state
entropy of the overall policy and the policy entropy of the inner policy. Meanwhile, we demonstrate
that by optimizing both the action mapping layer and an inverse dynamics model to minimize the
gap term, the inner policy’s entropy will be equivalent to the next-state entropy of the overall policy.

5.1 ACTION MAPPING

We consider a new action space E , where action a ∈ A is a function of the inner action e ∈ E :

a = f(e; θ), ∀e ∈ E , (6)

where f is the action mapping parameterized by θ and it has an invertible function:

e = f−1(a; θ), ∀a ∈ A. (7)

Subsequently, we define policy based on the action mapping as follows: for a given state s, the inner
policy πi(· | s) outputs the action e in new action space E and then f transforms e back to the
original action space A. For the policy π, we have the following conclusion:

π(a | s) = πi(e | s) ∗
∣∣∣∣∂f−1(a; θ)

∂a

∣∣∣∣ = πi(e | s) ∗
∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1

, (8)

where
∣∣∣∂f(e;θ)∂e

∣∣∣ is the Jacobian determinant of the function f . We denote the entropy of the internal
policy as H (πi(· | s)) and denote the entropy of the state as H (St+1 | St = s, π). Following the
above policy framework and notations, we can derive the entropy of the state as follows:
Theorem 5.1. For any inner policy e ∼ πi(· | s) and invertible action mapping layer a = f(e; θ),
we have

H(St+1 | St = s, π) = H (πi(· | s)) + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]]︸ ︷︷ ︸
Gap Term

+Hmodel

where Hmodel = Ee∼πi(·|s) [H(St+1 | St = s, e)] is the entropy of the dynamics model, pinv(e | s, s′)
is the inverse dynamic of inner policy, which is a function that predicts the inner action e required
to transition from a current state s to a next state s′.

5
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Algorithm 1 Maximum Next-State Entropy RL

1: Inputs: Initialize inner policy πψi , inverse dynamics model pϕinv, action mapping layer fθ.
2: for iteration t = 0, 1, 2, ... do
3: Observe state s and select internal action e ∼ πiψ(· | s)
4: Execute action a = fθ(e) in the environment
5: Obtain next state s′, reward r, and done signal d
6: Store (s, e, a, r, s′, d) in replay buffer D
7: if it’s time to update then
8: Update inverse dynamics model parameters ϕ based on Equation 11
9: Update the action mapping layer parameters θ based on Theorem 5.2

10: Update innner policy πψi based on the standard maximum policy entorpy RL algorithms
11: end if
12: end for
13: Return: Policy parameters ψ and action mapping layer parameters θ

Proof. Please refer to Appendix C for the detailed proof.

Theorem 5.1 suggests that we do not require πi is the non-redundant policy. In addition, it is
noteworthy that the entropy of the dynamics model Hmodel is an inherent characteristic of the system.
We can regard this term as a constant c. Therefore, if we can minimize the gap term, we can
maximize the next-state entropy by optimizing the policy entropy of the inner policy πi.

5.2 MAXIMIZE NEXT-STATE ENTROPY

Based on the analysis in Theorem 5.1, we can maximize next-state entropy as follows:

JMNSE(π) = E
(st,at,st+1)∼π

[ ∞∑
t=0

γt (rt + αH(St+1 | St = st, π))

]

= E
(st,at,st+1)∼π

[ ∞∑
t=0

γt
(
rt + α H(πψi (· | st))︸ ︷︷ ︸

Entorpy of Inner Policy

+αEa∼π(·|st)Est+1∼P (·|s,a)

[
log

[
pϕinv(e = f−1(at; θ) | st, st+1)

]]
︸ ︷︷ ︸

Gap Term

+c

)]
,

(9)

where the inverse dynamics pϕinv is parameterized with ϕ, and the inner policy πψi is parameterized
with ψ. It is noteworthy that π(· | s) in the above equation implicitly includes the inner policy πψi
and the action mapping layer fθ defined in the Equation 6. Therefore, we need to optimize these
three parameters ϕ, ψ, θ simultaneously.

Based on the Equation 9, we can conclude that maximizing JMNSE(π) is equivalent to maximizing
the entropy of the inner policy πψi if and only if the Gap Term is zero. Further, with an appropriate
model to estimate the inverse dynamics, since log pϕinv ≤ 0, the Gap Term is always ≤ 0. Meanwhile,
in the optimization of the gap term, we set γ = 1 to facilitate sampling and training, so we need to
optimize ϕ, θ by maximizing the gap term as follows:

ϕ∗, θ∗ = argmax JGap Term(ϕ, θ)

= argmax
ϕ,θ

E
(st,at,st+1)∼π
st+1∼P (·|st,at)

[
pϕinv(e = f−1(at; θ) | st, st+1)

]
(10)

Specifically, we use the iterative optimization mechanism to optimize ϕ and θ for the given inner
policy πi. Let ϕk and θk denote the learned parameters after iteration k, then:

6
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Step 1. Given θ = θk, we optimize the objective function in Equation 10 by optimizing ϕ:

ϕk+1 = argmax
ϕ

JGap Term(ϕ, θ
k)

= argmin
ϕ

E
(s,s′,e)∈D

− log
[
pϕinv(e | s, s

′)
] (11)

where D denotes the dataset collected by policy π. Intuitively, minimizing the objective in Equa-
tion 11 amounts to maximum likelihood estimation of actions.

Step 2. Given ϕ = ϕk+1, we optimize the objective function in Equation 10 by optimizing θ:

θk+1 = argmax
θ

JGap Term(ϕ
k+1, θ)

where a = f(e; θ), π(a | s) = πi(e | s) ∗
∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1

.
(12)

It is noteworthy that the action mapping layer fθ is implicitly included in π, preventing direct opti-
mization of θ. To solve this issue, we adopt the gradient descent method as follows:

Theorem 5.2. Given the inverse dynamic pϕ
k+1

inv (e | s, s′), the gradient of JGap Term(θ) can be derived
as:

∇θJGap Term(θ) = E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

[
∇θ log

∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1 ∣∣∣
e=et

log pϕ
k+1

inv (et | st, st+1)

]
, (13)

where
∣∣∣∂f(e;θ)∂e

∣∣∣ is the Jacobian determinant of the function f and et = f−1(at; θ).

Proof. Please refer to Appendix D for the detailed proof.

Based on Theorem 5.2, we can perform gradient updates on θ to train the action mapping layer fθ.

5.3 PRACTICAL IMPLEMENTATION

The overall framework of our algorithm is illustrated in Algorithm 1. After interacting with the
environment, we iteratively train the inverse dynamics network pϕinv(e | s, s′) and the action mapping
layer fθ(e) using the collected data based on the Equation 11 and Theorem 5.2. For the inner policy
πi, we use the standard maximum policy entropy RL methods, such as SAC (Haarnoja et al., 2018c).

Specifically, we construct the invertible action mapping function f using a piecewise linear function
with N parameters (θ⃗ ∈ RN ), defined as follows:

f(x) =

i−1∑
j=1

kj ·
1

N
+ ki

(
x− i− 1

N

)
for x ∈

[
i− 1

N
,
i

N

]

where ki = N · exp(θi)∑N
j=1 exp(θj)

for i = 1, 2, . . . , N. For each i ∈ [1, N ], ki represents the slope

of the linear function in the interval
[
i−1
N , iN

]
. For environments with multidimensional action

spaces, we construct |A| action mapping functions, each applying an independent transformation to
its respective dimension.

For the inverse dynamics model, rather than using Gaussian distributions to predict the distribu-
tion of continuous actions, we discretize the actions in the dataset and employ discrete multinomial
distributions. These multinomial distributions output an M -dimensional vector, where each dimen-
sion corresponds to the probability that the predicted action lies within the interval

[
j−1
M , jM

]
, for

j ∈ [1,M ]. This approach enables the inverse dynamics model to capture complex and multimodal
behaviors effectively.

7
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Figure 2: The control of systems with actuators demonstrating input nonlinearities (e.g., saturation,
deadzone).
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Figure 3: The experimental results in MuJoCo and MetaWorld with nonlinear actuators under five
random seeds.

6 EXPERIMENTS

In this section, we aim to address the following questions: (1) How do traditional RL methods
perform when the policy entropy does not accurately reflect the diversity of the state? (2) How does
MNSE compare with other state-of-the-art approaches for maximizing entropy? (3) How sensitive
is MNSE to the hyperparameters of the algorithm?

6.1 EXPERIMENTAL SETTING

In this section, we examine actuators with input nonlinearities. In industrial applications, nonlinear
actuators are a common challenge due to wear-and-tear or inaccuracies in mechanical components.
In this work, we consider two types of input nonlinearities: saturation and deadzone, as shown in
Figure 2. Both saturation and deadzone can reduce control accuracy, severely influencing the control
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Figure 4: (Left): Perfomance of MNSE, SAC, TD3, PPO in MuJoCo Ant with nonlinear actuators
under different effective action proportions. (Right): Perfomance of MNSE, SAC, TD3, PPO in
MuJoCo HalfCheetah with nonlinear actuators under different effective action proportions.
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Figure 5: Ablation study of the number of parameters in the piecewise linear function.

system’s performance. Specifically, the saturation and deadzone are formulated as follows:

ysat =

 umax if x ≥ umax

x if umin < x < umax

umin if u ≤ umin

ydz =


x− high if u ≥ high
0 if low < u < high
x− low if u ≤ low

where x ∈ [xlb, xub], y ∈ [umin, umax]. Notably, within a specific environment, umin and umax

remain invariant, guaranteeing theoretical optimality across various EAPs.

In the experiments, we employ either saturation or deadzone to each joint of the robot. In addition,
we characterize the proportion of effective actions in the action space as Effective Action Propor-
tion (EAP):

EAP =
umax − umin

xub − xlb
. (14)

As EAP increases, the actuator nonlinearity increases, making the task more difficult.

Baselines We compare MNSE with baselines using various maximum entropy methods. We first
compare our method with the standard maximum policy entropy method, SAC (Haarnoja et al.,
2018c;d). In addition, we compare our method with MinRed (Baram et al., 2021), which directly
maximizes the next-state entropy to minimize action redundancy. We also compare our method with
the strong state-novelty-based exploration method (Zhang et al., 2021). Please refer to Appendix E
for the experimental details.

6.2 EXPERIMENTAL RESULTS

Answer of Question 1: To show the impact of the nonlinear actuators on the traditional RL
methods, we conduct experiments in MuJoCo environments with various EAP by employing
SAC (Haarnoja et al., 2018c;d), TD3 (Silver et al., 2014; Lillicrap, 2015), PPO (Schulman et al.,
2017), and our proposed MNSE approach. As shown in Figure 4, as the EAP decreases and actuator
nonlinearity increases, the performance of SAC gradually degrades and eventually collapses. In the
Ant environment (Figure 4, left), when the EAP decreases to 40%, the performance of the SAC al-
gorithm shows a marked decline, and at 20% EAP or lower, SAC completely fails. Similarly, in the
HalfCheetah environment (Figure 4, right), when the EAP drops to 40% or lower, the performance
of SAC is only half of that achieved without actuator nonlinearity (EAP = 100%).
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This decline in performance can be attributed to the fact that as EAP decreases, policy entropy no
longer accurately represents the diversity of the next state, which hinders the effective exploration
guidance within the SAC framework. In contrast, our MNSE approach based on next-state entropy
maintains stable performance across varying EAP environments, significantly outperforming SAC.
Moreover, our experiments indicate that not only SAC, but traditional RL algorithms such as TD3
and PPO, also struggle to handle the reduction in effective action space as actuator nonlinearity
increases. As shown in Figure 4 (right), when the EAP decreases, both TD3 and PPO exhibit
varying degrees of performance degradation, with some cases resulting in complete failure. This
underscores that actuator nonlinearity is a significant challenge across various algorithms in the
field of reinforcement learning.

Answer of Question 2: To show that MNSE can maximize next-state entropy, we conduct ex-
periments on Mujoco and MetaWorld tasks. As illustrated in Figure 3, our method consistently
outperforms baseline approaches across various experimental environments. NovelD and MinRed
employ bonus-based strategies to promote the exploration of diverse states. Specifically, NovelD
incentivizes agents by evaluating state novelty, while MinRed provides additional rewards based
on transition entropy. In contrast, our method, MNSE, establishes an action mapping layer that
effectively bridges the gap between policy entropy and next-state entropy. By directly promot-
ing exploration through next-state entropy, MNSE demonstrates superior performance compared to
bonus-based methods across various domains, as evidenced by our experimental results.

Answer of Question 3: To test how the algorithm’s hyperparameters affect the performance of
MNSE, we change the number of parametersN in the piecewise linear function, which significantly
influences the expressive power of the action mapping function f . As shown in Figure 5, we con-
ducted ablation experiments across four MuJoCo environments to evaluate the impact of N . The
results reveal that when N is small, the limited expressive capacity of f leads to suboptimal algo-
rithm performance. As N increases, algorithm performance gradually improves. However, once
N ≥ 20, the performance stabilizes and shows little variation. To balance expressive power with
computational efficiency, we consistently employed N = 20 in all experimental implementations.

7 DISCUSSION

Why Maximize Next-State Entropy in Reinforcement Learning? Entropy regularization is a fun-
damental technique in reinforcement learning. By integrating an entropy maximization term, it
enhances robustness to model and estimation errors (Ziebart et al., 2010), promotes the acquisi-
tion of diverse behaviors (Haarnoja et al., 2017), facilitates broader exploration (Fox et al., 2015;
Haarnoja et al., 2018c;d) and accelerates the learning process by smoothing the optimization land-
scape (Ahmed et al., 2019). However, maximizing policy entropy may not directly promote policy
optimization due to redundancy in the action space. In such cases, next-state entropy extends the
concept of policy entropy more directly. Specifically, next-state entropy measures the entropy of
the next state resulting from the policy, rather than the action itself. This shift allows next-state en-
tropy to capture the diversity of effects induced by actions. By bridging the gap between next-state
and policy entropy, our method retains the benefits of policy entropy while addressing inefficiencies
caused by action redundancy.

8 CONCLUSION

In this work, we demonstrate a critical problem: the maximum next-state entropy of the RL agent.
We first systematically elucidate the distinctions and interrelationships between next-state entropy
and policy entropy. Then, to bridge the gap between these two concepts, we integrate inverse dynam-
ics with an action mapping layer. We demonstrate that by optimizing both the action mapping layer
and inverse dynamics model, we can maximize the next-state entropy by optimizing the inner policy
entropy. We conduct extensive experiments and demonstrate that our method outperforms baseline
methods across various domains. Future research will focus on extending MNSE to accommodate
more complex action space structures and exploring its potential applications in robotics.
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A TOY EXAMPLE

Consider a one-step MDP with a deterministic transition, where st+1 = max(at, 0), which means
actions less than zero are redundant. We assume an initial policy π is a Gaussian policy with a mean
less than zero: p(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
, µ < 0. The corresponding policy entropy is given

by:
H(π(· | st)) = log(

√
2πeσ), (15)

which is independent of the mean µ.

Since Pπ(s′ | s) = 0 when s′ < 0, it follows that Pπ(s′ | s) is a rectified Gaussian distribution.
Then we have:

H(St+1 | St = s, π)

=−
∫ +∞

0

p(x) log p(x)dx

=−
∫ +∞

0

φ(x−µσ )

σ
log

φ(x−µσ )

σ
dx

=−
∫ +∞

−µ
σ

φ(z) log
φ(z)

σ
dz

=

∫ +∞

−µ
σ

−φ(z) logφ(z)dz + log σ

∫ +∞

−µ
σ

φ(z)dz

=

∫ +∞

−∞
−φ(z) logφ(z)dz −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz + log σ(1− Φ(−µ

σ
))

= log(
√
2πeσ)︸ ︷︷ ︸

policy entropy

+

{
Φ(
µ

σ
) log σ −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz

}
,

(16)

where φ(z) = e−z2/2
√
2π

is the probability density function of the standard normal distribution, and
Φ(x) =

∫ x
−∞ φ(z)dz is its cumulative distribution function.

It is challenging to provide a rigorous mathematical analysis of this relationship. Specifically, when
we assume σ > 1 in the toy example, log σ > 0, and Φ

(
µ
σ

)
log σ is positively correlated with µ.

Furthermore, since 0 < φ(z) ≤ 1√
2π
< 1, the term −

∫ −µ
σ

−∞ −φ(z) logφ(z) dz is also positively cor-
related with µ. Meanwhile, we have conducted numerical experiments to examine the relationship
between the µ variable and next-state entropy for different σ values. As shown in the results, when
σ values are {1.0, 1.5, 2.0}, the next-state entropy increases as the µ value increases, demonstrating
a positive relationship between µ and entropy.

The above analysis indicates that to increase H(St+1 | St = s, π), one effective method is not only
to increase σ but also to increase µ.
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Figure 6: The next-state entropy increases as the mu value increases.
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B PROOF OF THEOREM 4.4

Proof. Recall that the entropy of state is:

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼P (·|s,a) log [P
π(s′ | s)]

= −Ea∼π(·|s)Es′∼P (·|s,a) log
[
Ea∼π(·|s)P (s′ | s, a)

] (17)

Then, according to the Definition 4.3, we have:

Es′∼Pπ(·|s,a) log
[
Ea∼π(·|s)P (s′ | s, a)

]
= Es′∼Pπ(·|s,a) log [π(a | s)P (s′ | s, a)]
= Es′∼Pπ(·|s,a) [log π(a | s) + logP (s′ | s, a)] ,

(18)

Combining the Equation 17 and Equation 18, we have:

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼Pπ(·|s,a) [log π(a | s) + logP (s′ | s, a)]
= −Ea∼π(·|s) [log π(a | s)]− Ea∼π(·|s)Es′∼Pπ(·|s,a) [logP (s

′ | s, a)]
= H(π(· | s)) + Ea∼π(·|s)H(St+1 | St = s, a).

(19)

C PROOF OF THEOREM 5.1

Proof. Firstly, we can derive the next-state entropy H (St+1|St = s, π) as follows.

H (St+1|St = s, π) = −Ea∼π(·|s)Es′∼p(·|s,a) log pπ(s′ | s)
= −Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log p

πi(s′|s)
= −Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log p

πi(s′|s)− log [πi(e|s)p(s′|s, e)] + log [πi(e|s)p(s′|s, e)]}
(20)

where
pπ(s′ | s) = Eã∼π(·|s)p (s′ | s, ã) , pπi(s′ | s) = Eẽ∼πi(·|s)p (s

′ | s, ẽ) .

Here, we utilize the property of inverse dynamics:

pinv(e|s, s′) =
πi(e|s)p(s′|s, e)

pπi(s′|s)
(21)

then Eq. 20 can be derived as follows:

H (St+1|St = s, π)

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log [πi(e|s)p(s
′|s, e)] + log pπi(s′|s)− log [πi(e|s)p(s′|s, e)]}

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]−

Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log p
πi(s′|s)− log [πi(e|s)p(s′|s, e)]} (Property of Eq. 21)

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {− log pinv(e|s, s′)}

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]− Ee∼πi(·|s)Es′∼p(·|s,e) {− log pinv(e|s, s′)}

=−Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)] + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]] .

The first term is as follows:

−Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]

= −Ee∼πi(·|s)Es′∼p(·|s,e) log [πi(e|s)p(s
′|s, e)]

= −Ee∼πi(·|s)Es′∼p(·|s,e) log πi(e|s)− Ee∼πi(·|s)Es′∼p(·|s,e) log p(s
′|s, e)

= Ee∼πi(·|s) [− log πi(e|s)] + Ee∼πi(·|s)Es′∼p(·|s,e) [− log p(s′|s, e)]
= H (πi(· | s)) +Hmodel
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where Hmodel = Ee∼πi(·|s) [H(St+1 | St = s, e)] is the entropy of the dynamics model.

As a result, we have:

H(St+1 | St = s, π) = H (πi(· | s)) + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]]︸ ︷︷ ︸
Gap Term

+Hmodel

D PROOF OF THEOREM 5.2

Proof. We will derive ∇θJGap Term(θ) in the following.

∇θ E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

[
pϕinv(e = f−1(at; θ) | st, st+1)

]
=

∫
s∈S

∫
a∈A

∂π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

=

∫
s∈S

∫
a∈A

π(a|s) 1

π(a|s)
∂π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

=

∫
s∈S

∫
a∈A

π(a|s)∂ log π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

= E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

∂ log π(a|s)
∂θ

log pϕ
k+1

inv (e | s, s′)

when a = fθ(e), recall that:

π(a|s) = πi(e | s) ∗
∣∣∣∣∂a∂e

∣∣∣∣−1

,

According to the inverse function theorem: If y = f(x) and x = f−1(y), we have:

df−1(y)

dy
=
dx

dy
=

(
dy

dx

)−1

=

(
df(x)

dx

)−1

then:
∂ log π(a|s)

∂θ
=
∂ log |∂f

−1
θ (a)

∂a |
∂θ

= ∇θ log

∣∣∣∣∂fθ(e)∂e

∣∣∣∣−1

In conclusion,

∇θJGap Term(θ) = E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

{
∇θ log

∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1 ∣∣∣
e=et

log pϕ
k+1

inv (et | st, st+1)

}
(22)
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E EXPERIMENTAL DETAILS

Our algorithm, MNSE, is developed based on the SAC algorithm from the RL Baselines3 Zoo (Raf-
fin, 2020; Raffin et al., 2021). The hyperparameters for MNSE are detailed in Table E. In all ex-
perimental implementations, we consistently employed N = 20 as the number of parameters in the
piecewise linear function. The baseline SAC shares the same hyperparameters as those of MNSE.

Hyper-parameter Value

Shared
Learning rate 3× 10−4

Buffer size 1× 106

Learning starts 1× 105

Batch size 64
Soft update coefficient τ 0.005
Discount factor γ 0.99
Activation function ReLU

Others
Number of parameters in piecewise linear function N 20

Table 1: MNSE Hyper-parameters sheet

Baseline Hyper-parameter: TD3 and PPO are developed utilizing the RL Baselines3 Zoo (Raffin,
2020), employing the tuned hyperparameters provided by this framework. NovelD (Zhang et al.,
2021) and MinRed (Baram et al., 2021) are constructed based on the SAC algorithm within the RL
Baselines3 Zoo, with the trade-off coefficient for the additional reward being searched within the
range of 5e-3 to 5e-1.

Inverse Dynamics: We use discrete multinomial distributions to predict the actions. These multi-
nomial distributions output an M -dimensional vector, where each dimension corresponds to the
probability that the predicted action lies within the interval

[
j−1
M , jM

]
, for j ∈ [1,M ]. We set

M = 20 in all experimental implementations.

Nonlinear Actuator in Figure 3: We consider two types of input nonlinearities: saturation and
deadzone. The specific types of input nonlinearities and the corresponding effective action propor-
tions (EAP) in each environment during our experiments(Figure 3) are presented in Table E.

Environment Types of Nonlinearities EAP

MuJoCo Ant Saturation 40%
MuJoCo HalfCheetah Saturation 40%
MuJoCo Hopper Deadzone 20%
MuJoCo Walker2d Deadzone 20%
MuJoCo Humanoid Deadzone 20%
Metaworld PickPlace Saturation 40%
Metaworld Hammer Saturation 40%
Metaworld DoorOpen Deadzone 40%
Metaworld Assembly Deadzone 40%

Table 2: Nonlinear Actuator in Figure 3
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