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Abstract

Estimating the distribution of outcomes under counterfactual policies is critical for
decision-making in domains such as recommendation, advertising, and healthcare.
We propose and analyze a novel framework—Counterfactual Policy Mean Embed-
ding (CPME)—that represents the entire counterfactual outcome distribution in
a reproducing kernel Hilbert space (RKHS), enabling flexible and nonparametric
distributional off-policy evaluation. We introduce both a plug-in estimator and
a doubly robust estimator; the latter enjoys improved convergence rates by cor-
recting for bias in both the outcome embedding and propensity models. Building
on this, we develop a doubly robust kernel test statistic for hypothesis testing,
which achieves asymptotic normality and thus enables computationally efficient
testing and straightforward construction of confidence intervals. Our framework
also supports sampling from the counterfactual distribution. Numerical simulations
illustrate the practical benefits of CPME over existing methods.

1 Introduction

Effective decision-making requires anticipating the outcomes of actions driven by given policies [1].
This is especially critical when decisions rely on historical data—whether experimentation is limited
or infeasible [2], or even under sequential designs [3]. For instance, doctors weigh drug effects
before prescribing [4], and businesses predict revenue impact from ads [5]. Off-Policy Evaluation
(OPE) addresses this challenge by estimating the effect of a target policy using data sampled under
a different logging policy. Each logged record includes covariates (e.g., user or patient data), an
action (e.g., recommendation or treatment), and the resulting outcome (e.g., engagement or health
status). The goal is to evaluate the expected outcome under the target policy, which involves inferring
counterfactual outcomes—what would have happened under the alternative target policy.

Although many works have focused on estimating the mean of outcome distributions, for example,
with the policy expected risk (payoff) [6] or the average treatment effects [7]- and their variants
thereof - seminal works have considered inference on counterfactual distributions of outcomes [8]
instead. The developing field of distributional reinforcement learning (RL) [9] and distributional
OPE [10, 11] provides insights on distribution-driven decision making, which goes beyond expected
policy risks. Indeed, reasoning on such distributions allows using alternative risk measure such
as conditional value-at-risk (CVaR) [12], higher moments or quantiles of the distribution [13, 14].
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However, most existing approaches leverage cumulative distribution functions (CDF) [15, 16] which
are not suited for inference on more complex and structured outcomes.

Conversely, counterfactual mean embeddings (CME) [17] represent the outcome distributions as
elements in a reproducing kernel Hilbert space (RKHS) [18, 19] and allow inference for distributions
over complex outcomes such as images, sequences, and graphs [20]. Such embeddings leverage kernel
mean embeddings [21], a framework for representing a distribution maintaining all of its information
for sufficiently rich kernels [22, 23]. This framework allows to quantify distributional treatment
effects [17], perform hypothesis testing [24] or even sample [25, 26] from the counterfactual outcome
distribution. Recent works have employed counterfactual mean embeddings for causal inference in the
context of distributional treatment effects [27–29], however these approaches have not been applied
to OPE and limited mostly to binary treatments. Developing analogous distributional embeddings for
counterfactual outcomes under target policies could enable a range of new applications, including
principled evaluation, hypothesis testing, and efficient sampling from complex outcome distributions.

Our estimates will employ doubly robust methods, which have become a central tool in causal
inference due to the desirable property of consistency if either the outcome model or the propensity
model is correctly specified [30, 31]. DR estimators have since been studied under various functional
estimation tasks, including treatment effects [32] and policy evaluation [33]. These estimators
originally leverage efficient influence functions [34–36] and sample-splitting techniques [37, 38] to
achieve bias reduction and enable valid inference in high-dimensional and nonparametric settings
[39, 40]. Recently, doubly robust tests have been introduced for kernel treatment effects [28, 29].
Moreover, an extension of semiparametric efficiency theory and efficient influence functions has
been proposed for differentiable Hilbert-space-valued parameters [41]. Leveraging these efficient
influence functions to build doubly robust estimators of counterfactual mean embeddings would
therefore enable more theoretically grounded distributional OPE.

In this work, we propose a novel approach to distributional OPE that embeds the counterfactual
outcome distribution, which procedure we term as Counterfactual Policy Mean Embedding (CPME).
Our contributions are as follows: i) First, we define and formalize the CPME in the distributional OPE
problem. We proposing a plug-in estimator, and analyze its consistency with a convergence rate of up
to O(n−1/4) under standard regularity assumptions involving kernels and underlying distributions.
ii) We then derive the Hilbert-space–valued efficient influence function of the CPME to propose a
doubly robust estimator, and establish its convergence in the RKHS with an improved consistency rate
of up to O(n−1/2) under the same assumptions. iii) Consequently, we propose an efficient doubly
robust and asymptotically normal statistic which allows a computationally efficient kernel test. iv)
We demonstrate that our estimators enable sampling from the outcome distribution. v) Finally, we
provide numerical simulations on synthetic and semi-synthetic data, including structured outcomes,
to support our claims in a range of scenarios.

The remainder of the paper is organized as follows. Section 2 formalizes the CPME framework.
Sections 3 and 4 introduce, respectively, the nonparametric plug-in estimator with consistency
guarantees and an efficient-influence-function-based estimator with improved convergence. Section 5
illustrates applications to hypothesis testing and sampling, Section 6 reports numerical results, and
Section 7 concludes.

2 Counterfactual policy mean embeddings

We begin by formalizing the counterfactual policy mean embedding (CPME) framework, which
provides a kernel-based foundation for distributional OPE.

2.1 Distributional off-policy evaluation setting

We are given an observational dataset generated from interactions between a decision-making
system and units with covariates xi. For each instance i ∈ {1, . . . , n}, a context xi was drawn
i.i.d. from an unknown distribution PX , i.e., xi ∼ PX . Given xi, an action ai was sampled
from a logging policy π0 ∈ Π, such that ai ∼ π0(· | xi). Following the potential outcomes
framework [7], we denote the set of potential outcomes by {Y (a)}a∈A, and observe the realized
outcome yi = Y (ai) ∼ PY |X,A=xi,ai

. The data-generating process is therefore characterized by
the joint distribution P0 = PY |X,A × π0 × PX . The dataset consists of n i.i.d. logged observations
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{(xi, ai, yi)}ni=1 ∼ P0. The action space A may be either finite or continuous. For notational
purposes, we will also abbreviate the joint distribution Pπ = PY |X,A × π × PX .

Given only this logged data from P0, the goal of distributional off-policy evaluation is to estimate
ν(π), the distribution of outcomes induced by a target policy π belonging to the policy set Π:

ν(π) = Eπ×PX

[
PY |X,A(Y (a))

]
. (1)

ν(π) represents the marginal distribution of outcomes over π × PX , therefore when actions are taken
from the target policy π ∈ Π in a counterfactual manner. Compared to "classical" OPE where only
the average of the outcome distribution is considered, distributional RL and OPE [9–11] allows
defining further risk measures [16] depending for example on quantiles of the outcome distribution
[42]. In this work we focus on distributional OPE leveraging distributional embeddings.

2.2 Distributional embeddings

In this work, we employ kernel methods to represent, compare, and estimate probability distributions.
For both domains F ∈ {A×X ,Y}, we associate an RKHS HF of real-valued functions ℓ : F → R,
where the point evaluation functional is bounded [43]. Each RKHS is uniquely determined by its
continuous, symmetric, and positive semi-definite kernel function kF : F × F → R. We denote the
induced RKHS inner product and norm in HF by ⟨·, ·⟩HF and ∥ · ∥HF , respectively. Throughout the
paper, we denote the feature maps kAX (·, (a, x)) = ϕAX (a, x) and kY(., y) = ϕY(y) for HAX and
HY , the RKHSs over A×X and Y . See Appendix 9.1 for further background.

Building upon the framework of Muandet et al. [17], we define the counterfactual policy mean
embedding (CPME) 1 as:

χ(π) = EPπ
[ϕY(Y (a))] , (2)

which is the kernel mean embedding of the counterfactual distribution ν(π). This causal embedding
allows to i) perform statistical tests [24], (ii) sample from the counterfactual distribution [25, 26] or
even (iii) recover the counterfactual distribution from the mean embedding [22]. While Muandet
et al. [17] introduced the counterfactual mean embedding (CME) of the distribution of the potential
outcome Y (a) under a single, hard intervention for binary treatments, we focus instead on counter-
factual embeddings of stochastic interventions for more general policy action and sets Π,A in the
OPE problem. Next, we provide further assumptions for the identification of the causal CPME.

2.3 Identification

In seminal works, Rosenbaum and Rubin [44] and Robins [45] established sufficient conditions
under which causal functions—defined in terms of potential outcomes Y (a)—can be identified from
observable quantities such as the outcome Y , treatment A, and covariates X . These conditions are
commonly referred to as selection on observables.
Assumption 1. (Selection on Observables). Assume i) Consistency: Y = Y (a) when A = a, ii)
Conditional exchangeability : Y (a) ⊥ A | X , iii) Strong positivity: infP∈P ess infa∈A,x∈X π0(a |
x) > 0, where the essential infimum is under PX .

Assumption 1 (i), combined with the no-interference assumption (which rules out interference between
units, ensuring that each individual’s outcome depends only on their own treatment assignment) is also
known as the stable unit treatment value assumption (SUTVA). Condition (ii) asserts that, conditional
on covariates X , the treatment assignment is independent of the potential outcomes, implying
that treatment is as good as randomized once we condition on X—thus ruling out unmeasured
confounding. Finally, (iii) guarantees that all treatment levels have a nonzero probability of being
assigned for any covariate value with positive density, preventing deterministic treatment allocation
and ensuring overlap in the support of treatment assignment. Note that this mild condition on the
essential infimum is slightly stronger than the common positivity assumption [46]; as in [17] this will
prove useful for the importance weighting in the counterfactual mean embedding. Now define the
following conditional mean embedding [47] of the distribution PY |X,A:

µY |A,X(a, x) = EPY |X,A
[ϕY(Y ) | A = a,X = x]. (3)

1Despite its name, the CPME represents the mean embedding of interventional (do-) distributions—thus
corresponding to the second rung of Pearl’s ladder. The term “counterfactual” is retained for consistency with
prior work [e.g. 17], where potential outcomes Y (t) are colloquially called “counterfactuals”.
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Under the three conditions stated earlier, the CPME can be identified as follows.
Proposition 2. (Identified Counterfactual Policy Mean Embedding) Let us assume that Assumption 1
holds, then the counterfactual policy mean embedding can be written as:

χ(π) = Eπ×PX

[
µY |A,X(a, x)

]
. (4)

Further details on this Proposition are given in Appendix 9.3. We are now in position to use our
RKHS assumption to provide a nonparametric estimator of the CPME in the next section.

3 A plug-in estimator

We further require some regularity conditions on the RKHS, which are commonly assumed [48, 49].
Assumption 3. (RKHS regularity conditions). Assume that i) kAX , and kY are continuous and
bounded, i.e., supa,x∈A×X ∥ϕAX (a, x)∥HAX ⩽ κa,x, supy∈Y ∥ϕ(y)∥HY ⩽ κy; ii) ϕAX (a, x),
and ϕY(y) are measurable; iii) kY is characteristic.

Let CY |A,X ∈ S2(HAX ,HY) be the conditional mean operator, where S2(HAX ,HY) denotes
the Hilbert space of the Hilbert-Schmidt operators [50] from HAX to HY . Under the regularity
condition that E[h(Y )|A = ·, X = ·] ∈ HAX for all h ∈ HY , the operator CY |A,X exists2 such
that µY |A,X(a, x) = CY |A,X{ϕAX (a, x)}. Moreover, define µπ, the joint policy-context mean
embedding as:

µπ = Eπ×PX
[ϕAX (a, x)] . (5)

Importantly, note that µπ denotes the joint embedding of actions under π and covariates under PX .
We now state the following proposition, with its proof provided in Appendix 10.1.
Proposition 4. (Decoupling via joint policy-context mean embedding) Suppose Assumptions 1 and 3
hold. Then, the CPME can be expressed as:

χ(π) = CY |A,Xµπ (6)

This result suggests that an estimator for the counterfactual policy mean embedding χ(π) can be
constructed by pluging-in an estimate ĈY |A,X of the conditional mean operator and an estimate µ̂π

of the joint policy-context mean embedding. The resulting plug-in estimator χ̂pi writes:

χ̂pi(π) = ĈY |A,X µ̂π. (7)

Thus, we first require the estimation of the conditional mean embedding operator ĈY |A,X . To do so,
given the regularization parameter λ > 0, we consider the following learning objective [53]:

L̂c(C) =
1

n

n∑
i=1

∥ϕY (yi)− C{ϕAX (ai, xi)}∥2HY
+ λ∥C∥2S2(HAX ,HY), C ∈ S2 (HAX ,HY)

whose minimizer is denoted as, ĈY |A,X = argminC∈S2(HAX ,HY)L̂c(C). Given the observations

{ai, xi, yi}ni=1, the solution to this problem [53] is given by ĈY |A,X = ĈY,(A,X)

(
ĈA,X + λI

)−1

, where ĈY,(A,X) = 1
n

∑n
i=1 ϕY (yi) ⊗ ϕAX (ai, xi) and ĈA,X = 1

n

∑n
i=1 ϕAX (ai, xi) ⊗

ϕAX (ai, xi). Since we work with infinite-dimensional feature mappings, it is convenient to ex-
press the solution in terms of feature inner products (i.e., kernels), using the representer theorem [54]:

µ̂Y |A,X(a, x) = ĈY |A,XϕAX (a, x) =

n∑
i=1

ϕY(yi)βi(a, x) = ΦYβ(a, x),

2The conditional mean operator formulation is valid under mild smoothness assumptions ensuring that the
conditional mean function F⋆(x) = E[ϕ(Y ) | X = x] belongs to a Sobolev-type vector-valued RKHS. In
particular, Li et al. [51] show that when the Matérn kernel is used on the X-space and F⋆ ∈ Hm(X;HY ), the
induced operator CY |X exists and acts boundedly from HX to HY . A regression-based alternative [52] can also
be used, but the operator view is often more convenient for theoretical analysis.
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where ΦY = [ϕY(y1) . . . ϕY(yn)] , β(a, x) = (KAX,AX + nλI)
−1

(KAX,ax), KAX,AX is the
kernel matrix over the set {(ai, xi)}ni=1, and KAX,ax is the kernel vector between training points
{(ai, xi)}ni=1 and the target variable (a, x).

We provide a bound on the estimation error ∥ĈY |A,X − CY |A,X∥S2 in Appendix 10, using the main
result from Li et al. [48]. This bound plays a key role in establishing the consistency of both our
plug-in and doubly robust estimators. The derivation relies on the widely adopted source condition
(SRC) [55, 56] and eigenvalue decay (EVD) assumptions, as formalized in Assumptions 15 and 16.

Second, we estimate the joint policy-context mean embedding µ̂π which represents the joint embed-
ding of the distribution π × PX . We employ the empirical kernel mean embedding estimator [24],
which takes the following explicit form for discrete action spaces:

µ̂π =
1

n

n∑
i=1

∑
a∈A

ϕAX (a, xi)π(a|xi). (8)

For continuous action spaces, we propose an empirical kernel mean embedding estimator combined
with a resampling strategy over actions (see Appendix 10.3). In OPE, the target policy is specified
by the designer, making these estimators directly applicable. A summary of the plug-in estimation
procedure is provided in Appendix 10.3 (see pseudo-code in Algorithms 3, 4).

Importantly, our plug-in estimator of the CPME differs substantially from the approach of Muandet
et al. [17]. First, they propose and analyze an importance-weighted estimator for kernel treatment
effects under the assumption of known propensities. Second, although they discuss an application to
OPE, their method lacks a formal analysis and is not evaluated beyond linear kernels.

Next, we arrive at the theoretical guarantee for the plug-in estimator under the conditions we presented
and the common Assumptions 15, 16, 17—stated in Appendix 10.2 for space considerations.
Theorem 5. (Consistency of the plug-in estimator). Suppose Assumptions 1, 3, 15, 16 and 17 hold.
Set λ = n−1/(c+1/b), which is rate optimal regularization. Then, with high probability, χ̂pi defined
in Equation (7) achieves the convergence rate with parameters b ∈ (0, 1] and c ∈ (1, 3]

∥χ̂pi(π)− χ(π)∥Hy
= O [rC(n, b, c)] = O

[
n−(c−1)/{2(c+1/b)}

]
.

Here, rC(n, b, c) bounds the error in estimating ĈY |A,X , with c and b denoting the source condition
and spectral decay parameters (Assumptions 15 and 16). Appendix 10.2 provides a proof with explicit
constants hidden in the O(·) notation. Smaller values of b indicates slower eigenvalue decay of the
correlation operator defined in Assumption 15; as b → ∞ the effective dimension is finite. The
parameter c controls the smoothness of the conditional mean operator CY |A,X . The optimal rate is
n−1/4, which can be attained when c = 3 [51]. The convergence rate is obtained by combining two
minimax-optimal rates: n−(c−1)/{2(c+1/b)} for the conditional mean operator CY |A,X [51, Theorem
3], and n−1/2 for kernel mean embedding µπ [57, Theorem 1]. In the next section, we introduce a
doubly robust estimator of the CPME that improves upon this rate.

4 An efficient influence function-based estimator

To design our estimator, we rely on semiparametric efficiency theory for Hilbert space–valued
parameters [34, 41]. As in the finite-dimensional setting, efficient influence functions (EIFs) [34–36]
quantify the local sensitivity of a target parameter to perturbations of the underlying distribution.
When they exist, they enable the construction of one-step estimators [58, 59], which correct the
plug-in bias and often exhibit doubly robust properties [32]. Assuming the existence of an EIF ψπ

for the CPME χ(π), the one-step estimator takes the form

χ̂dr(π) = χ̂pi(π) +

n∑
i=1

ψ̂π(ai, xi, yi). (9)

One-step estimators rely on pathwise differentiability, which describes how the target parameter varies
under infinitesimal perturbations of the data distribution [60, 61]. When this condition holds, the EIF
coincides with the Riesz representer of the pathwise derivative [41]—in our case, the unique RKHS
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element whose inner product with any score function recovers the target parameter’s directional
derivative. This derivative captures the target parameter’s first-order sensitivity to distributional
changes, and projecting it onto the model’s tangent space yields the optimal linear correction that
removes the plug-in estimator’s leading bias (see Appendix 11.1).

To define the corresponding one-step estimator, we assume the spaces A,X ,Y are Polish (Assump-
tion 17). Under these conditions, we derive the result stated below and prove it in Appendix 11.2.
Lemma 4.1. (Existence and form of the efficient influence function). Suppose Assumptions 1 and 17
hold. Then, the CPME χ(π) admits an EIF which is P -Bochner square integrable and takes the form

ψπ(y, a, x) =
π(a | x)
π0(a | x)

{
ϕY(y)− µY |A,X(a, x)

}
+

∫
µY |A,X(a′, x)π(da′ | x)− χ(π). (10)

Note that the EIF defined in Equation (10), similar to the EIF of the expected policy risk in OPE
[33, 32], depends on both the propensity score π0(a|x) and the conditional mean embedding
µY |A,X . Note that, since we consider stochastic interventions, our EIF remains valid for continuous
treatments—unlike the setting in [28], which would require a kernel localization argument [62–64]
to handle continuity. Estimating

∫
µY |A,X(a′, x)π(da′ | x) corresponds to the plug-in estimation

procedure described previously, while estimating the importance weighted term π(a|x)
π0(a|x)ϕY(y) aligns

with the CME estimator for kernel treatment effects analyzed by [17], who, however, assume known
propensities π0(a|x). By contrast, our framework permits estimation of propensities π̂0(a|x) with
machine learning algorithms [40]. Leveraging the EIF, we define the following one-step doubly
robust χ̂dr estimator:

χ̂dr(π) =
1

n

n∑
i=1

{
π(ai | xi)

(
ϕY (yi)− µ̂Y |A,X(ai, xi)

)
π̂0 (ai | xi)

+

∫
µ̂Y |A,X(a, xi)π(da | xi)

}
. (11)

Like all one-step estimators in OPE, our estimator enjoys a doubly robust property: it remains consis-
tent if either π̂0 or µ̂Y |X,A is correctly specified. We elaborate on this property in Appendix 11.2. Note
that originally, Luedtke and Chung [41] proposed a cross-fitted variant of the one-step estimator. In
Appendix 11.4, we discuss this variant and show that, under a stochastic equicontinuity condition [65],
cross-fitting may be discarded—thus improving statistical power. We now state a consistency result.
Theorem 6. (Consistency of the doubly robust estimator). Suppose Assumptions 1, 3, 15, 16 and 17.
Set λ = n−1/(c+1/b), which is rate optimal regularization. Then, with high probability,

∥χ̂dr(π)− χ(π)∥HY
= O

[
n−1/2 + rπ0

(n).rC(n, b, c)
]
.

Here, rπ0(n) denotes the error in estimating the propensity score π0(a | x). The proof of this consis-
tency result, along with explicit constants hidden by the O(·) notation, is provided in Appendix 11.3.
These rates approach n−1/2 when the product rπ0

(n, δ) · rC(n, δ, b, c) scales as n−1/2—for instance,
when both the conditional mean embedding and propensity score estimators converge at rate n−1/4.
This result constitutes a clear improvement over Theorem 5.

5 Testing and sampling from the counterfactual outcome distribution

In this section, we now discuss important applications of the proposed CPME framework.

5.1 Testing

CPME enables to assess differences in counterfactual outcome distributions ν(π) and ν(π′). Such
a difference in the two distributions can be formulated as a problem of hypothesis testing, or more
specifically, two-sample testing [24]. Moreover, we want to perform that test while only being given
acess to the logged data. The null hypothesis H0 and the alternative hypothesis H1 are thus defined as

H0 : ν(π) = ν(π′), H1 : ν(π) ̸= ν(π′).

Specifically, we equivalently test H0 : EPπ [k (·, y)] − EPπ′ [k (·, y)] = 0 given the characteristic
assumption on kernel kY . Moreover, leveraging the EIF formulated in Section 4, we have:

EPπ
[ϕY (y)]− EPπ′ [ϕY (y)] = EP0

[φπ,π′(y, a, x)], (12)
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where we take the difference of EIFs of χ(π) and χ(π′):

φπ,π′(y, a, x) =

{
π(a|x)
π0(a|x)

− π′(a|x)
π0(a|x)

}{
ϕY(y)− µY |A,X(a, x)

}
+ βπ(x)− βπ′(x), (13)

and use the shorthand notation βπ(x) =
∫
µY |A,X(a′, x)π(da′ | x). Thus, we can equivalently test

for H0 : E[φπ,π′(y, a, x)] = 0. With this goal in mind, and recalling that the MMD is a degenerated
statistic [24], we define the following statistic using a cross U-statistic as Kim and Ramdas [66]:

T †
π,π′ :=

√
mf̄†π,π′

S†
π,π′

, where f†π,π′(yi, ai, xi) =
1

n−m

n∑
j=m+1

⟨φ̂π,π′(yi, ai, xi), φ̃π,π′(yj , aj , xj)⟩ .

Importantly, above, m balances the two splits, φ̂π,π′(y, a, x) is an estimate of φπ,π′(y, a, x) (using
π̂0 and µ̂Y |A,X ) on the first m samples while φ̃ is an estimate of the same quantity on the remaining
n−m samples. Further, f̄†π,π′ and S†

π,π′ denote the empirical mean and standard error of f†π,π′ :

f̄†π,π′ =
1

m

m∑
i=1

f†π,π′ (yi, ai, xi) , S
†
π,π′ =

√√√√ 1

m

m∑
i=1

(
f†π,π′ (yi, ai, xi)− f̄†π,π′

)2
. (14)

Having defined this cross U-statistic, we are now in position to prove the following asymptotic
normality result, as in [28] for kernel treatment effects.

Theorem 7. (Asymptotic normality of the test statistic) Suppose that the conditions of Theo-
rem 6 hold, and that EP0

[
∥φπ,π′(Y,A,X)∥4

]
< ∞. Assume the non-degeneracy condition

E[⟨φπ,π′(Z), φπ,π′(Z ′)⟩HY
] > 0, and that the product of nuisance convergence rates satisfies

rπ0
(n) rC(n, b, c) = O(n−1/2). Set λ = n−1/(c+1/b) and m = ⌊n/2⌋. Then it follows that

T †
π,π′

d−→ N (0, 1).

We provide a proof of this result in Appendix 12. Note here that while a Hilbert space CLT would
allow to show asymptotic normality of the EIF of the CPME in the RKHS [41], using a cross-U
statistic here is necessary due to the degeneracy of the MMD metric. Kim and Ramdas [66] show that
m = ⌊n/2⌋ maximizes the power of the test. Moreover, the doubly robust estimator of the CPME
allows to obtain a faster convergence rate which is instrumental for the asymptotic normality of the
statistic. Based on the normal asymptotic behaviour of T †

π,π′ , we propose as in [28] to test the null
hypothesis H0 : ν(π) = ν(π′) given the p-value p = 1−Φ(T †

π,π′), where Φ is the CDF of a standard
normal. For an α-level test, the test rejects the null if p ≤ α. Algorithm 1 below illustrates the full
procedure of the test, which we call DR-KPT (Doubly Robust Kernel Policy Test).

Algorithm 1 DR-KPT

Require: Data D = (xi, ai, yi)
n
i=1, kernels kY , kA,X

Ensure: The p-value of the test
1: Set m = ⌊n/2⌋ and estimate µ̂Y |A,X , π̂0 on first m samples, µ̃Y |A,X , π̃0 on remaining n−m.

2: Define φ̂(y, a, x) =
{

π(a|x)
π̂0(a|x) −

π′(a|x)
π̂0(a|x)

}{
ϕY(y)− µ̂Y |A,X(a, x)

}
+ β̂π(x)− β̂π′(x) and φ̃.

3: Define f†π,π′ (yi, ai, xi) =
1

n−m

∑n
j=m+1 ⟨φ̂ (yi, ai, xi) , φ̃ (yj , aj , xj)⟩ for i = 1, . . . ,m

4: Calculate f̄†π,π′ and S†
π,π′ using Equation (14), then T †

π,π′ =
√
mf̄†

π,π′

S†
π,π′

5: return p-value p = 1− Φ(T †
π,π′)

Note that as Martinez Taboada et al. [28], our test is computationally efficient compared to the
permutation tests required in CME Muandet et al. [17], which would require the dramatic fitting of
the plug-in estimator for each iterations.
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Figure 1: Illustration of 100 simulations of DR-KPT under the null: (A) Histogram with standard
normal pdf for n = 400, (B) Normal Q–Q plot for n = 400, (C) False positive rate across sample
sizes. The results confirm the Gaussian behavior and good calibration of the test under the null.

5.2 Sampling

We now present a deterministic procedure that uses the estimated distribution embeddings χ̂(π) to
provide samples (ỹj) from the counterfactual outcome distribution. The procedure is a variant of
kernel herding [25, 17] and is given in Algorithm 2.

Algorithm 2 Sampling from the counterfactual distribution

Require: Estimated CPME χ̂(π) : Y → R, kernel kY : Y ×Y → R, and number of samples m ∈ N
1: ỹ1 := argmaxy∈Y χ̂(π)(y)
2: for t = 2 to m do
3: ỹt := argmaxy∈Y

[
χ̂(π)(y)− 1

t

∑t−1
ℓ=1 kY(ỹℓ, y)

]
4: end for
5: Output: ỹ1, . . . , ỹm

Below, we prove that these samples converge in distribution to the counterfactual distribution. We
state an additional regularity condition under which we can prove that the empirical distribution P̃m

Y
of the herded samples (ỹj)mj=1, calculated from the distribution embeddings, weakly converges to the
desired distribution.
Assumption 8. (Additional regularity). Assume i) Y is locally compact. ii) Hy ⊂ C0, where C0 is the
space of bounded, continuous, real valued functions that vanish at infinity.

As discussed by Simon-Gabriel et al. [67], the combined assumptions that Y is Polish and locally
compact impose weak restrictions. In particular, if Y is a Banach space, then to satisfy both conditions
it must be finite dimensional. Trivially, Y = Rdim(Y ) satisfies both conditions.
Proposition 9. (Convergence of MMD of herded samples, weak convergence to the counter-
factual outcome distribution) Suppose the conditions of Lemma 4.1 and Assumption 8 hold.
Let (ỹdr,j) and P̃m

Y,dr (resp. (ỹpi,j), P̃m
Y,pi) be generated from χ̂dr(π) (resp. χ̂pi(π)) via Al-

gorithm 2. Then, with high probability, MMD(P̃m
Y,pi, ν(π)) = Op(rC(n, b, c) + m−1/2) and

MMD(P̃m
Y,dr, ν(π)) = Op(n

−1/2 + rπ0
(n)rC(n, b, c) +m−1/2). Moreover, (ỹdr,j) ⇝ ν(π) and

(ỹπ,j)⇝ ν(π).

The proof is provided in Appendix 13. This proposition shows that the DR estimator of CPME yields
an empirical outcome distribution with improved MMD convergence, with weak convergence toward
the counterfactual outcome distribution [67].

6 Numerical experiments

In this section, we present numerical simulations for testing and sampling from the counterfactual
distributions. Full experimental details, including additional simulations, are provided in Appendix 14.
All code and simulation materials used in this study are publicly available at https://github.com/
houssamzenati/counterfactual-policy-mean-embedding.
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Figure 2: True positive rates of 100 simulations of the tests in Scenarios II, III, and IV. DR-KPT
shows notable true positive rates in every scenario, unlike competitors.

6.1 Testing

We assess the empirical calibration and power of the proposed DR-KPT test in the standard observa-
tional causal inference framework. We assume access to i.i.d. samples {(xi, ai, yi)}ni=1 ∼ (X,A, Y ).
All hypothesis tests are conducted at a significance level of 0.05.

Synthetic experiments We synthetically generate covariates, continuous treatments, and outcomes
under four scenarios adapted from [17, 28]. Scenario I (Null): π = π′, implying no distributional
shift and ν(π) = ν(π′). Scenario II (Mean Shift): π and π′ differ by small opposite shifts in their
mean treatment assignments, changing the expected mean. Scenario III (Mixture): π′ is a stochastic
mixture of two policies with the same mean as π, creating a bimodal treatment distribution that alters
outcomes without affecting the mean. Scenario IV (Shifted Mixture): same as Scenario III but with
an additional mean shift of π′ relative to π.

In all cases, treatments are drawn from a logging policy π0, while outcome and propensity models
are unknown. Propensities π̂0(·) are estimated via linear regression, and outcome regressions via
conditional mean embeddings. We first assess the empirical calibration of DR-KPT and the Gaussian
behavior of T †

π,π′ under the null. Figure 1 shows that DR-KPT achieves near-standard normal be-
havior and proper calibration in Scenario I. Figure 2 reports results for Scenarios II–IV. As baselines,
we adapt the KTE method of Muandet et al. [17] into a Kernel Policy Test (KPT) with estimated
propensities and include a linear-kernel variant (PT-linear) testing only mean shifts. DR-KPT
consistently outperforms all methods, including under pure mean shifts, where KPT and PT-linear
degrade due to propensity estimation. Overall, DR-KPT reliably detects distributional changes,
exhibits strong power across scenarios, and remains computationally efficient (see Appendix 14).

Warfarin dataset We use the publicly available dataset on Warfarin dosage [68], which contains
patient covariates and expert-prescribed therapeutic doses. The treatment corresponds to a continuous
dosage level, making this dataset well suited for off-policy evaluation of continuous treatment
policies. Although the data are fully supervised, we simulate an off-policy bandit environment (see
Appendix 14) by defining a reward function that is maximal when the assigned dose a lies within
±10% of the expert’s prescription, following Kallus and Zhou [4], Zenati et al. [69]; logging and
target policies are modeled as Gaussian distributions.

We mirror the synthetic testing protocol of the previous experiment and evaluate four scenarios—(I)
Null, (II) Mean Shift, (III) Mixture, and (IV) Shifted Mixture—each introducing distinct shifts in the
treatment and outcome distributions. Both outcome models and propensity scores are learned from
data. We compare our Doubly Robust Kernel Policy Test (DR-KPT) with baseline KPT estimators
using linear, RBF, and polynomial kernels. The results in Table 1 show that DR-KPT is well-calibrated
under the null (Scenario I) with near-nominal rejection rates. Across all alternative scenarios (II–IV),
DR-KPT consistently outperforms or matches the best baseline.

dSprites (Structured Outcomes). We perform experiments on the dSprites dataset [70, 71], which
enables evaluation on structured image outcomes. Unlike scalar outcomes in our other experiments,
here the counterfactual effect of a policy is evaluated on rendered 64×64 images generated from
latent variables. The structural causal model is defined by latent contexts x ∼ U([0, 1]2), actions
a ∼ π(· | x), and outcomes y := g(x, a) ∈ R64×64, where g maps each context–action pair to an
image via the fixed dSprites renderer. All other latent factors (shape, scale, and orientation) are held
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Table 1: Rejection rates for the Warfarin dataset across four scenarios.
Scenario KPT-linear KPT-rbf KPT-poly DR-KPT-rbf DR-KPT-poly

I 0.00 0.00 0.00 0.02 0.06
II 0.77 0.01 0.29 0.80 0.66
III 1.00 0.00 0.66 0.99 0.95
IV 0.24 0.00 0.11 0.76 0.55

constant. As in previous experiments, the logging and target policies π, π′ are contextual Gaussians
N (µ(U), σ2I), where µ(U) encodes a rotated and shifted transformation of the context. We focus
on two scenarios: (I) Null, where outcome distributions coincide, and (IV) Shifted Mixture, where
they differ due to policy-induced shifts. Both outcome models and propensity scores are learned from
data, and the evaluation follows the same procedure as in the Warfarin experiment.

Table 2: Rejection rates for the dSprites dataset under structured outcomes.
Scenario KPT-linear KPT-rbf KPT-poly DR-KPT-rbf DR-KPT-poly

I 0.394 0.401 0.375 0.024 0.000
IV 0.081 0.054 0.073 0.656 0.502

The results highlight the poor calibration of baseline methods under the null (Scenario I), with
inflated rejection rates approaching 40%, while DR-KPT maintains near-nominal levels. In the
alternative scenario (IV), DR-KPT achieves substantially higher power than all baselines, confirming
its robustness and sensitivity in detecting structured distributional shifts with complex outcomes.

6.2 Sampling

We also perform an experiment in which we generate samples from Algorithm 2 with both the plug-in
and DR estimators of the CPME under multiple scenarios in which we vary the design of the logging
policy (uniform and logistic) and the outcome function (quadratic and sinusoidal) - see Appendix
14. In Figure 3 we illustrate an example of the outcome distribution from logged samples, the oracle
counterfactual outcome distribution and the empirical distribution obtained from two kernel herding
algorithms. Appendix 14 reports MMD and Wasserstein distances between the counterfactual and
oracle distributions, illustrating that the DR variant generally attains lower distances in our synthetic
setting.

Figure 3: Logistic logging policy, nonlinear outcome function.

7 Discussion

In this paper, we presented a method for estimating the Counterfactual Policy Mean Embedding
(CPME), the outcome distribution mean embedding of counterfactual policies. We proposed a
nonparametric plug-in estimator together with a doubly robust, efficient influence function-based
variant enabling a computationally efficient kernel test. Our framework also supports sampling from
counterfactual outcome distributions. Recent advances suggest more scalable extensions based on
MMD gradient flows [72, 73], which we view as a promising direction for future work. Finally, our
analysis relies on standard identification assumptions such as positivity and exchangeability; relaxing
these toward weaker or partially identifiable settings is another important avenue for future research.
settings is an important direction for future work.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper does provide theorems and propositions in which assumptions are
clearly stated. Proofs and further assumptions are provided in the Appendix of the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The necessary details to reproduce the experiments are provided in the main
text and the Appendix. The code to do the experiments will be open-sourced upon acceptance
of the manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplementary material with a Read.ME file with
instructions to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Such details are provided in Appendix 14

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper provides such error bars and confidence intervals accross random
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information is provided in Appendix 14.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects, sensitive data, or personally
identifiable information. All experiments are conducted using synthetic or publicly available
datasets in accordance with licensing terms, and no foreseeable societal or environmental
harm is anticipated.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses how the method could enhance decision-making in a range
of applications such as precision medicine, targeted advertising, etc. Improving decision
making in these applications can provide a positive broader impact in society.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such anticipated risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix is organized as follows:

– Appendix 8: summary of the notations used in the analysis.
– Appendix 9: a review of counterfactual mean embeddings that are instrumental in Section 2.
– Appendix 10: proof for the asymptotic analysis of the plug-in estimator presented in

Section 3.
– Appendix 11: contains further details on the efficient influence function of our counterfactual

policy mean embedding and the associated estimator presented in Section 4.
– Appendix 12: provides the analysis of the doubly robust kernel test of the distributional

policy effect presented in Section 5.1.
– Appendix 13: does the same for the sampling algorithm presented in Section 5.2.
– Appendix 14: details on the implementation of the algorithms and additional experiment

details, discussions and results.

All the code to reproduce our numerical simulations is provided in the supplementary material and
will be open-sourced upon acceptance of the manuscript.

8 Notations

In this appendix, we recall for clarity some useful notations that are used throughout the paper.

Notations for distributional off-policy evaluation setting and finite samples
– yi, ai, xi are realizations of the outcome, action, and context random variables Y,A,X for
i ∈ {1, . . . n}. Potential outcomes are written {Y (a)}a∈A.

– The distribution on the context space is written PX , the distribution on outcomes is condi-
tional to actions and contexts and is written PY |X,A. Distributions on actions A are policies
π belonging to a set Π. In the logged dataset, actions are drawn from a logging policy π0.
Resulting triplet distribution is written Pπ = PY |X,A × π × PX .

– The distribution ν(π) represents the marginal distribution of outcomes over π × PX .

Notations related to the kernel-based representations used to embed counterfactual outcome
distributions

– HF is a generic RKHS associated with a domain F .
– HAX : RKHS on A × X with kernel kAX and feature map ϕAX (a, x) = kAX (·, (a, x)).

Inner product: ⟨·, ·⟩HAX .
– HY : RKHS on Y with kernel kY and feature map ϕY(y) = kY(·, y). Inner product: ⟨·, ·⟩HY .
– Given a distribution P over F , the kernel mean embedding is µF = EP [ϕF (F )] ∈ HF .
– For conditional PF |G, the conditional mean embedding is µF |G(g) = E[ϕF (F ) | G = g] ∈
HF .

– The counterfactual policy mean embedding (CPME): χ(π) = EPπ [ϕY(Y (a))].
– κax, κy: bounds on kernels: supa,x ∥ϕAX (a, x)∥HAX ≤ κa,x, supy ∥ϕY(y)∥HY ≤ κy
– S2(HAX ,HY) denotes the Hilbert space of the Hilbert-Schmidt operators from HAX to

HY .
– CY |A,X ∈ S2(HAX ,HY) is the conditional mean operator.
– µπ: the kernel policy embedding in HAX .
– c, b: source condition and spectral decay parameters.
– λ: regularization parameter for learning CY |A,X .
– L: Kernel integral operator Lh :=

∫
k(·, w)h(w) dρ(w), mapping L2(ρ) → L2(ρ).

– {ηj}j≥1: Eigenvalues of L, ordered decreasingly, assumed to satisfy a spectral decay
assumption ηj ≤ Cj−b.

– {φj}j≥1: Orthonormal eigenfunctions of L in L2(ρ), satisfying Lφj = ηjφj .

– Hc: Interpolation space of order c, defined as Hc :=
{
f =

∑
j hjφj |

∑
j h

2
j/η

c
j <∞

}
.

Notations related to estimators and asymptotic analysis
– χ̂pi(π) and χ̂dr(π): plug-in and doubly robust estimators of CPME.
– µ̂Y |A,X(a, x): estimator of the conditional mean embedding.
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– π̂0(a|x): estimator of the logging policy.
– rC(n, b, c): convergence rate of ĈY |A,X .
– rπ0

(n): convergence rate of π̂0.
– op(1), Op(1): standard probabilistic asymptotic notations.

Notations for differentiability and statistical models

– P: statistical model on Z = Y ×A×X .
– L2(ρ): space of square-integrable real-valued functions w.r.t. measure ρ.
– L2(P ;H): Bochner space of H-valued functions with norm ∥f∥L2(P ;H) =(∫

∥f(z)∥2H dP (z)
)1/2

.
– ΠH[h | W]: orthogonal projection of h onto closed subspace W ⊂ H.
– Pπ0

: submodel of P with fixed treatment policy π0.
– ṖP : tangent space at P .
– P(P,P, s): smooth submodels of P at P with score s.
– s, sX , sY |A,X , sA|X : score functions.
– χ(π)(P ): value of the CPME at P .
– χ̇π

P : local parameter of χ(π) at P .
– χ̇π,∗

P : adjoint (efficient influence operator).
– ḢP : image of χ̇π,∗

P .

Notations for efficient influence functions

– ψπ
P : efficient influence function (EIF) at P .

– ψ̃π
P : candidate EIF: ψ̃π

P (y, a, x) = χ̇π,∗
P (ϕY)(y, a, x).

Error decomposition of the one-step estimator

– Pn: empirical distribution of the sample {zi}ni=1.
– P̂n: estimated distribution using nuisance estimators.
– Sn = (Pn − P )ψπ: empirical average term.
– Tn = (Pn − P )(ψ̂π

n − ψπ): empirical process term.
– Rn = χ(P̂n) + Pψ̂π

n − χ(π): remainder term.

Notations for empirical processes and equicontinuity

– Tn(φ) :=
√
n(Pn − P )(φ): empirical process acting on φ.

– G: class of HY -valued functions (e.g. ψ̂π
n − ψπ).

Notations for hypothesis testing

– H0: null hypothesis — ν(π) = ν(π′).
– H1: alternative hypothesis — ν(π) ̸= ν(π′).
– φπ,π′ : difference of EIFs for policies π and π′.
– φ̂π,π′ , φ̃π,π′ : estimates of φπ,π′ over disjoint subsets.
– β̂π(x) :=

∫
µ̂Y |A,X(a, x)π(da | x): estimated conditional policy mean.

– f†π,π′(y, a, x): cross-U-statistic kernel.
– f̄†π,π′ , S†

π,π′ : empirical mean and std of f†.
– T †

π,π′ : normalized test statistic.
– H: limiting Gaussian process in HY .
– ⟨H, h⟩HY : projection onto direction h.
– Φ: CDF of standard normal.
– p = 1− Φ(T †

π,π′): p-value.

Notations for sampling from counterfactual distributions

– (ỹj)
m
j=1: deterministic samples generated via kernel herding.

– P̃m
Y : empirical distribution over the ỹj .

– P̃m
Y,dr, P̃m

Y,pi: empirical distributions generated from χ̂dr(π) and χ̂pi(π).
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9 Review of Counterfactual Mean Embeddings

In this appendix, we provide a background section on counterfactual mean embeddings [17] and
distributional treatment effects.

9.1 Reproducing kernel hilbert spaces and kernel mean embeddings

A scalar-valued RKHS HW is a Hilbert space of functions h : W → R. The RKHS is fully
characterized by its feature map, which takes a point w in the original space W and maps it to a
feature ϕW(w) in RKHS HW . The closure of span{ϕW(w)}w∈W is RKHS HW . In other words,
{ϕW(w)}w∈W can be viewed as the dictionary of basis functions for RKHS HW . The kernel
kW : W ×W → R is the inner product of features ϕW(w) and ϕW (w′).

kW (w,w′) = ⟨ϕW(w), ϕW (w′)⟩HW
. (15)

A real-valued kernel k is continuous, symmetric and positive definite. The essential property of a
function h in an RKHS HW is the eponymous reproducing property:

h(w) = ⟨h, ϕW(w)⟩HW (16)

In other words, to evaluate h at w, we take the RKHS inner product between h and the features
ϕW(w) for HW . The reproducing property, importantly, allows to separate function h from features
ϕW(w) and thereby decouple the steps of nonparametric causal estimation. Notably, the RKHS is a
practical hypothesis space for nonparametric regression.

Example 9.1. (Nonparametric regression) Consider the output y ∈ R, the input w ∈ W and the goal
of estimating the conditional expectation function h(w) = E(Y |W = w). A kernel ridge regression
estimator of h is

ĥ = argmin
h∈H

1

n

n∑
i=1

{yi − ⟨h, ϕW (wi)⟩H}2 + λ∥h∥2H, (17)

where λ > 0 is a hyperparameter on the ridge penalty ∥h∥2H, which imposes smoothness in estimation.
The solution to the optimization problem has a well-known closed form:

ĥ(w) = Y T (KWW + nλI)
−1
KWw. (18)

The closed-form solution involves the kernel matrix KWW ∈ Rn×n with (i, j) th entry kW (wi, wj),
and the kernel vector KWw ∈ Rn with i th entry kW (wi, w).

In this work, we use kernels and RKHSs to represent, compare, and estimate probability distributions.
This is enabled by the approach known as kernel mean embedding (KME) of distributions [21], which
we briefly review here. Let HW be a RKHS with kernel kW defined on a space W , and assume that
supw∈W kW(w,w) <∞. Then, for a probability distribution P over W , the kernel mean embedding
is defined as the Bochner integral3:

µ : P → HW , P 7→ µP :=

∫
kW(·, w) dP (w).

The embedded element µP , also written µW when W ∼ P , serves as a representation of P in HW .
If HW is characteristic [76, 23, 77], this mapping is injective: µP = µQ if and only if P = Q.
Thus, µP uniquely identifies P , preserving all distributional information. Common examples of
characteristic kernels on Rd include Gaussian, Matérn, and Laplace kernels [23, 77], while linear and
polynomial kernels are not characteristic due to their finite-dimensional RKHSs.

The kernel mean embedding induces a popular distance between probability measures known as the
maximum mean discrepancy (MMD) [78, 79, 24]. For distributions P and Q, it is defined by:

MMD[HW , P,Q] := ∥µP − µQ∥HW = sup
h∈HW ,∥h∥≤1

∣∣∣∣∫ h dP −
∫
h dQ

∣∣∣∣ .
3See, e.g., [74, Chapter 2] and [75, Chapter 1] for the definition of the Bochner integral.
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The second equality follows from the reproducing property and the structure of RKHSs as vector
spaces [24, Lemma 4]. If HW is characteristic, then MMD[HW , P,Q] = 0 implies P = Q, so
MMD defines a proper metric on distributions.

Given an i.i.d. sample {wi}ni=1 from P , the kernel mean embedding can be estimated via the empirical
average:

µ̂P :=
1

n

n∑
i=1

kW(·, wi).

This estimator is
√
n-consistent: ∥µP − µ̂P ∥HW = Op(n

−1/2) under mild assumptions [24, 80, 81].

Given a second i.i.d. sample {w′
j}mj=1 from Q, the squared empirical MMD is

M̂MD
2
[HW , P,Q] = ∥µ̂P − µ̂Q∥2HW

=
1

n2

n∑
i,j=1

kW(wi, wj)−
2

nm

n,m∑
i,j=1

kW(wi, w
′
j) +

1

m2

m∑
i,j=1

kW(w′
i, w

′
j).

This estimator is consistent and converges at the parametric rate Op(n
−1/2 +m−1/2). It is biased

but simple to compute; an unbiased version is also available [24, Eq. 3].

The KME framework extends naturally to conditional distributions [47, 82, 52, 83]. Let (W,V ) be
a random variable on W ×V with joint distribution PWV . Using kernels kW and kV with RKHSs
HW ,HV , the conditional mean embedding of PV |W=w is defined as:

µV |W=w :=

∫
kV(·, v) dP (v|w) ∈ HV .

This representation preserves all information if HV is characteristic. Given a sample {(wi, vi)}ni=1,
the conditional embedding can be estimated as

µ̂V |W=w :=

n∑
i=1

βi(w)kV(·, vi),

with weights

β(w) = (K + nλI)−1kW(w), kW(w) = (kW(w,w1), . . . , kW(w,wn))
⊤.

Here, K is the n × n kernel matrix with entries Kij = kW(wi, wj), and λ > 0 is a regularization
parameter. This estimator corresponds to kernel ridge regression from W into HV , where the target
functions are feature maps kV(·, vi). To guarantee convergence, λ must decay appropriately as
n→ ∞ [48, 51].

Finally, we make use of the Hilbert space S2(HW1
,HW2

) of Hilbert-Schmidt operators between
RKHSs. The conditional expectation operator C : HW1

→ HW2
given by h(·) 7→ E[h(W1)|W2 = ·]

is assumed to lie in S2(HW1
,HW2

) and is estimated via ridge regression, by regressing ϕW1
(W1)

on ϕW2
(W2) in HW2

.

9.2 Assumptions for consistency

To prove consistency of our estimator, we rely on two standard approximation assumptions from
RKHS learning theory: smoothness of the target function and spectral decay of the kernel operator.
These are naturally formulated through the eigendecomposition of an associated integral operator,
which we introduce below. The results may be found in [84].

Kernel smoothing operator Let HW be a reproducing kernel Hilbert space (RKHS) over a space
W , with reproducing kernel with kernel kW : W × W → R consisting of functions of the form
h : W → R. Let ρ be any Borel measure on W . Let L2(ρ) be the space of square integrable functions
with respect to measure ρ. We define the integral operator L associated with the kernel kW and the
measure ρ as:

L : L2(ρ) → L2(ρ), h 7→
∫
kW(·, w)h(w)dρ(w) (19)
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Intuitively, this operator smooths a function h by averaging it with respect to the kernel kW and the
distribution ρ.
Remark 10. (L as convolution). If the kernel kW is defined on W ⊂ Rd and shift invariant, then L
is a convolution of kW and h. If kW is smooth, then Lh is a smoothed version of h.

Spectral properties of the kernel smoothing operator The operator L is compact, self-adjoint,
and positive semi-definite. Therefore, by the spectral theorem, L admits an orthonormal basis of
eigenfunctions (φj)ρ in L2

ρ(W), with corresponding non-negative eigenvalues (ηj).

Assumption 11. (Nonzero eigenvalues). For simplicity, we assume (ηj) > 0 in this discussion; see
[85, Remark 3] for the more general case.

Thus, for any h ∈ L2(ρ), we can write:

Lh =

∞∑
j=1

ηj⟨φj , h⟩L2
ρ
φj ,

where each φj is defined up to ρ-almost-everywhere equivalence.

Feature map representation The following observations help to interpret this eigendecomposition.
Theorem 12. [86, Corollary 3.5] (Mercer’s Theorem). The kernel kW can be expressed as
kW (w,w′) =

∑∞
j=1 ηjφj(w)φj (w

′), where (w,w′) are in the support of ρ, φj is a continuous
element in the equivalence class (φj)ρ, and the convergence is absolute and uniform.

Since the kernel kW can be decomposed as:

kW(w,w′) =

∞∑
j=1

ηjφj(w)φj(w
′),

with absolute and uniform convergence on compact subsets of the support of ρ, we can express the
feature map ϕW(w) associated with the RKHS as:

ϕW(w) = (
√
η1φ1(w),

√
η2φ2(w), . . . ) .

Thus, the inner product ⟨ϕW(w), ϕW(w′)⟩HW reproduces the kernel value kW(w,w′).

Both L2(ρ) and the RKHS H can be described using the same orthonormal basis (φj), but with
different norms.
Remark 13. (Comparison between H and L2

ρ(W)
)
. A function h ∈ L2(ρ) has an expansion

h =
∑

j hjφj , and:

∥h∥2L2(ρ) =

∞∑
j=1

h2j .

A function h ∈ H has the same expansion, but the RKHS norm is:

∥h∥2H =

∞∑
j=1

h2j
ηj
.

This means that functions with large coefficients on eigenfunctions associated with small eigenvalues
are heavily penalized in H, which enforces a notion of smoothness.

To summarize, the space L2
ρ contains all square-integrable functions with respect to the measure

ρ. In contrast, the RKHS H is a subspace of L2
ρ consisting of smoother functions—those whose

spectral expansions put less weight on high-frequency eigenfunctions (i.e., those associated with
small eigenvalues ηj).

This motivates two classical assumptions from statistical learning theory: the smoothness assumption,
which constrains the target function via its spectral decay profile, and the spectral decay assumption,
which characterizes the approximation capacity of the RKHS.
Remark 14. The smoothness assumption governs the approximation error (bias), while the spectral
decay controls the estimation error (variance). These assumptions together determine the learning
rate of kernel methods.
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Source condition To control the bias introduced by ridge regularization, we assume that the target
function lies in a smoother subspace of the RKHS. This is formalized by a source condition, a
common assumption in inverse problems and kernel learning theory [55, 87, 88].
Assumption 15. (Source Condition) There exists c ∈ (1, 2] such that the target function h belongs to
the subspace

Hc =

f =

∞∑
j=1

hjφj :

∞∑
j=1

h2j
ηcj

<∞

 ⊂ H.

When c = 1, this corresponds to assuming only that h ∈ H. Larger values of c imply greater smooth-
ness: the function h can be well-approximated using only the leading eigenfunctions. Intuitively,
smoother targets lead to smaller bias and enable faster convergence of the estimator ĥ.

Variance and spectral decay To control the variance of kernel ridge regression, we must also
constrain the complexity of the RKHS. This is done via a spectral decay assumption, which controls
the effective dimension of the RKHS by quantifying how quickly the eigenvalues ηj of the kernel
operator vanish.
Assumption 16. (Spectral Decay) We assume that there exists a constant C > 0 such that, for all j,

ηj ≤ Cj−b, for some b ≥ 1.

This polynomial decay condition ensures that the contributions of high-frequency components
decrease rapidly. A bounded kernel implies that b ≥ 1 [56, Lemma 10]. In the limit b → ∞, the
RKHS becomes finite-dimensional. Intermediate values of b define how "large" or complex the RKHS
is, relative to the underlying measure ρ. A larger b corresponds to a smaller effective dimension and
thus a lower variance in estimation.

Space regularity We can also require an additional assumption on the regularity of the domains.
Assumption 17. (Original Space Regularity Conditions) Assume that A,X (and Y) are Polish
spaces.

A Polish space is a separable, completely metrizable topological space. This assumption covers a
broad range of settings, including discrete, continuous, and infinite-dimensional cases. When the
outcome Y is bounded, the moment condition is automatically satisfied.

9.3 Further details on Counterfactual Policy Mean Embeddings

To justify Proposition 2, we rely on the classical identification strategy established by Rosenbaum
and Rubin [44] and Robins [45]. Recall that the counterfactual policy mean embedding is defined as

χ(π) := Eπ×PX
[ϕY(Y (a))] ,

which involves the unobserved potential outcome Y (a). Under Assumption 1, we proceed to express
this quantity in terms of observed data.

First, by the consistency assumption, we have that for any realization where A = a, the observed
outcome satisfies Y = Y (a). Second, by conditional exchangeability, we have that Y (a) ⊥ A | X ,
which implies that the conditional distribution of Y (a) given X = x is equal to the conditional
distribution of Y given A = a,X = x. That is,

E[ϕY(Y (a)) | X = x] = E[ϕY(Y ) | A = a,X = x] = µY |A,X(a, x).

Finally, under the strong positivity assumption, the conditional density π0(a | x) is strictly bounded
away from zero for all a ∈ A, x ∈ X , ensuring that the conditional expectation µY |A,X(a, x) is
identifiable throughout the support of π × PX . It follows that

χ(π) = Eπ×PX
[E[ϕY(Y (a)) | X = x]] = Eπ×PX

[
µY |A,X(a, x)

]
,

which completes the identification argument.
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10 Details and Analysis of the Plug-in Estimator

In this appendix, we provide further details on the analysis of the plug-in estimator proposed in
Section 3.

10.1 Decoupling

We propose a plug-in estimator based on conditional mean operators for the nonparametric distribution
of the outcome under policy a target policy π. Due to a decomposition property specific to the
reproducing kernel Hilbert space, our plug-in estimator has a simple closed form solution.
Proposition 4 ((Decoupling via kernel mean embedding)). Suppose Assumptions 1 and 3 hold. Then,
the counterfactual policy mean embedding can be expressed as:

χ(π) = CY |A,Xµπ

Proof. In Assumption 3, we impose that the scalar kernels are bounded. This assumption has
several implications. First, the feature maps are Bochner integrable [84, see Definition A.5.20].
Bochner integrability permits us to interchange the expectation and inner product. Second, the mean
embeddings exist. Third, the product kernel is also bounded and hence the tensor product RKHS
inherits these favorable properties. By Proposition 2 and the linearity of expectation,

χ(π) =

∫
µY |A,X(a, x)dπ(a|x)dP (x)

=

∫
CY |A,X{ϕA(a)⊗ ϕX (x)}dπ(a|x)dP (x)

= CY |A,X

∫
ϕA(a)⊗ ϕX (x)dπ(a|x)dP (x)

= CY |A,Xµπ.

10.2 Analysis of the plug-in estimator

We will now present technical lemmas for kernel mean embeddings and conditional mean embeddings.

Kernel mean embedding For expositional purposes, we summarize classic results for the kernel
mean embedding estimator µ̂z for µz = E{ϕ(Z)}.
Lemma 10.1. (Bennett inequality; Lemma 2 of Smale and Zhou [88]) Let (ξi) be i.i.d. random
variables drawn from the distribution P taking values in a real separable Hilbert space K. Suppose
there exists M such that ∥ξi∥K ≤ M < ∞ almost surely and σ2 (ξi) = E

(
∥ξi∥2K

)
. Then for all

n ∈ N and for all δ ∈ (0, 1),

pr

[∥∥∥∥∥ 1n
n∑

i=1

ξi − E(ξ)

∥∥∥∥∥
K

≤ 2M log(2/δ)

n
+

{
2σ2(ξ) log(2/δ)

n

}1/2
]
≥ 1− δ

We next provide a convergence result for the mean embedding, following from the above. This
is included to make the paper self contained, however see [57, Proposition A.1] for an improved
constant and a proof that the rate is minimax optimal.
Proposition 18. (Mean embedding Rate). Suppose Assumptions 3 and 17 hold. Then with probability
1− δ,

∥µ̂π − µπ∥H ≤ rµπ
(n, δ) =

4κz log(2/δ)

n1/2

Proof. The result follows from Lemma 10.1 with ξi = ϕ (Zi), since∥∥∥∥∥n−1
n∑

i=1

ϕ (Zi)− EPπ
{ϕ(Z)}

∥∥∥∥∥
HZ

≤ 2κz log(2/δ)

n
+

{
2κ2z log(2/δ)

n

}1/2

≤ 4κz log(2/δ)

n1/2

See [21, Theorem 2] for an alternative argument via Rademacher complexity.
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Conditional mean embeddings Below, we restate Assumptions 15 and 16 for the RKHS HAX ,
which are used to establish the convergence rate of learning the conditional mean operator CY |A,X .
Our formulation of Assumption 15 differs slightly from the one in Appendix 9.2, but they are
equivalent due to [55, Remark 2].
Assumption 15 (Source condition.). We define the (uncentered) covariance operator ΣAX =
E[ϕAX (A,X)⊗ ϕAX (A,X)]. There exists a constant B <∞ such that for a given c ∈ (1, 3],

∥CY |A,XΣ
− c−1

2

AX ∥S2(HAX ,HY) ≤ B

In the above assumption, the smoothness parameter is allowed to range up to c ≤ 3, in contrast to
prior work on kernel ridge regression, which typically restricts it to c ≤ 2 [e.g. 56]. This extension is
justified by Meunier et al. [89, Remark 7 and Proposition 7], who showed that the saturation effect of
Tikhonov regularization can be extended to c ≤ 3 when the error is measured in the RKHS norm, as
in Theorem 19, rather than the L2 norm.
Assumption 16 (Eigenvalue decay.). Let (λ1,i)i≥1 be the eigenvalues of ΣAX . For some constant
B > 0 and parameter b ∈ (0, 1] and for all i ≥ 1,

λ1,i ≤ Ci−b.

Theorem 19. (Theorem 3 [51]) Suppose Assumptions, 3, 15, 16 and 17, hold and take λ1 =

Θ
(
n−

1
c+1/b

)
. There is a constant J1 > 0 independent of n ≥ 1 and δ ∈ (0, 1) such that

∥∥∥ĈY |A,X − CY |A,X

∥∥∥
S2(HAX ,HY)

≤ J1 log(4/δ)

(
1√
n

) c−1
c+1/b

=: rC (δ, n, b, c)

is satisfied for sufficiently large n ≥ 1 with probability at least 1− δ.

We will now appeal to these previous lemmas to prove the consistency of the causal function.
Theorem 5 ((Consistency of the plug-in estimator).). Suppose Assumptions 1, 3, 15, 16 and 17. Set
λ = n−1/(c+1/b), which is rate optimal regularization. Then, with high probability,

∥χ̂pi(π)− χ(π)∥HY
= O [rC(n, δ, b, c)] = O

[
n−(c−1)/{2(c+1/b)}

]
Proof of Theorem 5. We note that

χ̂pi(π)− χ(π) = ĈY |A,X µ̂π − CY |A,Xµπ

= ĈY |A,X (µ̂π − µπ) +
(
ĈY |A,X − CY |A,X

)
µπ

=
(
ĈY |A,X − CY |A,X

)
(µ̂π − µπ) + CY |A,X (µ̂π − µπ) +

(
ĈY |A,X − CY |A,X

)
µπ.

Therefore we can write with Cauchy-Schwartz inequality:

|χ̂pi(π)− χ(π)| ≤
∥∥∥ĈY |A,X − CY |A,X

∥∥∥
S2(HAX ,HY)

∥µ̂π − µπ∥H

+
∥∥CY |A,X

∥∥
S2(HAX ,HY)

∥µ̂π − µπ∥H

+
∥∥∥ĈY |A,X − CY |A,X

∥∥∥
S2(HAX ,HY)

∥µπ∥H

Therefore by Theorems 19 and 18, with probability 1− 2δ,

|χ̂pi(π)− χ(π)| ≤ ·rC(n, δ, b, c) · rµ(n, δ) +
∥∥CY |A,X

∥∥
S2(HAX ,HY)

· rµ(n, δ) + κa,x · rC(n, δ, b, c).

Using Assumption 15, we observe that
∥∥CY |A,X

∥∥
S2(HAX ,HY)

≤ Bκc−1. As a result, the above
bound readily gives

|χ̂pi(π)− χ(π)| ≲ n−
1
2

c−1
c+1/b .
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10.3 Further details and Estimation strategies for the kernel policy mean embedding

Discrete Action Spaces. When the action space A is discrete, we can directly compute the kernel
policy mean embedding by exploiting the known form of the target policy π(a | x). For each logged
context xi, we compute a convex combination of the feature maps ϕAX (a, xi), weighted by the
policy π(a | xi). This leads to the following empirical estimator:

µ̂π =
1

n

n∑
i=1

∑
a∈A

π(a | xi)ϕAX (a, xi).

The plug-in estimator for the counterfactual policy mean embedding then admits the following matrix
expression:

χ̂(π) = ĈY |A,X µ̂π

= (KAA ⊙KXX + nλI)
−1

(ΦA ⊗ ΦX )

(
1

n

n∑
i=1

∑
a∈A

π(a | xi)ϕAX (a, xi)

)

= (KAA ⊙KXX + nλI)
−1

(ΦA ⊗ ΦX )(Φπ ⊗ ΦX )︸ ︷︷ ︸
Kπ⊙KXX

1
1

n

= (KAA ⊙KXX + nλI)
−1

(Kπ ⊙KXX)1
1

n
,

where Kπ[i, j] =
∑

a∈A kA(ai, a)π(a | xj), and Φπ denotes the policy-weighted features.

Algorithm 3 Plug-in estimator of the CPME (Discrete actions)

Require: Kernels kX , kA, kY , and regularization constant λ > 0.
Input: Logged data (xi, ai, yi)

n
i=1, target policy π(a | x).

1: Compute empirical kernel matrices KAA,KXX ∈ Rn×n from the samples {(ai, xi)}ni=1
2: Compute the kernel outcome matrix KyY = [kY(y1, y), . . . , kY(yn, y)]
3: Compute Kπ ∈ Rn×n with entries Kπ[i, j] =

∑
a∈A π(a | xj) · kAX ((ai, xi), (a, xj))

4: Set K̃ = Kπ · 1
n · (1 . . . 1)⊤

Output: An estimate χ̂pi(π)(y) = KyY (KAA ⊙KXX + nλI)
−1
K̃.

Continuous Actions via Resampling. When A is continuous and no closed-form sum over actions
is available, we instead approximate the kernel policy mean embedding by resampling from π(· | xi).
Specifically, for each logged covariate xi, we sample ãi ∼ π(· | xi), and form the empirical estimate:

µ̂π =
1

n

n∑
i=1

ϕAX (ãi, xi).

This leads to the following expression for the plug-in estimator:

χ̂(π) = ĈY |A,X µ̂π

= (KAA ⊙KXX + nλI)
−1

(ΦA ⊗ ΦX )
1

n

n∑
i=1

ϕAX (ãi, xi)

= (KAA ⊙KXX + nλI)
−1

(ΦA ⊗ ΦX )(ΦÃ ⊗ ΦX )︸ ︷︷ ︸
KAÃ⊙KXX

1
1

n

= (KAA ⊙KXX + nλI)
−1

(KAÃ ⊙KXX)1
1

n
,

where KAÃ[i, j] = kA(ai, ãj), and ãj is drawn from π(· | xj).
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Algorithm 4 Plug-in estimator of the CPME

Require: Kernels kX , kA, kY , and regularization constant λ > 0.
Input: Logged data (xi, ai, yi)

n
i=1, the target policy π,

1: Compute empirical kernel matrices KAA,KXX ∈ RT×T from the empirical samples
2: Compute the kernel outcome matrix KyY = [kY(y1, y), . . . , kY(yn, y)]

3: Compute K̃ with resampling, K̃ = (KAÃ ⊙KXX).(1 . . . 1)⊤ 1
n and Ã ∼ π(·|X).

Output: An estimate χ̂pi(π)(y) = KyY (KAA ⊙KXX + nλI)
−1
K̃.

Importance Sampling This resampling procedure can be quite cumbersome however, and not
appropriate for off-policy learning. When propensity scores are known, an optional alternative is to
invoke an inverse propensity scoring method [90], which expresses the embedding under the target
policy π as a reweighting of the observational distribution:

µπ = Eπ0×PX

[
π(a | x)
π0(a | x)

ϕAX (a, x)

]
. (20)

This formulation enables a direct estimator of µπ from logged data {(xi, ai, yi)}ni=1, using the known
logging policy π0:

µ̂π =
1

n

n∑
i=1

π(ai | xi)
π0(ai | xi)

ϕAX (ai, xi). (21)

Let Wπ ∈ Rn be the vector of importance weights Wπ[i] = π(ai|xi)
π0(ai|xi)

, and let ΦAX =

[ϕAX (a1, x1), . . . , ϕAX (an, xn)]. Then the estimator admits the vectorized form:

µ̂π = ΦAX

(
1

n
Wπ

)
. (22)

Accordingly, the closed-form expression for the plug-in estimator becomes:

χ̂(π) = ĈY |A,X µ̂π

= (KAA ⊙KXX + nλI)
−1

(ΦA ⊗ ΦX ) · ΦAX

(
1

n
Wπ

)
= (KAA ⊙KXX + nλI)

−1
(KAA ⊙KXX)Wπ · 1

n
.

This estimator leverages all observed samples without requiring resampling or external sampling
procedures, and is especially suited to settings where both the logging and target policies are known
or estimable. However, its stability critically depends on the variance of the importance weights Wπ ,
which may require regularization or clipping in practice. Moreover, this estimator is not compatible
with the doubly robust estimator proposed in the next section.

11 Details and Analysis of the Efficient Score Function based Estimator

In this appendix, we provide background definitions and lemmas on the pathwise differentiability of
RKHS-valued parameters [34, 41], followed by the derivation and analysis of a one-step estimator
for the counterfactual policy mean embedding (CPME).

As stated in Assumption 17, we work on a Polish space (Z,B) with Z = Y ×A×X and consider a
collection of distributions P defined on (Z,B). Let z1, . . . , zn ∼ P0 be an i.i.d. sample from some
P0 ∈ P , and denote by Pn the empirical distribution. Let P̂n ∈ P be an estimate of P0. For a measure
ρ on (X ,Σ), the space L2(ρ) denotes the Hilbert space of ρ-almost surely equivalence classes of
real-valued square-integrable functions, equipped with the inner product ⟨f, g⟩L2(ρ) :=

∫
fg dρ. For

any Hilbert space H, we write L2(P ;H) for the space of Bochner-measurable functions f : Z → H
with finite norm

∥f∥L2(P ;H) :=

(∫
∥f(z)∥2H dP (z)

)1/2

.

If W is a closed subspace of H, we denote by ΠH[h | W] the orthogonal projection of h onto W .
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11.1 Background on pathwise differentiability of RKHS-valued parameters

We begin with a brief review of the formalism used to characterize the smoothness of RKHS-valued
statistical parameters [34, 41]. Let P be a model, i.e., a collection of probability distributions on the
Polish space (Y ×A×X ,B), dominated by a common σ-finite measure ρ.
Definition 11.1. (Quadratic mean differentiability) A submodel {Pϵ : ϵ ∈ [0, δ)} ⊂ P is said to be
quadratic mean differentiable at P if there exists a score function s ∈ L2(P ) such that∥∥∥p1/2ϵ − p1/2 − ϵ

2
sp1/2

∥∥∥
L2(ρ)

= o(ϵ),

where p = dP
dρ and pϵ = dPϵ

dρ .

We denote by P(P,P, s) the set of submodels at P with score function s. The collection of such
s ∈ L2(P ) for which P(P,P, s) ̸= ∅ is called the tangent set, and its closed linear span is the
tangent space of P at P , denoted ṖP .

We define L2
0(P ) := {s ∈ L2(P ) :

∫
s dP = 0}, the largest possible tangent space, and refer to

models with ṖP = L2
0(P ) for all P ∈ P as locally nonparametric.

The parameter of interest is the counterfactual policy mean embedding and can written over the model
P as χ(π) : P → HY , such that

χ(π)(P ) =

∫∫
EP [ϕY(Y ) | A = a,X = x]π(da | x)PX(dx). (23)

Definition 11.2. (Pathwise differentiability) The parameter χ(π) is pathwise differentiable at P if
there exists a continuous linear map χ̇π

P : ṖP → HY such that for all {Pϵ} ∈ P(P,P, s),

∥χ(π)(Pϵ)− χ(π)(P )− ϵχ̇π
P (s)∥HY

= o(ϵ).

We refer to χ̇π
P as the local parameter of χ(π) at P , and its Hermitian adjoint (χ̇π

P )
∗
: HY → ṖP as

the efficient influence operator. Its image, denoted ḢP , is a closed subspace of HY known as the
local parameter space.

Next, we go on defining the efficient influence function of the parameter χ(π).
Definition 11.3. (Efficient influence function) We say that χ(π) has an efficient influence function
(EIF) ψπ

P : Y ×A×X → HY if there exists a P -almost sure set such that

χ̇π,∗
P (h)(y, a, x) = ⟨h, ψπ

P (y, a, x)⟩HY for all h ∈ HY .

By the Riesz representation theorem, χ(π) admits an EIF if and only if χ̇π,∗
P (·)(y, a, x) defines a

bounded linear functional almost surely. In that case, ψπ
P (y, a, x) equals its Riesz representation in

HY .

In our case, since HY is an RKHS over a space Y , the local parameter space ḢP is itself an RKHS
over Y , with associated feature map ϕY . Define

ψ̃π
P (y, a, x) := χ̇π,∗

P (ϕY)(y, a, x), (24)

which serves as a candidate representation of the EIF. The following result will serve us to show that
ψ̃π
P both provides the form of the EIF of χ, when it exists, and also a sufficient condition that can be

used to verify its existence.
Proposition 20. [41, Theorem 1], Form of the efficient influence function Suppose χ is pathwise
differentiable at P and ḢP is an RKHS. Then:

i) If an EIF ψπ
P exists, then ψπ

P = ψ̃π
P almost surely.

ii) If ∥ψ̃π
P ∥L2(P ;HY) <∞, then χ(π) admits an EIF at P .

Prior to that, we state below a result to show a sufficient condition for pathwise differentiability.
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Lemma 11.1. (Sufficient condition for pathwise differentiability) [91, Lemma 2] The parameter
χ : P → HY is pathwise differentiable at P if:

i) χ̇P is bounded and linear, and there exists a dense set of scores S(P ) such that for all
s ∈ S(P ), a submodel {Pϵ} ∈ P(P,P, s) satisfies

∥χ(Pϵ)− χ(P )− ϵχ̇P (s)∥HY
= o(ϵ),

ii) and χ is locally Lipschitz at P , i.e., there exist (c, δ) > 0 such that for all P1, P2 ∈ Bδ(P ),

∥χ(P1)− χ(P2)∥HY ≤ cH(P1, P2),

where H(·, ·) denotes the Hellinger distance and Bδ(P ) is the δ-neighborhood of P in
Hellinger distance.

Finally, we will show that under suitable conditions, an estimator of the form

χ̂n(π) := χ(π)(P̂n) + Pnψ
π
n

achieves efficiency.

11.2 Derivation of the Efficient Influence Function

We now prove Lemma 4.1, which characterizes the existence and form of the efficient influence
function (EIF) of the CPME. We begin by restating the lemma for convenience.
Lemma 4.1 ((Existence and form of the efficient influence function).). Suppose Assumptions 1 and
17 hold. Then, the CPME χ(π) admits an EIF which is P -Bochner square integrable and takes the
form

ψπ(y, a, x) =
π(a | x)
π0(a | x)

{
ϕY(y)− µY |A,X(a, x)

}
+

∫
µY |A,X(a′, x)π(da′ | x)− χ(π).

The proof proceeds in two main steps. First, we establish that χ is pathwise differentiable in Lemma
11.2. Then, we derive the form of its EIF.
Lemma 11.2. χ is pathwise differentiable relative to a locally nonparametric model P at any P ∈ P

Proof. Fix π ∈ Π. To prove this lemma, we apply Lemma 11.1 to establish the pathwise differ-
entiability of χ relative to a restricted model Pπ0 . This model consists of all distributions P ′ such
that πP ′ = π0, and for which there exists P ∈ P with P ′

Y |A,X = PY |A,X and P ′
X = PX . Since

the functional χ(π) does not depend on the treatment assignment mechanism, we may then extend
pathwise differentiability from Pπ0 to the full, locally nonparametric model P .

Following the construction in Luedtke and Chung [41], we assume that for any P ∈ P and fixed
δ > 0, the model P contains submodels of the form {Pϵ : ϵ ∈ [0, δ)}, where the perturbations act
only on the marginal of X and the conditional of Y | A,X . Specifically,

dPϵ,X

dPX
(x) = 1 + ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1,

dPϵ,Y |A,X

dPY |A,X
(y | a, x) = 1 + ϵsY |A,X(y | a, x),

where sX and sY |A,X are measurable functions bounded in (−δ−1, δ−1), satisfying

EP [sX(X)] = 0 and EP [sY |A,X(Y | A,X) | A,X] = 0 a.s..

Step 1: Boundedness and quadratic mean differentiability of the local parameter Let π0 be
such that π0 = πP ′ for some fixed P ′ ∈ P . The local parameter χ̇π

P (s) can be expressed as

χ̇π
P (s) =

∫
π(a | x)
π0(a | x)

ϕY(y)
[
sY |A,X(y | a, x) + sX(x)

]
P (dz). (25)

Boundedness. We first verify that χ̇π
P is a bounded operator. This will establish the first part of

condition (i) of Lemma 11.1 for the model P at P .

35



Take any score function s in the tangent space ṖP . Define

sY |A,X(y | a, x) := s(x, a, y)− EP [s(X,A, Y ) | A = a,X = x],

sX(x) := EP [s(X,A, Y ) | X = x].

It is straightforward to verify that EP [s(X,A, Y ) | A,X] − EP [s(X,A, Y ) | X] = 0 P -almost
surely. Therefore, we have the decomposition s = sY |A,X + sX . Since s ∈ L2(P ), it follows that
both sY |A,X and sX are in L2(P ) as well.

Now, under the strong positivity assumption and the boundedness of the kernel κ, the integrand

(x, a, y) 7→ π(a | x)
π0(a | x)

ϕY(y)
[
sY |A,X(y | a, x) + sX(x)

]
belongs to L2(P ;HY). Hence, the local parameter χ̇π

P (s) is well-defined in HY .

To establish boundedness of the local parameter χ̇π
P , we compute its squared RKHS norm:

∥χ̇π
P (s)∥

2
HY

=

∫∫
π(a | x)
π0(a | x)

π(a′ | x′)
π0(a′ | x′)

ky(y, y
′)
[
sY |A,X(y | a, x) + sX(x)

]
·
[
sY |A,X(y′ | a′, x′) + sX(x′)

]
P 2(dz, dz′) (26)

≤
∫∫

π(a | x)
π0(a | x)

π(a′ | x′)
π0(a′ | x′)

√
ky(y, y) ky(y′, y′)

∣∣sY |A,X(y | a, x) + sX(x)
∣∣

·
∣∣sY |A,X(y′ | a′, x′) + sX(x′)

∣∣ P 2(dz, dz′) (27)

=

[∫
π(a | x)
π0(a | x)

√
ky(y, y)

∣∣sY |A,X(y | a, x) + sX(x)
∣∣ P (dz)]2 (28)

≤
[∫

π2(a | x)
π2
0(a | x)

|ky(y, y)|P (dz)
]
·
[∫ (

sY |A,X(y | a, x) + sX(x)
)2
P (dz)

]
(29)

≤
supa,x π(a | x) · supy∈Y |ky(y, y)|

infP ′∈P ess infa,x πP ′(a | x)
·
∫ (

sY |A,X(y | a, x) + sX(x)
)2
P (dz) (30)

≤
supa,x π(a | x) · supy∈Y |ky(y, y)|

infP ′∈P ess infa,x πP ′(a | x)
· ∥s∥2L2(P ). (31)

Here: the first inequality applies Jensen’s inequality to pull absolute values inside, and
Cauchy–Schwarz on the kernel ky. The second applies Cauchy–Schwarz to split the integrals. The
third uses Hölder’s inequality with exponents (1,∞). The final inequality follows from decomposing
s = sY |A,X + sX + sA|X , where

sA|X(a | x) := EP [s(Z) | A = a,X = x]− EP [s(Z) | X = x].

We then use

∥s∥2L2(P ) = ∥sY |A,X + sX∥2L2(P ) + ∥sA|X∥2L2(P ) ≥ ∥sY |A,X + sX∥2L2(P ).

Since the kernel ky is bounded and π0 is uniformly bounded away from zero by the strong positivity
assumption, the bound in (31) is finite. Therefore, χ̇π

P is a bounded linear operator.

Quadratic mean differentiability. We now establish that χ(π) is quadratic mean differentiable at
P with respect to the restricted model Pπ0 , assuming π0 = πP .

As in Luedtke and Chung [41], we consider a smooth submodel {Pϵ : ϵ ∈ [0, δ)} ⊂ Pπ0
of the form:

dPϵ,X

dPX
(x) = 1+ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1,

dPϵ,Y |A,X

dPY |A,X
(y | a, x) = 1+ϵsY |A,X(y | a, x),

where sX and sY |A,X are bounded in [−δ−1/2, δ−1/2], satisfy EP [sX(X)] = 0 and EP [sY |A,X(Y |
A,X) | A,X] = 0 almost surely. The score of this submodel at ϵ = 0 is given by s(x, a, y) =
sX(x) + sY |A,X(y | a, x), and its L2(P )-closure spans the tangent space of Pπ0

at P .
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Letting χ̇π
P (s) be defined as in Equation (25), we compute

∥χ(π)(Pϵ)− χ(π)(P )− ϵχ̇π
P (s)∥

2
HY

=

∥∥∥∥∥
∫∫∫

ϕY(y)(1 + ϵsY |A,X(y | a, x))(1 + ϵsX(x))PY |A,X(dy | a, x)π(da | x)PX(dx)

−
∫∫∫

ϕY(y)PY |A,X(dy | a, x)π(da | x)PX(dx)

− ϵ

∫∫∫
π(a | x)
π0(a | x)

ϕY(y)
[
sY |A,X(y | a, x) + sX(x)

]
PY |A,X(dy | a, x)π0(da | x)PX(dx)

∥∥∥∥∥
2

HY

= ϵ4
∥∥∥∥∫∫ ϕY(y)sY |A,X(y | a, x)sX(x)PY |A,X(dy | a, x)π(da | x)PX(dx)

∥∥∥∥2
HY

= ϵ4
∥∥∥∥∫ π(a | x)

π0(a | x)
ϕY(y)sY |A,X(y | a, x)sX(x)P (dz)

∥∥∥∥2
HY

.

This is o(ϵ2) provided that the last HY -norm is finite. To verify this, observe that the integrand

(x, a, y) 7→ π(a | x)
π0(a | x)

ϕY(y)sY |A,X(y | a, x)sX(x)

belongs to L2(P ;HY), since kY , sY |A,X , and sX are bounded and π0 satisfies the strong positivity
assumption. Indeedm if we compute its squared norm:∥∥∥∥∫ π(a | x)

π0(a | x)
ϕY(y)sY |A,X(y | a, x)sX(x)P (dz)

∥∥∥∥2
HY

=

∫∫
π(a | x)
π0(a | x)

π(a′ | x′)
π0(a′ | x′)

kY(y, y
′) sY |A,X(y | a, x)sX(x) sY |A,X(y′ | a′, x′)sX(x′)P (dz)P (dz′)

<∞.

Thus, χ(π) is quadratic mean differentiable at P relative to Pπ0 .

Step 2: Local Lipschitzness. Let π0 = πP ′ for some fixed P ′ ∈ P . We now verify that χ(π) is
locally Lipschitz over the restricted model Pπ0

.

Fix any P, P̃ ∈ Pπ0
. Define the π-reweighted distributions:

Pπ(z) :=
π(a | x)
π0(a | x)

P (z), P̃π(z) :=
π(a | x)
π0(a | x)

P̃ (z),

where z = (x, a, y). Then:

∥χ(π)(P )− χ(π)(P̃ )∥2HY
=

∫∫
kY(y, y

′) (Pπ − P̃π)(dz) (Pπ − P̃π)(dz′)

=

∫∫
kY (y, y′)

π(a | x)
π0(a | x)

(
P − P̃

)
(dz)

π(a′ | x′)
π0(a′ | x′)

(
P − P̃

)
(dz′)

=

∫∫
kY(y, y

′)

[√
dP (z)−

√
dP̃ (z)

] [√
dP (z′)−

√
dP̃ (z′)

]
×
[√

dP (z) +

√
dP̃ (z)

] [√
dP (z′) +

√
dP̃ (z′)

]
× π(a | x)
π0(a | x)

π(a′ | x′)
π0(a′ | x′)

.
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Applying the Cauchy–Schwarz inequality yields:

∥χ(π)(P )− χ(π)(P̃ )∥2HY
≤

(∫∫
k2Y(y, y

′)

[
π(a | x)
π0(a | x)

π(a′ | x′)
π0(a′ | x′)

]2 [√
dP (z) +

√
dP̃ (z)

]2

·
[√

dP (z′) +

√
dP̃ (z′)

]2)1/2

·

(∫∫ [√
dP (z)−

√
dP̃ (z)

]2 [√
dP (z′)−

√
dP̃ (z′)

]2)1/2

= (Λ)
1/2 ·H2(P, P̃ ).

Where Λ =
∫∫

k2Y(y, y
′)
[

π(a|x)
π0(a|x)

π(a′|x′)
π0(a′|x′)

]2 [√
dP (z) +

√
dP̃ (z)

]2 [√
dP (z′) +

√
dP̃ (z′)

]2
.

Using the inequality (b+ c)2 ≤ 2(b2 + c2) and applying Hölder’s inequality:

Λ ≤ 2

∫∫
k2Y(y, y

′)

[
π(a | x)
π0(a | x)

]2 [
π(a′ | x′)
π0(a′ | x′)

]2
(P + P̃ )(dz)(P + P̃ )(dz′)

≤
2 supx,a π

2(a | x) · supy,y′ k2Y(y, y
′)

infP ′∈P infx,a π2
P ′(a | x)

.

This upper bound is finite under the strong positivity assumption and the boundedness of the kernel
kY . Therefore, χ(π) is locally Lipschitz over Pπ0 . This establishes part (ii) of Lemma 11.1 and
therefore finishes the proof.

Now that we have proved Lemma 11.2, we establish Lemma 4.1 and derive the form of the efficient
influence function.

Proof. To prove Lemma 4.1, we first recall that the local parameter takes the form, for s ∈ ṖP

χ̇π
P (s) =

∫∫∫
ϕY(y)

[
sY |A,X(y | a, x) + sA|X(a | x) + sX(x)

]
PY |A,X(dy | a, x)π(da | x)PX(dx)

Therefore, the efficient influence operator takes the form for h ∈ HY

χ̇π,∗
P (h)(y, a, x) =

π(a|x)
π0(a | x)

{h(y)− EP [h(Y ) | A = a,X = x]} (32)

+

∫
EP [h(Y ) | A = a′, X = x]π(da′ | x) (33)

−
∫∫

EP [h(Y ) | A = a′, X = x′]π(da′ | x)PX (dx′) (34)

By Proposition 20,the EIF is given by evaluating the efficient influence operator at the representer
ϕY(y

′), that is

ψπ
P (z) (y

′) = χ̇π,∗
P (ϕY(y

′))(y, a, x) =
π(a|x)
π0(a | x)

{ϕY(y′)− EP [ϕY(y
′) | A = a,X = x]}

+

∫
EP [ϕY(y

′) | A = a′, X = x]π(da′ | x)

−
∫∫

EP [ϕY(y
′) | A = a′, X = x′]π(da′ | x)PX (dx′) .

38



Indeed this function belongs to L2(P ;HY). Recalling the definition of the conditional mean embed-
ding µY |A,X(a, x) in (3) and noting that EP

[
µY |A,X(a, x)

]
= χ(π)(P ), we can rewrite the above

as follows:

ψπ
P (z) =

π(a | x)
π0(a | x)

[
ϕY(y)− µY |A,X(a, x)

]
+

∫
µY |A,X(a′, x)π(da′ | x)− χ(π)(P )

Finally, since the kernel kY is bounded and π0 is bounded away from zero by Assumption 1, it
follows that ψπ

P ∈ L2(P ;HY).

11.3 Analysis of the one-step estimator

In this section we provide the analysis of the one-step estimator. We start by restating Theorem 6.
Theorem 6 ((Consistency of the doubly robust estimator).). Suppose Assumptions 1, 3, 15, 16 and
17. Set λ = n−1/(c+1/b), which is rate optimal regularization. Then, with high probability,

∥χ̂dr(π)− χ(π)∥HY
= O

[
n−1/2 + rπ0

(n).rC(n, δ, b, c)
]

For this Theorem, we will begin by decomposing the error terms .

χ̂dr − χ (P ) = χ(P̂n) + Pnψ̂n − χ (P ) = (Pn − P )ψ̂n + χ(P̂n) + Pψ̂n − χ(P ) (35)

= (Pn − P )ψπ + (Pn − P )(ψ̂π
n − ψπ) + χ(P̂n) + Pψ̂π

n − χ(π) (36)
= Sn + Tn +Rn (37)

where Sn = (Pn − P )ψπ, Tn = (Pn − P )(ψ̂π
n − ψπ) and Rn = χ(P̂n) + Pψ̂π

n − χ(π). Sn is a
sample average of a fixed function. We call Rn the remainder terms and Tn the empirical process
term. The remainder terms Rn, quantify the error in the approximation of the one-step estimator
across the samples. The following result provides a reasonable condition under which the drift terms
will be negligible.

11.3.1 Bounding the empirical process term

As explained in Appendix 11.4, Luedtke and Chung [41] proposed a cross-fitted version of the one-
step estimator. However, splitting the data may lead to a loss in power. We are therefore interested
in identifying a sufficient condition under which the empirical term Tn becomes asymptotically
negligible without sample splitting.

In the scalar-valued case, a Donsker class assumption ensures the empirical process term is asymp-
totically negligible [32]. However, directly extending this notion to HY -valued functions is not
straightforward, since standard entropy-based arguments rely on the total ordering of R [65]. Fortu-
nately, Park and Muandet [65] introduces a notion of asymptotic equicontinuity adapted to Banach-
or Hilbert-space valued empirical processes, which we adopt in this setting.
Definition 11.4. (Asymptotic equicontinuity). We say that the empirical process
{Tn(φ) =

√
n (Pn − P )φ : φ ∈ G} with values in H and indexed by G is asymptotic equicontinuous

at φ0 ∈ G if, for every sequence {φ̂n} ⊂ G with ∥φ̂n − φ0∥
p−→ 0, we have

∥Tn (φ̂n)− Tn (φ0)∥H
p−→ 0. (38)

Note that (38) is equivalent to Tn = (Pn −P )(ψ̂π
n −ψπ) = oP

(
1√
n

)
. Park and Muandet [65] gives

sufficient conditions for asymptotic equicontinuity to hold that we will leverage to show asymptotic
equicontinuity. First we state the following result on the convergence of the efficient influence
function estimator.
Assumption 21. (Estimated Positivity) There exists a constant η > 0 such that, with high probability
as n→ ∞,

π̂0(a | x) ≥ η, for all (a, x) ∈ A× X .
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Lemma 11.3. (Influence Function Error). Suppose that the conditions of Lemma 4.1 hold, as well as
Assumptions 3, 21. Then the following bound holds:

∥ψπ
P − ψπ

0 ∥L2(P0;HY ) = OP

(∥∥∥∥ 1

π̂0
− 1

π0

∥∥∥∥
L2(πPX)

+
∥∥µY |A,X − µ̂Y |A,X

∥∥
L2(πPX ;HY )

.

)

Proof. We expand the difference between the estimated and oracle influence functions:

ψπ
P (z)− ψπ

0 (z) =

(
π(a | x)
π̂0(a | x)

− π(a | x)
π0(a | x)

)(
ϕY (y)− µY |A,X(a, x)

)
+

π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
+

∫ (
µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x).

Taking the L2(P0;HY ) norm and applying the triangle inequality yields:

∥ψπ
P − ψπ

0 ∥L2(P0;HY ) ≤ (I) + (II) + (III),

where:

(I) =
∥∥∥∥( π(a | x)

π̂0(a | x)
− π(a | x)
π0(a | x)

)(
ϕY (y)− µY |A,X(a, x)

)∥∥∥∥
L2(P0;HY )

,

(II) =
∥∥∥∥ π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)∥∥∥∥
L2(P0;HY )

,

(III) =
∥∥∥∥∫ (µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)

∥∥∥∥
L2(P0;HY )

.

First, we consider the term

(I) =
∥∥∥∥( π(a | x)

π̂0(a | x)
− π(a | x)
π0(a | x)

)(
ϕY (y)− µY |A,X(a, x)

)∥∥∥∥
L2(P0;HY )

.

Let ∆(a, x) := π(a|x)
π̂0(a|x) −

π(a|x)
π0(a|x) and h(a, x, y) := ϕY (y)− µY |A,X(a, x) ∈ HY . Then,

(I)2 =

∫
∥∆(a, x) · h(a, x, y)∥2HY

dP0(a, x, y) =

∫
∆2(a, x) · ∥h(a, x, y)∥2HY

dP0.

Applying the Cauchy–Schwarz inequality gives:

(I) ≤
(∫

∆2(a, x) dP0

)1/2(∫ ∥∥ϕY (y)− µY |A,X(a, x)
∥∥2
HY

dP0

)1/2

.

Noting that P0(da, dx) = π0(a | x)PX(dx) and using the change of measure:∫
r2(a, x) dP0 =

∫ (
π0(a | x)π(a | x)

(
1

π̂0(a | x)
− 1

π0(a | x)

))2

π(a | x)PX(dx),

we obtain:

(I) ≤
∥∥∥∥π0π( 1

π̂0
− 1

π0

)∥∥∥∥
L2(πPX)

·
(∫ ∥∥ϕY (y)− µY |A,X(a, x)

∥∥2
HY

dP0

)1/2

.

Using that the kernel is bounded in Assumption 3, then the second factor is finite, and:

(I) = OP

(∥∥∥∥( 1

π̂0
− 1

π0

)∥∥∥∥
L2(πPX)

)
,
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for some constant depending on the kernel and outcome variance.

Second, we analyze the term

(II) =
∥∥∥∥ π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)∥∥∥∥
L2(P0;HY )

.

By definition of the L2(P0;HY ) norm, we have:

(II)2 =

∫ ∥∥∥∥ π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)∥∥∥∥2
HY

dP0(a, x)

=

∫ (
π(a | x)
π̂0(a | x)

)2 ∥∥µY |A,X(a, x)− µ̂Y |A,X(a, x)
∥∥2
HY

π0(a | x)PX(dx).

Changing the measure to π(a | x)PX(dx) and bounding the weight by positivity assumptions yields:

(II)2 =

∫ ∥∥µY |A,X(a, x)− µ̂Y |A,X(a, x)
∥∥2
HY

· w(a, x) · π(a | x)PX(dx),

where w(a, x) := π0(a|x)π(a|x)
π̂2
0(a|x)

. If π̂0 ≥ η > 0, because of Assumption 21, then

(II) = OP

(∥∥µY |A,X − µ̂Y |A,X

∥∥
L2(πPX ;HY )

)
,

for some constant depending on the inverse propensity bound.

Eventually, we bound the term

(III) =
∥∥∥∥∫ (µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)

∥∥∥∥
L2(P0;HY )

.

Simply, the interm does Using Jensen’s inequality in the Hilbert space HY [92, Chapter 6], for each
fixed x, we have:∥∥∥∥∫ (µ̂(a′, x)− µ(a′, x))π(da′ | x)

∥∥∥∥
HY

≤
∫

∥µ̂(a′, x)− µ(a′, x)∥HY
π(da′ | x).

Now square both sides and integrate over P0(a, x) = π0(a | x)PX(dx). Since the integrand is
independent of a, this is equivalent to integrating over PX with the density π0(a | x) marginalized
out:

(III)2 =

∫ ∥∥∥∥∫ (µ̂(a′, x)− µ(a′, x))π(da′ | x)
∥∥∥∥2
HY

π0(a | x)PX(dx)

=

∫ ∥∥∥∥∫ (µ̂(a′, x)− µ(a′, x))π(da′ | x)
∥∥∥∥2
HY

PX(dx)

≤
∫ (∫

∥µ̂(a′, x)− µ(a′, x)∥HY
π(da′ | x)

)2

PX(dx)

≤
∫ ∫

∥π(a′|x)(µ̂(a′, x)− µ(a′, x))∥2HY
π(da′ | x)PX(dx),

Therefore, using that π is bounded

(III) ≤ ∥ sup
x,a

π(a | x)∥
∥∥µ̂Y |A,X − µY |A,X

∥∥
L2(πPX ;HY )

.

Combining the bounds yields the desired result.

Then, we are now in position to state:
Lemma 11.4. (Asymptotic equicontinuity of the empirical process term) Suppose that Assump-
tions 1, 3, 15, 17, 21 hold. Moreover, assume kY is a C∞ Mercer kernel. Then the empirical process
term satisfies ∥Tn∥HY

= oP (n
−1/2).
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Proof. Under Assumptions 1, 3, 15, 17, 21, the functions ψ̂π
n(y, a, x)−ψπ(y, a, x) lie in a finite and

shrinking ball of the RKHS HY , therefore if kY is a C∞ Mercer kernel, we can apply [85, Theorem
D] on the class G := {ψ̂π

n − ψπ} ⊂ L2(P ;HY ) to verify the conditions of Theorem 6 of Park and
Muandet [65].

Then, by Lemma 11.3 and with consistency of the nuisance parameters, ∥ψ̂π
n − ψπ∥L2(P ;HY ) → 0,

and by their stochastic equicontinuity result in Corollary 8, [65], we readily have:

∥(Pn − P )(ψ̂π
n − ψπ)∥HY

→ 0 in probability.

Hence, ∥Tn∥HY
= oP (n

−1/2), completing the proof.

11.3.2 Bounding the remainder term

Lemma 11.5. (Remainder term bound). Assumptions 1, 3, 15,16, 17, 21, then
∥Rn∥HY

= Op (rC(n, δ, b, c)rπ0
(n)).

Proof. From the definitions, the remainder term can be written as

Rn = χ(P̂n) + P0ψ̂
π
n − χ(π)

= EP0

[
π(a | x)
π̂0(a | x)

(
ϕY(y)− µ̂Y |A,X(a, x)

)
+

∫
µ̂Y |A,X(a′, x)π(da′ | x)

]
− EP0

[
π(a | x)
π0(a | x)

(
ϕY(y)− µY |A,X(a, x)

)
+

∫
µY |A,X(a′, x)π(da′ | x)

]
= EP0

[
π(a | x)
π̂0(a | x)

(
E [ϕY(y) | A = a,X = x]− µ̂Y |A,X(a, x)

)]
+ EP0

[
+

∫ (
µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)

]
− EP0

[
π(a | x)
π0(a | x)

(
E [ϕY(y) | A = a,X = x]− µY |A,X(a, x)

)]
= EP0

[
π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
+

∫ (
µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)

]
We can expand the expectation into the following:

Rn =

∫∫ [
π(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)]
π0(da | x)PX(dx)

+

∫∫∫ (
µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)π0(da | x)PX(dx)

=

∫∫
π0(a | x)
π̂0(a | x)

(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
π(a | x)PX(dx)

+

∫∫ (
µ̂Y |A,X(a′, x)− µY |A,X(a′, x)

)
π(da′ | x)PX(dx)

=

∫∫ (
π0(a | x)
π̂0(a | x)

− 1

)(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
π(da | x)PX(dx)

=

∫∫
π0(a | x)

(
1

π̂0(a | x)
− 1

π0(a | x)

)(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
π(da | x)PX(dx)

By the Cauchy–Schwarz inequality, we have∥∥∥∥∫∫ π0(a | x)
(

1

π̂0(a | x)
− 1

π0(a | x)

)(
µY |A,X(a, x)− µ̂Y |A,X(a, x)

)
π(da | x)PX(dx)

∥∥∥∥
HY
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≤

(∫∫
π2
0(a | x)

(
1

π̂0(a | x)
− 1

π0(a | x)

)2

π(da | x)PX(dx)

)1/2 ∥∥µY |A,X − µ̂Y |A,X

∥∥
HY

.

≤
∥∥∥∥π0( 1

π̂0
− 1

π0

)∥∥∥∥
L2(πPX)

·
∥∥µY |A,X − µ̂Y |A,X

∥∥
HY

If we write rπ0
(n) =

∥∥∥ 1
π̂0

− 1
π0

∥∥∥
L2(πPX)

an error bound on the estimation of the inverse propen-

sity scores, and noting that by Theorem 19, the regression error on
∥∥µY |A,X − µ̂Y |A,X

∥∥
HY

is
Op(rC(n, δ, b, c)), and we conclude the proof.

11.3.3 Consistency proof

We are now in position to prove Theorem 6.

Proof. The decomposition in Eq (37) provides:

∥χ̂dr − χ (P0)∥H ≤ ∥Tn∥H + ∥Sn∥H + ∥Rn∥H , (39)

The sample average Sn converges to 0 by the central limit theorem for Hilbert-valued random
variables (see [93], see also Examples 1.4.7 and 1.8.5 in [94]), that is ∥Sn∥HY

= oP (n
−1/2).

Then by combining the results of Lemma 11.4 (or Lemma 11.6) and Lemma 11.5, we obtain readily
that:

∥χ̂dr − χ (P0)∥H = Op

(
n−1/2 + rC(n, δ, b, c)rπ0

(n)
)
.

11.4 Additional details on the cross-fitted estimator

We now describe how cross-fitting [40, 37, 38, 95], can be used for our one-step estimator, following
Luedtke and Chung [41]. Let P j

n denote the empirical distribution on the j-th fold of the samples and
let P̂ j

n ∈ P denote an estimate of P0 based on the remaining j − 1 folds. The cross-fitted one-step
estimator takes the form

χ̄dr(π) =
1

k

k∑
j=1

[
χ
(
P̂ j
n

)
+ P j

nψ̂
j
n

]
. (40)

Using a similar decomposition as in Eq. (37), we obtain:

χ̄dr(π)− χ(π) (P ) =
1

k

k∑
j=1

(P j
n − P )ψπ +

1

k

k∑
j=1

(P j
n − P )(ψ̂j,π

n − ψπ) (41)

+
1

k

k∑
j=1

(χ(P̂ j
n) + Pψ̂j,π

n )− χ(π)(P ) (42)

Then, to prove the consistency of the estimator, we use the following triangular inequality.

∥χ̄dr(π)− χ(π) (P )∥H ≤ max
j

∥∥T j
n

∥∥
H +max

j

∥∥Sj
n

∥∥
H +max

j

∥∥Rj
n

∥∥
H , (43)

where Sj
n := (P j

n − P )ψπ, T j
n := (P j

n − P )(ψ̂j,π
n − ψπ), Rj

n = χ(P̂ j
n) + Pψ̂j,π

n − χ(π) We call
Rj

n the remainder terms and T j
n the empirical process terms, j ∈ {1, k}.
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Lemma 11.6. [41, Lemma 3](Sufficient condition for negligible empirical process terms). Suppose
that χ is pathwise differentiable at P0 with EIF ψ0. For each j ∈ {1, k},

∥∥ψj
n − ψ0

∥∥
L2(P ;H)

= op(1)

implies that
∥∥T j

n

∥∥
H = op

(
n−1/2

)
.

Luedtke and Chung [91] proves this lemma via a conditioning argument that makes use of Cheby-
shev’s inequality for Hilbert-valued random variables [96] and the dominated convergence theorem.

Then, to prove the sufficient condition, we recall the result of Lemma 11.3, which now allows to
show that the cross-fitted CPME is consistent.

12 Details and Analysis of the Doubly-Robust Test for the Distributional
Policy Effect

Theorem 7 ((Asymptotic normality of the test statistic).). Suppose that the con-
ditions of Theorem 6 hold. Suppose that EP0

[
∥φπ,π′(y, a, x)∥4

]
is finite, that

EP0
[φπ,π′(y, a, x)] = 0 and EP0

[⟨φπ,π′(y, a, x), φπ,π′(y′, a′, x′)⟩] > 0. Suppose also that
rπ0

(n, δ) . rC(n, δ, b, c) = O(n−1/2). Set λ = n−1/(c+1/b) and m = ⌊n/2⌋. then it follows that

T †
π,π′

d−→ N (0, 1).

The proof uses the steps of Kim and Ramdas [66] and Martinez Taboada et al. [28], but is restated
as it leverage the theorems and assumptions relevant to CPME. Specifically we provide a result
similar on asymptotic normality to that of Luedtke and Chung [41, Theorem 2], which holds for the
non-cross fitted estimator.

Lemma 12.1. (Asymptotic linearity and weak convergence of the one-step estimator). Suppose that
the conditions of Theorem 6 hold. Suppose also that rπ0(n, δ) . rC(n, δ, b, c) = O(n−1/2). Set
λ = n−1/(c+1/b) Under these conditions,

n1/2 [χ̂dr(π)− χ(π)]⇝ H,

where H is a tight H-valued Gaussian random variable that is such that, for each h ∈ H, the
marginal distribution ⟨H, h⟩H is N

(
0, E0

[
⟨ψπ(y, a, x), h⟩2H

])
.

This lemma can be obtained following the arguments of Luedtke and Chung [41], where the cross-
fitted estimator essentially requires for j ∈ {1, 2}, Rj

n = op
(
n−1/2

)
and T j

n = oP
(
n−1/2

)
to apply

Slutksy’s lemma and a central limit theorem for Hilbert-valued random variables [94].

Proof. We split the dataset {(xi, ai, yi)}ni=1 into two disjoint parts:

D = {(xi, ai, yi)}mi=1, D̃ = {(xj , aj , yj)}nj=m+1.

Further,

fπ,π′(y, a, x) =
1

n−m

n∑
j=m+1

⟨φπ,π′(y, a, x), φπ,π′ (yj , aj , xj)⟩ , Tπ,π′ =

√
nf̄π,π′

Sπ,π′

where f̄π,π′ and S2
π,π′ are the empirical mean and variance respectively:

f̄π,π′ =
1

n

n∑
i=1

fπ,π′ (yi, ai, xi) , S2
π,π′ =

1

n

n∑
i=1

(
fπ,π′ (yi, ai, xi)− f̄π,π′

)2
We define the test statistic using the doubly robust estimators φ̂π,π′ and φ̃π,π′ , which are computed
respectively from D and D̃:

f†π,π′(yi, ai, xi) :=
1

n−m

n∑
j=m+1

⟨φ̂π,π′(yi, ai, xi), φ̃π,π′(yj , aj , xj)⟩ ,
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f̄†π,π′ :=
1

m

m∑
i=1

f†π,π′(Zi), (S†
π,π′)

2 :=
1

m

m∑
i=1

(
f†π,π′(Zi)− f̄†π,π′

)2
,

T †
π,π′ :=

√
mf̄†π,π′

S†
π,π′

.

As [28, 66], the asymptotic normality results in four steps:

1. Consistency of the mean: mf̄†π,π′ = mf̄π,π′ + oP(1)

2. Consistency of the variance: m(S†
π,π′)2 = m(Sπ,π′)2 + oP(1)

3. Bounded variance under conditional law: 1
E[mfπ,π′ (Z)2|D2]

= OP(1)

4. Conclude with asymptotic normality: T †
π,π′

d−→ N (0, 1)

Consistency of the mean We follow the same outline as Martinez Taboada et al. [28] did, using
Lemma 12.1 for the asymptotic normality of φπ,π′ .

Consistency of the variance We follow the same outline as Martinez Taboada et al. [28] did.

Bounded variance We now show that the denominator in the normalization of T †
π,π′ is bounded

away from zero in probability:

1

E
[
mf2π,π′(Z) | D̃

] = OP (1).

For compactness, we define:

τ =
1√
m

m∑
i=1

φπ,π′ (yi, ai, xi) , γ =
1√

n−m

n∑
j=m+1

φπ,π′ (yj , aj , xj) ,

and

τ̂ =
1√
m

m∑
i=1

φ̂π,π′ (yi, ai, xi) , γ̃ =
1√

n−m

n∑
j=m+1

φ̃π,π′ (yj , aj , xj)

so that:
mf̄π,π′ = ⟨τ, γ⟩, mf̄†π,π′ = ⟨τ̂ , γ̃⟩,

(
√
mSπ,π′)2 =

m∑
i=1

⟨φπ,π′(yi, ai, xi), γ⟩2 −m(f̄π,π′)2,

(
√
mS†

π,π′)
2 =

m∑
i=1

⟨φ̂π,π′(yi, ai, xi), γ̃⟩2 −m(f̄†π,π′)
2.

Recall that fπ,π′(Z) = ⟨φπ,π′(Z), γ⟩, and that γ = 1√
n−m

∑n
j=m+1 φπ,π′(Zj) ∈ H is a random

element measurable with respect to D̃. Conditional on D̃, the variance of the test statistic is:

E
[
mf2π,π′(Z) | D̃

]
= ⟨Cγ, γ⟩,

where C = E[φ(Z)⊗ φ(Z)] is the covariance operator over H, which is compact, self-adjoint and
positive semi-definite.
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Using the eigendecomposition of C (see Section 9.1), we write:

C =

∞∑
j=1

λjvj ⊗ vj , γ =

∞∑
j=1

βjvj ,

so that

E
[
mf2π,π′(Z) | D̃

]
=

∞∑
j=1

λjβ
2
j .

From Assumption 16, we know that the eigenvalues satisfy λj ≤ Cj−b for some b ≥ 1. This decay
implies that the kernel is not degenerate and the operatorC has at least one strictly positive eigenvalue:
λ1 > 0.

Moreover, by Lemma 12.1 and the Central Limit Theorem in separable Hilbert spaces [93], the
limiting distribution of γ is Gaussian:

γ
d−→

∞∑
j=1

√
λjNjvj , where Nj ∼ N (0, 1).

Hence,
β1 = ⟨γ, v1⟩

d−→
√
λ1N1, ⇒ λ1β

2
1

d−→ λ21N
2
1 .

Therefore, the conditional variance is lower bounded:

E
[
mf2π,π′(Z) | D̃

]
=

∞∑
j=1

λjβ
2
j ≥ λ1β

2
1

d−→ λ21N
2
1 .

This shows that the variance remains bounded away from zero in probability. More formally, for any
ϵ > 0, we can find M > 0 such that:

P

 1

E
[
mf2π,π′(Z) | D̃

] > M

 < ϵ.

Hence,
1

E
[
mf2π,π′(Z) | D̃

] = OP (1).

Asymptotic normality We now conclude the asymptotic normality of T †
π,π′ , following Mar-

tinez Taboada et al. [28]. Suppose that EP0

[
∥φπ,π′(y, a, x)∥4

]
is finite, that EP0

[φπ,π′(y, a, x)] = 0
and EP0

[⟨φπ,π′(y, a, x), φπ,π′(y′, a′, x′)⟩] > 0, from Kim and Ramdas [66], we have:
√
mf̄π,π′√

E[f2π,π′(Z) | D̃]

d−→ N (0, 1),
S2
π,π′

E[f2π,π′(Z) | D̃]

p−→ 1.

Using the previous steps, we have:

mf̄†π,π′ = mf̄π,π′ + oP (1), mS†2
π,π′ = mS2

π,π′ + oP (1),

which implies:

mf̄†π,π′√
E[mf2π,π′(Z) | D̃]

=
mf̄π,π′√

E[mf2π,π′(Z) | D̃]
+ oP (1)

d−→ N (0, 1),

Moreover,
mS†2

π,π′

E[mf2π,π′(Z) | D̃]

p−→ 1.
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Taking square roots on both sides (which preserves convergence in probability by the continuous
mapping theorem), we obtain: √

E[mf2π,π′(Z) | D̃]
√
mS†

π,π′

p−→ 1.

By Slutsky’s theorem by combining the last two:

T †
π,π′ =

√
mf̄†π,π′

S†
π,π′

d−→ N (0, 1).

13 Details and Analysis of the sampling from the counterfactual distribution

Proposition 9 ((Convergence of MMD of herded samples, weak convergence to the counter-
factual outcome distribution).). Suppose the conditions of Lemma 4.1 and Assumption 8 hold.
Let (ỹdr,j) and P̃m

Y,dr (resp. (ỹpi,j), P̃m
Y,pi) be generated from χ̂dr(π) (resp. χ̂pi(π)) via Al-

gorithm 2. Then, with high probability, MMD(P̃m
Y,pi, ν(π)) = Op(rC(n, b, c) + m−1/2) and

MMD(P̃m
Y,dr, ν(π)) = Op(n

−1/2 + rπ0
(n)rC(n, b, c) +m−1/2). Moreover, (ỹdr,j) ⇝ ν(π) and

(ỹπ,j)⇝ ν(π).

Proof. Fix π ∈ Π. By Theorem 6, the estimated embedding χ̂dr(π) satisfies:

∥χ̂dr(π)− χ(π)∥HY
= Op

(
n−1/2 + rπ0

(n) · rC(n, b, c)
)
.

Let {ỹt}mt=1 be the herded samples generated from χ̂dr(π) using Algorithm 2. According to Bach
et al. [97, Section 4.2], the empirical mean embedding of these samples approximates χ̂dr(π) at rate:∥∥∥∥∥χ̂dr(π)−

1

m

m∑
t=1

ϕY(ỹt)

∥∥∥∥∥
HY

= O(m−1/2).

By the triangle inequality:∥∥∥∥∥ 1

m

m∑
t=1

ϕY(ỹt)− χ(π)

∥∥∥∥∥
HY

= Op

(
n−1/2 + rπ0

(n)rC(n, b, c) +m−1/2
)
.

By definition of MMD and the reproducing property, we have:

MMD(P̃m
Y , ν(π)) =

∥∥∥∥∥ 1

m

m∑
t=1

ϕY(ỹt)− χ(π)

∥∥∥∥∥
HY

,

so the same rate applies.

For the plug-in estimator χ̂pi(π), which does not involve nuisance estimation, we obtain:

∥χ̂pi(π)− χ(π)∥HY
= Op(rC(n, b, c)),

yielding, with the same arguments

MMD(P̃m
Y,pi, ν(π)) = Op(rC(n, b, c) +m−1/2).

Finally, weak convergence of the empirical measures P̃m
Y to ν(π) follows from convergence in MMD

norm with a characteristic kernel; see Simon-Gabriel et al. [67, Theorem 1.1] and Sriperumbudur
[98].
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14 Experiment details

In this Appendix we provide additional details on the simulated settings as well as additional
experiment results.

14.1 Testing experiments

We are given a logged dataset Dinit = {(xi, ai, yi)}ni=1 ∼ P0, collected under a logging policy π0.
For two target policies π and π′, the objective is to test the null hypothesis:

H0 : ν(π) = ν(π′), vs. H1 : ν(π) ̸= ν(π′),

where ν(π) and ν(π′) denote the counterfactual distributions of outcomes under π and π′, respectively.

14.1.1 Baseline

We use baselines to evaluate the ability of our framework to detect differences in counterfactual
outcome distributions induced by different target policies, compared to alternative approaches.

Kernel Policy Test (KPT). An adaptation of the kernel treatment effect test of Muandet et al. [17],
extended to the OPE setting. It tests whether the counterfactual distributions ν(π) and ν(π′) differ by
comparing reweighted outcome samples using the maximum mean discrepancy (MMD). The key
idea is to view both outcome distributions as being implicitly represented by importance-weighted
samples from the logging distribution.

Given two importance weight vectors wπ and wπ′ corresponding to the target policies π and π′,
respectively, the test computes the unbiased squared MMD statistic:

M̂MD
2

u =
1

n(n− 1)

∑
i̸=j

[
wπ

i w
π
j k(yi, yj) + wπ′

i w
π′

j k(yi, yj)− 2wπ
i w

π′

j k(yi, yj)
]
,

where k(yi, yj) is a positive definite kernel on the outcome space (typically RBF). To obtain a p-value,
KPT uses a permutation-based null distribution. It repeatedly permutes the correspondence between
samples and their importance weights (thus preserving the outcome data while randomizing their
"assignment") and recomputes the MMD statistic under each permutation. The p-value is estimated
as the proportion of permuted statistics that exceed the observed MMD. As Muandet et al. [17], we
use 10000 permutations.

Average Treatment Effect Test (PT-linear). A simple variant of KPT using linear kernels, testing
only for differences in means. It serves as a reference for detecting average treatment differences.

Doubly Robust Kernel Policy Test (DR-KPT). We construct a doubly robust test statistic based
on the difference of efficient influence functions:

T †
π,π′ =

√
mf̄†π,π′

S†
π,π′

,

where f̄† is the empirical mean of pairwise inner products of influence function differences across
data splits, and S† the empirical standard deviation. The null is rejected when T †

π,π′ exceeds a
standard normal threshold.

14.1.2 Model selection and tuning

We repeat each experiment 100 times and report test powers with 95% confidence intervals. For
DR-KPT and KPT, the kernel kY is RBF. For DR-KPT the regularization parameter λ is selected via
3-fold cross-validation in the range {10−4, . . . , 100}, as done in [17]. We use the median heuristic
for the lengthscales of the kernel kA, kX and kY .
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14.1.3 Simulated Synthetic Setting

The experiments are conducted in a synthetic continuous treatment setting. Covariates xi ∈ Rd

are sampled independently from a multivariate standard normal distribution N (0, Id). Treatments
ai ∈ R are drawn from a Gaussian logging policy π0(a | x) = N (x⊤w, 1), where the weight vector
is fixed as w = 1√

d
1d. Outcomes are generated according to a linear outcome model with additive

noise:
yi = x⊤i β + γai + εi, εi ∼ N (0, σ2),

where β ∈ Rd is a linearly increasing vector and γ ∈ R controls the treatment effect strength.

We evaluate four distinct scenarios, each specifying a different relationship between the target policies
π, π′, and the logging policy π0. These scenarios are designed to induce progressively more complex
shifts in the treatment distribution, affecting the downstream outcome distribution. We set the
covariate dimension to d = 5, γ = 1 and evaluate β in the grid β = [0.1, 0.2, 0.3, 0.4, 0.5]. β
is taken at different values across samples to reflect heterogeneity in user features and outcome
interactions.

Scenario I (Null). This is the calibration setting in which π = π′. The two policies generate treat-
ments from the same Gaussian distribution with shared mean and variance, ensuring no counterfactual
distributional shift. Under the null hypothesis, we expect all tests to maintain the nominal Type I
error rate.

Scenario II (Mean Shift). Here, the target policy π remains identical to the logging policy, while
the alternative policy π′ is a Gaussian with the same variance but a shifted mean. Specifically, π′ uses
a weight vector w′ = w + δ, with δ = 2 · 1d. This results in a systematic mean shift in treatment
assignment, causing a change in the marginal distribution of outcomes through the linear outcome
model. This tests whether the methods can detect simple, mean-level differences in counterfactual
outcomes.

Scenario III (Mixture). In this case, the policy π remains a standard Gaussian as in previous
scenarios, while the alternative π′ is a 50/50 mixture of two Gaussian policies with opposing shifts in
their means: w1 = w + 1d, w2 = w − 1d. Although the resulting treatment distribution is bimodal,
its overall mean matches that of π. This scenario introduces a change in higher-order structure (e.g.,
variance, modality) without altering the first moment, allowing us to test whether the methods detect
distributional differences beyond the mean.

Scenario IV (Shifted Mixture). This is the most complex scenario. As in Scenario III, the
alternative policy π′ is a mixture of two Gaussian components, but this time only one component is
shifted: w1 = w + 2 · 1d, w2 = w. The resulting treatment distribution under π′ differs from π in
both mean and higher-order moments. This scenario combines characteristics of Scenarios II and III
and evaluates whether the tests remain sensitive to subtle and structured counterfactual shifts.

Across all scenarios, we generate n = 1000 samples per run and estimate importance weights for π
and π′ using fitted models based on the observed data. Specifically, we fit a linear regression model
to the logged treatments T as a function of the covariates X to estimate the mean of the logging
policy π0, and evaluate its Gaussian density to obtain estimated propensities. This experimental
design enables evaluation of the calibration and power of distributional tests under a range of realistic
divergences.

In all scenarios (Tables 3–6), DR-KPT consistently demonstrates the best computational effi-
ciency, with runtimes typically two orders of magnitude lower than both KPT and PT-linear. This
efficiency stems from the closed-form structure of its test statistic, which avoids repeated resampling
or kernel matrix permutations. In contrast, KPT relies on costly permutation-based MMD calculations,
and PT-linear, while simpler, still requires repeated reweighting. For readability and to emphasize
this computational advantage, we reorder the tables so that DR-KPT appears in the last row of each
scenario.

We provide an additional Table 7 below with larger sample sizes and two kernels (RBF and polyno-
mial).

49



Table 3: Average runtime (in seconds) for Scenario I. Values are reported as mean ± std over 100
runs.

Method 100 150 200 250 300 350 400
KPT 0.495 ± 0.070 0.740 ± 0.039 1.134 ± 0.081 1.623 ± 0.075 2.257 ± 0.074 3.204 ± 0.118 4.180 ± 0.136
PT-linear 0.592 ± 0.061 0.774 ± 0.038 1.060 ± 0.051 1.553 ± 0.076 2.373 ± 0.202 3.384 ± 0.160 4.358 ± 0.251
DR-KPT 0.004 ± 0.005 0.007 ± 0.004 0.010 ± 0.009 0.008 ± 0.002 0.013 ± 0.007 0.025 ± 0.023 0.019 ± 0.007

Table 4: Average runtime (in seconds) for Scenario II. Values are reported as mean ± std over 100
runs.

Method 100 150 200 250 300 350 400
KPT 0.559 ± 0.044 0.794 ± 0.040 1.173 ± 0.063 1.764 ± 0.093 2.301 ± 0.085 3.342 ± 0.126 4.204 ± 0.182
PT-linear 0.486 ± 0.035 0.767 ± 0.037 1.071 ± 0.030 1.630 ± 0.062 2.405 ± 0.182 3.738 ± 0.251 4.767 ± 0.228
DR-KPT 0.004 ± 0.003 0.007 ± 0.005 0.012 ± 0.006 0.014 ± 0.008 0.023 ± 0.012 0.022 ± 0.009 0.027 ± 0.031

Next, to empirically illustrate the benefits of sample-splitting in the test statistic provided in Section
5.1, we provide below in Figure 4 the same histograms as given in Figure 1. Concretly, instead of
splitting the samples inm and n−m, we use all the samples in the definition of T †

π,π′ , f†π,π′(yi, ai, xi)
and in the test statistics in Eq. (14). As we can see, the resulting distribution is not normal, the QQ
plot does not conclude and the test is not at all calibrated.

14.1.4 Warfarin Semi-Synthetic Setting

We build a semi-synthetic evaluation based on the publicly available Warfarin dosing data, following
the spirit of Kallus and Zhou [4], Zenati et al. [69] and our distributional setup. Starting from the
raw table from [68], we first (i) keep only subjects with a recorded stable therapeutic dose and a
stable observed INR (columns 38–39 not NA and stability flag at column 37 equal to 1), (ii) construct
a covariate matrix X comprising demographics (gender, race, ethnicity, age group), anthropomet-
rics (height, weight), BMI, clinical indications (8 binary indicators), selected comorbidities and
concomitant medications (aspirin, acetaminophen including high dose, statins, amiodarone, carba-
mazepine, phenytoin, rifampin, antibiotics, antifungals, herbals), smoking, and pharmacogenetic
markers (CYP2C9 and VKORC1 genotypes), and (iii) remove near-constant columns (empirical
standard deviation < 0.05) and patients with missing/degenerate BMI (post-filter BMI > 3× 10−3).
Let n denote the resulting sample size.

Outcome construction (semi-synthetic). Let TherDosei be the recorded stable therapeutic dose
and let a denote a candidate weekly dose. We define an expert-motivated absolute–tolerance cost

y(a, x) = max
(
|a− TherDose(x)| − 0.1 · TherDose(x), 0

)
,

and add a small observation noise N (0, 0.12). For each patient i, the observed outcome is

Yi = y(Ti, Xi) + εi, εi ∼ N (0, 0.12).

Logging policy (data-generating mechanism). Write µ∗
T = 1

n

∑
i TherDosei and σ∗

T its empirical
standard deviation. Let ZBMI =

BMI−µBMI
σBMI

be the standardized BMI. The logged treatment is generated
by a contextual Gaussian policy with BMI-driven mean and homoskedastic variance:

T = µ∗
T + σ∗

T

(√
θ ZBMI +

√
1− θ ϵ

)
, ϵ ∼ N (0, 1), θ = 0.5.

Equivalently, T | X ∼ N
(
µ∗
T + σ∗

T

√
θ ZBMI, (σ

∗
T )

2(1− θ)
)
, i.e., a continuous normal density over

T − µ∗
T − σ∗

T

√
θ ZBMI

σ∗
T

√
1− θ

.

Propensity estimation. To form importance weights for target policies, we fit a linear regression of
T on X (no intercept in the BMI-only fit, standard scikit-learn linear model in the full fit) to obtain
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Table 5: Average runtime (in seconds) for Scenario III. Values are reported as mean ± std over 100
runs.

Method 100 150 200 250 300 350 400
KPT 0.523 ± 0.063 0.836 ± 0.025 1.161 ± 0.018 1.596 ± 0.008 2.157 ± 0.042 3.174 ± 0.014 4.044 ± 0.021
PT-linear 0.505 ± 0.052 0.802 ± 0.015 1.134 ± 0.013 1.577 ± 0.014 2.142 ± 0.043 3.181 ± 0.041 4.051 ± 0.024
DR-KPT 0.004 ± 0.003 0.008 ± 0.009 0.011 ± 0.005 0.015 ± 0.009 0.020 ± 0.010 0.025 ± 0.013 0.025 ± 0.014

Table 6: Average runtime (in seconds) for Scenario IV. Values are reported as mean ± std over 100
runs.

Method 100 150 200 250 300 350 400
KPT 0.548 ± 0.065 0.839 ± 0.014 1.171 ± 0.012 1.611 ± 0.013 2.176 ± 0.042 3.239 ± 0.032 4.142 ± 0.032
PT-linear 0.523 ± 0.062 0.831 ± 0.008 1.160 ± 0.014 1.626 ± 0.058 2.385 ± 0.127 3.282 ± 0.115 4.153 ± 0.043
DR-KPT 0.004 ± 0.005 0.009 ± 0.007 0.015 ± 0.008 0.015 ± 0.010 0.018 ± 0.010 0.023 ± 0.011 0.025 ± 0.015

µ̂0(X) and assume Gaussian residuals with variance fixed to (σ∗
T )

2. The estimated logging density is
modeled as a Gaussian with mean µ̂0(X) and variance (σ∗

T )
2:

π̂0(T | X) ∝ exp
(
− 1

2(σ∗
T )2

∥∥T − µ̂0(X)
∥∥2).

and importance weights for a candidate policy π are wπ = π(T | X)/π̂0(T | X), clipped at 105 as
in the code.

Policies under comparison and scenarios. We obtain a baseline linear score wbase by regressing T
on X and (optionally) adding small Gaussian jitter to the coefficients. Let scale = σ∗

T and ∆ = σ∗
T

(the intercept shift unit). We evaluate four scenarios by specifying a target policy π and an alternative
policy π′ that generate normal treatments with means linear in X and common scale σ∗

T . Mixtures
are implemented as equal-weight mixtures of two Gaussians via intercept shifts.

• Scenario I (Null). π = N (X⊤wbase, σ
∗ 2
T ) and π′ = π. No counterfactual shift; tests should

control Type I error.
• Scenario II (Mean Shift). π = N (X⊤wbase, σ

∗ 2
T ) and π′ is the same Gaussian with an intercept

increased by ∆ (mean shift with unchanged variance). This probes sensitivity to first-moment
shifts.

• Scenario III (Mixture, mean preserved). π = N (X⊤wbase, σ
∗ 2
T ) and π′ is a 50/50 mixture of

two Gaussians with intercepts shifted by ±∆. The overall mean matches π while the treatment
distribution becomes bimodal, altering higher moments only.

• Scenario IV (Shifted Mixture). π = N (X⊤wbase, σ
∗ 2
T ) and π′ is a 50/50 mixture where one

component is intercept-shifted by +∆ and the other unshifted. Both mean and higher-order
structure differ from π.

Experimental protocol. For each scenario, we use all n patients after preprocessing and repeat
over 100 independent seeds. For kernel choices on outcomes, we consider linear, polynomial, and
RBF kernels; the RBF bandwidth uses the median heuristic on {Yi} when stable. We compare KPT
(reweighted two-sample tests) and DR-KPT (doubly robust sample-split statistic) using the same
weights wπ, wπ′ , with the DR regularization set to λ = 102 in the kernel ridge step. We report
empirical rejection rates at α = 0.05 across seeds for Scenarios I–IV, thereby assessing calibration
(I) and power to detect mean-only (II), higher-moment-only (III), and combined (IV) counterfactual
shifts in clinically meaningful cost outcomes.

We provide in Table 8 runtime of our tests on the Warfarin data.

14.1.5 dSprites structured-outcome semi-synthetic data

We evaluate distributional tests on structured outcomes using the dSprites dataset [70, 71]. Each
outcome is a 64 × 64 grayscale image obtained from a fixed renderer that decodes spatial latents
while holding shape, scale, orientation, and color constant. Let latent contexts be X ∼ U([0, 1]2) and
treatments A ∈ R2. For each context–action pair, the renderer deterministically outputs an image

Y := g(X,A) ∈ R64×64,
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Table 7: Runtime (in seconds) of DR-KPT and KPT variants on the synthetic dataset.
Method 100 200 500 1000 2000
KPT-RBF 1.712 ± 0.170 4.786 ± 0.157 104.256 ± 16.576 366.104 ± 99.063 306.406 ± 44.161
KPT-Poly 1.824 ± 0.260 4.587 ± 0.246 106.186 ± 55.371 354.062 ± 13.737 334.608 ± 81.867
KPT-Linear 1.801 ± 0.191 4.573 ± 0.465 84.999 ± 14.167 387.368 ± 262.004 285.999 ± 71.099
DR-KPT-RBF 0.135 ± 0.022 0.147 ± 0.016 0.325 ± 0.019 1.196 ± 0.158 1.126 ± 0.135
DR-KPT-Poly 0.118 ± 0.011 0.140 ± 0.021 0.314 ± 0.020 1.155 ± 0.172 1.119 ± 0.126

Figure 4: Illustration of 100 simulations of the non-sample-splitted DR-KPT under the null: (A)
Histogram of DR-KPT alongside the pdf of a standard normal for n = 400, (B) Normal Q-Q plot of
DR-KPT for n = 400, (C) False positive rate of DR-KPT against different sample sizes.

where g maps the spatial latents to pixel intensities through the dSprites generative process.

Policies and logging data. We define contextual Gaussian policies in R2 with diagonal covariance
σ2I2. For parameters (θ, β, σ),

µθ(X) =

[
X1 cos θ + β

X2 sin θ + β

]
, A | X ∼ N

(
µθ(X), σ2I2

)
.

Logged data are generated from a Gaussian logging policy with σ = 0.5. We compute analytical
propensities for the target π and alternative π′ and form importance weights

wπ =
π(A | X)

π0(A | X)
, wπ′ =

π′(A | X)

π0(A | X)
,

clipped at 105.

Scenarios. We consider two scenarios that parallel our continuous-treatment experiments, now in a
structured image setting:

• Scenario I (Null). π and π′ share the same (θ, β, σ), hence produce identical treatment and
outcome distributions.

• Scenario IV (Policy Shift). π and π′ share θ and σ but differ by an intercept shift β 7→ β ± 0.3,
inducing a mean shift in A | X and corresponding differences in the rendered image outcomes.

All other latent generative factors are fixed, ensuring that observed shifts arise purely from policy
changes.

Experimental protocol. We generate n = 3000 samples per seed. Images are flattened into vectors
in R4096 for kernel computations. We compare KPT (reweighted kernel two-sample tests with linear,
RBF, and polynomial kernels) and DR-KPT (doubly robust, cross-fitted) using the same weights
wπ, wπ′ . For RBF kernels, the bandwidth is set by the median heuristic; the DR regularization
parameter is fixed to λ = 102. Each scenario is repeated over 100 random seeds, and we report
empirical rejection rates at α = 0.05, assessing calibration (I) and power under policy shifts (IV),
consistent with our synthetic and semi-synthetic Warfarin setups.

52



Table 8: Runtime (in seconds) of DR-KPT and KPT variants on the Warfarin dataset.
Method 1000 2000 3000 4000
KPT-RBF 375.355 ± 112.770 1338.653 ± 262.921 2672.691 ± 20.895 5657.573 ± 413.196
KPT-Poly 331.831 ± 48.219 1315.537 ± 212.152 3308.014 ± 1219.752 5165.057 ± 667.347
KPT-Linear 364.378 ± 35.433 1302.173 ± 300.546 2651.653 ± 103.833 3623.222 ± 373.766
DR-KPT-RBF 0.426 ± 0.024 2.530 ± 1.447 5.775 ± 0.125 11.701 ± 1.869
DR-KPT-Poly 0.485 ± 0.076 1.862 ± 0.030 6.660 ± 3.180 11.184 ± 0.170

14.2 Sampling experiments

We study whether our estimated counterfactual policy mean embeddings (CPMEs) can be used to gen-
erate samples that approximate the true counterfactual outcome distribution. Formally, given a logged
dataset Dinit = {(xi, ai, yi)}ni=1 ∼ P0 and a target policy π, we aim to generate samples {ỹj}mj=1

such that their empirical distribution P̃m
Y approximates the counterfactual outcome distribution ν(π)

under π.

14.2.1 Procedure

We employ kernel herding to deterministically sample from the estimated embedding χ̂(π) in RKHS.
The algorithm sequentially selects samples ỹ1, . . . , ỹm that approximate the target embedding via
greedy maximization:

ỹt = argmax
y∈Y

{
χ̂(π)(y)− 1

t− 1

t−1∑
ℓ=1

kY(ỹℓ, y)

}
,

where kY is a universal kernel on the outcome space.

Since no comparable baselines for counterfactual sampling are available in the literature, we focus on
comparing the quality of samples generated from two estimators of χ(π): the plug-in estimator and
the doubly robust estimator. Both versions yield distinct herded samples, which we evaluate against
ground truth samples generated under the target policy π.

14.2.2 Model selection and tuning

To report the distance metrics, we repeat each experiment 100 times and report the associated metric
with 95% confidence intervals. For both plug-in and DR estimators, the kernel kY is RBF and
the regularization parameter λ is selected via 3-fold cross-validation in the range {10−4, . . . , 100},
as done in the sampling experiments of Muandet et al. [17]. We use the median heuristic for the
lengthscales of the kernel kA, kX and kY .

14.2.3 Simulated Setting

We simulate logged data under different outcome models and logging policies. Covariates xi ∈ Rd

are sampled from a standard Gaussian distribution. Treatments ai ∈ R are drawn either from a
uniform distribution or from a logistic policy whose parameters depend on xi. Outcomes yi are then
generated via one of the following nonlinear functions:

Nonlinear: y = sin(x⊤β) + a2 + ε, Quadratic: y = (x⊤β)2 + a2 + ε,

where β is a fixed coefficient vector and ε ∼ N (0, 1). For each synthetic setup, we generate logged
data under the logging policy π0 and obtain oracle samples under the target policy π for evaluation.
We set the covariate dimension to d = 5 and evaluate β in the grid β = [0.1, 0.2, 0.3, 0.4, 0.5].
β is taken at different values across samples to reflect heterogeneity in user features and outcome
interactions.

Figure 5 illustrates the counterfactual outcome distributions recovered via kernel herding using both
PI-CPME and DR-CPME estimators under different logging policies and outcome functions.

To assess the fidelity of the sampled distributions, we compare the empirical distribution P̃m
Y of

herded samples to the true counterfactual distribution using two metrics:
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(a) Logistic logging, nonlinear outcome (b) Logistic logging, quadratic outcome

(c) Uniform logging, nonlinear outcome (d) Uniform logging, quadratic outcome

Figure 5: Counterfactual outcome distributions estimated via kernel herding from PI-CPME and
DR-CPME samples, compared to the logged and true outcome distributions.

• Wasserstein distance between the sampled and ground truth outcomes,

• Maximum Mean Discrepancy (MMD) with a Gaussian kernel.

Table 9: Wasserstein distance between herded samples and samples from the oracle counterfactual
distribution

Method logistic-nonlinear logistic-quadratic uniform-nonlinear uniform-quadratic

Plug-in 1.29e-01 ± 2.6e-01 1.41e-01 ± 4.9e-02 9.08e-02 ± 3.7e-01 6.78e-02 ± 1.9e-02
DR 8.60e-02 ± 2.2e-02 1.36e-01 ± 3.9e-02 5.00e-02 ± 1.5e-02 6.63e-02 ± 1.6e-02

Table 10: MMD distance between herded samples and samples from the oracle counterfactual
distribution

Method logistic-nonlinear logistic-quadratic uniform-nonlinear uniform-quadratic

Plug-in 1.11e-03 ± 5.9e-03 9.85e-04 ± 6.0e-04 1.92e-04 ± 1.2e-03 3.31e-04 ± 2.5e-04
DR 4.38e-04 ± 3.6e-04 9.80e-04 ± 6.0e-04 6.49e-05 ± 4.4e-05 3.51e-04 ± 2.5e-04

Results in Table 9, 10 show that samples obtained from the doubly robust estimator exhibit lower
discrepancy to the oracle distribution.

14.3 Off-policy evaluation

We are given a dataset of n i.i.d. logged observations {(xi, ai, yi)}ni=1 ∼ P0. Given only this logged
data from P0, the goal of off-policy evaluation is to estimate R(π), the expected outcomes induced
by a target policy π belonging to the policy set Π:
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R(π) = EPπ [(Y (a))] . (44)

After identification, the risk of the policy simply boils down to R(π) = EPπ
[(Y (a))], and the CPME

χ(π) = EPπ
[ϕY(Y (a))] describes the risk when the feature map ϕY = y is linear.

14.3.1 Baselines

We compare our method against the following baseline estimators on synthetic datasets.

Direct Method (DM). The direct method [33] fits a regression model η̂ : U × A → R on the
logged dataset Dinit = {(yi, ai, xi)}ni=1, and estimates the expected reward under a target policy π as

R̂DM(π) =
1

n

n∑
i=1

∫
η̂(xi, a)π(a|xi)da].

Since the evaluated policy differs from the logging policy π0 ̸= π, a covariate shift is induced over the
joint space A×X . It is well known that under the covariate shift, a parametric regression model may
produce a significant bias [99]. To demonstrate this, we use a 3-layer feedforward neural network as
the regressor and call it DM-NN.

Weighted Inverse Propensity Score (wIPS). This estimator reweights logged rewards using
inverse propensity scores [90]:

R̂wIPS(π) =

∑n
i=1 wiyi∑n
i=1 wi

, wi =
π(ai | ui)
π0(ai | ui)

.

This estimator is unbiased when the true propensities are known.

Doubly Robust (DR). The DR estimator [33] combines the two previous methods, that is η̂ and wi

using:

R̂DR =
1

n

n∑
i=1

(∫
η̂(xi, a)π(a|xi)da+ wi(yi − η̂(xi, ai))

)
,

and remains consistent if either η̂ or π0 is correctly specified. We use the same parametrization for η̂
as we do for the DM method and therefore call this doubly robust approach DR-NN.

Counterfactual Policy Mean Embeddings (CPME). We define a product kernel
kAX ((a, x), (a′, x′)) = kA(a, a

′)kX (x, x′), with Gaussian kernels on a and x. The outcome kernel
kY is linear.

Relation to DM. When η̂ is fit via kernel ridge regression (see Exemple 9.1), the DM estimate
becomes:

R̂DM(π) ≈ Y ⊤(K + nλI)−1 · 1
n

n∑
i=1

kAX (ãi, xi)

where Kij = kAX ((ai, xi), (aj , xj)), and ãi ∼ π(· | xi). This matches the CME form proposed in
[17], showing that CME/CPME is as a nonparametric version of the DM. Because kernel methods
mitigate covariate shift, CMPE is consistent and asymptotically unbiased. We will therefore refer to
the plug-in χ̂pi(π) and the doubly robust χ̂dr(π) estimators as DM-CPME and DR-CPME.

14.3.2 Model selection and tuning

Each estimator is tuned by 5-fold cross-validation procedure for OPE setting introduced in [17,
Appendix B]: For the DM and DR-NN models, we vary the number of hidden units nh ∈
50, 100, 150, 200. For CPME and DR-CPME, the regularization parameter λ is selected from the
range {10−8, . . . , 10−3}. We repeat each experiment 30 times and report mean squared error (MSE)
with 95% confidence intervals. For CPME, the kernel kY is linear, and the regularization parameter λ
is selected via cross-validation. We use the median heuristic for the lengthscales of the kernel kA and
kX .
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14.3.3 Simulated setting

We simulate the recommendation scenario of Muandet et al. [17] where users receive ordered lists of
K items drawn from a catalog of M items. Each item m ∈ {1, . . . ,M} is represented by a feature
vector vm ∈ Rd, and each user j ∈ {1, . . . , N} is assigned a feature vector xj ∈ Rd, both sampled
i.i.d. from N (0, Id). A recommendation a = (vm1

, . . . , vmK
) ∈ Rd×K is formed by sampling items

without replacement.

The user receives a binary outcome based on whether they click on any item in the recommended
list. Formally, given a recommendation ai and a user feature vector xj , the probability of a click is
defined as

θij =
1

1 + exp
(
−ā⊤i xj + ϵij

) ,
where āi is the average of the K item vectors in the list ai, and ϵij ∼ N (0, 1) is independent noise.
The binary reward is then sampled as yij ∼ Bernoulli(θij).

In our experiment, a target policy π(a | x) generates a recommendation list a = (vm1
, . . . , vmK

) by
sampling K items without replacement from the M -item catalog, where sampling is governed by
a multinomial distribution. For a given user j, each item’s selection probability is proportional to
exp(b⊤j vl), where bj is the user-specific parameter vector. If we set bj = xj , the policy is optimal in
the sense that it aligns with user preferences.

To construct the policies for the experiment, we first generate user features x1, . . . , xN . The target
policy π uses b∗j = pj ⊙ xj , where pj ∈ {0, 1}d is a binary mask with i.i.d. Bernoulli(0.5) entries,
zeroing out about half the dimensions of xj . The logging policy π0 is then defined by scaling:
bj = αb∗j with α ∈ [−1, 1]. The parameter α controls policy similarity: α = 1 recovers π0 = π,
while α = −1 results in maximal divergence.

We generate two datasets Dinit = {(yi, ai, xi)}ni=1 and Dtarget = {(ỹi, ãi, xi)}ni=1, using π0 and π
respectively, with shared user features xi. The target outcomes ỹi are reserved for evaluation.

We evaluate performance across five setting where we vary the the values of: (i) number of observa-
tions (n), (ii) number of recommendations (K), (iii) number of users (N ), (iv) dimension of context
(d), (v) policy similarity (α). Results (log scale) are shown in Figure 6.

We observe:

• All estimators generally show improved performance as the number of observations increases,
except for IPS, which exhibits a slight decline between n = 2000 and n = 5000.

• The performance of all estimators deteriorates as either the number of recommendations (K) or the
context dimension (d) increases.

• All estimators degrade as α → −1, with IPS and CPME/DR-CPME demonstrating the better
robustness.

• CPME and DR-CPME consistently outperform the other estimators across most settings.
• Our proposed doubly robust method, DR-CPME, offers a performance improvement over the

CPME algorithm.

14.4 Computation infrastructure

We ran our experiments on local CPUs of desktops and on a GPU-enabled node (in a remote server)
with the following specifications:

• Operating System: Linux (kernel version 6.8.0-55-generic)
• GPU: NVIDIA RTX A4500

– Driver Version: 560.35.05
– CUDA Version: 12.6
– Memory: 20 GB GDDR6
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(a) (b)

(c) (d)

(e)

Figure 6: Mean squared error results for the off-policy evaluation experiment described in Ap-
pendix 14.3.3, reported across variations in: (a) the number of observations n, (b) the number of
recommendations K, (c) the number of users N , (d) the context dimension d, and (e) the policy shift
multiplier α.
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