
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAXIMUM NEXT-STATE ENTROPY FOR EFFICIENT RE-
INFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Maximum entropy algorithms have demonstrated significant progress in Rein-
forcement Learning (RL), which offers additional guidance in the form of en-
tropy, which is particularly beneficial in tasks with sparse rewards. Nevertheless,
current approaches grounded in policy entropy encourage the agent to explore di-
verse actions, yet they do not directly help the agent explore diverse states. In
this study, we theoretically reveal the challenge of optimizing the next-state en-
tropy of the agent. To address this limitation, we introduce Maximum Next-State
Entropy (MNSE), a novel method that maximizes next-state entropy through an
action mapping layer following the inner policy. We provide a theoretical analy-
sis demonstrating that MNSE can maximize next-state entropy by optimizing the
action entropy of the inner policy. We conduct extensive experiments on vari-
ous continuous control tasks and show that MNSE can significantly improve the
exploration capability of RL algorithms.

1 INTRODUCTION

Maximum entropy RL algorithms have demonstrated remarkable performance across various do-
mains, including games (Gao et al., 2018), robotic control (Haarnoja et al., 2018a;b), and au-
tonomous navigation (Sun et al., 2022). The maximum entropy framework enhances policy explo-
ration and robustness by optimizing both reward and policy entropy simultaneously (Ziebart et al.,
2008; 2010). Recent advancements adapt the temperature dynamically (Hu et al., 2021)to improve
the trade-off between reward and entropy. Meanwhile, Deep Soft Policy Gradient (DSPG) Shi et al.
(2019) integrates soft policy gradients with the soft Bellman equation to address stability issues in
off-policy learning.

However, maximizing policy entropy may not directly help the agent explore diverse states due to
redundancy in the action space. For example, in real-world tasks, actuators often exhibit saturation
and dead zone issues due to design redundancies or equipment aging (Galuppini et al., 2018; Bai,
2002). This leads to a redundant action space, where multiple actions can result in the same state.

If we cannot deal with this issue, the nonlinear actuators can reduce control accuracy, thereby
significant degrading the control performance.

To help the agent directly explore diverse states, current researchers propose novelty-based explo-
ration methods, such as random network distillation (Burda et al., 2018) and pseudo-count tech-
niques (Lobel et al., 2023; Machado et al., 2020). These methods aim to drive agents toward dis-
covering more diverse states by directly evaluating the novelty of a state and incorporating it as
an exploration bonus into the extrinsic reward. Current novelty-based and pseudo-count exploration
methods have achieved considerable success across various domains. However, it is unclear whether
state diversity can provably benefit maximum entropy RL and how to bridge the gap under theoreti-
cal guarantees, which naturally leads to the following question:

How can we maximize the next-state entropy of the RL agent in a principled way?

To answer this question, we start with the analysis of next-state entropy. Intuitively, if the policy
is non-redundant, we can optimize the next-state entropy by optimizing policy entropy. However,
the condition of non-redundant policy is hard to meet in the stochastic transition case. To solve
this issue, we first introduce the inner policy and reversible action mapping layer. Then, we rigor-
ously derive the gap between the next-state entropy and the policy entropy of the inner policy. We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

demonstrate that by optimizing both the action mapping layer and inverse dynamics model, we can
maximize the next-state entropy by optimizing the inner policy entropy. In practice, our method
also achieves superior performance. We conduct extensive experiments on various environments,
including MuJoCo (Todorov et al., 2012) and Meta-World (Yu et al., 2020). Results show that our
algorithm performs better than baselines.

2 RELATED WORK

Maximum Entropy Reinforcement Learning has been widely adopted for improving policy ex-
ploration and robustness in RL. Early work introduced Soft Actor-Critic (SAC) (Haarnoja et al.,
2018c;d), an off-policy actor-critic algorithm that formalizes MaxEnt RL by balancing the goals of
maximizing expected return and policy entropy. Deep Soft Policy Gradient (DSPG) by (Shi et al.,
2019) integrates soft policy gradients with the soft Bellman equation to address stability issues in
off-policy learning. Count-Based Soft Q-Learning (CBSQL) by (Hu et al., 2021) adapts the tem-
perature dynamically to improve the trade-off between reward and entropy. Additionally, Han &
Sung (2021) propose a max-min entropy framework to improve exploration in model-free learning
by promoting low-entropy state visitation.

Action Representation. Extensive efforts have been made to effectively represent actions within
large action spaces. Zahavy et al. (2018b) propose a method that directly identifies redundant or irrel-
evant actions using external elimination signals provided by the environment, removing them from
the sampling process in text-based games. Tennenholtz & Mannor (2019) adopt a negative sampling
procedure, leveraging expert demonstrations to better understand the action space. However, valu-
able prior information is often scarce and expensive, limiting the scalability of these approaches.
Chandak et al. (2019) demonstrates how to learn and utilize action representations without rely-
ing on prior knowledge by embedding them within the policy structure to train agents effectively.
Similarly, Metz et al. (2017) introduces a novel approach to discretize high-dimensional continuous
action spaces by sequentially combining one-dimensional discrete actions.

Exploration is a cornerstone of reinforcement learning, with various strategies enhancing agents’
ability to learn from complex environments. For example, the Go-Explore strategy (Ecoffet et al.,
2019) advocates for a phased approach to overcoming challenging exploration dilemmas. Count-
based methods (Bellemare et al., 2016) capitalize on environmental novelty by employing pseudo-
counts. Disagreement-based exploration (Pathak et al., 2019) harnesses the variance in model pre-
dictions to propel the agent toward exploration. Curiosity-driven exploration mechanisms, such as
ICM (Pathak et al., 2017), utilize prediction errors to incentivize exploration. RND (Burda et al.,
2018) employs a novel neural network to generate intrinsic rewards based on the prediction error of
environmental dynamics, driving the agent towards unexplored territories. NGU (Badia et al., 2020)
integrates intrinsic motivation with an episodic memory mechanism to encourage the revisitation of
novel states, promoting long-term exploration.

State Entropy Maximization aims to learn a reward-free policy in which state visitations are uni-
formly distributed across the state space, thus promoting robust policy initialization and efficient
adaptation. Additionally, when task rewards are available, incorporating state entropy as an intrinsic
reward has proven to be an effective approach for enhancing exploration. Lee et al. (2019) propose
optimizing the state marginal distribution to align with a target distribution, effectively enhancing
exploration. Building on this idea, Islam et al. (2019) introduce entropy regularization based on
the marginal state distribution, achieving superior state space coverage in complex domains. Fur-
ther advancements include the work of Guo et al. (2021), who incorporate geometry-aware Shannon
entropy of state visitations in both discrete and continuous domains, framing exploration as a compu-
tationally tractable problem. Additionally, Hazan et al. (2019) provide a provably efficient algorithm
for state entropy maximization, leveraging a black-box planning oracle. Expanding on these meth-
ods, Liu & Abbeel (2021) maximize a particle-based entropy in an abstract representation space,
demonstrating human-level performance in navigating complex environments.

3 BACKGROUND

Reinforcement Learning. We consider the Markov Decision Processes (MDPs) as the model pro-
cess, defined by the tuple (S,A,P, r, γ), where S is a state space, A is an action space, γ ∈ [0, 1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

is the dicount factor and P : S ×A → Dist(S), r : S → [rmin, rmax] are the transition function and
reward function, respectively. We assume a fixed distribution µ0 as the initial state distribution. The
goal of an RL agent is to learn a policy π(a | s) under dataset D, which maximizes the expectation
of a discounted cumulative reward: J(π) = Eµ0,π [

∑∞
t=0 γ

trt]. For any policy π, the corresponding
state-action value function is Qπ(s, a) = E[

∑∞
k=0 γ

krt+k|St = s,At = a, π].

Maximum Policy Entropy. Different with standard reinforcement learning, maximum policy en-
tropy reinforcement learning aims to augment the objective with the expected entropy of the policy:

J(π) = Eµ0,π

[∞∑
t=0

γt (rt + αH(π(· | st)))

]
, (1)

where α is a temperature parameter, determining the relative importance of the entropy term against
the reward, and thus controls the stochasticity of the optimal policy.

4 ANALYSIS OF NEXT-STATE ENTROPY

How do we maximize the state entropy of the agent? Current approaches have been to encourage
exploration by adding bonus rewards related to the new state (Burda et al., 2018; Badia et al., 2020;
Zhang et al., 2021). Adding an exploration bonus has achieved considerable success, while theoret-
ical analysis of the state entropy has not been explored well. To bridge this gap, in this section, we
theoretically analyze the optimization objective of the next-state entropy. Firstly, we define the next-
state entropy as H(St+1 | St = s, π), which represents the entropy of the next state after executing
policy π in state s.

Definition 4.1 (Next-State Entropy). We define the next-state entropy under policy π following state
s by

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼P (·|s,a) log [P
π(s′ | s)] (2)

where Pπ(s′ | s) =
∫
a∈A π(a | s)P (s′ | s, a). The next-state entropy, as defined above, measures

the diversity of the subsequent states under the policy π. In classical entropy-regularized reinforce-
ment learning, the policy entropy is often used to encourage diversity in the actions taken. However,
these two concepts are not generally equivalent.

In this section, we will illustrate the discrepancy between policy entropy and next-state entropy
during policy updates in an illustrative example (Section 4.1) and then reveal their relationship under
both deterministic (Section 4.2) and stochastic transitions (Section 4.3) with theoretical analysis.

4.1 TOY EXAMPLE

The maximum entropy RL framework is often credited with improving exploration efficiency and
promoting more diverse state visitation, particularly in sparse reward settings. However, through the
following illustrative example, we demonstrate that optimizing policy entropy alone can be ineffi-
cient in certain cases, especially when there is redundancy in the action space.

Consider a one-step MDP with a deterministic transition, where st+1 = max(at, 0), which means
actions less than zero are redundant. We assume an initial policy πpolicy 1 is a Gaussian policy with a

mean less than zero: πpolicy(a) = 1√
2πσ

exp
(
− (a−µ)2

2σ2

)
, µ < 0. The corresponding policy entropy

is given by:
H(πpolicy(· | st)) = log(

√
2πeσ), (3)

which is independent of the mean µ. As shown in the Figure 1 (Left), updating the policy by
maximizing policy entropy alone leads to increased variance σ. However, since the mean of the
Gaussian distribution remains unchanged, there is still more than a 50% probability (the gray area)
that actions sampled from the updated policy will be less than zero, leading to the same next state.

1In Section 4.1, to avoid confusion between the policy π and the mathematical constant π, we denote the
policy by πpolicy .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0

𝜇

policy update by maximizing policy entropy

Ƹ𝜇
0 0

𝜇

policy update by maximizing next-state entropy

Ƹ𝜇
0

𝜇

Figure 1: Probability distribution of policy π. For a one-step MDP with a deterministic transition
st+1 = max(at, 0), the gray area shows the probability of actions leading to the same next state.
Left: Policy update under maximum policy entropy by increasing variance σ. Right: Policy update
under maximum next-state entropy by increasing both variance σ and mean µ.

In contrast, the next-state entropy can be mathematically expressed as:

H (St+1|St = s, πpolicy) = log(
√
2πeσ)︸ ︷︷ ︸

policy entropy

+

{
Φ(
µ

σ
) log σ −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz

}
, (4)

where φ(z) = e−z2/2
√
2π

is the probability density function of the standard normal distribution, and
Φ(x) =

∫ x
−∞ φ(z)dz is its cumulative distribution function. The Equation 4 highlights that next-

state entropy is influenced not only by the policy entropy but also by an additional term associated
with µ. Notably, when we assume σ > 1 in the toy example, the variable µ positively correlates
with next-state entropy. A detailed proof and numerical analysis are provided in Appendix A. As
illustrated in the Figure 1 (Right), policy updates driven by next-state entropy increase both the
variance σ and the mean µ, significantly reducing the probability of sampling actions less than zero,
which decreases redundancy in the next states and enhance state diversity.

4.2 DETERMINISTIC CASE

Section 4.1 demonstrates the superiority of next-state entropy over policy entropy in terms of ex-
ploration. To better understand the relationship between next-state entropy and policy entropy, we
start with an MDP with deterministic transitions. As discussed by Baram et al. (2021), the following
corollary provides insights into the equivalent relationship between next-state entropy and policy
entropy under deterministic case:

Corollary 4.2. Let M be a deterministic MDP with a transition function T : S × A → S. If
T (s, a) ̸= T (s, a′) ,∀s ∈ S,∀a, a′ ∈ A, then

H(St+1 | St = s, π) = H(π(· | st)) , ∀s ∈ S

This corollary indicates that, in the deterministic case, if there are no redundant actions in the action
space A, next-state entropy and policy entropy are equivalent. Therefore, recent studies (Zahavy
et al., 2018a; Tennenholtz & Mannor, 2019; Zhong et al., 2024) have focused on eliminating re-
dundant actions in the action space A and significantly enhance the exploration and performance in
various domains.

4.3 STOCHASTIC CASE

Similarly, in the stochastic case, we can define a non-redundant policy and reveal the relationship
between next-state entropy and policy entropy. Firstly, we define the non-redundant policy as fol-
lows:

Definition 4.3 (Non-Redundant Policy). Given a stochastic MDP with a transition dynamics P , π
is a non-redundant policy if

∀s, s′ ∈ S, ∀ai, aj ∈ {a ∈ A | π(a | s) > 0}, P (s′ | s, ai) ∗ P (s′ | s, aj) = 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the stochastic case, we define π as a non-redundant policy only if there is an absolutely non-
intersection between probability distribution P (s′ | s, a) of possible actions sampling from π. In
other words, for any reachable next state s′, only one action can lead to it under a non-redundant
policy. Under the above strong assumption on policy π, we can reveal the relationship between
next-state entropy and policy entropy in the stochastic case:
Theorem 4.4. If π is a non-redundant policy, then

H(St+1 | St = s, π) = H(π(· | s)) +Hmodel, (5)

where Hmodel = Ea∼π(·|s)H(St+1 | St = s, a) is the entropy of the dynamics model.

Proof. Please refer to Appendix B for the detailed proof.

The entropy of the dynamics model Hmodel represents an inherent property of the system. Suppose
we treat this term as a constant c. In that case, the above equation reveals that in the case of stochastic
transitions, as long as the policy is non-redundant, next-state entropy is equivalent to policy entropy.

5 METHOD

Based on the analysis in Section 4, we can directly optimize state entropy by maximizing the entropy
of the non-redundant policy. However, constructing a non-redundant policy in the stochastic transi-
tion setting is extremely challenging since we must strictly satisfy the Definition 4.3. To solve this
issue, we decompose the overall policy into an inner policy πi and a parameterized, reversible ac-
tion mapping layerf . Based on this framework, we rigorously derive the gap between the next-state
entropy of the overall policy and the policy entropy of the inner policy. Meanwhile, we demonstrate
that by optimizing both the action mapping layer and an inverse dynamics model to minimize the
gap term, the inner policy’s entropy will be equivalent to the next-state entropy of the overall policy.

5.1 ACTION MAPPING

We consider a new action space E , where action a ∈ A is a function of the inner action e ∈ E :

a = f(e; θ), ∀e ∈ E , (6)

where f is the action mapping parameterized by θ and it has an invertible function:

e = f−1(a; θ), ∀a ∈ A. (7)

Subsequently, we define policy based on the action mapping as follows: for a given state s, the inner
policy πi(· | s) outputs the action e in new action space E and then f transforms e back to the
original action space A. For the policy π, we have the following conclusion:

π(a | s) = πi(e | s) ∗
∣∣∣∣∂f−1(a; θ)

∂a

∣∣∣∣ = πi(e | s) ∗
∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1

, (8)

where
∣∣∣∂f(e;θ)∂e

∣∣∣ is the Jacobian determinant of the function f . We denote the entropy of the internal
policy as H (πi(· | s)) and denote the entropy of the state as H (St+1 | St = s, π). Following the
above policy framework and notations, we can derive the entropy of the state as follows:
Theorem 5.1. For any inner policy e ∼ πi(· | s) and invertible action mapping layer a = f(e; θ),
we have

H(St+1 | St = s, π) = H (πi(· | s)) + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]]︸ ︷︷ ︸
Gap Term

+Hmodel

where Hmodel = Ee∼πi(·|s) [H(St+1 | St = s, e)] is the entropy of the dynamics model, pinv(e | s, s′)
is the inverse dynamic of inner policy, which is a function that predicts the inner action e required
to transition from a current state s to a next state s′.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Maximum Next-State Entropy RL

1: Inputs: Initialize inner policy πψi , inverse dynamics model pϕinv, action mapping layer fθ.
2: for iteration t = 0, 1, 2, ... do
3: Observe state s and select internal action e ∼ πiψ(· | s)
4: Execute action a = fθ(e) in the environment
5: Obtain next state s′, reward r, and done signal d
6: Store (s, e, a, r, s′, d) in replay buffer D
7: if it’s time to update then
8: Update inverse dynamics model parameters ϕ based on Equation 11
9: Update the action mapping layer parameters θ based on Theorem 5.2

10: Update innner policy πψi based on the standard maximum policy entorpy RL algorithms
11: end if
12: end for
13: Return: Policy parameters ψ and action mapping layer parameters θ

Proof. Please refer to Appendix C for the detailed proof.

Theorem 5.1 suggests that we do not require πi is the non-redundant policy. In addition, it is
noteworthy that the entropy of the dynamics model Hmodel is an inherent characteristic of the system.
We can regard this term as a constant c. Therefore, if we can minimize the gap term, we can
maximize the next-state entropy by optimizing the policy entropy of the inner policy πi.

5.2 MAXIMIZE NEXT-STATE ENTROPY

Based on the analysis in Theorem 5.1, we can maximize next-state entropy as follows:

JMNSE(π) = E
(st,at,st+1)∼π

[∞∑
t=0

γt (rt + αH(St+1 | St = st, π))

]

= E
(st,at,st+1)∼π

[∞∑
t=0

γt
(
rt + α H(πψi (· | st))︸ ︷︷ ︸

Entorpy of Inner Policy

+αEa∼π(·|st)Est+1∼P (·|s,a)

[
log

[
pϕinv(e = f−1(at; θ) | st, st+1)

]]
︸ ︷︷ ︸

Gap Term

+c

)]
,

(9)

where the inverse dynamics pϕinv is parameterized with ϕ, and the inner policy πψi is parameterized
with ψ. It is noteworthy that π(· | s) in the above equation implicitly includes the inner policy πψi
and the action mapping layer fθ defined in the Equation 6. Therefore, we need to optimize these
three parameters ϕ, ψ, θ simultaneously.

Based on the Equation 9, we can conclude that maximizing JMNSE(π) is equivalent to maximizing
the entropy of the inner policy πψi if and only if the Gap Term is zero. Further, with an appropriate
model to estimate the inverse dynamics, since log pϕinv ≤ 0, the Gap Term is always ≤ 0. Meanwhile,
in the optimization of the gap term, we set γ = 1 to facilitate sampling and training, so we need to
optimize ϕ, θ by maximizing the gap term as follows:

ϕ∗, θ∗ = argmax JGap Term(ϕ, θ)

= argmax
ϕ,θ

E
(st,at,st+1)∼π
st+1∼P (·|st,at)

[
pϕinv(e = f−1(at; θ) | st, st+1)

]
(10)

Specifically, we use the iterative optimization mechanism to optimize ϕ and θ for the given inner
policy πi. Let ϕk and θk denote the learned parameters after iteration k, then:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Step 1. Given θ = θk, we optimize the objective function in Equation 10 by optimizing ϕ:

ϕk+1 = argmax
ϕ

JGap Term(ϕ, θ
k)

= argmin
ϕ

E
(s,s′,e)∈D

− log
[
pϕinv(e | s, s

′)
] (11)

where D denotes the dataset collected by policy π. Intuitively, minimizing the objective in Equa-
tion 11 amounts to maximum likelihood estimation of actions.

Step 2. Given ϕ = ϕk+1, we optimize the objective function in Equation 10 by optimizing θ:

θk+1 = argmax
θ

JGap Term(ϕ
k+1, θ)

where a = f(e; θ), π(a | s) = πi(e | s) ∗
∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1

.
(12)

It is noteworthy that the action mapping layer fθ is implicitly included in π, preventing direct opti-
mization of θ. To solve this issue, we adopt the gradient descent method as follows:

Theorem 5.2. Given the inverse dynamic pϕ
k+1

inv (e | s, s′), the gradient of JGap Term(θ) can be derived
as:

∇θJGap Term(θ) = E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

[
∇θ log

∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1 ∣∣∣
e=et

log pϕ
k+1

inv (et | st, st+1)

]
, (13)

where
∣∣∣∂f(e;θ)∂e

∣∣∣ is the Jacobian determinant of the function f and et = f−1(at; θ).

Proof. Please refer to Appendix D for the detailed proof.

Based on Theorem 5.2, we can perform gradient updates on θ to train the action mapping layer fθ.

5.3 PRACTICAL IMPLEMENTATION

The overall framework of our algorithm is illustrated in Algorithm 1. After interacting with the
environment, we iteratively train the inverse dynamics network pϕinv(e | s, s′) and the action mapping
layer fθ(e) using the collected data based on the Equation 11 and Theorem 5.2. For the inner policy
πi, we use the standard maximum policy entropy RL methods, such as SAC (Haarnoja et al., 2018c).

Specifically, we construct the invertible action mapping function f using a piecewise linear function
with N parameters (θ⃗ ∈ RN), defined as follows:

f(x) =

i−1∑
j=1

kj ·
1

N
+ ki

(
x− i− 1

N

)
for x ∈

[
i− 1

N
,
i

N

]

where ki = N · exp(θi)∑N
j=1 exp(θj)

for i = 1, 2, . . . , N. For each i ∈ [1, N], ki represents the slope

of the linear function in the interval
[
i−1
N , iN

]
. For environments with multidimensional action

spaces, we construct |A| action mapping functions, each applying an independent transformation to
its respective dimension.

For the inverse dynamics model, rather than using Gaussian distributions to predict the distribu-
tion of continuous actions, we discretize the actions in the dataset and employ discrete multinomial
distributions. These multinomial distributions output an M -dimensional vector, where each dimen-
sion corresponds to the probability that the predicted action lies within the interval

[
j−1
M , jM

]
, for

j ∈ [1,M]. This approach enables the inverse dynamics model to capture complex and multimodal
behaviors effectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Saturation

xlb

𝑢max

umin

xub

Deadzone

xubxlb

umax

umin

Ant with Nonlinear Actuator

Actuator

𝑦𝑠𝑎𝑡

𝑥

𝑦𝑑𝑧

𝑙𝑜𝑤

𝑥ℎ𝑖𝑔ℎ

Figure 2: The control of systems with actuators demonstrating input nonlinearities (e.g., saturation,
deadzone).

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

3000

4000

E
pi

so
de

R
et

ur
n

Ant

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

6000

8000

E
pi

so
de

R
et

ur
n

HalfCheetah

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

3000

E
pi

so
de

R
et

ur
n

Hopper

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

E
pi

so
de

R
et

ur
n

Walker2d

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

E
pi

so
de

R
et

ur
n

Humanoid

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.5 1.0 1.5 2.0
Million Steps

0

500

1000
E

pi
so

de
R

et
ur

n
Metaworld-PickPlace

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.5 1.0 1.5 2.0
Million Steps

0

2000

4000

6000

E
pi

so
de

R
et

ur
n

Metaworld-DoorOpen

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.5 1.0 1.5 2.0
Million Steps

0

1000

2000

3000

4000

E
pi

so
de

R
et

ur
n

Metaworld-Hammer

MNSE(ours)

SAC

NovelD

MinRed

0.0 0.5 1.0 1.5 2.0
Million Steps

0

1000

2000

3000

E
pi

so
de

R
et

ur
n

Metaworld-Assembly

MNSE(ours)

SAC

NovelD

MinRed

Figure 3: The experimental results in MuJoCo and MetaWorld with nonlinear actuators under five
random seeds.

6 EXPERIMENTS

In this section, we aim to address the following questions: (1) How do traditional RL methods
perform when the policy entropy does not accurately reflect the diversity of the state? (2) How does
MNSE compare with other state-of-the-art approaches for maximizing entropy? (3) How sensitive
is MNSE to the hyperparameters of the algorithm?

6.1 EXPERIMENTAL SETTING

In this section, we examine actuators with input nonlinearities. In industrial applications, nonlinear
actuators are a common challenge due to wear-and-tear or inaccuracies in mechanical components.
In this work, we consider two types of input nonlinearities: saturation and deadzone, as shown in
Figure 2. Both saturation and deadzone can reduce control accuracy, severely influencing the control

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100% 80% 60% 40% 20%
Effective Action Proportion

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Performance in Ant with Nonlinear Actuators
MNSE
SAC
TD3
PPO

100% 80% 60% 40% 20%
Effective Action Proportion

0

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

Performance in HalfCheetah with Nonlinear Actuators
MNSE
SAC
TD3
PPO

Figure 4: (Left): Perfomance of MNSE, SAC, TD3, PPO in MuJoCo Ant with nonlinear actuators
under different effective action proportions. (Right): Perfomance of MNSE, SAC, TD3, PPO in
MuJoCo HalfCheetah with nonlinear actuators under different effective action proportions.

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

3000

4000

E
pi

so
de

R
et

ur
n

Ant

N=5

N=10

N=20

N=40

N=80

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2500

5000

7500

10000

E
pi

so
de

R
et

ur
n

HalfCheetah

N=5

N=10

N=20

N=40

N=80

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

3000

4000

E
pi

so
de

R
et

ur
n

Walker2d

N=5

N=10

N=20

N=40

N=80

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

E
pi

so
de

R
et

ur
n

Humanoid

N=5

N=10

N=20

N=40

N=80

Figure 5: Ablation study of the number of parameters in the piecewise linear function.

system’s performance. Specifically, the saturation and deadzone are formulated as follows:

ysat =

 umax if x ≥ umax

x if umin < x < umax

umin if u ≤ umin

ydz =

x− high if u ≥ high
0 if low < u < high
x− low if u ≤ low

where x ∈ [xlb, xub], y ∈ [umin, umax]. Notably, within a specific environment, umin and umax

remain invariant, guaranteeing theoretical optimality across various EAPs.

In the experiments, we employ either saturation or deadzone to each joint of the robot. In addition,
we characterize the proportion of effective actions in the action space as Effective Action Propor-
tion (EAP):

EAP =
umax − umin

xub − xlb
. (14)

As EAP increases, the actuator nonlinearity increases, making the task more difficult.

Baselines We compare MNSE with baselines using various maximum entropy methods. We first
compare our method with the standard maximum policy entropy method, SAC (Haarnoja et al.,
2018c;d). In addition, we compare our method with MinRed (Baram et al., 2021), which directly
maximizes the next-state entropy to minimize action redundancy. We also compare our method with
the strong state-novelty-based exploration method (Zhang et al., 2021). Please refer to Appendix E
for the experimental details.

6.2 EXPERIMENTAL RESULTS

Answer of Question 1: To show the impact of the nonlinear actuators on the traditional RL
methods, we conduct experiments in MuJoCo environments with various EAP by employing
SAC (Haarnoja et al., 2018c;d), TD3 (Silver et al., 2014; Lillicrap, 2015), PPO (Schulman et al.,
2017), and our proposed MNSE approach. As shown in Figure 4, as the EAP decreases and actuator
nonlinearity increases, the performance of SAC gradually degrades and eventually collapses. In the
Ant environment (Figure 4, left), when the EAP decreases to 40%, the performance of the SAC al-
gorithm shows a marked decline, and at 20% EAP or lower, SAC completely fails. Similarly, in the
HalfCheetah environment (Figure 4, right), when the EAP drops to 40% or lower, the performance
of SAC is only half of that achieved without actuator nonlinearity (EAP = 100%).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

This decline in performance can be attributed to the fact that as EAP decreases, policy entropy no
longer accurately represents the diversity of the next state, which hinders the effective exploration
guidance within the SAC framework. In contrast, our MNSE approach based on next-state entropy
maintains stable performance across varying EAP environments, significantly outperforming SAC.
Moreover, our experiments indicate that not only SAC, but traditional RL algorithms such as TD3
and PPO, also struggle to handle the reduction in effective action space as actuator nonlinearity
increases. As shown in Figure 4 (right), when the EAP decreases, both TD3 and PPO exhibit
varying degrees of performance degradation, with some cases resulting in complete failure. This
underscores that actuator nonlinearity is a significant challenge across various algorithms in the
field of reinforcement learning.

Answer of Question 2: To show that MNSE can maximize next-state entropy, we conduct ex-
periments on Mujoco and MetaWorld tasks. As illustrated in Figure 3, our method consistently
outperforms baseline approaches across various experimental environments. NovelD and MinRed
employ bonus-based strategies to promote the exploration of diverse states. Specifically, NovelD
incentivizes agents by evaluating state novelty, while MinRed provides additional rewards based
on transition entropy. In contrast, our method, MNSE, establishes an action mapping layer that
effectively bridges the gap between policy entropy and next-state entropy. By directly promot-
ing exploration through next-state entropy, MNSE demonstrates superior performance compared to
bonus-based methods across various domains, as evidenced by our experimental results.

Answer of Question 3: To test how the algorithm’s hyperparameters affect the performance of
MNSE, we change the number of parametersN in the piecewise linear function, which significantly
influences the expressive power of the action mapping function f . As shown in Figure 5, we con-
ducted ablation experiments across four MuJoCo environments to evaluate the impact of N . The
results reveal that when N is small, the limited expressive capacity of f leads to suboptimal algo-
rithm performance. As N increases, algorithm performance gradually improves. However, once
N ≥ 20, the performance stabilizes and shows little variation. To balance expressive power with
computational efficiency, we consistently employed N = 20 in all experimental implementations.

7 DISCUSSION

Why Maximize Next-State Entropy in Reinforcement Learning? Entropy regularization is a fun-
damental technique in reinforcement learning. By integrating an entropy maximization term, it
enhances robustness to model and estimation errors (Ziebart et al., 2010), promotes the acquisi-
tion of diverse behaviors (Haarnoja et al., 2017), facilitates broader exploration (Fox et al., 2015;
Haarnoja et al., 2018c;d) and accelerates the learning process by smoothing the optimization land-
scape (Ahmed et al., 2019). However, maximizing policy entropy may not directly promote policy
optimization due to redundancy in the action space. In such cases, next-state entropy extends the
concept of policy entropy more directly. Specifically, next-state entropy measures the entropy of
the next state resulting from the policy, rather than the action itself. This shift allows next-state en-
tropy to capture the diversity of effects induced by actions. By bridging the gap between next-state
and policy entropy, our method retains the benefits of policy entropy while addressing inefficiencies
caused by action redundancy.

8 CONCLUSION

In this work, we demonstrate a critical problem: the maximum next-state entropy of the RL agent.
We first systematically elucidate the distinctions and interrelationships between next-state entropy
and policy entropy. Then, to bridge the gap between these two concepts, we integrate inverse dynam-
ics with an action mapping layer. We demonstrate that by optimizing both the action mapping layer
and inverse dynamics model, we can maximize the next-state entropy by optimizing the inner policy
entropy. We conduct extensive experiments and demonstrate that our method outperforms baseline
methods across various domains. Future research will focus on extending MNSE to accommodate
more complex action space structures and exploring its potential applications in robotics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International conference on machine learning, pp.
151–160. PMLR, 2019.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Er-Wei Bai. Identification of linear systems with hard input nonlinearities of known structure. Au-
tomatica, 38(5):853–860, 2002.

Nir Baram, Guy Tennenholtz, and Shie Mannor. Action redundancy in reinforcement learning. In
Uncertainty in Artificial Intelligence, pp. 376–385. PMLR, 2021.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learn-
ing, pp. 941–950. PMLR, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. arXiv preprint arXiv:1512.08562, 2015.

Giacomo Galuppini, Lalo Magni, and Davide Martino Raimondo. Model predictive control of sys-
tems with deadzone and saturation. Control Engineering Practice, 78:56–64, 2018.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Alaa Saade, Shantanu Thakoor, Bilal Piot,
Bernardo Avila Pires, Michal Valko, Thomas Mesnard, Tor Lattimore, and Rémi Munos. Geo-
metric entropic exploration. arXiv preprint arXiv:2101.02055, 2021.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103, 2018a.

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey Levine.
Composable deep reinforcement learning for robotic manipulation. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6244–6251. IEEE, 2018b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018c.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018d.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Seungyul Han and Youngchul Sung. A max-min entropy framework for reinforcement learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 25732–25745. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/d7b76edf790923bf7177f7ebba5978df-Paper.pdf.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Dailin Hu, Pieter Abbeel, and Roy Fox. Count-based temperature scheduling for maximum entropy
reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021.

Riashat Islam, Zafarali Ahmed, and Doina Precup. Marginalized state distribution entropy regular-
ization in policy optimization. arXiv preprint arXiv:1912.05128, 2019.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594–22613. PMLR, 2023.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 5125–5133, 2020.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wenjie Shi, Shiji Song, and Cheng Wu. Soft policy gradient method for maximum entropy deep
reinforcement learning. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 3425–3431, 2019.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/d7b76edf790923bf7177f7ebba5978df-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d7b76edf790923bf7177f7ebba5978df-Paper.pdf
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Charles Sun, Jȩdrzej Orbik, Coline Manon Devin, Brian H. Yang, Abhishek Gupta, Glen Berseth,
and Sergey Levine. Fully autonomous real-world reinforcement learning with applications to
mobile manipulation. In Aleksandra Faust, David Hsu, and Gerhard Neumann (eds.), Proceed-
ings of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learn-
ing Research, pp. 308–319. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.
press/v164/sun22a.html.

Guy Tennenholtz and Shie Mannor. The natural language of actions. ArXiv, abs/1902.01119, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor.
Learn what not to learn: Action elimination with deep reinforcement learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018a. URL https://proceedings.neurips.cc/paper/2018/file/
645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not
to learn: Action elimination with deep reinforcement learning. Advances in neural information
processing systems, 31, 2018b.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Noveld: A simple yet effective exploration criterion. Advances in Neural Information
Processing Systems, 34:25217–25230, 2021.

Dianyu Zhong, Yiqin Yang, and Qianchuan Zhao. No prior mask: Eliminate redundant action for
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17078–17086, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. 2010.

13

https://proceedings.mlr.press/v164/sun22a.html
https://proceedings.mlr.press/v164/sun22a.html
https://proceedings.neurips.cc/paper/2018/file/645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TOY EXAMPLE

Consider a one-step MDP with a deterministic transition, where st+1 = max(at, 0), which means
actions less than zero are redundant. We assume an initial policy π is a Gaussian policy with a mean
less than zero: p(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
, µ < 0. The corresponding policy entropy is given

by:
H(π(· | st)) = log(

√
2πeσ), (15)

which is independent of the mean µ.

Since Pπ(s′ | s) = 0 when s′ < 0, it follows that Pπ(s′ | s) is a rectified Gaussian distribution.
Then we have:

H(St+1 | St = s, π)

=−
∫ +∞

0

p(x) log p(x)dx

=−
∫ +∞

0

φ(x−µσ)

σ
log

φ(x−µσ)

σ
dx

=−
∫ +∞

−µ
σ

φ(z) log
φ(z)

σ
dz

=

∫ +∞

−µ
σ

−φ(z) logφ(z)dz + log σ

∫ +∞

−µ
σ

φ(z)dz

=

∫ +∞

−∞
−φ(z) logφ(z)dz −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz + log σ(1− Φ(−µ

σ
))

= log(
√
2πeσ)︸ ︷︷ ︸

policy entropy

+

{
Φ(
µ

σ
) log σ −

∫ −µ
σ

−∞
−φ(z) logφ(z)dz

}
,

(16)

where φ(z) = e−z2/2
√
2π

is the probability density function of the standard normal distribution, and
Φ(x) =

∫ x
−∞ φ(z)dz is its cumulative distribution function.

It is challenging to provide a rigorous mathematical analysis of this relationship. Specifically, when
we assume σ > 1 in the toy example, log σ > 0, and Φ

(
µ
σ

)
log σ is positively correlated with µ.

Furthermore, since 0 < φ(z) ≤ 1√
2π
< 1, the term −

∫ −µ
σ

−∞ −φ(z) logφ(z) dz is also positively cor-
related with µ. Meanwhile, we have conducted numerical experiments to examine the relationship
between the µ variable and next-state entropy for different σ values. As shown in the results, when
σ values are {1.0, 1.5, 2.0}, the next-state entropy increases as the µ value increases, demonstrating
a positive relationship between µ and entropy.

The above analysis indicates that to increase H(St+1 | St = s, π), one effective method is not only
to increase σ but also to increase µ.

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

N
ex

t S
ta

te
 E

nt
ro

py

 = 1.0
 = 1.5
 = 2.0

Figure 6: The next-state entropy increases as the mu value increases.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREM 4.4

Proof. Recall that the entropy of state is:

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼P (·|s,a) log [P
π(s′ | s)]

= −Ea∼π(·|s)Es′∼P (·|s,a) log
[
Ea∼π(·|s)P (s′ | s, a)

] (17)

Then, according to the Definition 4.3, we have:

Es′∼Pπ(·|s,a) log
[
Ea∼π(·|s)P (s′ | s, a)

]
= Es′∼Pπ(·|s,a) log [π(a | s)P (s′ | s, a)]
= Es′∼Pπ(·|s,a) [log π(a | s) + logP (s′ | s, a)] ,

(18)

Combining the Equation 17 and Equation 18, we have:

H(St+1 | St = s, π) = −Ea∼π(·|s)Es′∼Pπ(·|s,a) [log π(a | s) + logP (s′ | s, a)]
= −Ea∼π(·|s) [log π(a | s)]− Ea∼π(·|s)Es′∼Pπ(·|s,a) [logP (s

′ | s, a)]
= H(π(· | s)) + Ea∼π(·|s)H(St+1 | St = s, a).

(19)

C PROOF OF THEOREM 5.1

Proof. Firstly, we can derive the next-state entropy H (St+1|St = s, π) as follows.

H (St+1|St = s, π) = −Ea∼π(·|s)Es′∼p(·|s,a) log pπ(s′ | s)
= −Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log p

πi(s′|s)
= −Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log p

πi(s′|s)− log [πi(e|s)p(s′|s, e)] + log [πi(e|s)p(s′|s, e)]}
(20)

where
pπ(s′ | s) = Eã∼π(·|s)p (s′ | s, ã) , pπi(s′ | s) = Eẽ∼πi(·|s)p (s

′ | s, ẽ) .

Here, we utilize the property of inverse dynamics:

pinv(e|s, s′) =
πi(e|s)p(s′|s, e)

pπi(s′|s)
(21)

then Eq. 20 can be derived as follows:

H (St+1|St = s, π)

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log [πi(e|s)p(s
′|s, e)] + log pπi(s′|s)− log [πi(e|s)p(s′|s, e)]}

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]−

Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {log p
πi(s′|s)− log [πi(e|s)p(s′|s, e)]} (Property of Eq. 21)

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) {− log pinv(e|s, s′)}

=− Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]− Ee∼πi(·|s)Es′∼p(·|s,e) {− log pinv(e|s, s′)}

=−Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)] + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]] .

The first term is as follows:

−Es′∼pπi (·|s)Ee∼pinv(·|s,s′) log [πi(e|s)p(s
′|s, e)]

= −Ee∼πi(·|s)Es′∼p(·|s,e) log [πi(e|s)p(s
′|s, e)]

= −Ee∼πi(·|s)Es′∼p(·|s,e) log πi(e|s)− Ee∼πi(·|s)Es′∼p(·|s,e) log p(s
′|s, e)

= Ee∼πi(·|s) [− log πi(e|s)] + Ee∼πi(·|s)Es′∼p(·|s,e) [− log p(s′|s, e)]
= H (πi(· | s)) +Hmodel

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where Hmodel = Ee∼πi(·|s) [H(St+1 | St = s, e)] is the entropy of the dynamics model.

As a result, we have:

H(St+1 | St = s, π) = H (πi(· | s)) + Ea∼π(·|s)Es′∼p(·|s,a) [log [pinv(e | s, s′)]]︸ ︷︷ ︸
Gap Term

+Hmodel

D PROOF OF THEOREM 5.2

Proof. We will derive ∇θJGap Term(θ) in the following.

∇θ E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

[
pϕinv(e = f−1(at; θ) | st, st+1)

]
=

∫
s∈S

∫
a∈A

∂π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

=

∫
s∈S

∫
a∈A

π(a|s) 1

π(a|s)
∂π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

=

∫
s∈S

∫
a∈A

π(a|s)∂ log π(a|s)
∂θ

Es′∼p(·|s,a) log pϕ
k+1

inv (e | s, s′)

= E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

∂ log π(a|s)
∂θ

log pϕ
k+1

inv (e | s, s′)

when a = fθ(e), recall that:

π(a|s) = πi(e | s) ∗
∣∣∣∣∂a∂e

∣∣∣∣−1

,

According to the inverse function theorem: If y = f(x) and x = f−1(y), we have:

df−1(y)

dy
=
dx

dy
=

(
dy

dx

)−1

=

(
df(x)

dx

)−1

then:
∂ log π(a|s)

∂θ
=
∂ log |∂f

−1
θ (a)

∂a |
∂θ

= ∇θ log

∣∣∣∣∂fθ(e)∂e

∣∣∣∣−1

In conclusion,

∇θJGap Term(θ) = E
s0∈S,at∼π(·|st)
st+1∼P (·|st,at)

{
∇θ log

∣∣∣∣∂f(e; θ)∂e

∣∣∣∣−1 ∣∣∣
e=et

log pϕ
k+1

inv (et | st, st+1)

}
(22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL DETAILS

Our algorithm, MNSE, is developed based on the SAC algorithm from the RL Baselines3 Zoo (Raf-
fin, 2020; Raffin et al., 2021). The hyperparameters for MNSE are detailed in Table E. In all ex-
perimental implementations, we consistently employed N = 20 as the number of parameters in the
piecewise linear function. The baseline SAC shares the same hyperparameters as those of MNSE.

Hyper-parameter Value

Shared
Learning rate 3× 10−4

Buffer size 1× 106

Learning starts 1× 105

Batch size 64
Soft update coefficient τ 0.005
Discount factor γ 0.99
Activation function ReLU

Others
Number of parameters in piecewise linear function N 20

Table 1: MNSE Hyper-parameters sheet

Baseline Hyper-parameter: TD3 and PPO are developed utilizing the RL Baselines3 Zoo (Raffin,
2020), employing the tuned hyperparameters provided by this framework. NovelD (Zhang et al.,
2021) and MinRed (Baram et al., 2021) are constructed based on the SAC algorithm within the RL
Baselines3 Zoo, with the trade-off coefficient for the additional reward being searched within the
range of 5e-3 to 5e-1.

Inverse Dynamics: We use discrete multinomial distributions to predict the actions. These multi-
nomial distributions output an M -dimensional vector, where each dimension corresponds to the
probability that the predicted action lies within the interval

[
j−1
M , jM

]
, for j ∈ [1,M]. We set

M = 20 in all experimental implementations.

Nonlinear Actuator in Figure 3: We consider two types of input nonlinearities: saturation and
deadzone. The specific types of input nonlinearities and the corresponding effective action propor-
tions (EAP) in each environment during our experiments(Figure 3) are presented in Table E.

Environment Types of Nonlinearities EAP

MuJoCo Ant Saturation 40%
MuJoCo HalfCheetah Saturation 40%
MuJoCo Hopper Deadzone 20%
MuJoCo Walker2d Deadzone 20%
MuJoCo Humanoid Deadzone 20%
Metaworld PickPlace Saturation 40%
Metaworld Hammer Saturation 40%
Metaworld DoorOpen Deadzone 40%
Metaworld Assembly Deadzone 40%

Table 2: Nonlinear Actuator in Figure 3

17

	Introduction
	Related Work
	Background
	Analysis of Next-State Entropy
	Toy Example
	Deterministic case
	Stochastic Case

	Method
	Action Mapping
	Maximize Next-State Entropy
	Practical Implementation

	Experiments
	Experimental Setting
	Experimental Results

	discussion
	conclusion
	Toy Example
	Proof of Theorem 4.4
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Experimental Details

