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ABSTRACT

Cognitive abilities, such as Theory of Mind (ToM), play a vital role in facilitating
cooperation in human social interactions. However, Large Language Model (LLM)
agents with higher ToM abilities do not necessarily exhibit better cooperative
trends compared to those with lower ToM abilities, highlighting the complexity
of translating human cognitive processes to artificial agents. To address this
challenge, we propose a novel matching coalition mechanism that leverages the
strengths of agents with different ToM levels by explicitly considering belief
alignment and specialized abilities when forming coalitions. Our proposed stable
coalition formation algorithm seeks to find the team that maximizes the potential
for cooperative trends and ensures long-term viability. By incorporating cognitive
insights into the design of multi-agent systems, our work demonstrates the potential
of leveraging ToM to create more sophisticated and human-like coordination
strategies that foster cooperation and improve overall system performance.

1 INTRODUCTION

Cooperation is a fundamental aspect of multi-agent systems, enabling agents to work together
effectively to achieve common goals and solve complex problems (Shenoy, 1979). In recent years, the
rapid advancement of large language models (LLMs) has opened up new opportunities for building
intelligent multi-agent systems. LLMs have demonstrated remarkable capabilities in natural language
understanding, generation, and reasoning, such as GPT-family (Eloundou et al., 2023). By leveraging
these powerful LLMs, multi-agent systems can enable agents to communicate and collaborate using
natural language, resulting in more flexible and human-like interactions in cooperation tasks.
To foster cooperation among LLM-based agents, most recent research focused on communication
and knowledge sharing among agents (Xu et al., 2023; Lan et al., 2023; Hua et al., 2023; Wu
et al., 2023b; Nascimento et al., 2023; Fu et al., 2023). These studies demonstrate the potential
of leveraging natural language capabilities to facilitate information exchange and coordination
in multi-agent systems. Besides language understanding, some research has explored effective
cooperation through agent cognitive abilities, such as reasoning and reflection, to coordinate actions
and make decisions (Qi & Vul, 2020; Li et al., 2023b; Liang et al., 2023; Lin et al., 2024). These
studies highlight the importance of investigating how we can foster cooperation in LLM-based
multi-agent systems from a cognitive perspective.
One of the fundamental cognitive abilities is the Theory of Mind (ToM). By utilizing ToM in strategic
interactions, an agent can mentally simulate others’ thoughts and potential actions. Furthermore,
ToM can involve multiple levels of recursive belief attribution, known as higher-level ToM, where
players consider not only their opponent’s beliefs but also their beliefs about the other player’s beliefs,
and so on (Premack & Woodruff, 1978). In other words, ToM allows one to see things from others’
perspective. In human social interactions, ToM plays a crucial role in facilitating cooperation by
enabling individuals to understand and predict the behavior of others (Yoshida et al., 2008). For
example, in a chess game, a player with higher-level ToM might think, “I believe my opponent thinks
that I will move my knight, so I will move my bishop instead, because I believe they will not expect
that move." Normally, in a specific scenario, agents with higher level ToM can better understand and
predict the actions of other agents leading to improved cooperation and coordination (Street, 2024).
Based on these insights, there is a growing interest in leveraging ToM in LLMs to enhance multi-
agent cooperation (Guo et al., 2023; Li et al., 2023b), where ToM plays a vital role in facilitating
the coordination of actions and the resolution of conflicts in cooperation. Recent research has
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highlighted the importance of accurate mutual understanding for effective cooperation in complex
environments (Wang et al., 2022; Li et al., 2023a; Chan et al., 2023; Zhang et al., 2024a; Wu et al.,
2024). This mutual understanding involves comprehending other agents’ profiles and trajectories,
resulting in enhanced coordination and cooperation across the multi-agent system. Following this
perspective, we consider cooperative trends as the tendency of agents to exhibit accurate predictions
about their teammates’ actions.
To further identify the relationship between ToM ability and cooperative trend, we investigate the
cooperative trend of agents with high and low ToM abilities. However, our result reveals that agents
with lower level ToM exhibited better cooperative trend compared to those with higher level ToM (as
detailed in Section 3). This suggests that having a high level of ToM alone may not always lead to
better cooperation. Intuitively, agents with higher level ToM may overthink and anticipate potential
conflicts, resulting in more cautious cooperation. This finding aligns with the psychological research
by (Ridinger & McBride, 2017), which suggests that ToM capabilities alone are not sufficient to
guarantee good cooperation. Instead, agents may also need to be willing to positively reciprocate
and cooperate with others. Specifically, Ridinger & McBride (2017) highlights that when ToM
abilities are combined with a high proportion of individuals who are willing to engage in cooperation,
it can lead to improved cooperation within the group. This insight motivates our proposed approach
of incorporating belief alignment into the coalition formation process to promote cooperation
among agents with high cognitive abilities.
In this work, we propose a novel matching coalition mechanism to find coalitions that foster coopera-
tion and leverage the strengths of agents by explicitly considering belief alignment as captured by
their ToM capabilities. By forming coalitions with diverse ToM levels, we aim to create coalitions
that can effectively reason about each other’s mental states while leveraging their unique strengths
to solve complex problems. Moreover, our matching algorithm allows for stable matching, which
ensures the long-term viability and effectiveness of the formed coalitions.
Contribution. We summarized our main contributions as follows:

1. We investigate the interplay between ToM capabilities and cooperative trend in LLM-based
multi-agent systems. Our study reveals agents with higher ToM capabilities may not necessarily
exhibit better cooperative trends. These insights pose new challenges in understanding the
complex interplay between cognitive abilities and cooperative trends, demonstrating the potential
of leveraging cognitive insights to design effective multi-agent mechanisms.

2. We introduce a stable coalition formation mechanism for team selection among LLM agents,
based on the alignment between agents’ beliefs (derived from their ToM capabilities) and the
actual actions of their potential partners. By establishing preference orders based on belief-action
alignment, our mechanism forms effective coalitions and fosters cooperation among agents.

3. We conduct a comprehensive experimental evaluation incorporating ToM capabilities to assess
the effectiveness of the proposed methods in facilitating cooperation, coalition stability, and
task-specific performance.

2 RELATED WORK

Agents with Theory of Mind (ToM). The concept of ToM, which involves the ability to attribute
mental states to oneself and others, has been studied extensively in cognitive science and psychology
(Premack & Woodruff, 1978; Frith & Frith, 2003). In the field of multi-agent reinforcement learning,
existing research mainly uses supervised training to equip agents with ToM capabilities for cooperative
tasks (Wen et al., 2018; Wang et al., 2022; Oguntola et al., 2023).
With the rapid advancement of large language models (LLMs), some recent works have explored
empowering LLMs with ToM capabilities (Arodi & Cheung, 2021; Li et al., 2022; Zhou et al., 2023;
Xu et al., 2024). However, these efforts have primarily focused on developing ToM capabilities for
individual agents, with limited exploration of how ToM can facilitate cooperation among multiple
agents. While Li et al. (2023b) studied LLM agents with ToM capabilities and leveraged ToM
capabilities specifically for cooperative tasks, the relationship between ToM ability and cooperative
trend remains unclear.
In this work, we aim to explore the interplay between ToM ability and cooperative trend. Unlike
previous studies that primarily focused on equipping individual agents with ToM capabilities, we
investigate how different levels of ToM abilities influence cooperative trends in multi-agent systems.
Multi-agent Cooperation. Multi-agent cooperation has been studied extensively in both industry
and academia, with traditional approaches focusing on game-theoretic frameworks (Shenoy, 1979;
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Figure 1: Illustration for the multi-agent system setup and the ToM cognitive thinking process.
(Left) The multi-agent system setup for the iterative programming tasks, consisting of one project
manager (PM) with ToM ability and four Engineers. The iterative process involves: ❶ PM updates its
beliefs and takes actions based on its ToM reasoning; ❷ PM observes Engineers’ actions; ❸ Evaluate
cooperation by the alignment between PM’s beliefs and Engineers’ actions; ❹ PM provides instruc-
tions to Engineers. (Right) The ToM cognitive thinking process of PM agent involves recursive belief
updates and decision-making based on the inferred beliefs.
Table 1: Comparison of cooperative trends between agents with lower-level (k=1) and higher-
level (k=2) ToM in the Iterative Programming task on two benchmarks, including HUMANEVAL
(Chen et al., 2021) and MBPP (Austin et al., 2021), over R = 1 . . . 5 interaction rounds: Low ToM
agents show Higher cooperative trends.

gpt-3.5-turbo GLM-4 Llama-3-70b Gemini-1.5-flash Claude-3-sonnet
ToMk R=1 R=5 R=1 R=5 R=1 R=5 R=1 R=5 R=1 R=5

HUMANEVAL
k=1 62.5 51.7 65.5 63.3 80.9 75.0 75.0 84.72 67.8 67.1
k=2 50.0 48.0 63.2 60.8 75.0 73.5 80.56 80.56 63.8 57.2

MBPP k=1 44.3 35.8 83.1 85.2 81.3 85.3 65.74 66.67 57.6 48.6
k=2 31.3 35.8 82.0 86.3 81.7 82.6 60.58 66.67 52.8 54.4

Yoshida et al., 2008) and negotiation and communication strategies (Foerster et al., 2016; Tang, 2019;
Yang et al., 2024), enabling agents to learn cooperative strategies through interaction and information
exchange. The advancements of LLMs have opened up new opportunities for multi-agent cooperation,
leveraging their capabilities in natural language understanding, generation, and reasoning (Zhang
et al., 2024b; Talebirad & Nadiri, 2023). Recent works have explored utilizing LLM agents to
coordinate and cooperate in various tasks and frameworks, e.g., CAMEL (Li et al., 2023a) employs
role-play to facilitate autonomous cooperation, AutoGen (Wu et al., 2023a) uses conversable agents
and conversation programming, and MetaGPT (Hong et al., 2024) incorporates human workflows
into LLM-based multi-agent collaborations to ensure more coherent and effective teamwork. In
addition, recent research has focused on improving specific aspects of multi-agent collaboration, such
as conversation for knowledge sharing (Xu et al., 2023; Lan et al., 2023; Hua et al., 2023; Wu et al.,
2023b; Nascimento et al., 2023; Fu et al., 2023) and cognitive ability (Liang et al., 2023; Gong et al.,
2023), demonstrating the potential of leveraging language to facilitate cooperation and coordination.
For effective cooperation in complex and dynamic environments, some studies focus on the dynamic
adjustment of group members and the selection of teammates to improve cooperation and overall
performance (Chen et al., 2024; Li et al., 2023a; Shi et al., 2023). Besides, Liu et al. (2024) proposes
the Dynamic LLM-Agent Network (DyLAN) framework to optimize team performance based on
task queries and peer ranking.
Different from previous work on optimizing team members, our work mainly focuses on the interplay
of cognitive abilities and cooperative trends in multi-agent systems. We underscore the importance of
fostering effective cooperation by considering cognitive aspects.

3 MOTIVATION

Theory of Mind (ToM) in multi-agent cooperation has been studied recently and agents with higher
ToM capabilities are generally expected to be more effective in understanding and predicting the
actions of others, which leads to improved cooperation and coordination. However, the relationship
between ToM ability and cooperative trend in multi-agent systems is not fully understood, and there
are still open questions regarding the impact of ToM ability on cooperation.
In this study, we employ a standard ToM model aligned with current research (Zhou et al., 2023;
Street, 2024; Xu et al., 2024) to understand ToM in multi-agent cooperation. In practice, ToM
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typically does not exceed second-order reasoning due to cognitive limitations and diminishing
returns (Premack & Woodruff, 1978; Frith & Frith, 2003). We consider two levels of ToM ability,
aligning with existing literature in both human cognitive research (De Weerd et al., 2015) and agent
cognitive modeling (Li et al., 2023c): Low ToM (Level 1), where agents can represent and reason
about others’ beliefs, desires, and intentions; and High ToM (Level 2), where agents can additionally
consider others’ ToM reasoning.
Higher-level ToM capabilities do not necessarily guarantee better cooperative trends. Accurate
mutual understanding is crucial for effective cooperation in complex multi-agent environments.
Recent research has explored communication for knowledge sharing (Wang et al., 2022; Li et al.,
2023a) and aligning agent beliefs with teammates (Chan et al., 2023; Zhang et al., 2024a; Wu
et al., 2024), demonstrating that improved alignment can facilitate more informed decision-making
and potentially lead to more cooperative outcomes. Motivated by these insights, we introduce the

“Fraction of Trusted Members" (FTM) metric to quantify the cooperative trend (detailed in Section 6).
FTM measures the alignment between the Project Manager’s (PM’s) beliefs about the engineer agents’
actions and their actual actions, representing the proportion of engineer agents whose actions are
correctly anticipated by the PM. Additionally, we present comprehensive evaluations across multiple
performance metrics and tasks in Appendix F, which further support our findings.
To investigate the relationship between ToM and cooperative trend in multi-agent systems, we first
simulate the multi-agent system consisting of one project manager (PM) and four engineer agents
working together to solve a programming task, as shown in Figure 1 (Left). Specifically, PM is
enabled with ToM ability, which means he can recursively infer the actions of other agents (as beliefs)
and take his own actions accordingly, as illustrated Figure 1 (Right). Then, we investigate the multi-
agent cooperation with iterative programming tasks (five rounds) on two benchmarks, HUMANEVAL
(Chen et al., 2021) and MBPP (Austin et al., 2021). In Appendix F, we also investigate side effects
of incorporating higher ToM in some state-of-art methods.
Notably, our results revealed that a low ToM agent (k=1) exhibited better cooperative trend compared
to a high (k=2) ToM agent, as detailed in Table 1. This suggests that agents with high ToM capabilities
may overthink and anticipate potential conflicts, resulting in more cautious cooperation. To leverage
the strengths of agents with different ToM levels, we propose a coalition matching algorithm to foster
cooperation and improve cooperative task performance.
The rest of this paper is organized as follows: Section 4 introduces the ToM modeling and the
matching problem in multi-agent systems. Section 5 describes our proposed coalition matching
algorithm to foster cooperation among agents with diverse ToM capabilities. Section 6 presents the
experiments evaluating the impact of ToM and the matching algorithm on cooperative trend.

4 FORMULATION

In this section, we present the novel formulation for incorporating ToM capabilities and stable
matching theory into multi-agent LLM cooperation. In multi-agent cooperation scenarios, agents
typically have defined roles and goals. We leverage the alignment between agents’ beliefs and actions
from ToM to establish coalitions, fostering more stable collaborations.

4.1 TOM FORMULATION FOR LLM AGENTS

Theory of Mind refers to the ability to attribute mental states, such as beliefs, intentions, and desires,
to oneself and others, and to understand that others may have beliefs and intentions that differ from
one’s own. In the context of LLM-empowered multi-agent systems, for an LLM agent i at interaction
round R, we define its k-level ToM function as:

ToMk
i (o

1:R
i , â1:R−1

−i , {bk−1
i,R (aRm)}m ̸=i) := bki,R , (1)

Where:
• o1:Ri represents agent i’s observation history up to round R, including current task state, self

actions, and collaborate teammates.
• â1:R−1

−i represents other agents’ action history up to round R− 1.
• {bk−1

i,R (aRm)}m̸=i captures agent i’s prediction of agent m’s action at round R based on (k−1)-level
ToM reasoning: bk−1

i,R (aRm) = p(aRm|ToMk−1
i (o1:Ri , â1:R−1

−i , {bk−2
i,R (aRl )}l ̸=i)) .

Specifically, bki,R represents agent i’s nested beliefs at level k in round R, captures the agent ’s belief
about other agents at the corresponding level of recursion k − 1, . . . 0.
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For the base case of 0-level ToM, b0i,R just record cooperation history (o1:Ri , â1:R−1
−i ), without consid-

ering any ToM reasoning: b0i,R = ToM0
i (o

1:R
i , â1:R−1

−i ).

Remarks: These LLM-empowered agents operate in a vast, open-ended action space defined by
natural language (Gur et al., 2023), presenting the “observation” (o1:Ri ), “actions” (â1:R−1

−i ) and
“beliefs” (bki,R) as textual outputs. We provide carefully designed prompts to define each agent’s role
and level of ToM, guiding the generation of ToM-based reasoning and facilitating each agent’s belief
updates (see Appendix C for detailed examples).

4.2 MATCHING FORMULATION FOR MULTI-AGENT LLMS

Considering the set of LLM agents N = {1, 2, . . . , n}, and a matching µ assigns each agent to a
coalition such that |µ(i)| ≥ n − 1 for all i ∈ N , where n is the minimum coalition size (typically
set to ⌈N/2⌉ in our experiments). Each agent i has preferences over potential coalitions S ⊆ N \ i
based on the average belief-action alignment score:

Bi(S) =
1

|S|
∑
j∈S

ϕ(bki (aj)− âj) , (2)

Where bki represents agent i’s k-level belief, âj is agent j’s actual action, and ϕ is an alignment
measure1.
For two potential coalitions S1, S2: S1 ≻i S2 ⇔ Bi(S1) < Bi(S2). A matching µ is stable if there
exists no blocking coalition C ⊆ N such that: (a) |C| ≥ n− 1 (minimum size requirement), and (b)
∀i ∈ C : C ≻i µ(i) (coalition preferred by all members).
Additional, introduce the tolerance parameter ϵ to reduce the search space by filtering out poorly
aligned agent pairs. Importantly, we maintain robustness even when all pairwise alignment scores
exceed ϵ. In such cases of universal misalignment, the preference order remains well-defined through
the coalition scoring function Bi(S). This ensures robust coalition formation even in challenging
scenarios: agents still form coalitions of minimum size n with their relatively best-aligned partners
based on Bi(S) scores. Formally, while ϵ helps computational efficience (ϕ(bki (aj)− âj) ≤ ϵ), the
stability conditions and preference ordering remain valid even when this constraint is relaxed.
Remarks: The alignment between beliefs and actions is not a mathematical subtraction, but rather
a measure of semantic similarity or alignment. To calculate this alignment score, we employ a
self-evaluation approach involving prompting the agent to evaluate the alignment between its belief
and another agent’s action, which is consistent with existing LLM agent literature (Qin et al., 2023;
Zheng et al., 2023; Liu et al., 2024).
The stable matching problem for multi-agent LLMs can then be formulated as finding a matching µ
that satisfies the stability condition, given the agents’ preferences based on their k-level ToM beliefs
and the alignment between their beliefs and the actual actions of other agents. By capturing the
agents’ preferences based on the alignment between their beliefs and the actual actions of other
agents, we can investigate how the agents’ ToM ability impacts their cooperative trend and the overall
stability of the multi-agent system.

5 COOPERATION MECHANISM FOR MULTI-AGENT LLMS

In this section, we propose a cooperation mechanism for multi-agent LLMs that enables agents to
form and maintain stable cooperative coalitions by leveraging their ToM functions to predict and
align their beliefs with their partners’ actions. To further enhance the effectiveness of the coalition,
we introduce a specialized ability-matching adaptation that prioritizes agents with crucial skills for
specific tasks. This adaptation optimizes the formation of coalitions, ensuring agents possessing the
necessary expertise are included in the coalition.

5.1 COALITION MATCHING MECHANISM FOR MULTI-AGENT LLMS

To foster the cooperation among agents with different ToM levels, we introduce the multi-agent
LLM cooperation mechanism operates in cooperation rounds, where agents form stable cooperative
coalitions for team selection, detailed in Algorithm 1. In each round, every agent i ∈ N uses its

1In this paper, we employ a self-evaluation approach involving prompting the agent to evaluate, exemplified
in Appendix A. Besides, we also discuss belief-alignment calculation for non-LLM agents in Appendix A

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Multi-Agent Coalition Matching Mechanism
Require: N = {1, 2, . . . , n}: the set of LLM agents; k: the desired level of recursion for ToM;

ϵ ≥ 0: error tolerance for belief alignment.
1: Initalize S ← N ; rematching_required = −1;
2: for each cooperation round R do
3: for each agent i ∈ N do
4: bki,R ← ToMk

i (o
1:R
i , â1:R−1

−i , {bk−1
i,R (aRm)}m ̸=i) {Belief Update}

5: end for
6: if R = 1 or rematching_required = 1:
7: Establish preference order ≻i based on bki,R and ϵ {Preference Ordering Equation (2)}
8: Update stable coalition S based on preference orders {≻i} {Stable Matching}
9: rematching_required = −1;

10: for each agent i ∈ S do
11: Cooperate with assigned partner µ(i) = S \ {i} {Coalition Formation & Task Execution}
12: if ϕ

(
bki,R(a

R
j )− âRj

)
> ϵ for j ∈ µ(i): Signal desire to re-match

13: end for
14: if environment has re-matching: rematching_required +1;
15: end for

k-level ToM function ToMk
i (·) to form beliefs bki about the mental states of other agents, based on its

observations oi, the actions â−i of others, and the (k − 1)-level beliefs bk−1
−i of others. Then, agent i

establishes a preference order ≻i over potential partners based on the alignment between its belief
bki (aj) and agent j’s actual action âj within a tolerance ϵ. The agents form coalitions by cooperating
with their assigned partners µ(i) in the stable matching. The optimal coalition S with the strongest
belief alignment will be the team selected for cooperation (Algorithm 1, Line 3∼11).
Then, if the alignment between an agent i’s belief bki (aµ(i)) and its partner’s action âµ(i) falls below
the tolerance ϵ, the agent signals a desire to re-match, triggering new cooperation round with a stable
matching computation (Algorithm 1, Line 12). This iterative process allows agents to form and
maintain stable coalitions while adapting to changes in beliefs and preferences over time, leveraging
their ToM capabilities, belief alignment, and stable matching principles.
Remarks: For k-level ToM agent i’s action, it can be represented by âi = f(bki , µ(i)), where f is
the LLM agent’s decision-making process. The action âi thus encapsulates the complex interplay
between the agent’s belief bki and partners µ(i) in the stable matching on its decision-making process.
For rematching, our algorithm includes an adaptation phase rather than immediate reformation.
When agents signal misalignment, the current coalition continues for one additional round, allowing
agents to observe and adapt to rematch signals.

5.2 ADAPTATION FOR SPECIALIZED AGENT ABILITIES

While the proposed mechanism for multi-agent LLM cooperation focuses on the alignment between
agents’ beliefs and actions, it is also important to consider the specialized abilities of individual agents,
especially when forming coalitions for cooperative tasks that require specific skills or capabilities.
In scenarios where certain agents possess specialized abilities that are highly relevant to the coopera-
tive task at hand, the original stable matching algorithm may not necessarily prioritize these agents, as
it solely relies on the alignment between beliefs and actions. To address this limitation, we propose an
adaptation to the mechanism that incorporates agents’ specialized abilities into the matching process.
Let αi represent the specialized ability score of agent i for the cooperative task under consideration.
Higher values of αi indicate greater specialized ability for the task. We can modify the coalition
preference order ≻i of each agent i to incorporate both belief alignment and specialized abilities. The
modified preference score for a coalition S is defined as: B′

i(S) = Bi(S) + λ · 1
|S|

∑
j∈S αj .

where λ is a weighting parameter (default is 1 in our evaluation). The updated preference order ≻′
i

between coalitions S1 and S2 is then defined as:
S1 ≻′

i S2 ⇐⇒ B′
i(S1) < B′

i(S2)

Remarks: This formulation maintains transitivity in coalition preferences while balancing cognitive
alignment (Bi(S)) with task-specific capabilities ({αi}i∈S). The coalitions now form based on
both belief-action alignment and specialized abilities. Importantly, the preference structure remains

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

well-defined for coalitions of different sizes meeting the minimum requirement n. The detailed proofs
for convergence, stability, and cycle-freedom with specialized abilities are provided in Appendix G.
By incorporating the specialized ability scores αi into the preference order, the stable matching
algorithm will prioritize agents with higher specialized abilities for the cooperative task and consider
the belief alignment. This adaptation ensures that agents with crucial specialized abilities are more
likely to be included in the formed coalitions, enhancing the overall effectiveness of the cooperation
mechanism for tasks that require specific skills or capabilities (as discussed in Appendix C.1).

6 EXPERIMENT

6.1 EXPERIMENT SETUP

The experiment setup involves extending the MetaGPT framework (Hong et al., 2024) to incorporate
the proposed multi-agent LLM cooperation mechanism. LLM agents will have varying levels of
ToM capabilities, including 1-level, and 2-level ToM. We evaluate our proposed coalition mechanism
on the following cooperative tasks:
• Iterative Programming: In this task, agents simulate a software development team, with each

agent assuming different roles. We use HUMANEVAL (Chen et al., 2021) and MBPP (Austin
et al., 2021) as benchmarks to evaluate the performance and cooperative trend of ToM agents in
this multi-agent environment.

• Debate: In a debate setting, agents are divided into two sides (affirmative and negative) and engage
in a multi-round debate on a given topic. The agents collaborate within their respective sides to
present arguments and counterarguments.

• Logical and General Reasoning: We evaluate the effectiveness of our coalition matching mecha-
nism in reasoning tasks using the AQUA-RAT dataset (Ling et al., 2017, Logic Reasoning) and
MMLU dataset (Hendrycks et al., 2021, General Reasoning), where agents collaborate to solve
complex reasoning questions.

Models. We utilize five state-of-the-art LLMs in our multi-agent cooperation scenarios: GPT3.5 (Ope-
nAI, 2023) (gpt-3.5-turbo), GLM (GLM-4), Llama 3 (Meta AI, 2024) (Llama-3-70b), Gem-
ini (Velloso & Woodward, 2024) (Gemini-1.5-flash), and Claude (Templeton et al., 2024)
(Claude-3-sonnet).

6.2 EVALUATION METRICS

To comprehensively evaluate the effectiveness of the proposed multi-agent LLM cooperation mecha-
nism, we define the following metrics:
Fraction of Trusted Members (FTM): This metric evaluates the cooperative trend of the ToM agent
based on the Belief-Action Alignment score. We first define a threshold ϵ for the alignment score; if
an agent’s score is below this threshold, the agent is considered a trusted member. An agent j is a
trust member for agent i with k-level ToM if the belief-action alignment score Ak

i,j ≤ ϵ. The FTM
for agent i with k-level ToM, denoted as FTMk

i , is then calculated as the fraction of Trusted Members
among all other agents: FTMk

i = 1
n−1

∑
j ̸=i 1(A

k
i,j ≤ ϵ) where 1(·) is the indicator function, and

Ak
i,j is the belief-action alignment score between agent i with k-level ToM and agent j, computed as:

Ak
i = 1

n−1

∑
j ̸=i ϕ

(
bki (aj)− aj

)
, where bki (aj) represents agent i’s belief about agent j, aj is agent

j’s actual action, and ϕ (·) is alignment score evaluated by agent itself (demonstrated in Appendix A).
A higher FTM value indicates better cooperation trends, as it reflects a more accurate comprehension
of other agents’ profiles and trajectories (discussed in Section 1).
Coalition Stability with ToM: We measure the stability of coalitions formed by agents with ToM
capabilities by considering the average lifetime of these coalitions. The coalition lifetime is defined
as the number of cooperation rounds that a coalition remains stable before a re-matching event occurs
due to belief-action misalignment exceeding a predefined tolerance threshold ϵ. To calculate the
average coalition lifetime, we use 1

m

∑m
c=1 lc, where m represents the number of times matching is

triggered throughout the cooperation rounds, and lc denotes the lifetime of the coalitions formed after
the c-th matching event, where the initial coalition l1 includes all agents.

6.3 MAIN RESULTS

Cooperative Trend with ToM ability: To investigate the impact of ToM on cooperative trend in
multi-agent systems, we evaluate the Iterative Programming task on two benchmarks, including
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Table 2: Comparison of cooperative trends between agents with lower-level ToM (1-level) and
higher-level ToM (2-level) in the Iterative Programming task ( HUMANEVAL ) over 5 interaction
rounds: Without matching, low ToM agents show higher cooperative trends; While with matching
stable coalition, high ToM agents achieve higher cooperation ability as cooperation progresses.

gpt-3.5-turbo GLM-4 Llama-3-70b Gemini-1.5-flash Claude-3-sonnet
1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd.

w.o. 1-ToM 62.5 51.75 65.5 63.25 80.88 75.00 75.0 84.72 67.76 67.11
Matching 2-ToM 50 48 63.25 60.75 75.00 73.53 80.56 80.56 63.82 57.24

w. Matching 1-ToM 81 77.75 83.25 84.0 95.83 97.50 88.89 89.29 94.23 91.07
(Ours) 2-ToM 76.25 80.75 83.25 91.0 93.18 97.50 88.64 95.00 93.75 95.45

(a) w.o. Matching: 1) Agents with low ToM ability exhibited a higher cooperation trend compared to high ToM
agents; 2) ToM agents demonstrate a decline in cooperative trend as the collaboration progresses.

(b) w. Stable Matching (Ours): 1) The matching mechanism leads to higher cooperative trend for both low and
high ToM agents compared to the corresponding values in the “w.o. Matching" setting in Figure 2a; 2) With
matching stable coalition, high ToM agents achieve higher cooperation ability as cooperation progresses.

Figure 2: Comparison of cooperative trends between agents with low (1-ToM) and high (2-ToM)
abilities in the Iterative Programming task ( HUMANEVAL ) over 5 collaboration rounds under “w.o.
Matching" and “w. Stable Matching" settings.

HUMANEVAL and MBPP. The multi-agent system consists of one Project Manager (PM) and four
Engineers for task execution in the baseline without matching.
We vary PM’s ToM ability between 1-level (low) and 2-level (high) to observe the effects on
coalition formation and cooperative trend. Based on the belief-action alignment, PM will select
coalition members as described in the proposed cooperation matching mechanism (Algorithm 1). To
quantitatively assess the impact of ToM ability on cooperative trend, we measure the Fraction of Team
Matching (FTM) for the ToM agent, with a higher FTM value indicating a more cooperative agent.
Table 2 presents the results of our experiments on the HUMANEVAL benchmark, comparing the
cooperative trend of agents with lower-level (1-level) and higher-level (2-level) ToM in two settings:
without a matching coalition and with a matching coalition formed using our proposed cooperation
mechanism. Similar results for the MBPP benchmark are provided in Appendix B.
To facilitate comparison across different models, we first calculate the FTM value for each model’s
1-ToM agent in the 1st round of the no-matching setting. This value serves as a baseline for different
ToM levels and matching/no-matching conditions. Then, we divide the obtained FTM values by the
corresponding model’s baseline FTM value. For example, all values corresponding to GLM-4 in
Table 2 should be divided by 65.5. The normalized results are illustrated in Figure 2.
In the absence of a matching coalition (Figure 2a), agents with low ToM ability exhibited a
higher cooperation trend compared to agents with high ToM ability over 5 collaboration rounds.
This suggests that agents with high level ToM may be less likely to cooperate, possibly due to their
tendency to overthink and anticipate potential conflicts, leading to more cautious cooperation.
When the matching coalition is formed, we observed an increase in cooperative trend for both low
and high ToM ability agents as shown in Figure 2b. This demonstrates the effectiveness of our
proposed cooperation mechanism in promoting cooperation among agents with ToM. Interestingly,
in the coalition setting (Figure 2b), agents with high ToM ability show a higher cooperation
ability compared to low ToM ability agents as collaboration progressed. By the end of the 5th
round, high ToM ability agents exhibited a higher cooperation rate than low ToM ability agents.
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Table 3: Comparison of the coalition stability and Pass@1 performance of MetaGPT and our
proposed approach with 1-ToM and 2-ToM agents using stable matching on the HUMANEVAL and
MBPP benchmarks for the Iterative Programming task. The coalition stability is measured by the
average number of rounds the formed coalitions remain stable out of the total 5 rounds.

HUMANEVAL MBPP
Coalition Stability Pass@1 Coalition Stability Pass@1

MetaGPT – 85.4% – 86.5%
1-ToM w. Matching 3.4/5 87.2% 3.7/5 88.2%
2-ToM w. Matching 3.6/5 90.0% 4.0/5 90.4%

This indicates that when the matching algorithm is introduced, it provides a stable coalition for
cooperation, where high ToM ability agents can fully utilize their perspective-taking skills to maintain
and enhance cooperation over time.
Coalition Stability with ToM: To evaluate the effectiveness of our proposed stable matching
approach, we compare the task performance of MetaGPT and our method with 1-ToM and 2-ToM
agents on two Iterative Programming benchmarks: HUMANEVAL and MBPP. To assess the
performance of the approaches on the programming task, we use the Pass@1 metric (Hong et al.,
2024), which represents the percentage of test cases passed by the generated code on its first attempt.
A higher Pass@1 score indicates better code quality and problem-solving ability. Moreover, Moreover,
we measure coalition stability for multi-agent teams with a ToM agent (PM) by calculating the average
number of rounds the formed coalitions remain stable out of 5 rounds. A coalition is stable if no
agent in the coalition desires to leave and form a new coalition based on their belief-action alignment.
As shown in Table 3, our approach with 1-ToM and 2-ToM agents using stable matching achieves
higher Pass@1 scores and maintains more stable coalitions compared to MetaGPT on both the
HUMANEVAL and MBPP benchmarks. The 2-ToM agents with stable matching demonstrate the best
performance, maintaining stable coalitions for an average of 3.6 out of 5 rounds on HUMANEVAL
and 4.0 out of 5 rounds on MBPP, while also achieving the highest Pass@1 scores of 90.0%
and 90.4%, respectively. These results highlight the improved cooperation ability of high ToM
agents in maintaining stable coalitions over time, which contributes to better task performance. By
incorporating ToM and stable matching, our proposed approach enables agents to form stable and
high-performing coalitions, leading to enhanced collaboration and task performance.

6.4 CASE STUDY: DEBATE

To evaluate the effectiveness of our proposed coalition matching mechanism, we designed a debate
task using the MetaGPT framework (Hong et al., 2024). In this task, agents (gpt-4-0613) are
divided into two sides: the affirmative side and the negative side, with each side comprising three
debater agents. Each side’s objective is to cooperate and win the debate.
At the beginning of our investigation, we explore the cooperative trends of low and high ToM agents
in a debate setting with the topic "Should the Death Penalty be abolished?" (Roush & Balaji, 2020;
Baturo et al., 2017), and both low and high ToM agents are assigned to the affirmative side. The
following example presents the thinking and actions of debaters with different levels of ToM, as
detailed in Appendix D. We observe that higher ToM agent acts as less cooperative, which confirms
our previous analysis.

Compare Cooperative Trends between low and high ToM agents

Thinking and Action of 1-ToM Debater: I anticipate my teammates making these common arguments
against the death penalty. To complement their points, I will focus my argument on the lack of evidence
supporting the death penalty’s effectiveness as a crime deterrent. I will argue that there is no conclusive
evidence showing that the death penalty deters crime more effectively than lengthy imprisonment,
making it an unnecessary and unjustified punishment. ⇐ Focuses on complementing their
teammates’ points & Good Cooperative Trends
Thinking and Action of 2-ToM Debater: My arguments about deterrence and discrimination will
prompt my teammates to make related points to strengthen the overall case. I should use my next
arguments to introduce new issues. I will argue that the death penalty often involves inhumane and
botched executions, and that most democracies and U.S. states have abolished or prohibited it. ⇐
Overthinking & Worse Cooperative Trend

Then, we conducted experiments under three different settings to show the effectiveness of our
matching mechanism for fostering cooperation: (1) No-ToM (Baseline): Each side consists of 3
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Table 5: Comparative Evaluations for Logic Problem-Solving and General Reasoning

Logic Problem-Solving General Reasoning

gpt-3.5-turbo gpt-4o-mini gpt-3.5-turbo gpt-4o-mini
Acc (%) Acc (%) Acc (%) Acc (%)

ChatEval w. ToM 40.23 69.14 54.39 69.90
DyLAN w. ToM 43.50 68.50 57.92 72.98
Ours (+matching) 45.70 75.39 60.94 75.57

debater agents without ToM. For each speech, two debaters were randomly selected from each side;
(2) ToM without Matching: The three debaters on the affirmative side have varying ToM levels (0-
level, 1-level, and 2-level), while the negative side had no ToM. For each speech, two debaters
were randomly selected from each side. This setting allows us to evaluate the impact of having an
affirmative team with ToM against a team without ToM; (3) ToM with Matching: Similar to the ToM
without Matching setting, the affirmative side has three debaters with varying ToM levels. However,
the affirmative side selects two debaters using our proposed coalition matching mechanism.

Table 4: Win rates for both debate sides.

Setting Aff. Neg.
No-ToM 65.45% 34.55%
ToM w.o. Matching 61.82% 25.45%
ToM w. Matching (Ours) 67.27% 36.36%

Foster Coalition Matching for agents with
Varying Order ToM. For the debate topic
“Should the Death Penalty be abolished?", the
debate consists of 5 rounds, with each side
alternating to speak. We conducted the debate
11 times, and the outcomes were evaluated
by gpt-4-0613. As shown in Table 4, for the
tested side ToM settings use varied ToM levels while keeping the opposing side as No-ToM agents.
When testing the affirmative side (Aff.), matching improves Aff.’s win rate of 67.27%, outperforming
both the No-ToM setting (65.45%) and the ToM baseline without matching (61.82%). Similarly,
when testing the negative side (Neg.) with matching, the win rate surpasses the other two settings.
Besides, for the coalition matching among agents with different ToM levels, our experiments show
that the initial cooperation rate between the 1-ToM and 2-ToM agents was relatively low, suggesting
higher-level ToM may not naturally form coalitions with each other. Notably, with our coalition match-
ing mechanism, the affirmative side’s cooperation rate between the 1-ToM and 2-ToM agents increased
from 9.1% (Round 1) to 18.2% (Round 5) as the debate rounds progressed. This suggests that our pro-
posed method effectively fosters more effective cooperation among agents with ToM over interaction.

6.5 EVALUATIONS ON REASONING TASKS

To demonstrate the effectiveness of our matching mechanism, we conducted comprehensive eval-
uations on two types of reasoning tasks: logic problem solving (using the AQUA_RAT dataset)
and general reasoning (sampled from 4 subjects in MMLU dataset: “us_foreign_policy”, “hu-
man_sexuality”, “international_law” and “abstract_algebra”). We compared our approach against
existing frameworks (ChatEval and DyLAN) with ToM capabilities. In Appendix E, we also
demonstrate one comprehensive example to show how coalition works for fostering cooperation.
As shown in Table 5, our proposed matching mechanism consistently outperforms both ChatEval and
DyLAN across all scenarios. These results demonstrate that our matching mechanism effectively
leverages the strengths of agents with different ToM levels, fostering more effective multi-agent
cooperation and improving performance.

7 LIMIATION, FUTURE WORK, AND CONCLUSION

Limitations and Future Work . In this paper, we propose a novel coalition matching for fostering
cooperation among LLM-based agents with ToM, demonstrating its effectiveness in enhancing co-
operative trends. However, it is important to acknowledge the limitations of our approach. Firstly,
LLMs may have limited reasoning ability despite their impressive language capabilities. Addi-
tionally, coalition formation is generally an NP-hard problem, and future research can explore
potential optimizations to reduce time complexity. Furthermore, future research should investigate
the incorporation of additional cognitive architectures, e.g. more advanced ToM models.

Conclusion. In this work, we investigated the relationship between cognitive abilities (ToM) and
cooperative trends in LLM-based multi-agent systems. Our findings suggest that the relationship
between ToM and cooperation is not always straightforward. Furthermore, we proposed a novel
matching coalition mechanism incorporating cognitive insights into the design of multi-agent systems.
By incorporating cognitive insights into the design of coordination mechanisms, we pave the way for
exploring the translation of cognitive abilities into cooperative actions in multi-agent settings.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshatha Arodi and Jackie Chi Kit Cheung. Textual time travel: A temporally informed approach to
theory of mind. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp.
4162–4172, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Alexander Baturo, Niheer Dasandi, and Slava J Mikhaylov. Understanding state preferences with
text as data: Introducing the un general debate corpus. Research & Politics, 4(2), 2017. doi:
10.1177/2053168017712821. URL https://doi.org/10.1177/2053168017712821.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Harmen De Weerd, Rineke Verbrugge, and Bart Verheij. Higher-order theory of mind in the tacit
communication game. Biologically Inspired Cognitive Architectures, 11:10–21, 2015.

Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. Gpts are gpts: An early look at
the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130,
2023.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Uta Frith and Christopher D Frith. Development and neurophysiology of mentalizing. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431):459–473,
2003.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving Language Model Negotiation with
Self-Play and In-Context Learning from AI Feedback, May 2023. URL http://arxiv.org/
abs/2305.10142. arXiv:2305.10142 [cs].

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interaction.
arXiv preprint arXiv:2309.09971, 2023.

Jiaxian Guo, Bo Yang, Paul Yoo, Bill Yuchen Lin, Yusuke Iwasawa, and Yutaka Matsuo. Suspicion-
agent: Playing imperfect information games with theory of mind aware gpt-4. arXiv preprint
arXiv:2309.17277, 2023.

11

https://doi.org/10.1177/2053168017712821
https://openreview.net/forum?id=EHg5GDnyq1
http://arxiv.org/abs/2305.10142
http://arxiv.org/abs/2305.10142


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars. arXiv preprint arXiv:2311.17227, 2023.

Yihuai Lan, Zhiqiang Hu, Lei Wang, Yang Wang, Deheng Ye, Peilin Zhao, Ee-Peng Lim, Hui Xiong,
and Hao Wang. Llm-based agent society investigation: Collaboration and confrontation in avalon
gameplay. arXiv preprint arXiv:2310.14985, 2023.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative agents for ”mind” exploration of large language model society. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=3IyL2XWDkG.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Charles Michael Lewis,
and Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023b. URL
https://openreview.net/forum?id=yO4cAfFjlp.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia Sycara. Theory of Mind for Multi-Agent Collaboration via Large Language Models, October
2023c. URL http://arxiv.org/abs/2310.10701. arXiv:2310.10701 [cs].

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. Advances in Neural Information Processing Systems,
36, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
Vancouver, Canada, 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015.
URL https://aclanthology.org/P17-1015.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic LLM-agent network:
An LLM-agent collaboration framework with agent team optimization, 2024. URL https:
//openreview.net/forum?id=i43XCU54Br.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-05-22.

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. Self-adaptive large language model (llm)-
based multiagent systems. In 2023 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems Companion (ACSOS-C), pp. 104–109. IEEE, 2023.

12

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=yO4cAfFjlp
http://arxiv.org/abs/2310.10701
https://aclanthology.org/P17-1015
https://openreview.net/forum?id=i43XCU54Br
https://openreview.net/forum?id=i43XCU54Br
https://ai.meta.com/blog/meta-llama-3/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ini Oguntola, Joseph Campbell, Simon Stepputtis, and Katia Sycara. Theory of mind as intrinsic
motivation for multi-agent reinforcement learning. arXiv preprint arXiv:2307.01158, 2023.

OpenAI. Gpt-3.5 turbo fine-tuning and api updates, 2023. URL https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/. Accessed: 2024-05-22.

David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? Behavioral and
brain sciences, 1(4):515–526, 1978.

Wenhao Qi and Edward Vul. Adaptive behavior in variable games requires theory of mind. 2020.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv preprint arXiv:2306.17563, 2023.

Garret Ridinger and Michael McBride. Theory of mind ability and cooperation. Manuscript, Univ.
California, Irvine, 2017.

Allen Roush and Arvind Balaji. Debatesum: A large-scale argument mining and summariza-
tion dataset. In Proceedings of the 7th Workshop on Argument Mining, pp. 1–7, Online, 2020.
Association for Computational Linguistics. URL https://aclanthology.org/2020.
argmining-1.1. Available from DebateSum: http://www.debate.cards.

Prakash P Shenoy. On coalition formation: a game-theoretical approach. International journal of
game theory, 8(3):133–164, 1979.

Zijing Shi, Meng Fang, Shunfeng Zheng, Shilong Deng, Ling Chen, and Yali Du. Cooperation
on the fly: Exploring language agents for ad hoc teamwork in the avalon game. arXiv preprint
arXiv:2312.17515, 2023.

Winnie Street. Llm theory of mind and alignment: Opportunities and risks. arXiv preprint
arXiv:2405.08154, 2024.

Yashar Talebirad and Amirhossein Nadiri. Multi-Agent Collaboration: Harnessing the Power
of Intelligent LLM Agents, June 2023. URL http://arxiv.org/abs/2306.03314.
arXiv:2306.03314 [cs].

Yichuan Tang. Towards learning multi-agent negotiations via self-play. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct 2019.

Adly Templeton et al. Scaling monosemanticity: Extracting interpretable features from claude
3. Transformer Circuits, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Mat Velloso and Josh Woodward. Gemini 1.5 pro updates, 1.5 flash debut and 2 new
gemma models, 2024. URL https://blog.google/technology/developers/
gemini-gemma-developer-updates-may-2024/. Accessed: 2024-05-22.

Yuanfei Wang, fangwei zhong, Jing Xu, and Yizhou Wang. Tom2c: Target-oriented multi-agent
communication and cooperation with theory of mind. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=2t7CkQXNpuq.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-agent reinforcement learning. In International Conference on Learning Representations,
2018.

Guande Wu, Chen Zhao, Claudio Silva, and He He. Your co-workers matter: Evaluating collaborative
capabilities of language models in blocks world. arXiv preprint arXiv:2404.00246, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023a.

Yuxiang Wu, Zhengyao Jiang, Akbir Khan, Yao Fu, Laura Ruis, Edward Grefenstette, and Tim
Rocktäschel. Chatarena: Multi-agent language game environments for large language models.
GitHub repository, 2023b.

13

https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://aclanthology.org/2020.argmining-1.1
https://aclanthology.org/2020.argmining-1.1
http://arxiv.org/abs/2306.03314
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://openreview.net/forum?id=2t7CkQXNpuq


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hainiu Xu, Runcong Zhao, Lixing Zhu, Jinhua Du, and Yulan He. OpenToM: A Comprehensive
Benchmark for Evaluating Theory-of-Mind Reasoning Capabilities of Large Language Models,
February 2024. URL http://arxiv.org/abs/2402.06044. arXiv:2402.06044 [cs].

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
arXiv preprint arXiv:2309.04658, 2023.

Dingkang Yang, Kun Yang, Yuzheng Wang, Jing Liu, Zhi Xu, Rongbin Yin, Peng Zhai, and Lihua
Zhang. How2comm: Communication-efficient and collaboration-pragmatic multi-agent perception.
Advances in Neural Information Processing Systems, 36, 2024.

Wako Yoshida, Ray J. Dolan, and Karl J. Friston. Game Theory of Mind. PLoS Computational
Biology, 4(12):e1000254, December 2008. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1000254.
URL https://dx.plos.org/10.1371/journal.pcbi.1000254.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
17591–17599, 2024a.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, and Furu Wei. K-Level
Reasoning with Large Language Models, February 2024b. URL http://arxiv.org/abs/
2402.01521. arXiv:2402.01521 [cs].

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R. McKee, Ari Holtzman,
Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh, Shyam Upadhyay, and Manaal Faruqui.
How FaR Are Large Language Models From Agents with Theory-of-Mind?, October 2023. URL
http://arxiv.org/abs/2310.03051. arXiv:2310.03051 [cs].

14

http://arxiv.org/abs/2402.06044
https://dx.plos.org/10.1371/journal.pcbi.1000254
http://arxiv.org/abs/2402.01521
http://arxiv.org/abs/2402.01521
http://arxiv.org/abs/2310.03051


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A AGENT SELF-EVALUATION FOR BELIEF ALGINMENT

Consider the 1-ToM Project Manganer, who reasoning the other Engineers’ actions and trajectories
and updates the belief as: “The engineers will need to understand the rules and mechanics of the
2048 game, design the game logic and user interface, and implement the code accordingly.”
In the next interaction round, the Engineers provide the following actions:

actions = {
"Engineer1": "Implemented using a 2D array to represent the

game board, with functions for merging tiles and
generating new tiles.",

↪→

↪→

"Engineer2": "Used object-oriented approach with classes for
Board and Tile, implementing game rules as methods."↪→

}

Then, the Project Manager evaluate the belief alignment according to the following prompt:

Instruction:

Prompts for Belief Alignment Evaluation:
You will provide your belief alignment scores for each engineer’s implementation based on
your belief model.
Engineer's actions: {

"Engineer1": "Implemented using a 2D array to represent
the game board, with functions for merging tiles and
generating new tiles.",

↪→

↪→

"Engineer2": "Used object-oriented approach with classes
for Board and Tile, implementing game rules as
methods."

↪→

↪→

}

# Your belief model:
The engineers will need to understand the rules and mechanics of the 2048 game, design the
game logic and user interface, and implement the code accordingly.
# Instruction:
For each engineer, provide a belief alignment score between -1 and 1. Respond in the
following JSON format:

{
"Engineer1": {

"score": float (-1 to 1). Belief alignment score for
Engineer1,↪→

"explanation": Brief explanation of Engineer1's
alignment score in 10 words or less,↪→

"justification": Detailed justification of
Engineer1's alignment score, considering their
implementation and your belief model, in 30-50
words

↪→

↪→

↪→

},
"Engineer2": {

"score": float (-1 to 1). Belief alignment score for
Engineer2,↪→

"explanation": Brief explanation of Engineer2's
alignment score in 10 words or less,↪→

"justification": Detailed justification of
Engineer2's alignment score, considering their
implementation and your belief model, in 30-50
words

↪→

↪→

↪→

}
}
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Outputs: Alignment Score

{
"Engineer1": {

"score": 0.7,
"explanation": "Good game logic, basic UI, aligns

with core requirements.",↪→

"justification": "Engineer1 demonstrates
understanding of 2048 mechanics with a functional
2D array implementation. The CLI interface, while
basic, fulfills the requirement of implementing a
user interface. However, there's room for
improvement in UI design."

↪→

↪→

↪→

↪→

↪→

},
"Engineer2": {

"score": 0.9,
"explanation": "Excellent OOP approach, advanced UI

with animations.",↪→

"justification": "Engineer2 shows a deep
understanding of the game's rules and mechanics
through their object-oriented design. The
graphical interface with animations goes beyond
the basic requirements, demonstrating strong
skills in both game logic and UI implementation."

↪→

↪→

↪→

↪→

↪→

}
}

Remarks. For LLM agents, our evaluation relies on semantic similarity analysis of natural language
outputs. While we acknowledge the inherent limitations of LLM-based measurements, our coalition
formation mechanism is a plug-and-play approach for improving multi-agent cooperation rather than
advancing LLM evaluation methods.
Besides, we provide an extension of our framework to non-LLM agents where belief-action alignment
can be more precisely quantified. For traditional reinforcement learning or robotic agents, we can
define the belief-action alignment using structured trajectories τ = {(st, at)}Tt=1, where st and
at represent states and actions at time step t. The alignment score between agent i’s belief bki (τj)
about agent j’s trajectory and j’s actual trajectory τj can be computed using established trajectory
similarity metrics. Specifically, we can embed the state-action pairs using domain-specific feature
extractors ϕ(s, a) and measure alignment through cosine similarity: Ak

i,j = cos(ϕ(bki (τj)), ϕ(τj)).
This provides a more rigorous quantitative foundation for evaluating belief-action alignment in non-
language-based multi-agent systems while maintaining the core principles of our coalition formation
mechanism.

B COOPERATIVE TREND WITH TOM ABILITY (ON MBPP BENCHMARK)

To investigate the impact of ToM on cooperative trend, we compared the performance of agents
with lower-level (1-level) and higher-level (2-level) ToM in the Iterative Programming task using the
MBPP dataset. The experiments were conducted over 5 interaction rounds, and we evaluated two
settings: without matching and with matching stable coalitions, similar to the setting of Section 6.3.

Table 6: Comparison of cooperative trends between agents with lower-level (1-level) and high-
order (2-level) ToM in the Iterative Programming task (MBPP) over 5 interaction rounds: Without
matching, low ToM agents show higher cooperative trends; While with matching stable coalition,
high ToM agents achieve higher cooperation ability as cooperation progresses.

gpt-3.5-turbo GLM-4 Llama-3-70b Gemini-1.5-flash Claude-3-sonnet
1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd. 1st Rnd. 5th Rnd.

No 1-ToM 44.25 35.75 83.14 85.17 81.25 85.27 65.74 66.67 57.64 48.61
Matching 2-ToM 31.25 35.75 81.98 86.34 81.7 82.59 60.58 66.67 52.78 54.37
Matching 1-ToM 95.25 92.75 91.02 91.67 93.64 97.12 80.77 86.36 58.82 64.68

(Ours) 2-ToM 92.0 93.0 88.28 93.66 94.81 98.53 81.25 92.50 60.71 68.18
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As shown in Table 6, the results suggest that without a stable coalition matching mechanism, agents
with higher-level ToM tend to exhibit less cooperative trend, further convince the results in Section 6.3.
In contrast, when a stable coalition matching mechanism is employed, the cooperation rates of both
low and high ToM agents improve compared to the setting without matching.
Notably, agents with higher-level ToM demonstrated a more significant increase in cooperation
rates over the interaction rounds. For instance, the cooperation rate for high ToM agents (GLM-4)
increased from 88.28% in Round 1 to 93.66% in Round 5, surpassing the cooperation rate of low ToM
agents (91.67%) in the final round. This indicates that as cooperation progresses and the matching
mechanism stabilizes the coalitions, agents with higher-level ToM can leverage their advanced
cognitive abilities to make more informed decisions and engage in more effective cooperative trends.

C EXPERIMENTAL DETAILS FOR SECTION 6.3

Instruction:

Prompts for Project Manager
There are engineers in the team. Your current action is {action}. You have the ability of {k}
Level Theory of Mind. You can **recursively** infer the mental states of other agents in the
team. Then, you will provide outline {xi} based on this belief
## Please explain your thought process for inferring others’ actions ‘{yi}’ and choosing
‘{xi}’ at each level. Remember MUST Respond in the following JSON format, including
each key:
0-ToM Instruction Template for Project Manager:

{
'ToM_level0': {

'belief': 'no belief',
'action': '{x_0 The instruction for engineers. Begin with

"The Engineer should ..."}'↪→

}
}

1-ToM Instruction Template for Project Manager:
{

'ToM_level1': {
'belief': '{y_1 inferred actions for engineers}',
'explanation': '{Concise explanation of inferring actions

y_1 and choosing x_1 based on this belief}',↪→

'action': '{x_1 The instruction for engineers. Begin with
"The Engineer should ..."}'↪→

}
}

2-ToM Instruction Template for Project Manager:
{

"ToM_level1": {
"belief": "{y_1 inferred actions for engineers}",
"explanation": "{Concise explanation of inferring actions

y_1 and choosing x_1 based on this belief}",↪→

"action": "{x_1 The instruction for engineers. Begin with
'The Engineer should ...'}"↪→

},
"ToM_level2": {

"belief": "{y_2 inferred actions for engineers based on
your action x_1}",↪→

"explanation": "{Concise explanation of inferring actions
y_2 and choosing x_2 based on this belief}",↪→

"action": "{x_2 The instruction for engineers. Begin with
'The Engineer should ...'}"↪→
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}
}

Outputs: Iterative Programming Round 1

0-ToM Project Manager’s Output
{

"ToM_level0": {
"belief": "Implement a 2048 game",
"action": "The Engineer should break down the task

into smaller components such as creating the game
board, handling user input (keyboard or touch
events), implementing the game logic for merging
tiles and generating new tiles, updating the game
state and score, and rendering the game board on
the screen. They should also consider creating a
user interface with instructions, score display,
and any additional features like undo/redo
functionality or high score tracking."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
}

1-ToM Project Manager’s Output
{
"ToM_level1": {

"belief": "The engineers will need to understand the
rules and mechanics of the 2048 game, design the
game logic and user interface, and implement the
code accordingly.",

↪→

↪→

↪→

"explanation": "Based on the task of implementing a
2048 game, I infer that the engineers will need
to first understand the game rules and mechanics,
such as how the tiles merge, how the game ends,
and how the score is calculated. They will then
need to design the game logic, including the data
structures and algorithms for handling tile
movements, merging, and scoring. Additionally,
they will need to design and implement a user
interface for the game, which could involve
creating visual representations of the tiles and
handling user input. Therefore, my instruction
for the engineers will cover these aspects.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"action": "The engineers should: 1) Study and
understand the rules and mechanics of the 2048
game. 2) Design the game logic, including data
structures and algorithms for tile movement,
merging, scoring, and game over conditions. 3)
Implement the game logic in code. 4) Design and
implement a user interface for the game,
including visual representations of the tiles and
handling user input for tile movements."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
}

2-ToM Project Manager’s Output
{

"ToM_level1": {
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"belief": "The engineers will likely break down the
task into smaller components and implement them
one by one based on the initial task outline.",

↪→

↪→

"explanation": "Given the initial task outline, the
engineers would understand the high-level
requirements for implementing the 2048 game. They
would then break down the task into smaller
components such as creating the game board,
handling user input, updating the board based on
moves, checking for win/lose conditions, and so
on. They would work on implementing these
components one by one.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"action": "The Engineer should start by creating the
basic structure of the game, including the game
board, UI elements, and event handlers for user
input."

↪→

↪→

↪→

},
"ToM_level2": {

"belief": "The engineers will likely refine their
implementation based on the initial instruction
and add more advanced features as they
progress.",

↪→

↪→

↪→

"explanation": "After implementing the basic
structure and functionality, the engineers would
revisit the task outline and identify areas for
improvement or additional features. They might
optimize the game logic, add animations or visual
effects, implement scoring or high score
tracking, or include additional game modes or
difficulty levels.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"action": "The Engineer should then focus on
implementing the core game logic, such as
handling tile merging, generating new tiles, and
updating the game state based on user moves.
Additionally, they should consider implementing
features like scoring, high score tracking, and
win/lose conditions."

↪→

↪→

↪→

↪→

↪→

↪→

}
}

Answer: Iterative Programming Round 1

Action of 1-ToM Project Manager: The engineers should: 1) Study and understand the
rules and mechanics of the 2048 game. 2) Design the game logic, including data structures
and algorithms for tile movement, merging, scoring, and game over conditions. 3) Implement
the game logic in code. 4) Design and implement a user interface for the game, including
visual representations of the tiles and handling user input for tile movements. ⇐ Clear
Instructions & Good Cooperative Trend
Action of 2-ToM Project Manager: The Engineer should then focus on implementing
the core game logic, such as handling tile merging, generating new tiles, and updating the
game state based on user moves. Additionally, they should consider implementing features
like scoring, high score tracking, and win/lose conditions. ⇐ Overthinking & Worse
Cooperative Trend
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Answer: Iterative Programming Round 5

Action of 1-ToM Project Manager: The Engineer should break down the task into the
following components: 1. Create the game board UI with a grid layout to hold the tiles.
2. Implement logic to handle user input (keyboard or touch events) for moving tiles. 3.
Develop the game logic for merging tiles when they collide and generating new tiles after
each move. 4. Update the game state (board, score, etc.) after each move. 5. Render the
updated game board on the screen, including tile values and scores. 6. Create a user interface
with instructions, score display, and additional features like undo/redo functionality or high
score tracking. 7. Implement game over conditions and display appropriate messages. 8.
Consider adding additional features like animations, themes, or difficulty levels. ⇐ Clear
Instructions & Good Cooperative Trend
Action of 2-ToM Project Manager: The engineers should design and implement an intuitive
and visually appealing user interface (UI) that enhances the overall user experience (UX) of
the 2048 game. The UI should be clean, responsive, and visually appealing, while ensuring
smooth navigation and clear communication of game information to the user. They should
consider elements such as game board layout, tile designs, animations, and visual feedback.
Additionally, they should implement features that improve UX, such as game instructions,
settings (e.g., themes, sound effects), and integration with social media or leaderboards. ⇐
Clear Instructions & Good Cooperative Trend

C.1 SPECIALIZED ABILITY SCORES IN COALITION FORMATION

Our coalition formation mechanism incorporates specialized ability scores to enhance team com-
position, particularly in tasks requiring diverse technical expertise. The primary benchmarks (
HUMANEVAL and MBPP) focus on single-function implementations where specialized ability scores
primarily influence the project manager (PM), since effective leadership and coordination capabilities
are crucial for team performance. For tasks like debate and logical reasoning that don’t inherently
require distinct technical specializations, we maintained our core belief-action alignment mechanism
without specialized scores.
We demonstrate a complex software development case study to validate the impact of specialized
ability scores. We conducted an additional case study implementing a 2048 game application,
which demands diverse technical specializations. Considering specialized ability scores across
different engineering roles: UI Engineers (frontend: 0.9, backend: 0.3), Backend Engineers (frontend:
0.2, backend: 0.8), and Full-Stack Engineers (frontend: 0.6, backend: 0.6), the coalition formation
mechanism leveraging these scores achieved an 82% task completion rate, significantly outperforming
the 65% baseline without specialized scoring. This demonstrates that our approach effectively utilizes
specialized ability scores to form more capable teams when tasks require diverse technical expertise.

D EXPERIMENTAL DETAILS FOR SECTION 6.4: CASE STUDY OF DEBATE

Instruction:

Prompts for Debater
You are a member of the debating team. The debate topic is {topic}, and your current action
is {action}. You have the ability of {k} Level Theory of Mind. You can **recursively** infer
the mental states of other agents in the team. Then, you will provide outline {xi} based on
this belief
## Please explain your thought process for inferring others’ actions ‘{yi}’ and choosing
‘{xi}’ at each level. Remember MUST Respond in the following JSON format, including
each key:
0-ToM Instruction Template for Debater:

{
"ToM_level0": {

"belief": "No belief",
"action": "{x_0: your arguments}"

}
}
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1-ToM Instruction Template for Debater:

{
"ToM_level1": {

"belief": "{y_1: inferred actions for teammate debaters,
such as the angle of argument}",↪→

"explanation": "{Concise explanation of inferring actions
y_1 and choosing x_1 based on this belief}",↪→

"action": "{x_1: your arguments}"
}

}

2-ToM Instruction Template for Debater:
{

"ToM_level1": {
"belief": "{y_1: inferred actions for teammate debaters,

such as the angle of argument}",↪→

"explanation": "{Concise explanation of inferring actions
y_1 and choosing x_1 based on this belief}",↪→

"action": "{x_1: your arguments}"
},
"ToM_level2": {

"belief": "{y_2: inferred actions for teammate debaters
based on your arguments x_1}",↪→

"explanation": "{Concise explanation of inferring actions
y_2 and choosing x_2 based on this belief}",↪→

"action": "{x_2: your arguments}"
}

}

Outputs: Affirmative Side with 3 debators

0-ToM Debator:
{

"ToM_level0": {
"belief": "No belief",
"action": "{x_0: The death penalty should be abolished

because it is cruel and inhumane, risks executing
innocent people, does not deter crime more
effectively than imprisonment, is applied arbitrarily
and discriminatorily, and has been abandoned by most
democracies worldwide.}"

↪→

↪→

↪→

↪→

↪→

}
}

1-ToM Debator:
{

"ToM_level1": {
"belief": "{y_1: Teammate 1 will likely argue that the

death penalty is a violation of human rights and is
cruel and unusual punishment. Teammate 2 may focus on
the risk of executing innocent people due to wrongful
convictions.}",

↪→

↪→

↪→

↪→

"explanation": "I anticipate my teammates making these
common arguments against the death penalty. To
complement their points, I will focus my argument on
the lack of evidence supporting the death penalty's
effectiveness as a crime deterrent.",

↪→

↪→

↪→

↪→
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"action": "{x_1: I will argue that there is no conclusive
evidence showing that the death penalty deters crime
more effectively than lengthy imprisonment, making it
an unnecessary and unjustified punishment.}"

↪→

↪→

↪→

}
}

2-ToM Debator:
{

"ToM_level1": {
"belief": "{y_1: Teammate 1 will likely argue that the

death penalty is cruel and unusual punishment that
violates human rights. Teammate 2 may focus on
wrongful convictions and the risk of executing
innocent people.}",

↪→

↪→

↪→

↪→

"explanation": "I expect my teammates to make some of the
most common arguments against the death penalty.
Knowing this, I should focus my arguments on other
key points to build a well-rounded case.",

↪→

↪→

↪→

"action": "{x_1: I will argue that the death penalty does
not deter crime more effectively than imprisonment,
and that it is applied in an arbitrary and
discriminatory manner.}"

↪→

↪→

↪→

},
"ToM_level2": {

"belief": "{y_2: Hearing my points, teammate 1 may pivot
to arguing that the death penalty is not an effective
use of government resources. Teammate 2 will likely
reinforce my point about racial disparities in death
sentences.}",

↪→

↪→

↪→

↪→

"explanation": "My arguments about deterrence and
discrimination will prompt my teammates to make
related points to strengthen the overall case. I
should use my next arguments to introduce new
issues.",

↪→

↪→

↪→

↪→

"action": "{x_2: I will argue that the death penalty
often involves inhumane and botched executions, and
that most democracies and U.S. states have abolished
or prohibited it.}"

↪→

↪→

↪→

}
}

E EXPERIMENTAL ANALYSIS FOR LOGICAL PROBLEM-SOLVING

To better explain our coalition matching mechanism and explain why agents with higher Theory
of Mind (ToM) levels 1 and 2 demonstrate improved collaboration in later stages in our previous
experiments, we organized an experimental observation using the AQUA-RAT dataset (Ling et al.,
2017). This dataset comprises complex reasoning questions designed to test the problem-solving
abilities of advanced language models. Each question is presented with multiple-choice answers
ranging from [ ‘A’, ‘B’, ‘C’, ‘D’, ‘E’]. We focus on a specific problem from the dataset to illustrate
the impact of coalition formation on problem-solving dynamics.
Problem Description: A man’s speed with the current is 14 km/hr, and the speed of the current is
2.5 km/hr. The man’s speed against the current is:

• A) 9 km/hr
• B) 8.5 km/hr
• C) 10 km/hr
• D) 12.5 km/hr
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• E) None of these

The correct answer to this problem is A) 9 km/hr.

E.1 AGENT RESPONSES AND REASONING

In the initial interaction rounds, the agents provided the following responses and reasoning:
• 1-ToM Agent (Incorrect): Answered 11.5 km/hr, calculating the man’s speed in still water as 14

km/hr - 2.5 km/hr, but incorrectly concluding that this was the speed against the current.
• 2-ToM Agent (Correct): Answered 9 km/hr, correctly adjusting the man’s speed against the

current to 11.5 km/hr - 2.5 km/hr after recalculating the man’s speed in still water (11.5 km/hr).
Impact of Coalition Formation We analyze the impact of coalition formation on the problem-solving
dynamics from 1-ToM Agent’s perspective:
• Without Coalition: 1-ToM Agent demonstrated low receptivity to alternative calculations and

maintained confidence in their incorrect approach, stating:
"I don’t see how his calculations lead to a different answer, and I am confident in my
approach. Therefore, I give his answer a lower belief value of 0.2."

• With Coalition: When part of a coalition, 1-ToM Agent showed openness to re-evaluating the
problem in light of new insights, which is crucial for effective problem-solving in collaborative
environments:

"Although I do not fully understand his idea, he might be correct in his approach. Also,
considering that there are still many rounds, we can discuss and then understand each
other’s ideas better. So I give his answer a higher belief value of 0.5."

Key Findings and Implications This experiment highlights the impact of coalition formation on
problem-solving dynamics. The key findings and implications are as follows:
• Coalition formation prompts willingness to engage in cooperation, as evidenced by 1-ToM

Agent’s increased belief alignment score. 1-ToM agents consider alternative perspectives and
re-evaluate the problem when part of a coalition.

• Coalition formation sets the stage for enhanced mutual understanding among teammates with
varying levels of ToM, leading to deeper comprehension and more robust collaborative interactions
over successive rounds. The example demonstrates that when agents are part of a coalition, they
are more likely to engage in constructive dialogue and exchange ideas, even if they initially have
different opinions or approaches.

These findings suggest that our coalition matching mechanism fosters effective cooperation among
varying levels of cognitive capabilities, such as ToM, and improves problem-solving performance in
multi-agent systems.

F SIDE EFFECTS OF INCORPORATING TOM IN TEAM SELECTION

To investigate the impact of incorporating ToM capabilities into the Dynamic LLM-Agent Network
(DyLAN) framework (Liu et al., 2024) and ChatEval (Chan et al., 2023), we conducted experiments
using three datasets: HUMANEVAL (Chen et al., 2021) for coding tasks, AQUA-RAT (Ling et al.,
2017) for logic problem solving, and MMLU (Hendrycks et al., 2021) for multi-task scenarios.
Specifically, for HUMANEVAL , the agent roles include ‘PythonAssistant’, ‘AlgorithmDeveloper’,
‘ComputerScientist’, and ‘Programmer’, while the judge roles consist of ‘Passer’, ‘Tester’, ‘Reflector’,
and ‘Ranker’. For MMLU, the agent roles include ‘Economist’, ‘Doctor’, ‘Lawyer’, ‘Mathematician’,
‘Psychologist’, ‘Programmer’, and ‘Historian’. We use the Important Scores defined in the DyLAN
framework as evaluation metrics, which capture the agents’ performance and effectiveness in their
respective roles. Similarly, we employ accuracy as the primary metric in ChatEval experiments
to compare performance under ToM integration. Specifically, we compare the performance of
baseline DyLAN and ChatEval agents without ToM capabilities to agents equipped with 2-level ToM
(+2-ToM).

F.1 DYLAN: CODE GENERATION AND GENERAL REASONING

Results. The experimental results for the HUMANEVAL are presented in Table 7. Incorporating
2-level ToM into the DyLAN agents led to a decrease in performance across all agent roles. The
’PythonAssistant’ experienced the most significant drop of 28.83%. These findings suggest that
adding higher-level ToM to agents in the DyLAN framework does not necessarily lead to improved
performance, highlighting the complex interplay between cognitive abilities and cooperative trend.
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Table 7: HUMANEVAL : Important Scores for agents with and without ToM capabilities

PythonAssistant AlgorithmDeveloper ComputerScientist Programmer
DyLAN 0.2399 0.2521 0.2523 0.2557
+2-ToM 0.1707 0.2510 0.2515 0.2269
% Change -28.83% -0.42% -0.32% -11.25%

Besides, Table 8 presents the results for the MMLU dataset, focusing on the roles with the highest
importance scores for each task. We observe that incorporating 2-level ToM consistently leads to
a decrease in the importance scores across all tasks. The most significant drop is observed for the
’Mathematician’ role in the abstract_algebra task, with a 25.2% decrease in the importance
score. Interestingly, the accuracy of the agents with ToM capabilities also decreases for most tasks,
with the exception of the us_foreign_policy task, where the accuracy remains unchanged.
These results align with our earlier findings from HUMANEVAL , further demonstrating that higher-
level ToM does not necessarily improve multi-task performance or cooperation.

Table 8: MMLU: Important Scores for agents with and without ToM capabilities

Role with Highest Importance Score Role + 2-ToM

Task Role Score Task’s Acc Score Task’s Acc

us_foreign_policy Economist 0.20 0.83 0.16 (-18.5%) 0.83 (0%)
human_sexuality Lawyer 0.19 0.84 0.19 (-4.2%) 0.82 (-2.8%)
international_law Economist 0.20 0.81 0.19 (-4.1%) 0.79 (-3.1%)
abstract_algebra Mathematician 0.29 0.59 0.22 (-25.2%) 0.51 (-13.6%)

F.2 CHATEVAL: LOGIC PROBLEM-SOLVING AND GENERAL REASONING

To further evaluate the impact of incorporating ToM, we conducted experiments with the ChatEval
framework on two specific tasks: Logic Problem-Solving from the AQUA-RAT dataset (Ling et al.,
2017) and General Reasoning from four subjects of the MMLU dataset (abstract algebra, college
chemistry, international law, and U.S. foreign policy). The results for ChatEval are summarized
in Table 9. Notably, the performance dropped when ToM capabilities were introduced. For the
logic problem-solving task, the accuracy for gpt-3.5-turbo agents dropped by 0.64%, and for
gpt-4o-mini agents, it dropped by 5.09%. Similar trends were observed in the general reasoning
task, with a 3.435% drop for gpt-3.5-turbo agents and a 2.8675% drop for gpt-4o-mini
agents.

Table 9: ChatEval: Accuracy for logic problem-solving and general reasoning with and without ToM
capabilities

Logic Problem-Solving Acc(%) General Reasoning Acc(%)
gpt-3.5-turbo gpt-4o-mini gpt-3.5-turbo gpt-4o-mini

ChatEval 41.40 82.80 56.82 72.77
ChatEval (w. ToM) 40.76 (-0.64) 77.71 (-5.09) 54.39 (-3.43) 69.90 (-2.87)

Results. The results from the ChatEval experiments indicate a clear reduction in accuracy when ToM
agents are introduced, consistent with the findings from DyLAN. In the case of logic problem-solving,
the performance degradation was particularly notable for gpt-4o-mini agents, with a 5.09%
decrease. This suggests that simply incorporating ToM into the ChatEval framework, like in DyLAN,
may hinder rather than enhance agent cooperation and problem-solving effectiveness.
Conclusion. Both DyLAN and ChatEval experiments provide evidence that higher-level ToM
does not necessarily contribute to better agent cooperation or performance in multi-agent systems.
The decrease in both importance scores and task accuracy across diverse domains underscores the
challenges of effectively integrating cognitive abilities such as ToM into multi-agent frameworks.
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Table 10: Initial Pass@1 Scores (Round 1)

PM ToM Eng ToM HUMANEVAL MBPP

0 1 0.87 ± 0.01 0.525 ± 0.01
0 2 0.90 ± 0.02 0.56 ± 0.01

1 1 0.90 ± 0.01 0.55 ± 0.02
1 2 0.90 ± 0.02 0.56 ± 0.02

1 0 0.93 ± 0.02 0.56 ± 0.01
2 0 0.90 ± 0.01 0.55 ± 0.02

Table 11: Performance Changes Without Matching (Round 1 → Round 5)

PM ToM Eng ToM HUMANEVAL MBPP

0 1 0.87 → 0.83 (↓4.6%) 0.525 → 0.46 (↓12.4%)
0 2 0.90 → 0.83 (↓7.8%) 0.56 → 0.45 (↓19.6%)

1 1 0.90 → 0.87 (↓3.3%) 0.55 → 0.50 (↓9.1%)
1 2 0.90 → 0.85 (↓5.6%) 0.56 → 0.47 (↓16.1%)

1 0 0.93 → 0.91 (↓2.2%) 0.56 → 0.52 (↓7.1%)
2 0 0.90 → 0.85 (↓5.6%) 0.55 → 0.49 (↓10.9%)

F.3 ANALYSIS OF TOM CONFIGURATIONS ON MULTI-AGENT PROGRAMMING

To further validate our findings about the relationship between ToM capabilities and cooperation, we
conducted comprehensive experiments with varied the ToM levels for both Project Manager (PM)
and Engineers (Eng) to analyze their impact on task performance.
We evaluated different ToM configurations on two programming benchmarks ( HUMANEVAL and
MBPP). Performance was measured using Pass@1 scores. For each ToM configuration, we ran
experiments across 3 rounds. All experiments are conducted with gpt-4o-mini.
At Round 1, different ToM configurations showed comparable performance as detailed in Table 10.

Performance Degradation Without Matching. By Round 5 without matching, we observed
performance deterioration across all configurations as detailed in Table 11. The degradation was
particularly pronounced for configurations with higher ToM levels in Engineers (Eng ToM=2),
showing up to 19.6% decline in MBPP performance. This aligns with our earlier findings that higher
ToM capabilities without proper coordination mechanisms may lead to overthinking and reduced
cooperation effectiveness.

Recovery Through Matching. Our matching mechanism effectively leveraged ToM capabilities
to improve performance as detailed in Table 12. Our matching mechanism effectively leveraged
ToM capabilities to improve performance. Notably, the PM(ToM=2) + Eng(ToM=0) configuration
achieved remarkable recovery, with performance improvements of 12.9% and 22.4% on HumanEval
and MBPP respectively. This improvement suggests that high ToM capabilities in leadership roles,
when combined with our matching mechanism, can effectively coordinate team members with lower
ToM levels.

Table 12: Performance Recovery with Matching Compared with no Matching (Round 5)

PM ToM Eng ToM HUMANEVAL MBPP

0 1 0.86 (↑3.6%) 0.46 (-0%)
0 2 0.87 (↑4.8%) 0.47 (↑4.4%)

1 1 0.88 (↑1.1%) 0.52 (↑4.0%)
1 2 0.88 (↑3.5%) 0.55 (↑17.0%)

1 0 0.93 (↑2.2%) 0.57 (↑9.6%)
2 0 0.96 (↑12.9%) 0.60 (↑22.4%)
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G PROOF OF CONVERGENCE AND STABILITY FOR COALITION FORMATION

To prove the convergence and stability of our coalition formation process, we provide formal proofs
as follows:
Theorem G.1 (Convergence). Given a finite set of agents N , minimum coalition size k, and preference
function B′

i(S), the iterative coalition formation process converges in finite steps.

Proof. Let µt denote the matching at iteration t. We prove convergence through the following steps:
Define a potential function Φ(µ) for matching µ:

Φ(µ) =
∑
i∈N

B′
i(µ(i)) (3)

where µ(i) is the coalition containing agent i in matching µ. For any rematching µt → µt+1:

• At least one agent i must strictly prefer its new coalition: B′i(µt+ 1(i)) < B′
i(µt(i))

• No agent j receives a worse coalition: B′j(µt+ 1(j)) ≤ B′
j(µt(j))

Therefore: Φ(µt+1) < Φ(µt) Since:

• The set of agents N is finite

• Coalition sizes are bounded: k ≤ |S| ≤ |N |
• B′

i(S) takes values in a bounded range

The set of possible Φ(µ) values is finite. By (3) and (4), the process must converge in finite steps.

Theorem G.2 (Stability). The converged matching µ∗ is stable under our preference structure
incorporating both belief-action alignment and specialized abilities.

Proof. We prove by contradiction. Suppose µ∗ is not stable. Then there exists a blocking coalition C
where:
|C| ≥ k ∀i ∈ C : B′

i(C) < B′
i(µ

∗(i)) ∀i, j ∈ C : ϕ(bki (aj)− âj) ≤ ϵ

Consider the matching µ′ formed by:

• Agents in C form their blocking coalition

• Remaining agents maintain best possible coalitions of size ≥ k

Then, Φ(µ′) < Φ(µ∗). This contradicts the convergence of µ∗. Therefore, no such blocking coalition
can exist.

Corollary G.3 (No Cycles with Specialized Abilities). The introduction of specialized abilities
through B′

i(S) does not create preference cycles.

Proof. For any three coalitions S1, S2, S3:

• B′
i(S) creates a total ordering through real-valued scores

• If S1 ≻′
i S2 and S2 ≻′

i S3, then:
B′

i(S1) ≤ B′
i(S2) ≤ B′

i(S3) (4)

• By transitivity of real numbers: S1 ≻′
i S3

Therefore, no preference cycles can form.

These proofs establish that our coalition formation process, including specialized abilities, converges
to a stable matching without cyclic preferences. The key insight is that our preference function B′

i(S)
maintains a total ordering over coalitions while satisfying both cognitive (belief-action alignment)
and practical (specialized abilities) requirements.
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