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Abstract001

Large language models (LLMs) are increas-002
ingly used across research and industry appli-003
cations, yet their inference efficiency remains004
a significant challenge. As the computational005
power of modern GPU architectures continu-006
ously improves, their memory bandwidth and007
capacity have not scaled proportionally, creat-008
ing a critical bottleneck during inference. To009
address this, we investigate ternary language010
models (TriLMs) that employ quantization-011
aware training to significantly reduce mem-012
ory requirements. We first analyze the scal-013
ability of TriLMs by conducting a scaling law014
analysis, revealing that TriLMs benefit more015
from increasing training data than from scal-016
ing model parameters. Based on this observa-017
tion, we introduce TriTera, an open suite of018
TriLMs trained on up to 1.2 trillion tokens,019
demonstrating sustained performance gains at020
scale. Furthermore, to improve inference effi-021
ciency, we propose novel 2-bit and 1.6-bit pack-022
ing schemes for ternary weights, which demon-023
strate accelerated inference across various CPU024
architectures. Also, building on the 2-bit pack-025
ing, we develop a GPU kernel called TriRun026
that accelerates end-to-end model inference by027
up to 5 times compared to floating-point base-028
lines. To encourage further exploration and de-029
velopment of TriLMs, we will release the TriT-030
era suite and TriRun inference kernels. Overall,031
our work lays the foundation for building and032
deploying efficient LLMs, providing a valuable033
resource for the research community.034

1 Introduction035

Large language models (LLMs) (Radford et al.,036

2019; Zhang et al., 2022; Touvron et al., 2023)037

have become increasingly pivotal in both research038

and industry. Beyond their broad utility, their capa-039

bilities during inference with additional compute040

demonstrate the potential to enable advancements041

in reasoning and agentic tasks (Sardana et al., 2024;042

Singh et al., 2024; Wei et al., 2023). As the de- 043

mand for efficient and scalable inference grows 044

(Zhou et al., 2024), significant efforts have been di- 045

rected toward reducing inference costs and latency 046

(Dettmers et al., 2022a; Frantar et al., 2023; Sheng 047

et al., 2023). However, while the computational 048

power of GPUs has improved rapidly, advance- 049

ments in memory capacity and bandwidth have 050

lagged behind (Gholami et al., 2024; Kaushal et al., 051

2024). This disparity has made memory-related 052

bottlenecks a predominant challenge during LLM 053

inference, where memory usage and bandwidth 054

(driven by model size in bits) increasingly outweigh 055

computational (FLOP) limitations. While post- 056

training quantization, combined with custom ker- 057

nels for inference acceleration, has become widely 058

adopted, its effectiveness in mitigating these bottle- 059

necks remains limited. Specifically, post-training 060

quantization is typically restricted to 4-bits and 061

results in significant performance degradation be- 062

yond this threshold (Dettmers and Zettlemoyer, 063

2023). 064

Recent advancements in extreme low-bit lan- 065

guage models (Kaushal et al., 2024; Wang 066

et al., 2023; Ma et al., 2024) have shown that 067

quantization-aware training allows ternary-weight 068

models to achieve performance comparable to full- 069

precision models (referred to as FloatLMs in this 070

paper) at larger parameter scales. Additionally, 071

ternary representations demonstrate superior bit- 072

efficiency as they scale. However, critical gaps 073

persist in understanding the scaling laws governing 074

Ternary Language Models (TriLMs)—specifically, 075

how TriLM performance is affected by training on 076

much larger datasets or with many more parame- 077

ters remains unanswered. Furthermore, the acceler- 078

ation of inference in sub-4-bit models (e.g., ternary) 079

remains unexplored, with most existing research 080

limited to 4-bit quantization (Frantar et al., 2023; 081

Dettmers et al., 2022a; Frantar et al., 2024; He et al., 082

2024). These limitations are compounded by the 083
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 End-to-End Generation Speedup on NVIDIA L40S.

Figure 1: Model performance (MMLU average accuracy) versus training FLOPs, considering only models with similar compute
budgets and training tokens for a fair comparison (left); and end-to-end generation time speedup achieved by TriRun kernels over
the PyTorch’s FP16 baseline (64 Input Tokens, 64 Output Tokens) on the NVIDIA L40S (right).

absence of a comprehensive suite of strong open-084

source models, suppressing innovation in post-085

training and broader research on extreme quan-086

tization. In this work, we aim to address these087

foundational challenges through the following con-088

tributions:089

Scaling law for ternary language models. We090

conduct (in Section 2) a systematic study to explore091

the scaling properties of TriLMs, focusing on both092

the number of parameters and the volume of train-093

ing tokens. Unlike previous works (Kaushal et al.,094

2024; Wang et al., 2023), which primarily examine095

parameter scaling, we demonstrate that increasing096

the number of tokens leads to a greater reduction in097

validation loss compared to increasing the number098

of parameters (see Section 2.2).099

Effect of scaling pretraining tokens. We scale100

the TriLM models by pretraining them on 1.2T101

tokens (see Section 2.3), refered to as the TriTera102

family of models. Our results show that the 3B103

model continues to improve with up to 1.2T tokens,104

suggesting that TriLM remains effective even at105

higher token-to-parameter ratios. Additionally, it106

achieves competitive performance with FloatLMs107

for a given compute budget (see Figure 1, left).108

Efficient packing mechanism for ternary109

weights. In Section 3, we propose efficient 1.6-110

bit and 2-bit packing schemes for ternary weights.111

We provide a theoretical analysis of these packing112

methods, along with the implementation of effi-113

cient kernels and benchmarking on a CPU (see114

Section 3.3 and Appendix F.3), demonstrating a115

significant acceleration in inference speed.116

Efficient GPU kernels for ternary models. We 117

introduce GPU kernels based on 2-bit packing 118

schemes, which we call TriRun (in Section 4). We 119

extensively benchmark its performance in model 120

serving settings across various model sizes and 121

different NVIDIA hardware (see Section 4.2 and 122

Appendix G.6). Notably, we achieve up to a 7- 123

8× speedup compared to PyTorch’s float16 ker- 124

nels in high-batch settings (16-32 samples) for the 125

ternary layer in transformer blocks of larger pa- 126

rameter (70B - 405B) models on the L40S GPU. 127

Additionally, as shown in Figure 1 (right), our 70B 128

model achieves a 4.9× end-to-end speedup (com- 129

pared to float16) while running on a single L40S. 130

2 Scaling ternary models to 1T tokens 131

In this section, we study the scalability of pre- 132

training ternary models. We begin by outlining 133

our training setup, including details about the data, 134

hardware scaling, and model architecture (see Sec- 135

tion 2.1). We then analyze the scaling properties 136

of ternary language models with respect to both 137

parameters and training tokens, deriving a scaling 138

law in Section 2.2. Based on insights from our 139

scaling studies, we train a suite of models on up 140

to 1.2 trillion tokens, which we call TriTera, and 141

benchmark their performance in Section 2.3. 142

2.1 Training Details 143

Data. Our training corpus comprises a diverse 144

mix of data from publicly available sources. To 145

scale TriLMs (Kaushal et al., 2024), we trained 146

on approximately 1.2 trillion tokens from ArXiv 147
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Figure 2: Effect of scaling number of parameters (left) and number of training tokens (right) on final validation loss for TriLMs.
The dotted lines show the power law derived in Equation (2).

(Clement et al., 2019), Cosmopedia-v2 (Ben Al-148

lal et al., 2024), PeS2o (Soldaini and Lo, 2023),149

Zyda-StarCoder-Git-Commits, Zyda-StarCoder-150

Languages (Tokpanov et al., 2024), FineWeb-Edu151

(Lozhkov et al., 2024). The dataset details are152

summarized in Table 1 and appendix §B.2. For to-153

kenization, we employ the LLaMA tokenizer over154

previously used GPT-NeoX tokenizer.155

Architecture. Our model follows a decoder-only156

transformer architecture (Vaswani et al., 2023),157

closely resembling the TriLM (Kaushal et al.,158

2024). Inspired by LLaMA (Touvron et al., 2023),159

it incorporates SwiGLU MLPs (Shazeer, 2020),160

RoPE (Su et al., 2023), multi-head attention, and161

bias-free layers. A key distinction is its ternary-162

weighted linear layers (-1, 0, 1) with a shared163

floating-point scale. Training maintains latent164

floating-point weights, applying on-the-fly ternar-165

ization in the forward pass, and the scale set to their166

absolute mean. Hyperparameters and additional167

pretraining details are provided in Appendix B.168

Hardware and Scaling. We conduct our training169

experiments on the Frontier1 cluster. Each node170

comprises four AMD MI250X accelerators (Ad-171

vanced Micro Devices, Inc., 2025), where each172

MI250X contains two Graphics Compute Dies173

(GCDs) operating as separate GPUs (Advanced174

Micro Devices, Inc., 2022). Within a node, GPUs175

are at most one hop away from one another, fa-176

cilitating efficient intra-node communication. Our177

distributed training strategy is designed with this178

hardware architecture in mind. Similar to the ZeRO179

Stage 2 strategy (Rajbhandari et al., 2020), we180

shard the AdamW optimizer states and gradients,181

synchronizing model parameters after each update182

step. However, due to slower inter-node connec-183

1https://en.wikipedia.org/wiki/Frontier_
(supercomputer)

tivity, sharding is performed only across devices 184

within a node. This approach enables near-linear 185

scaling up to 2,048 GPUs, as shown in Figure 7. 186

2.2 Scaling Laws for TriLMs 187

Experimental Setup. For this study (≤150B to- 188

kens), we use a SlimPajama subset from (Shen 189

et al., 2024), with the 1.2T-token dataset incor- 190

porating additional sources (Appendix 1). All 191

other aspects follow the procedures outlined in 192

Sections 2.1 regarding the pretraining of the mod- 193

els. We train and evaluate a suite of TriLM 194

models, conducting a series of language model 195

pretraining experiments across parameter sizes ∈ 196

[99M, 190M, 390M, 560M, 1100M ] (excluding 197

embeddings) and dataset sizes ∈ [20, 40, 75, 150] 198

billion tokens. In Section 2.3, we expand the train- 199

ing dataset size to 1.2 trillion tokens for models 200

with 1.5 B, 2.5 B, and 3.6 B parameters. 201

Parametric Scaling Law. We derive the scaling 202

law for ternary LLMs following the general form 203

introduced in Hoffmann et al. (2022). In particular, 204

we assume the following functional form for the 205

validation loss L̂ as a function of model size N 206

(number of parameters, in millions) and training 207

data D (number of tokens, in billions), 208

L̂(N,D) ≜ E +
A

Nα
+

B

Dβ
, (1) 209

where the constant term includes the irreducible 210

loss due to entropy of natural text, plus the error 211

introduced by quantization. Based on the valida- 212

tion losses of the converged models, we fit the 213

parameters {E,A, α,B, β} (see Appendix C for 214

evaluation of our fit). This provides a scaling law 215

that describes how the validation loss of a ternary 216

model changes with data and model size. 217

L̂(N,D) ≈ 2.19 +
4.73

N0.32
+

5.18

D0.81
(2) 218

3
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Figure 2 shows the final validation loss for differ-219

ent models against the number of parameters and220

training tokens. For each plot, we also substitute221

the corresponding value of D or N to get the scal-222

ing law equation for that setting. We discuss the223

implications of this law in more detail and compare224

with 16-bit models in Appendix C.225

From Equation (2), we observe that increasing226

the number of tokens lowers the validation loss227

more effectively than increasing the number of pa-228

rameters. This suggests that TriLM remains ef-229

fective at high training token-to-parameter ratios.230

Based on these observations, we focus primarily on231

increasing the number of tokens to train our new232

family of models in the following section.233

2.3 Effect of scaling training tokens234

We pre-trained three TriLM models with 1.5 B, 2.5235

B, and 3.6 B parameters (for simplicity, we refer236

to these models as 1B, 2B, and 3B throughout the237

paper) on a 1.2 trillion-token dataset (detailed in238

Appendix B.2), which we refer to as TriTera suite239

in this paper. The details of the parameters are240

provided in Table 3. Inspired by well-established241

model suites, such as those by (Groeneveld et al.,242

2024; Kaushal et al., 2024; Biderman et al., 2023),243

TriTera aims to provide robust baseline models to244

advance scientific research on TriLMs.245

LLM Benchmarks Performance. We evaluate246

the TriTera suite of models on a variety of tasks test-247

ing commonsense and reasoning abilities, general248

knowledge, and mathematical problem-solving. A249

full description of the tasks is given in Appendix D.250
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Figure 3: Average MMLU accuracy for TriTera and Spectra,
with the dotted line representing LLaMA-1 7B (trained on
1.2T tokens). Note that LLaMA-3 (AI@Meta, 2024), trained
on over 15 trillion tokens, is not included.

To understand the effect of scaling training to-251

kens on downstream performance, we compared252

benchmark scores with the Spectra suite of models,253

which have comparable parameter sizes and were 254

trained on 300B tokens. Figure 3 shows the aver- 255

age accuracy on the MMLU benchmark for both 256

family of models, demonstrating consistently better 257

performance across different parameter sizes. Full 258

results on individual benchmarks are presented in 259

Table 4. 260

3 Efficient packing of ternary weights 261

In this section, we propose weight-packing strate- 262

gies and kernel implementations to enable the ef- 263

ficient deployment of ternary LLMs. We begin by 264

formalizing the packing problem and then present 265

two progressively optimized solutions. These so- 266

lutions target effective 1.6-bit and 2-bit packing, 267

supported by theoretical guarantees. Following 268

this, we conduct a preliminary feasibility assess- 269

ment on a CPU to evaluate the practicality of our 270

approach. 271

Definition (Lossless Packing and Unpacking). 272

Let D = (d1, d2, . . . , dn) represent a sequence of 273

ternary numbers, where di ∈ {−1, 0, 1}. The pack- 274

ing process is a function P : {−1, 0, 1}n → B, 275

which maps the ternary sequence D to some binary 276

representation B, such that the original sequence D 277

can be reconstructed from B. The unpacking pro- 278

cess is the inverse function U : B → {−1, 0, 1}n, 279

which reconstructs the original sequence D from 280

B. These processes satisfy the property of lossless- 281

ness: 282

U(P (D)) = D, ∀D ∈ {−1, 0, 1}n. 283

3.1 Packing Strategy with effective 2 bits. 284

Packing/Encoding The packing process trans- 285

forms each ternary value di ∈ {−1, 0, 1} into a 286

digit d′i by the mapping 287

d′i = di + 1, 288

so that d′i ∈ {0, 1, 2}. These digits are then 289

grouped into blocks of up to k values. Each block 290

is encoded as a single integer using bitwise shifts. 291

The packing function P (D) = (b′0, b
′
1, . . . , b

′
m−1) 292

(with m = ⌈n/k⌉ for an original sequence D = 293

{d0, d1, . . . , dn−1}) is defined as: 294

b′i =

k−1∑
j=0

(
d′ki+j · 22j

)
, 295

If a block is not completely filled (when n is not a 296

multiple of k), the remaining positions are padded 297
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with 0, which map to 1 after the shift. Since each298

d′i is in {0, 1, 2} and fits within 2 bits, each block299

uses 2k bits, giving an effective 2 bits per weight.300

Unpacking/Decoding The unpacking process301

U(P (D)) = (d0, d1, . . . , dn−1) recovers the origi-302

nal ternary values from the packed representation.303

For each block, the decoding is defined as:304

dki+j = d′ki+j − 1,305
306

where d′ki+j =
(
(b′i ≫ 2j)& 0x03

)
,307

for i ≥ 0 and 0 ≤ j < k. Here, ≫ denotes308

the bitwise right shift operation and & denotes the309

bitwise AND operation (with 0x03 serving as a310

mask to extract 2 bits). This procedure ensures311

that each original ternary value di ∈ {−1, 0, 1}312

is accurately reconstructed from its packed form.313

Although each d′i is constrained to three possible314

states, the packing allocates a total of 2k bits per315

block. However, the actual information content per316

block is only log2(3
k) = k log2(3) bits, which is317

strictly less than 2k bits (since log2(3) ≈ 1.585).318

In the following, we outline a general strategy for319

a better effective bit rate.320

3.2 Packing Strategy with 1.6 effective bits.321

Packing/Encoding: The packing process trans-322

forms each ternary value di ∈ {−1, 0, 1} into a323

base-3 digit (or trit) d′i = di + 1, then groups the324

digits into blocks of up to k. Each block is encoded325

as a base-3 integer and normalized to fit within326

[0, 2p − 1], where p is an integer representing the327

number of bits allocated for each encoded block.328

The packing P (D) = (b′1, b
′
2, . . . , b

′
k) is defined329

as,330

b′i =


(∑k−1

j=0 d
′
ki+j · 3k−1−j

)
· 2p + (3k − 1)

3k

 ,331

where d′i = di + 1, and di ∈ {−1, 0, 1}.332

Here, k is the number of digits in each block (which 333

may be less than k for the last block). The final 334

packed byte array B is then constructed from the 335

b′i values. 336

Unpacking/decoding: The unpacking process 337

U(P (D)) = (d1, d2, . . . , dn) is defined as: 338

dki+j = d′ki+j − 1, 339

where xi =

⌊
bi × 3k −

(
3k − 1

)
+
(
2p − 1

)
2p

⌋
, 340

and d′ki+j =
(⌊ xi

3k−1−j

⌋)
mod 3. 341

Here, k represents the number of digits in each 342

block, typically equal to 5 for full blocks, though 343

it may be fewer for the final block. For practical 344

purposes, we recommend setting p = 8 and k = 5 , 345

as this configuration results in an effective packing 346

of 1.6 bits — very close to the theoretical optimum 347

for ternary data. 348

Theorem 1 (Correctness). Let D = 349

(d1, d2, . . . , dn) be a sequence of ternary 350

digits di ∈ {−1, 0, 1}. When D is partitioned into 351

blocks of size k and each block is encoded into a 352

p-bit integer, the encoding and decoding operations 353

P and U are lossless if and only if 2p > 3k; that is, 354

U(P (D)) = D. Proof: See Appendix E.1. 355

Corollary (Injectivity). If 2p > 3k, then the 356

mapping P : {−1, 0, 1}k → [0, 2p − 1] is injective 357

i.e. {dj} ≠ {d′j} implies P ({dj}) ̸= P ({d′j}). 358

Near-Optimal Bits per Trit From an 359

information-theoretic perspective, each 360

trit (with values in {−1, 0, 1}) requires 361

log2(3) ≈ 1.58496 bits of entropy. To encode 362

k trits without collision, we need a p-bit container 363

with 2p > 3k =⇒ p > k log2(3). 364
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Consequently, the bits-per-trit ratio is bounded365

below by p
k > log2(3). When p = ⌈k log2(3)⌉,366

this is effectively the smallest integer p that still367

allows all 3k trit patterns to be stored with no368

collisions. As k → ∞, the ratio p
k −→ log2(3),369

making the scheme asymptotically optimal in370

terms of bits used per trit.371

3.3 CPU Inference with efficient packing372

To assess the effectiveness of packings, we im-373

plemented both packing methods in ggml.cpp2, a374

framework optimized for running large language375

models (LLMs) on CPUs. While further optimiza-376

tions are possible, our primary focus is on reduc-377

ing a model’s memory footprint and accelerating378

memory-bound workloads. This is achieved by379

statically compressing pretrained weights and de-380

compressing them on-the-fly during inference. We381

begin by showing the efficiency of the CPU imple-382

mentations for the 1.6-bit packing, referred to as383

TQ1, and the 2-bit packing, referred to as TQ2.384

TQ2: Implementing effective 2 bit for TriLMs.385

The quantization process begins with partitioning386

the input tensor into contiguous, non-overlapping387

blocks, each containing 256 elements. For each388

block, a scaling factor (floating-point numbers as-389

sociated with TriLMs) di is calculated as the max-390

imum absolute value of the elements within the391

block, i.e., di = max(|bij |), where bij denotes392

the j-th element in the i-th block. The inverse393

scaling factor d̂i is then defined as d̂i = 1
di
. Each394

element bij in the block is quantized to a ternary395

value by multiplying it by the inverse scaling factor396

and rounding the result: qij = round(bij · d̂i). To397

enable efficient storage, the quantized values are398

shifted, resulting in qij ∈ {0, 1, 2} and packed into399

64 bytes per block of 256 elements using base-4400

positional encoding. The scaling factor di is stored401

in 2 bytes (float16), leading to a total storage of402

66 bytes per block. The dequantization process403

begins by reversing the base-4 encoding to recover404

the four ternary elements (see F.1). The elements405

are then adjusted back to their signed values by406

subtracting 1. Finally, the original block is recon-407

structed by multiplying each quantized value by the408

corresponding scaling factor: b̂ij = di · qij , where409

b̂ij denotes the dequantized approximation of bij .410

This quantization scheme achieves significant mem-411

ory efficiency by compressing 256 floating-point412

values into just 66 bytes.413

2https://github.com/ggerganov/llama.cpp

TQ1: Implementing effective 1.6 bit for TriLMs. 414

In our implementation, we encode k = 5 ternary 415

digits (trits) into p = 8 bits, achieving an effec- 416

tive bit rate of 1.6 bits per trit. A key challenge 417

arises in efficiently decoding these packed trits for 418

SIMD-optimized operations. Traditional decod- 419

ing methods rely on division and modulo opera- 420

tions, which are computationally expensive and 421

ill-suited for vectorization. The conventional ap- 422

proach to decoding a packed byte b involves com- 423

puting a base-3 integer x using the formula: x = 424⌊
b·35−(35−1)+(28−1)

28

⌋
. Each trit di ∈ {−1, 0, 1} 425

is then extracted through the operation: di+1 = 426⌊
x

34−i

⌋
mod 3 for i = 0, . . . , 4. This method 427

incurs high computational costs due to the repeated 428

divisions and modulo operations, which hinder 429

SIMD parallelism. To address these inefficiencies, 430

we exploit the near-equivalence 35 ≈ 28, enabling 431

a multiplication-based scheme that iteratively ex- 432

tracts trits without explicit division or modulo oper- 433

ations. (See Appendix F.2 for the detailed iterative 434

procedure and its SIMD advantages.) 435

Results. Figure 4 compares token generation 436

speeds (end-to-end and decoding) for models span- 437

ning 560M to 3.9B parameters on a Mac M4, high- 438

lighting end-to-end latency and output token gen- 439

eration speedup. Specifically, TQ2 outperforms 440

other formats by utilizing 2-bit weight packing, sur- 441

passing both 4-bit quantization (as implemented in 442

GGML) and TQ1 (1.6 bits per weight). While TQ1 443

requires additional fixed-point multiplication oper- 444

ations—resulting in slower inference compared to 445

TQ2—it achieves a significantly smaller memory 446

footprint (shown in Figure 4 on the right), mak- 447

ing it advantageous for low-resource environments 448

where memory storage constraints outweigh com- 449

putational latency. Additional benchmarks are con- 450

ducted on AMD EPYC 7502 (see Figure 10) and 451

Apple M4 Max (14 CPU cores), with detailed re- 452

sults presented in Table 6, 5 and Appendix F.3. 453

These findings motivate our next step: in the fol- 454

lowing section, we introduce an optimized 2-bit 455

packing variant designed for high-batch GPU work- 456

loads. While our current implementation demon- 457

strates significant speedups, further refinements re- 458

main possible to enhance computational efficiency. 459

4 TriRun: GPU Kernels for High-Batch 460

Settings. 461

LLM weight quantization leverages the fact that 462

GPUs perform floating-point operations much 463

6



Figure 5: Performance evaluation of ternary layers in a transformer block, comparing TriRun with PyTorch FP16 (using
CUTLASS), shows near-optimal inference speedup in high-batch settings for larger models. Each subplot corresponds to a
specific Nvidia GPU. For additional results, refer to Appendix G.6.

faster than they can fetch data from memory. For464

example, the NVIDIA L40 has a FLOPs-to-Bytes465

of approximately 105 (Technologies, 2023). In a466

typical matrix multiplication for mixed-precision467

inference in large language models, each input to-468

ken requires about 2 FLOPs per weight. When469

weights are 2 bits, each weight occupies 0.25 bytes.470

During the time needed to load one such weight,471

the L40 can perform roughly 26 FLOPs. Since472

each token needs 2 FLOPs per weight, the GPU473

can support a critical input batch size of about ≈474

13 tokens. Thus, for the L40, if the input batch size475

is below roughly 13, memory loading becomes the476

bottleneck for the computation.477

4.1 Ternary Kernel Implementation478

Optimized Mixed-Precision Multiplication In479

this work, we introduce an optimized mixed-480

precision matrix multiplication routine (Frantar481

et al., 2024) that performs FP16 × INT2 compu-482

tations. In this scheme, an FP16 input matrix is483

multiplied by a weight matrix stored in a compact484

2-bit integer (INT2) format, wherein each 32-bit485

integer encodes 16 distinct 2-bit values. The cen-486

tral component of this approach is a dequantization487

function that employs carefully selected bit masks488

and a lookup-based three-input logical operation489

to extract the 2-bit fields. This function applies a490

series of fused arithmetic operations to convert the491

packed 2-bit data into FP16 values(see appendix492

§G). As a result, dequantized weight values are pro-493

duced as fragments containing four FP16 numbers,494

which can subsequently be scaled using quantiza-495

tion scales stored in a separate buffer.496

GPU Performance Optimization. On the GPU,497

the multiplication kernel is engineered for high per-498

formance by using asynchronous memory copy 499

operations alongside specialized tensor core in- 500

structions available on modern NVIDIA hard- 501

ware. Input fragments from the FP16 matrix are 502

asynchronously loaded into shared memory via 503

cp.async3 instructions, allowing global memory ac- 504

cesses to overlap with computation. The kernel 505

arranges these fragments in memory to minimize 506

bank conflicts and maximize data reuse. Concur- 507

rently, the INT2 weight values are fetched using 508

asynchronous copy operations that include cache 509

hints, thereby reducing L2 cache pollution since 510

these weights are used only once during each oper- 511

ation. Once the FP16 fragments and dequantized 512

INT2 weights reside in registers, the kernel em- 513

ploys tensor core mma instructions to perform effi- 514

cient block-wise multiplications. These operations 515

accumulate the results in FP32 registers to main- 516

tain higher precision during the reduction phase 517

before converting the final outputs back to FP16 518

for storage in global memory. 519

Flexible Implementation and Data Movement. 520

The implementation supports flexible configura- 521

tion of thread block dimensions, pipeline stages, 522

and grouping parameters for varying problem sizes 523

and hardware. Data is moved from global to 524

shared memory using double-buffering with asyn- 525

chronous copy fences and explicit barriers. Partial 526

results accumulated across warps or thread blocks 527

are reduced using a hierarchical reduction scheme 528

that first operates within shared memory and then, 529

if necessary, synchronizes globally across thread 530

blocks. Finally, results are reorganized and writ- 531

3cp.async in CuPy refers to the support for asynchronous
execution of GPU operations

7
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Figure 6: Comparison of TriRun kernels with the FP16 PyTorch baseline on NVIDIA L40S (for more details see Appendix G.6):
(a) Left: Time to first token, (b) Center: Time per output token, (c) Right: Total time across different NVIDIA GPUs.

ten back to global memory in FP16 format. This532

approach leverages efficient data packing, asyn-533

chronous memory operations, and tensor core ac-534

celeration, optimizing FP16×INT2 matrix multipli-535

cation for ternary large language models.536

4.2 Experimental Results537

Performance of TriRuns Kernels. In Figure 5538

and 12, we evaluate the efficiency of TriRun kernels539

against PyTorch’s FP16 kernels for the ternary lay-540

ers within transformer modules. We benchmarked541

models ranging from 3 billion to 405 billion pa-542

rameters across different hardwares (see Table 7,543

and 8 for complete results). Our findings demon-544

strate that TriRun provides substantial performance545

improvements. Specifically, on an NVIDIA L40546

GPU (optimized for inference) processing large547

matrices from a 405B parameter model, TriRun548

achieves a speedup of roughly 7.98x compared to549

FP16 when using batch sizes between 16 and 32.550

However, as batch sizes increase beyond this range,551

the speedup diminishes. This is because the compu-552

tation becomes increasingly limited by the GPU’s553

processing capabilities (compute-bound). This pat-554

tern of speedup reduction with batch size is ob-555

served across all tested GPUs. For more detailed556

analysis and results, refer to Appendix G.6.557

End-to-End Serving Benchmark Figure 6 il-558

lustrates the time-to-first-token performance of559

TriRun with PyTorch, achieving up to a 4.7×560

speedup on the 70B model with 64 input tokens561

when running on NVIDIA L40s. Additionally, it562

shows the time per output token (with 1 input and563

64 output tokens), demonstrating a 4.9× improve-564

ment in decoding. This trend is particularly evident565

for larger models, where the 70B model achieves566

a 4.9× end-to-end generation speedup compared567

to PyTorch. TriRun uses only one GPU, as op- 568

posed to the four GPUs used in the PyTorch FP16 569

configuration (see Figure 1 on the right for more 570

details). Furthermore, Figure 6 (c) shows that these 571

performance gains are consistent across different 572

NVIDIA hardware, with a more detailed analy- 573

sis provided in Appendix G.6. Finally, Figure 574

11 demonstrates that these speedups are particu- 575

larly pronounced on newer consumer GPUs, as the 576

FLOPs/byte ratio increases. 577

5 Conclusion and Future Work 578

In this work, we address the growing memory 579

bottlenecks in large language model inference by 580

studying ternary language models (TriLMs) and 581

proposing strategies for efficient kernel implemen- 582

tation. We conduct a comprehensive scaling law 583

analysis, revealing that TriLMs benefit significantly 584

from scaling training data, achieving competitive 585

performance with floating-point models for a given 586

compute budget despite their extreme quantization. 587

Our experiments with the TriTera family, trained 588

on up to 1.2 trillion tokens, demonstrate sustained 589

performance improvements, emphasizing the po- 590

tential of ternary models for large-scale training 591

and deployment. To further improve inference ef- 592

ficiency, we introduce novel ternary weight pack- 593

ing schemes and develop optimized kernels. Our 594

GPU kernel, TriRun, achieves up to an 8× speedup 595

over float16 baselines in high-batch inference set- 596

tings, making ternary models a viable solution for 597

memory-constrained environments. By releasing 598

the TriTera models and optimized inference kernels, 599

we aim to encourage further research on extreme 600

low-bitwidth models and their deployment. Our 601

results demonstrate the scalability and efficiency of 602

ternary models, laying the groundwork for future 603

advancements in efficient LLM research. 604
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Limitations605

We study the scaling law for TriLMs where we606

consider the dependence on number of parame-607

ters and training tokens, but do not explicitly ac-608

count for the number of bits b used to quantize609

the model. The various terms that appear in Equa-610

tion (2) may depend non-linearly on b, which is611

an interesting direction for future work. Our pre-612

training scale was constrained by computational613

resources, and both the parameters and data need to614

be scaled up significantly to make TriLMs competi-615

tive with current state-of-the-art models (AI@Meta,616

2024). TriRun implements the 2-effective-bit pack-617

ing scheme from Section 3.1. A more memory-618

efficient solution would involve implementing the619

1.6-effective-bit packing scheme. However, due to620

the increased complexity of packing, the unpack-621

ing functions would require additional operations622

in the latter case, making it slower than TriRun.623

This is left as a direction for future work.624

Ethics Statement625

The development of TriLMs represents a significant626

step toward making large-scale language models627

more efficient by reducing memory consumption628

and accelerating inference. These advancements629

enhance accessibility and sustainability in AI re-630

search. We advocate for openness in AI, as it drives631

scientific progress, fosters collaboration, and elim-632

inates the need for re-training, which helps lower633

environmental impact. However, openness also634

presents challenges, including concerns related to635

privacy, security, and fairness. Despite these risks,636

we believe that transparency enables more effec-637

tive risk mitigation by inviting diverse scrutiny and638

safeguards. By releasing the TriTera suite and639

TriRun kernels, we aim to empower further innova-640

tion while ensuring that efficient language models641

serve a broad spectrum of stakeholders. As open642

model releases continue to gain momentum, we see643

this approach as the most effective way to balance644

progress with responsible AI development.645
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A Related Work938

Training LLMs in low precision Large lan-939

guage models such as GPT (Radford et al., 2019),940

OLMo (Groeneveld et al., 2024), and the LLaMA941

family (Touvron et al., 2023) have traditionally re-942

lied on mixed precision (FP32/FP16 or FP32/BF16)943

(Micikevicius et al., 2018) and half-precision944

(FP16/BF16) (Kalamkar et al., 2019) to optimize945

computational efficiency. More recent advance-946

ments in extreme quantization have introduced947

ternary and binary network paradigms (Kaushal948

et al., 2024; Wang et al., 2023), which leverage949

quantization-aware training (QAT) for efficient950

low-bitwidth model representations. These mod-951

els maintain higher-precision latent (or master)952

weights, such as FP16, to stabilize training while953

dynamically binarizing or ternarizing weights dur-954

ing inference. The straight-through estimator (STE)955

(Bengio et al., 2013) is commonly employed to fa-956

cilitate gradient-based updates. The Spectra suite957

(Kaushal et al., 2024) provides a comprehensive958

study of ternary, quantized, and FP16 language959

models, offering insights into the performance and960

scaling trends of low-bitwidth models.961

Advancements in Post-Training Quantization962

Post-training quantization (PTQ) remains a crucial963

approach for reducing LLM memory and compute964

requirements without requiring retraining. Tech-965

niques such as SmoothQuant (Xiao et al., 2024) and966

QuaRot (Ashkboos et al., 2024) address challenges967

associated with activation quantization, particularly968

mitigating large activation outliers (Dettmers et al.,969

2022b). While these methods improve compres-970

sion, they often rely on 8-bit quantization to pre-971

serve numerical stability. Continued research into972

activation-aware quantization techniques is vital973

for further enhancing LLM deployment in resource-974

constrained environments.975

Optimizing Inference Efficiency To improve976

LLM deployment efficiency, frameworks like977

MARLIN (Frantar et al., 2024) initially imple- 978

mented GPTQ-based quantization, enabling accel- 979

erated inference.MARLIN kernels combine various 980

techniques, ranging from advanced task schedul- 981

ing, partitioning, and pipeplining techniques to 982

quantization-specific layout and compute optimiza- 983

tions. More recently, MARLIN has been ex- 984

tended to incorporate Activation-Weight Quanti- 985

zation (AWQ) (Lin et al., 2024), a technique that 986

jointly quantizes both weights and activations to 987

mitigate accuracy degradation in low-bitwidth set- 988

tings. 989

B Pretraining Details 990

B.1 Quantized Linear Layer: Forward, 991

Backward, and Inference Stages 992

We now present the mathematical formulation for 993

a linear layer employing the TriLM quantization 994

scheme (Kaushal et al., 2024), outlining the pro- 995

cesses for the forward pass, backward pass, and 996

inference stages. 997

Forward Pass. In the forward pass, we begin by 998

calculating the scaling factor γ to normalize the 999

weight matrix W . The scaling factor is given by: 1000

γ = ϵ+
1

nm

n∑
i=1

m∑
j=1

|Wij | 1001

where n and m denote the dimensions of the 1002

weight matrix W , and ϵ is a small constant added 1003

for numerical stability. 1004

Subsequently, the weight matrix W is quantized 1005

by rounding its entries to the nearest value in the 1006

set {−1, 0, 1}, scaled by γ: 1007

Ŵij = round
(
min

(
max

(
Wij

γ
,−1

)
, 1

))
1008

The quantized weight matrix W̃ is then obtained 1009

by scaling the rounded weights: W̃ij = γŴij 1010

Finally, the output Y is computed as the product 1011

of the input X and the transposed quantized weight 1012

matrix: Y = XW̃ T 1013

Backward Pass. During the backward pass, the 1014

gradients of the loss function L with respect to the 1015

input X and the weight matrix W are computed. 1016

These gradients are given by: 1017

∂L

∂X
=

∂L

∂Y
W̃ 1018
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Dataset Name Number of Tokens (Billion) Percentage

ArXiv (Clement et al., 2019) 3.67 0.31%
Cosmopedia-v2 (Ben Allal et al., 2024) 22.36 1.86%
PeS2o (Soldaini and Lo, 2023) 42.70 3.56%
FineWeb-Edu (Lozhkov et al., 2024) 960.42 80.04%
Zyda - StarCoder (Tokpanov et al., 2024) 170.85 14.24%

Total 1200.00 100.00%

Table 1: Pretraining datasets and token counts for TriTera models.

∂L

∂W
=

∂L

∂Y

T

X1019

Inference. For inference, the quantized weight1020

matrix Ŵ and the scaling factor γ are precomputed1021

and cached to reduce computation during predic-1022

tion. The steps are as follows:1023

1. Compute Ŵ and γ once and store them.1024

2. Use the precomputed values to calculate the1025

quantized weight matrix: W̃ij = γŴij1026

3. Finally, the output Y is computed as: Y =1027

XW̃ T1028

By caching the scaling factor and the quantized1029

weights, the inference process is significantly ac-1030

celerated, as it eliminates the need for redundant1031

recalculations.1032

B.2 Dataset1033

Our training corpus comprises a diverse mix of data1034

from publicly available sources. To scale TriLMs,1035

we trained on approximately 1.2 trillion tokens, up-1036

sampling the most factual sources to enhance the1037

model’s knowledge while reducing hallucinations.1038

The details of the datasets used are summarized in1039

Table 1. Each dataset was preprocessed and tok-1040

enized using llama2 tokenizer (AI@Meta, 2024).1041

• ArXiv (Clement et al., 2019): The dataset1042

comprises 1.5 million arXiv preprint articles1043

from fields such as Physics, Mathematics, and1044

Computer Science, encompassing text, fig-1045

ures, authors, citations, and metadata.1046

• Cosmopedia-v2 (Ben Allal et al., 2024): A1047

synthetic dataset of over 30 million documents1048

and 25 billion tokens. The dataset was gen-1049

erated using the Mixtral-8x7B-Instruct-v0.11050

model, a multi-expert language model intro-1051

duced in (Jiang et al., 2024), designed for high-1052

quality content generation. It is one of the1053

largest publicly available synthetic datasets.1054

• PeS2o (Soldaini and Lo, 2023): It comprises 1055

40 million open-access academic papers that 1056

have been cleaned, filtered, and formatted 1057

specifically for the pre-training of language 1058

models. It is derived from the Semantic 1059

Scholar Open Research Corpus (Lo et al., 1060

2020). 1061

• Zyda-StarCoder Git-Commits (Tokpanov 1062

et al., 2024): For our models, we exclu- 1063

sively utilize the GitHub-Issues and Jupyter- 1064

Structured subsets of the Zyda-Starcoder 1065

dataset. 1066

• Zyda-StarCoder-Languages: A dataset en- 1067

compassing multiple programming languages, 1068

enabling the model to perform well across 1069

diverse coding tasks. 1070

• FineWeb-Edu (Lozhkov et al., 2024): A sub- 1071

set of high quality dataset consists of 1.3T 1072

tokens of educational web pages filtered from 1073

FineWeb dataset. 1074

B.3 Hyperparameter Choices 1075

We adopt a single learning rate with a warmup 1076

followed by a cosine decay schedule, replacing 1077

the dual learning rate approach used in TriLMs 1078

(Kaushal et al., 2024). Additionally, we eliminate 1079

the use of weight decay, consistent with the modifi- 1080

cations. 1081

Feature TriTera

Biases None
Activation SwiGLU
RoPE (θ) 5 · 105
QKV Normalization QK-Norm
Layer Norm RMSNorm
Layer Norm Applied to Outputs
Z-Loss Weight 10−5

Weight Decay on Embeddings No

Table 2: Configuration Details for TriTera
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Parameter TriTera-1B TriTera-2B TriTera-3B

Number of Parameters 1.526B 2.5547B 3.6680B

Hidden Size 2048 2560 3072

Number of Layers 24 26 28

Attention Heads 16 20 24

MLP Hidden Size 8192 10240 11264

Number of KV Heads 4 5 6

Embedding Size 32768 32768 32768

Max Sequence Length 2048 2048 2048

Activation Function SiLU SiLU SiLU

Optimizer AdamW AdamW AdamW

Learning Rate 0.0015 0.0015 0.0015

Weight Decay 0.1 0.1 0.1

Gradient Clipping 1.0 1.0 1.0

Table 3: Architecture summary for TriTera 1B, 2B, and 3B models based on revised configurations.

B.4 Hyperparameters.1082

All the models are randomly initialized from a trun-1083

cated normal distribution with a mean of 0 and a1084

standard deviation of 0.02. We trained using the1085

AdamW optimizer (Loshchilov and Hutter, 2019),1086

with β1 = 0.9, β2 = 0.95, and ϵ = 10−5. The1087

weight decay was applied with a value of 0.1. A1088

cosine learning rate schedule was employed, with1089

a warmup of 2000 steps, followed by a decay of1090

the final learning rate to 10% of the peak learning1091

rate. We used gradient clipping with a threshold1092

of 1.0. Metrics were logged every 10 steps. For1093

simplicity during training, we adopt a single learn-1094

ing rate with a warmup followed by a cosine decay1095

schedule, replacing the dual learning rate approach1096

used in Spectra. Additionally, we eliminate the use1097

of weight decay, consistent with the modifications.1098

Table 3 summarizes the hyperparameters for our1099

largest models.1100

B.5 Hardware and Training Setups1101

Each node in the Frontier cluster includes four1102

AMD MI250X accelerators, with each acceler-1103

ator featuring two GCDs that function as inde-1104

pendent GPUs. The total bidirectional commu-1105

nication bandwidth within a node ranges between1106

100 GB/s and 400 GB/s. The nodes are connected1107

via Ethernet-based HPE Slingshot interconnects.1108

Each node is equipped with four links, each provid- 1109

ing a total directional bandwidth of 50 GB/s. Our 1110

approach scales near-linearly up to 2048 GPUs, as 1111

shown in Figure 7 1112
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Figure 7: Number of GPUs vs. Relative Speedup.

C Scaling Laws 1113

C.1 Scaling Laws of TriLMs and FloatLMs 1114

In Section 2.2, we derived the scaling law for 1115

TriLMs as a function of the number of parame- 1116

ters (N ) and the number of training tokens used 1117

(D) by assuming the parametric form defined in 1118

Kaplan et al. (2020); Hoffmann et al. (2022). We 1119
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Figure 8: Effect of scaling number of parameters (left) and number of training tokens (right) on final validation loss for
FloatLMs. The dotted lines show the power law derived in Equation (3).

apply the same procedure to derive the scaling law1120

for FloatLMs which use 16-bit precision to facili-1121

tate direct comparison and understand the effect of1122

compute on performance.1123

In addition to the ternary LLMs de-1124

scribed in Section 2.2, we train corre-1125

sponding 16-bit models which we refer1126

to as FloatLMs across parameters sizes1127

∈ [990M, 1900M, 3900M, 5600M, 11000M ]1128

(excluding embeddings) and dataset sizes1129

∈ [20B, 40B, 75B, 150B] tokens. We follow the1130

same procedure as for TriLMs and obtain the1131

following power law for FloatLMs,1132

L̂(N,D) ≈ 2.17 +
7.86

N0.56
+

3.42

D0.53
. (3)1133

Comparing this with Equation (2), we make two in-1134

teresting observations. First, the constant term and1135

the coefficients are markedly different for ternary1136

and float LMs, indicating that these terms might be1137

dependent on the level of quantization. Second, the1138

terms involving N and D have almost the same ex-1139

ponents for FloatLMs, which means that increasing1140

either parameters and training tokens has a similar1141

effect on improving LLM performance. This is in1142

contrast to TriLMs, where the term involving train-1143

ing tokens decays much more rapidly than term1144

involving number of parameters.1145

Figure 8 shows the final validation loss for dif-1146

ferent FloatLM models against the number of pa-1147

rameters and the number of training tokens, along1148

with the scaling law fit.1149

C.2 Parametric Fit for Scaling Law1150

We obtain the coefficients for the parametric scal-1151

ing law in Equation (1) by finding the least squares1152

fit on the the final validation losses of the suite 1153

of models trained across different parameter and 1154

training token values. 1155

To evaluate our fit, we calculate the coefficient 1156

of determination, or R2, which is a statistical mea- 1157

sure that indicates how well a model fits a set of 1158

data, with R2 = 1.0 indicating a perfect fit. Our 1159

fitted power laws have R2 = 0.9921 for TriLMs 1160

and R2 = 0.9958 for FloatLMs. Figure 9 plots 1161

the predicted validation loss following our derived 1162

scaling law versus the actual empirical values. 1163

D Benchmark Details 1164

We benchmark TriLM across knowledge, common- 1165

sense, and reasoning benchmarks. We average our 1166

scores across three different ’seeds’. 1167

D.1 Commonsense and Reasoning 1168

We report commonsense and reasoning benchmark 1169

scores across 6 benchmarks in Table 4. Each is 1170

considered in a zero-shot setting. Following are the 1171

details of each of the benchmarks considered: 1172

• ARC Challenge and Easy: (Clark et al., 1173

2018) The ARC dataset consists of 7,787 1174

multiple-choice science questions, split into 1175

two categories: Challenge and Easy. We com- 1176

pute both the accuracy and normalized accu- 1177

racy for these two sets. 1178

• BoolQ: (Clark et al., 2019) BoolQ is a read- 1179

ing comprehension dataset featuring naturally 1180

occurring yes/no questions. We evaluate the 1181

model’s performance by calculating its accu- 1182

racy on this task. 1183

• HellaSwag: (Zellers et al., 2019) HellaSwag 1184

is a dataset for testing grounded commonsense 1185

15



Figure 9: Predicted versus actual values of the final validation loss based on the parametric fit of the scaling law for TriLMs
(left) and FloatLMs (right).

Dataset Metric TriTera 1B TriTera 2B TriTera 3B Llama-1 7B

Arc Challenge
acc 33.45±1.38 37.29±1.41 40.61±1.44 41.81±1.44

acc_norm 36.43±1.41 39.69±1.43 42.58±1.44 44.80±1.45

Arc Easy
acc 69.82±0.94 72.60±0.92 75.97±0.88 75.25±0.89

acc_norm 62.54±0.99 67.42±0.96 71.93±0.92 72.81±0.91

BoolQ acc 62.57±0.85 56.70±0.87 66.15±0.83 75.11±0.76

HellaSwag
acc 43.20±0.49 46.44±0.50 49.65±0.50 56.95±0.49

acc_norm 56.61±0.49 61.37±0.49 66.28±0.47 76.21±0.42

LAMBADA (OpenAI) acc 47.31±0.70 48.85±0.70 54.22±0.89 73.53±0.61

LAMBADA (Standard) acc 34.81±0.66 38.58±0.68 47.04±0.70 67.82±0.65

LogiQA
acc 22.12±1.63 22.27±1.63 22.00±1.66 22.73±1.64

acc_norm 27.04±1.75 29.65±1.79 30.57±1.81 30.11±1.80

OpenBookQA
acc 28.60±2.02 30.00±2.05 32.20±2.09 34.20±2.12

acc_norm 38.80±2.18 41.00±2.20 41.80±2.21 44.40±2.22

PIQA
acc 71.98±1.05 73.67±1.03 76.01±1.00 78.67±0.96

acc_norm 72.47±1.04 75.41±1.00 76.33±0.99 79.16±0.95

WinoGrande acc 58.09±1.39 58.56±1.38 62.43±1.36 69.93±1.29

SciQ
acc 89.60±0.97 90.80±0.91 92.80±0.82 94.60±0.72

acc_norm 84.10±1.16 87.00±1.06 88.40±1.01 93.00±0.81

MMLU (cont.): Humanities acc 29.16±0.65 30.33±0.66 30.90±0.65 33.28±0.67

MMLU (cont.): Other acc 38.46±0.86 40.42±0.86 49.39±0.87 46.31±0.86

MMLU (cont.): Social Sciences acc 35.81±0.86 38.97±0.87 40.92±0.87 42.44±0.88

MMLU (cont.): STEM acc 27.62±0.79 30.23±0.80 32.06±0.82 33.43±0.83

MMLU (cont.) Average acc 32.34±0.39 34.43±0.39 36.12±0.39 38.21±0.40

GSM8K exact_match 2.05±0.39 2.12±0.40 3.03±0.47 9.70±0.82

MathQA
acc 23.22±0.77 24.22±0.78 24.69±0.79 27.07±0.81

acc_norm 23.12±0.77 24.52±0.79 24.63±0.79 26.50±0.81

Table 4: Model performance across various datasets.

through multiple-choice questions. Incorrect1186

answer choices are generated using Adversar-1187

ial Filtering (AF), designed to deceive ma-1188

chines but not humans. Accuracy and normal-1189

ized accuracy are reported for this dataset. 1190

• WinoGrande: (Sakaguchi et al., 2021) Wino- 1191

Grande is a dataset of 44,000 questions de- 1192

signed to assess commonsense reasoning via a 1193
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fill-in-the-blank task with binary options. We1194

report the model’s accuracy on this dataset.1195

• PIQA: (Bisk et al., 2019) The Physical In-1196

teraction Question Answering (PIQA) dataset1197

evaluates physical commonsense reasoning.1198

We compute accuracy and normalized accu-1199

racy for this task.1200

• LAMBADA OpenAI: (Paperno et al., 2016)1201

LAMBADA is a dataset used to test text under-1202

standing through next-word prediction, con-1203

taining narrative passages from BooksCorpus.1204

To perform well on LAMBADA, models must1205

leverage broad discourse information rather1206

than just local context. We report both per-1207

plexity and accuracy for this dataset.1208

• LogiQA: (Liu et al., 2021) LogiQA focuses1209

on testing human-like logical reasoning across1210

multiple types of deductive reasoning tasks.1211

We measure both accuracy and normalized1212

accuracy for this dataset.1213

D.2 Knowledge1214

We report performance on SciQ, TriviaQA in Ta-1215

bles 4. Each is considered in a zero-shot setting.1216

Following are the details of each of the benchmarks1217

considered:1218

The knowledge-based evaluation included the1219

following tasks:1220

• SciQ: (Welbl et al., 2017) The SciQ dataset1221

contains multiple-choice questions with 41222

answer options from crowd-sourced science1223

exams. The questions range from Physics,1224

Chemistry and Biology and several other1225

fields. We calculate the accuracy and length1226

normalized accuracy on this task.1227

• TriviaQA: (Joshi et al., 2017) TriviaQA is1228

a reading comprehension dataset containing1229

question-answer-evidence triples. We calcu-1230

late the exact match accuracy on this task.1231

• MMLU (Hendrycks et al., 2021): The bench-1232

mark aims to assess the knowledge gained dur-1233

ing pretraining by evaluating models solely in1234

zero-shot and few-shot scenarios. It spans 571235

subjects, including STEM fields, humanities,1236

social sciences, and more.1237

D.3 Serving benchmark for inference 1238

We report the following serving benchmark for our 1239

TriRun kernels. 1240

• Time to First Token. The time taken from the 1241

start of the inference process until the model 1242

generates its first token. This metric is used to 1243

measure the latency before the model begins 1244

producing outputs. 1245

• Time per Output Token. The average time 1246

taken by the model to generate each subse- 1247

quent token after the first. This metric reflects 1248

the efficiency of the model in producing to- 1249

kens once the inference process has started. 1250

• Total Tokens per Second. The overall rate at 1251

which the model generates tokens, including 1252

both the initial and subsequent tokens. This 1253

metric accounts for the entire sequence gener- 1254

ation process and provides an aggregate mea- 1255

sure of inference speed. 1256

• Output Tokens per Second. The rate at 1257

which the model generates tokens after the 1258

first token has been produced. This metric 1259

focuses on sustained generation speed, reflect- 1260

ing the model’s efficiency once the decoding 1261

process has started. 1262

E Formal Proofs 1263

E.1 Notations and Theorem 1264

Theorem 1 (Correctness). Let D = 1265

(d1, d2, . . . , dn) be a sequence of ternary 1266

digits di ∈ {−1, 0, 1}. When D is partitioned into 1267

blocks of size k and each block is encoded into a 1268

p-bit integer, the encoding and decoding operations 1269

P and U are lossless if and only if 2p > 3k; that is, 1270

U(P (D)) = D. 1271

Let 1272

D = {d1, d2, . . . , dn}, di ∈ {−1, 0, 1}, 1273

be a sequence of balanced ternary digits. We parti- 1274

tion D into blocks of k digits (with the last block 1275

possibly shorter). For a given block, define the 1276

shifted digits by 1277

d′j = dj + 1, j = 0, 1, . . . , k − 1, 1278

so that d′j ∈ {0, 1, 2}. Then define the integer 1279

N =
k−1∑
j=0

d′j · 3 k−1−j . 1280
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Since each d′j is in {0, 1, 2}, we have1281

0 ≤ N ≤ 3k − 1.1282

Assume we choose an integer p such that1283

2p > 3k.1284

The packing function is defined by1285

b =

⌊
N · 2p + (3k − 1)

3k

⌋
.1286

This mapping is one-to-one on the set1287

{0, 1, . . . , 3k − 1} and yields an integer b in1288

the range [0, 2p − 1].1289

The unpacking function recovers a number x via1290

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
.1291

The recovery of the shifted digits is given by:1292

d′j =
(⌊ x

3 k−1−j

⌋)
mod 3, j = 0, 1, . . . , k−1.1293

E.2 Proof of Theorem 1 (Correctness).1294

Step 1. Necessity of the Condition. Notice that1295

the mapping P takes an input N ∈ {0, 1, . . . , 3k −1296

1} (a total of 3k values) and produces an output1297

b ∈ {0, 1, . . . , 2p − 1} (a total of 2p values). If1298

2p ≤ 3k,1299

then by the pigeonhole principle the mapping P1300

cannot be injective, and therefore lossless recov-1301

ery is impossible. Thus, a necessary condition for1302

U(P (D)) = D is that1303

2p > 3k.1304

We now show that U(P (D)) = D if and only1305

if 2p > 3k. We start by showing that x = N , and1306

then we recover the original digits.1307

Step 2. Expressing the Packing Equation via the1308

Division Algorithm. By the division algorithm,1309

there exists a unique remainder integer r with 0 ≤1310

r ≤ 3k − 1 such that1311

N · 2p + (3k − 1) = b · 3k + r.1312

Rearranging, we obtain1313

N · 2p = b · 3k − (3k − 1) + r.1314

Dividing both sides by 2p yields 1315

N =
b · 3k − (3k − 1)

2p
+

r

2p
. 1316

Because 0 ≤ r ≤ 3k − 1, the term 1317

r

2p
1318

satisfies 1319

0 ≤ r

2p
<

3k

2p
. 1320

Thus, the requirement 2p > 3k is equivalent to 1321

having 1322

0 ≤ r

2p
< 1. 1323

If 2p ≤ 3k the fractional part might reach or exceed 1324

1, and the mapping would fail to be one-to-one. 1325

Hence, the lossless property holds if and only if 1326

2p > 3k. 1327

Step 3. Recovery of N via the Decoding Opera- 1328

tion. Examine the decoding formula: 1329

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
. 1330

We rewrite the expression inside the floor as 1331

b · 3k − (3k − 1) + (2p − 1)

2p

=
b · 3k − (3k − 1)

2p
+

2p − 1

2p

= N − r

2p
+

2p − 1

2p

= N +
(2p − 1)− r

2p
.

1332

Since 0 ≤ r ≤ 3k − 1 and 3k < 2p, the correction 1333

term 1334
(2p − 1)− r

2p
1335

satisfies 1336

0 ≤ (2p − 1)− r

2p
< 1. 1337

Thus, 1338

N ≤ N +
(2p − 1)− r

2p
< N + 1. 1339

Taking the floor gives 1340

x = N. 1341
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Step 4. Recovery of the Original Ternary Digits1342

Since N represents the base-3 number with shifted1343

digits d′j ∈ {0, 1, 2}, we recover each d′j by writing1344

N in base 3. It is important to note that if N has1345

a “short” base-3 representation (i.e., fewer than k1346

digits), we must pad the representation on the left1347

with zeros so that it has exactly k digits. In other1348

words, we interpret the expansion of x as1349

x =

k−1∑
j=0

d′j · 3k−1−j ,1350

where the digits d′j include leading zeros as1351

needed. Then, for each j = 0, 1, . . . , k − 1, we1352

have1353

d′j =
(⌊ x

3k−1−j

⌋)
mod 3.1354

Finally, reversing the initial shift,1355

dj = d′j − 1, j = 0, 1, . . . , k − 1,1356

retrieves the original balanced ternary digits.1357

Conclusion1358

The decoding operation precisely recovers N , and1359

therefore the original sequence of digits. In other1360

words,1361

U(P (D)) = D.1362

This completes the corrected proof that the packing1363

and unpacking functions are exact inverses.1364

21365

F Inference implementation on CPUs and1366

benchmarking across hardware.1367

F.1 Additional Implementation details of1368

TQ2.1369

For quantization, the packed value calculation and1370

detailed encoding steps are as follows:1371

• Packing: qpacked = q0 + 4q1 + 16q2 + 64q3.1372

• Storage: 64 bytes for quantized elements + 21373

bytes for the float16 scaling factor di, totaling1374

66 bytes per block.1375

For dequantization, the explicit unpacking pro-1376

cedure involves: q0 = qpacked mod 4, q1 =1377 ⌊ qpacked
4

⌋
mod 4, q2 =

⌊ qpacked
16

⌋
mod 4,1378

q3 =
⌊ qpacked

64

⌋
mod 4. The ternary storage method1379

uses only 2 bits per element, with minimal over-1380

head from the float16 scale per block. The process1381

relies on hardware-friendly bitwise operations for 1382

fast packing and unpacking, making it suitable for 1383

large-scale deployments in memory-constrained en- 1384

vironments while maintaining a balance between 1385

numerical fidelity and storage efficiency. 1386

F.2 Additional Implementation details of 1387

TQ1. 1388

Ternary digit extraction using fixed-point and 1389

bitwise operations. In this optimized decoding 1390

approach, we define i as the index variable, which 1391

represents the iteration counter for extracting each 1392

trit. The index i ranges from 0 to 4, as we are 1393

extracting k = 5 trits from a packed byte b. The 1394

procedure begins by setting b0 = b. For each it- 1395

eration i, we multiply the current value bi by 3, 1396

yielding a 10-bit intermediate value. The high byte 1397

of this value is then extracted to obtain the ternary 1398

digit d′i =
⌊
bi·3
28

⌋
, where d′i ∈ {0, 1, 2}. After this, 1399

the remainder is updated for the next iteration using 1400

the operation bi+1 = (bi · 3)&0xFF . This process 1401

repeats for all iterations i = 0, 1, 2, 3, 4, extracting 1402

the corresponding ternary digits. Once all the trits 1403

d′i are extracted, they are normalized by subtracting 1404

1, mapping the values from {0, 1, 2} to {−1, 0, 1}. 1405

Algorithm 1 Ternary Digit Extraction Using Fixed-
Point and Bitwise Operations

1: Input: Packed byte b
2: Output: Extracted ternary digits

d0, d1, d2, d3, d4
3: Initialize b0 = b
4: for each iteration i = 0, 1, 2, 3, 4 do
5: Multiply bi by 3 to get a 10-bit intermediate

value
6: Extract high byte to get ternary digit d′i =⌊

bi·3
28

⌋
7: Update remainder for next iteration:

bi+1 = (bi · 3)&0xFF
8: end for
9: Normalize extracted digits by subtracting 1,

mapping {0, 1, 2} to {−1, 0, 1}
10: Return: d0, d1, d2, d3, d4

This iterative method replaces the costly division 1406

and modulo operations with fixed-point arithmetic 1407

and bitwise masking, both of which are highly op- 1408

timized for SIMD implementations. The structure 1409

of this approach minimizes data dependencies, en- 1410

abling the parallel extraction of trits across multiple 1411

packed bytes. Furthermore, by leveraging the near 1412
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Figure 10: Comparison of output tokens for different model sizes running on a AMD EPYC 750 laptop: (Left) Output tokens
(for a 256 prompt with 64 output tokens). (Right) Output tokens per second versus model size. For more details, refer to Table 5

equivalence of 35 and 28, it achieves efficient de-1413

coding of ternary values with computational com-1414

plexity that scales linearly with k. The avoidance of1415

costly arithmetic operations and compatibility with1416

SIMD architectures make this approach particu-1417

larly well-suited for high-performance applications1418

involving ternary arithmetic.1419

F.3 Benchmarking across various hardware.1420

We present a comprehensive benchmarking anal-1421

ysis of quantization kernels: TQ1 (1.6 bits), TQ21422

(2 bits), Q4 (4 bits, implementation provided in1423

ggml), and FP16 (16 bits), across various model1424

sizes ranging from 560M to 3.9B parameters and1425

different token configurations. The benchmarks are1426

executed on the AMD EPYC 7502 and Apple M41427

Max (14 CPU cores). Detailed results are presented1428

in Tables 6 and 5. It should be noted that further1429

hardware-level optimizations are possible and will1430

be addressed in future work.1431

Prompt Encoding Performance: On the Ap-1432

ple M4 Max, TQ1 and TQ2 outperformed FP161433

and Q4, particularly for longer prompts, indicat-1434

ing efficient utilization of lower-bit quantization1435

for prompt processing on this architecture. In1436

contrast, benchmarks on the AMD EPYC 75021437

showed that FP16 achieved superior throughput for1438

shorter prompts (32–128 tokens), while Q4 and1439

TQ2 gained an advantage at 256 tokens, highlight-1440

ing a precision vs. memory bandwidth trade-off.1441

TQ1 underperformed FP16 and Q4 on this plat-1442

form. Across both architectures, larger models led1443

to reduced prompt encoding throughput.1444

Autoregressive Decoding Performance. Autore-1445

gressive decoding consistently demonstrated quan-1446

tization’s performance benefits on both platforms.1447

Quantized kernels (Q4, TQ2, TQ1) outperformed1448

FP16 in output tokens per second. AMD EPYC 1449

7502 showed substantial Q4 gains over FP16, with 1450

TQ2 further improving throughput, highlighting 1451

reduced precision benefits for decoding. Apple M4 1452

Max showed even greater quantization improve- 1453

ments; TQ2 achieved highest throughput, followed 1454

by TQ1 and Q4, all exceeding FP16. Output to- 1455

ken length (8-256) minimally impacted decoding 1456

throughput, suggesting independence within this 1457

range. Larger models reduced decoding through- 1458

put, consistent with prompt encoding. 1459

Combined Prompt Encoding and Autoregres- 1460

sive Decoding Performance. The combined 1461

benchmark confirmed quantization advantages. For 1462

both platforms, quantized kernels, especially TQ2 1463

and Q4, delivered higher overall tokens per second 1464

than FP16 in combined scenarios. Prompt/decode 1465

token ratio (256/8, 256/64, 256/128) influenced 1466

overall throughput. Increased decoding token pro- 1467

portion decreased overall tokens per second, reflect- 1468

ing lower decoding throughput relative to prompt 1469

encoding. Apple M4 Max demonstrated highest 1470

combined throughput with TQ1 and TQ2, partic- 1471

ularly at higher decoding token ratios, indicating 1472

optimization for end-to-end generation on this ar- 1473

chitecture. 1474

G TriRun Kernel Design for Accelerated 1475

Matrix Multiplication 1476

This section presents the design of the TriRun 1477

kernel, which accelerates matrix multiplication 1478

A × B → C, where A is stored in half-precision 1479

(16-bit floating point), B is quantized to 2 bits per 1480

element, and C is accumulated in single-precision 1481

(32-bit floating point) before optional conversion 1482

to half-precision. The kernel optimizes memory 1483

efficiency and computational throughput through 1484
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Configuration Model Size

Tokens Bits Kernel 560M 1.1B 1.5B 2.4B 3.9B

Prompt Encoding Benchmark (Prompt Tokens/seconds)

32 16 FP16 223.1 ± 0.3 110.7 ± 0.1 77.2 ± 0.2 49.1 ± 0.0 30.7 ± 0.1
32 4 Q4 182.4 ± 0.3 92.0 ± 0.1 70.2 ± 0.9 44.2 ± 0.8 27.8 ± 0.0
32 2 TQ2 315.2 ± 0.6 165.1 ± 0.4 130.1 ± 0.1 83.7 ± 0.0 51.3 ± 0.1
32 1.6 TQ1 181.1 ± 0.2 89.2 ± 0.1 70.0 ± 0.1 40.3 ± 0.1 25.4 ± 0.0
64 16 FP16 233.0 ± 0.3 113.5 ± 0.1 80.2 ± 0.1 49.7 ± 0.6 31.0 ± 0.0
64 4 Q4 182.9 ± 0.5 98.7 ± 0.1 69.3 ± 0.2 44.2 ± 0.7 27.6 ± 0.0
64 2 TQ2 320.5 ± 0.5 179.2 ± 0.3 130.6 ± 0.1 83.9 ± 0.3 51.1 ± 0.1
64 1 TQ1 180.9 ± 0.5 89.6 ± 0.1 66.6 ± 0.4 40.3 ± 0.0 25.3 ± 0.0
128 16 FP16 228.6 ± 1.1 116.2 ± 0.2 81.1 ± 0.2 51.5 ± 0.1 32.1 ± 0.0
128 4 Q4 179.2 ± 0.7 97.0 ± 0.6 69.3 ± 1.0 44.8 ± 0.1 27.9 ± 0.0
128 2 TQ2 305.2 ± 2.2 174.8 ± 0.1 124.2 ± 0.1 81.9 ± 0.1 51.5 ± 0.1
128 1.6 TQ1 177.2 ± 0.3 90.4 ± 0.1 65.8 ± 0.1 40.5 ± 0.1 25.5 ± 0.0
256 16 FP16 220.3 ± 0.6 105.9 ± 1.0 79.9 ± 0.1 50.0 ± 0.1 31.3 ± 0.1
256 4 Q4 170.1 ± 0.1 90.0 ± 2.2 69.3 ± 0.1 42.9 ± 0.1 27.3 ± 0.0
256 2 TQ2 287.1 ± 2.2 176.5 ± 1.7 122.4 ± 0.1 77.5 ± 0.3 49.9 ± 0.1
256 1.6 TQ1 169.5 ± 0.5 88.0 ± 1.0 64.3 ± 0.0 39.4 ± 0.0 24.9 ± 0.0

Autoregressive Decoding Benchmark (Output Tokens/seconds)

8 16 FP16 37.6 ± 0.2 16.9 ± 0.0 14.1 ± 0.0 8.6 ± 0.0 5.4 ± 0.0
8 4 Q4 83.0 ± 0.0 47.1 ± 0.2 35.5 ± 0.0 22.6 ± 0.0 15.1 ± 0.0
8 2 TQ2 135.1 ± 0.3 84.6 ± 0.1 62.0 ± 0.1 42.0 ± 0.0 29.2 ± 0.0
8 1.6 TQ1 102.0 ± 0.8 62.5 ± 0.1 48.6 ± 0.0 30.1 ± 0.1 20.7 ± 0.0
64 16 FP16 37.4 ± 0.0 17.8 ± 0.0 14.0 ± 0.0 8.7 ± 0.0 5.4 ± 0.0
64 4 Q4 83.1 ± 0.6 46.3 ± 0.7 35.2 ± 0.1 23.1 ± 0.0 15.0 ± 0.1
64 2 TQ2 126.3 ± 0.0 83.2 ± 0.1 60.8 ± 0.5 44.1 ± 0.1 28.9 ± 0.3
64 1.6 TQ1 105.4 ± 3.6 56.9 ± 0.3 45.1 ± 0.1 29.8 ± 0.0 20.5 ± 0.0
128 16 FP16 37.2 ± 0.1 18.7 ± 0.3 14.3 ± 0.0 8.7 ± 0.0 5.4 ± 0.0
128 4 Q4 85.6 ± 0.3 47.9 ± 0.1 37.5 ± 0.1 23.6 ± 0.0 15.0 ± 0.0
128 2 TQ2 131.4 ± 0.3 82.2 ± 0.5 64.1 ± 0.0 43.1 ± 0.1 28.8 ± 0.0
128 1.6 TQ1 104.4 ± 0.2 60.5 ± 0.0 47.7 ± 0.1 31.8 ± 0.1 20.8 ± 0.0
256 16 FP16 36.4 ± 0.2 18.0 ± 0.0 14.0 ± 0.1 8.4 ± 0.0 5.3 ± 0.0
256 4 Q4 82.3 ± 0.7 44.1 ± 0.7 36.1 ± 0.1 21.9 ± 0.1 14.6 ± 0.0
256 2 TQ2 117.5 ± 3.9 72.0 ± 0.3 59.7 ± 0.5 37.6 ± 0.1 27.7 ± 0.2
256 1.6 TQ1 94.5 ± 0.4 58.6 ± 0.6 44.0 ± 0.1 31.0 ± 0.0 19.6 ± 0.3

Prompt Encoding + Autoregressive Decoding Benchmark (Tokens/seconds)

256/8 16 FP16 190.2 ± 0.1 90.3 ± 0.3 73.7 ± 0.1 43.4 ± 0.1 26.6 ± 0.1
256/8 4 Q4 167.6 ± 0.2 86.0 ± 0.2 70.2 ± 0.2 41.1 ± 0.1 27.7 ± 0.3
256/8 2 TQ2 271.7 ± 1.0 149.3 ± 0.4 118.4 ± 0.7 73.6 ± 0.1 50.7 ± 0.1
256/8 1.6 TQ1 164.8 ± 0.6 82.4 ± 0.1 65.7 ± 0.1 38.4 ± 0.1 25.2 ± 0.0
256/64 16 FP16 103.8 ± 0.7 52.3 ± 0.0 41.8 ± 0.1 25.1 ± 0.1 15.1 ± 0.6
256/64 4 Q4 133.4 ± 0.8 72.4 ± 0.0 57.3 ± 0.3 35.2 ± 0.1 23.5 ± 0.0
256/64 2 TQ2 206.4 ± 2.7 123.5 ± 0.1 103.3 ± 0.4 62.1 ± 0.2 43.7 ± 0.2
256/64 1.6 TQ1 141.6 ± 0.1 74.5 ± 0.1 59.2 ± 0.3 35.9 ± 0.1 23.7 ± 0.3
256/128 16 FP16 79.0 ± 1.1 39.1 ± 0.1 31.0 ± 0.0 18.8 ± 0.0 11.9 ± 0.0
256/128 4 Q4 117.0 ± 0.3 63.2 ± 0.8 51.8 ± 2.1 31.7 ± 0.1 20.5 ± 0.0
256/128 2 TQ2 177.2 ± 1.0 104.6 ± 1.0 85.7 ± 0.1 54.5 ± 0.3 37.9 ± 0.2
256/128 1.6 TQ1 125.5 ± 0.5 68.5 ± 0.2 54.6 ± 0.2 33.7 ± 0.1 22.4 ± 0.0

Table 5: Tokens per second for different model sizes and quantization kernels with varying prompt lengths on AMD
EPYC 7502. Values represent mean ± standard deviation.
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Configuration Model Size

Tokens Bits Kernel 560M 1.1B 1.5B 2.4B 3.9B

Prompt Encoding Benchmark (Prompt Tokens/seconds)

32 16 FP16 730.0 ± 6.5 417.6 ± 17.3 295.9 ± 2.4 152.4 ± 0.2 91.2 ± 0.7
32 4 Q4 490.4 ± 3.2 270.0 ± 1.6 195.2 ± 0.9 106.1 ± 0.6 61.8 ± 0.3
32 2 TQ2 543.0 ± 3.5 305.1 ± 1.1 221.9 ± 0.6 118.3 ± 0.9 68.6 ± 0.3
32 1.6 TQ1 617.9 ± 2.8 362.7 ± 2.5 276.5 ± 5.7 145.5 ± 1.4 84.0 ± 0.0
64 16 FP16 1223.8 ± 21.7 640.8 ± 2.1 440.4 ± 0.8 247.1 ± 0.5 144.7 ± 0.4
64 4 Q4 886.1 ± 7.1 451.0 ± 1.3 320.7 ± 0.5 180.0 ± 1.1 105.5 ± 0.4
64 2 TQ2 951.1 ± 10.6 501.7 ± 1.1 363.0 ± 1.2 198.7 ± 0.3 116.2 ± 0.3
64 1.6 TQ1 1104.4 ± 11.5 578.3 ± 9.2 435.7 ± 0.4 235.2 ± 0.7 136.1 ± 0.4
128 16 FP16 1256.1 ± 4.2 788.2 ± 6.4 564.8 ± 1.7 328.0 ± 1.7 205.8 ± 0.6
128 4 Q4 1081.5 ± 4.6 629.7 ± 2.4 460.6 ± 0.6 266.6 ± 0.5 162.5 ± 0.3
128 2 TQ2 1143.2 ± 7.2 677.9 ± 2.7 494.3 ± 2.7 285.8 ± 1.0 175.8 ± 0.3
128 1.6 TQ1 1223.2 ± 11.1 769.6 ± 4.6 556.8 ± 0.6 320.4 ± 2.1 197.9 ± 0.2
256 16 FP16 1485.2 ± 3.3 785.5 ± 2.8 611.6 ± 1.3 367.5 ± 0.7 243.6 ± 3.6
256 4 Q4 1350.2 ± 3.4 710.3 ± 1.4 545.2 ± 2.1 325.8 ± 0.5 209.3 ± 2.2
256 2 TQ2 1398.6 ± 2.6 738.9 ± 2.4 561.7 ± 1.9 339.2 ± 0.7 225.9 ± 0.5
256 1.6 TQ1 1468.0 ± 3.5 786.7 ± 1.7 601.8 ± 2.2 361.6 ± 0.2 242.9 ± 0.5

Autoregressive Decoding Benchmark (Output Tokens/seconds)

8 16 FP16 170.9 ± 0.8 92.6 ± 0.1 71.5 ± 0.0 44.5 ± 0.0 28.1 ± 0.0
8 4 Q4 237.8 ± 0.3 134.8 ± 0.3 107.2 ± 0.3 64.8 ± 0.6 43.3 ± 0.7
8 2 TQ2 278.7 ± 0.6 167.4 ± 0.1 134.0 ± 0.2 86.6 ± 0.0 57.6 ± 0.1
8 1.6 TQ1 228.8 ± 0.5 125.7 ± 0.1 99.6 ± 0.1 62.3 ± 0.1 40.0 ± 0.1
64 16 FP16 169.4 ± 0.3 92.4 ± 0.1 71.3 ± 0.0 44.5 ± 0.0 28.0 ± 0.2
64 4 Q4 236.8 ± 0.7 134.0 ± 0.0 106.1 ± 0.1 66.2 ± 0.5 42.6 ± 0.2
64 2 TQ2 279.7 ± 0.1 166.5 ± 0.1 132.2 ± 0.1 86.1 ± 0.0 57.5 ± 0.0
64 1.6 TQ1 227.4 ± 0.5 125.4 ± 0.1 98.6 ± 0.1 62.1 ± 0.0 38.3 ± 0.0
128 16 FP16 171.5 ± 0.1 91.6 ± 0.1 71.0 ± 0.1 44.5 ± 0.1 28.1 ± 0.1
128 4 Q4 232.7 ± 0.3 132.2 ± 0.1 105.5 ± 0.1 67.0 ± 0.1 43.5 ± 0.3
128 2 TQ2 281.3 ± 1.0 164.0 ± 0.2 132.0 ± 0.1 85.1 ± 0.0 56.9 ± 0.0
128 1.6 TQ1 225.3 ± 1.6 124.5 ± 0.1 97.8 ± 0.1 61.6 ± 0.0 39.7 ± 0.0
256 16 FP16 166.0 ± 0.4 89.4 ± 0.4 69.1 ± 0.2 43.3 ± 0.2 27.7 ± 0.0
256 4 Q4 225.1 ± 0.2 128.4 ± 0.1 101.6 ± 0.6 63.7 ± 0.5 41.1 ± 0.4
256 2 TQ2 268.9 ± 0.2 158.6 ± 1.0 128.5 ± 0.2 82.9 ± 0.2 55.6 ± 0.0
256 1.6 TQ1 217.2 ± 1.1 121.1 ± 0.6 95.5 ± 0.0 60.3 ± 0.1 39.0 ± 0.0

Prompt Encoding + Autoregressive Decoding Benchmark (Tokens/seconds)

256/8 16 FP16 1142.4 ± 7.0 628.9 ± 1.4 489.9 ± 1.5 296.4 ± 0.7 194.6 ± 0.3
256/8 4 Q4 1165.6 ± 2.6 620.8 ± 2.2 481.8 ± 1.4 288.8 ± 0.5 186.6 ± 0.9
256/8 2 TQ2 1234.7 ± 0.9 668.9 ± 1.3 513.5 ± 1.1 308.6 ± 0.3 202.1 ± 0.5
256/8 1.6 TQ1 1241.5 ± 4.7 665.5 ± 4.9 517.6 ± 1.2 311.7 ± 0.5 205.4 ± 0.3
256/64 16 FP16 550.0 ± 2.9 298.9 ± 0.5 234.8 ± 0.2 144.1 ± 0.3 93.6 ± 0.1
256/64 4 Q4 648.3 ± 1.1 358.6 ± 1.7 286.8 ± 0.3 175.2 ± 0.7 114.6 ± 0.4
256/64 2 TQ2 726.3 ± 1.9 415.5 ± 0.5 328.3 ± 0.3 205.2 ± 0.2 135.9 ± 0.4
256/64 1.6 TQ1 652.7 ± 2.4 364.1 ± 0.6 285.7 ± 0.3 177.0 ± 0.2 115.7 ± 0.4
256/128 16 FP16 385.8 ± 3.5 210.4 ± 1.2 165.1 ± 0.5 102.1 ± 0.2 66.1 ± 0.2
256/128 4 Q4 475.3 ± 0.7 270.2 ± 0.3 216.6 ± 0.4 133.1 ± 0.6 87.5 ± 0.4
256/128 2 TQ2 540.8 ± 0.6 317.9 ± 0.6 255.4 ± 0.2 160.8 ± 0.1 108.2 ± 0.1
256/128 1.6 TQ1 466.8 ± 0.5 265.8 ± 0.4 209.9 ± 0.1 130.9 ± 0.1 86.0 ± 0.3

Table 6: Tokens per Second for Different Model Sizes and Quantization Kernels M4 Max (14CPU Coresz). Values
represent mean ± standard deviation.
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specialized data layouts, dequantization strategies,1485

and tensor-core utilization. Key components in-1486

clude:1487

G.1 Data Organization and Quantization1488

2-Bit Weight Matrix (B Storage) The 2-bit1489

quantized elements of B are packed into 64-bit1490

int2 vectors, where each 32-bit integer contains1491

16 quantized weights. During loading, 64-bit1492

global memory transactions retrieve 32 weights per1493

int2, minimizing memory bandwidth. To align1494

with tensor-core requirements, these packed values1495

are asynchronously copied to shared memory via1496

cp.async instructions, then unpacked into 16-bit1497

fragments for computation.1498

Half-Precision Matrix (A Access) Matrix A is1499

stored in half-precision and loaded via 128-bit int41500

vectors, fetching eight elements per transaction.1501

This aligns with the 16-byte memory alignment1502

optimal for GPU global memory accesses. Subse-1503

quent stages repack these into 16×16 submatrices1504

compatible with tensor-core operations.1505

G.2 Dequantization and Tensor-Core1506

Computation1507

The dequant function performs dequantiza-1508

tion of 2-bit integer values into half-precision1509

floating-point representations, employing1510

hardware-optimized bitwise operations and1511

fused arithmetic to enable efficient tensor core1512

execution. Rather than relying on conventional1513

shift-and-mask techniques, the implementation1514

decomposes each 32-bit word—which encodes1515

sixteen 2-bit weights—using a specialized bitwise1516

operation that leverages a tailored mask to both1517

isolate the individual weight segments and embed1518

a predetermined FP16 exponent. Following this,1519

an integrated arithmetic fusion stage applies a1520

zero-point adjustment, effectively adding 1.01521

to the extracted values, and performs dynamic1522

range scaling through a fused multiply-add1523

operation. This approach diverges from the1524

traditional scale · (w − zero_point) formulation1525

by consolidating multiple arithmetic steps into1526

a single, hardware-specific sequence. Subse-1527

quently, per-group FP16 scales are applied to1528

the dequantized values, which are then stored in1529

register-based fragments (FragB) to minimize1530

shared memory contention. Later, the kernel1531

employs ldmatrix.sync.aligned.m8n8.x41532

to load A and B fragments into tensor-core1533

registers. Each mma.sync.aligned.m16n8k16 1534

operation computes a 16×8×16 submatrix product, 1535

accumulating results into 32-bit floating-point 1536

fragments (FragC) for numerical stability. By 1537

unrolling across submatrix tiles, the kernel fully 1538

utilizes tensor-core throughput while maintaining 1539

warp-level synchronization. 1540

G.3 Memory Latency Hiding via 1541

Asynchronous Pipelines 1542

To overlap computation with memory transfers, the 1543

kernel implements a four-stage software pipeline 1544

with double buffering. Key mechanisms include: 1545

• Asynchronous Data Copies: cp.async in- 1546

structions prefetch A and B tiles into shared 1547

memory without stalling computation threads. 1548

• Double Buffering: Two shared memory 1549

buffers alternate between data ingestion (from 1550

global memory) and consumption (by ten- 1551

sor cores), ensuring continuous utilization of 1552

memory and compute units. 1553

• cp.async Synchronization: Warps issue 1554

cp.async.commit_group to batch memory 1555

transactions and cp.async.wait_group to 1556

enforce dependencies, preventing read-after- 1557

write hazards. 1558

G.4 Precision-Preserving Accumulation 1559

Intra-Warp Reduction Partial sums within a 1560

thread block are reduced across warps using shared 1561

memory. A tree-based summation merges per-warp 1562

FragC outputs, minimizing shared memory bank 1563

conflicts through staggered access patterns. 1564

Global Memory Atomic Reduction For outputs 1565

spanning multiple thread blocks, atomic 32-bit 1566

floating-point additions ensure correct inter-block 1567

accumulation. Final results are converted to half- 1568

precision (if specified) using round-to-nearest-even 1569

mode, balancing precision and storage efficiency. 1570

G.5 Performance Configuration 1571

Thread blocks (256 threads) balance register pres- 1572

sure (128/thread) and occupancy (8 warps/block). 1573

Tile dimensions adapt to problem size: 128×128 1574

tiles for small batches (m ≤ 16) and 64×256 tiles 1575

for larger workloads. The 96 KB shared memory 1576

budget supports four concurrent pipeline stages, 1577

sustaining 98% tensor core utilization across varied 1578

workloads. This implementation demonstrates that 1579
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Figure 11: Speedup across hardware over the years using TriRun kernels

2-bit quantized inference can achieve near-FP161580

throughput while maintaining numerical fidelity,1581

providing a practical solution for deploying com-1582

pressed deep learning models on modern GPUs.1583

G.6 TriRun performance benchmark across1584

various Nvidia hardware.1585

Performance Acceleration of Ternary Linear1586

Layers in Transformer Blocks. TriRun kernels1587

in transformer blocks including ternary linear lay-1588

ers demonstrate significant performance improve-1589

ments across various hardware configurations. As1590

shown in Figure 12, we evaluated TriRun’s perfor-1591

mance against a standard FP16 PyTorch implemen-1592

tation (CUTLASS) across multiple NVIDIA GPU1593

platforms, including the L40, A100 SXM/PCIe,1594

A40, 3090, A30, L40s, and RTX 4090. The perfor-1595

mance analysis covered models ranging from 3B1596

to 405B parameters under varying batch sizes, with1597

speedup quantified as the ratio of FP16 baseline ex-1598

ecution time to TriRun execution time. The results1599

indicate sustained performance for batch sizes up1600

to 16–32 across all tested GPUs. Moreover, larger1601

models, which incorporate a higher proportion of1602

ternary weights relative to their total parameters,1603

achieve more substantial speedups compared to1604

smaller models. This performance trend suggests a1605

positive correlation between model size and the ef-1606

ficiency gains offered by TriRun’s implementation.1607

Detailed per-layer results are provided in Tables1608

Table 7 and Table 8.1609

End-to-End Generation Performance. Fig- 1610

ure 13 presents the end-to-end token generation 1611

speedup. For a comprehensive view, Figure 13 1612

(with detailed results in Table 9, Table 10, Table 11, 1613

and Table 12) shows the total time for end-to-end to- 1614

ken generation using TriRun on Nvidia L40s, L40, 1615

A40, and 4090 GPUs for models ranging from 7B 1616

to 70B parameters. This reflects the output token 1617

throughput, with TriRun achieving up to approxi- 1618

mately 5× speedup. The slightly lower end-to-end 1619

speedup compared to the per-layer results can be 1620

attributed to additional inference overheads beyond 1621

the linear layers, which are specifically acceler- 1622

ated by TriRun. In this case as well, larger models 1623

achieve higher speedups due to their increased pro- 1624

portion of ternary weights. 1625

H Artifacts Released 1626

To foster open research, we will be making the 1627

artifacts from this paper publicly available. The 1628

following resources are provided: 1629

• TriTera Suite. We are releasing all models 1630

from the Tritera suite (as described in Sec- 1631

tion 2), along with all intermediate check- 1632

points, under the MIT license. 1633

• TriRun Kernels. We plan to open-source 1634

the TriRun Library (as detailed in Section 4) 1635

under the Apache 2.0 license. 1636
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Model Size GPU Type Batch Size
(Parameters) 1 2 4 8 16 32 64 128

A40
405B A40 7.85 7.65 7.66 7.70 7.50 7.27 3.91 1.98
123B A40 7.67 7.67 7.68 7.63 7.65 6.99 3.69 1.97
70B A40 7.36 7.39 7.45 7.29 7.46 6.80 3.64 1.90
34B A40 7.22 7.29 7.35 7.36 7.46 6.29 3.57 1.99
13B A40 6.76 6.91 6.72 6.92 6.93 5.89 3.33 1.86
8B A40 6.42 6.62 6.62 6.66 6.55 5.18 2.99 1.84
3B A40 5.39 4.76 5.50 5.51 5.56 4.35 2.81 1.93

3090
405B 3090 4.92 4.70 4.70 4.98 5.04 2.72 1.41 1.09
123B 3090 4.83 4.75 4.75 5.46 5.50 2.63 1.34 1.14
70B 3090 4.51 4.69 4.70 4.72 4.74 2.48 1.35 1.10
34B 3090 4.42 4.70 4.76 4.75 4.65 2.53 1.62 1.23
13B 3090 4.25 4.39 4.47 4.41 4.39 2.40 1.26 1.15
8B 3090 4.19 4.25 4.30 4.32 4.17 2.37 1.34 1.15
3B 3090 4.05 3.53 3.71 3.71 3.68 2.32 1.32 1.24

A30
405B A30 3.96 3.98 3.99 4.00 4.01 2.80 1.77 1.35
123B A30 3.89 3.90 3.90 3.91 3.90 2.66 1.68 1.12
70B A30 3.81 3.82 3.91 3.94 3.90 2.70 1.64 1.19
34B A30 3.62 3.62 3.67 3.81 3.78 2.76 1.71 1.29
13B A30 3.36 3.44 3.45 3.48 3.38 2.47 1.59 1.48
8B A30 3.28 3.30 3.32 3.33 3.31 2.28 1.61 1.13
3B A30 2.66 2.90 2.90 2.94 2.87 2.08 1.35 1.39

L4
405B L4 5.98 6.10 6.12 6.24 6.46 5.38 3.21 1.00
123B L4 6.34 6.05 6.05 6.08 6.07 5.24 3.12 1.63
70B L4 5.91 5.97 5.96 5.90 5.86 5.22 3.15 1.65
34B L4 6.75 5.87 5.87 5.84 5.76 5.40 3.20 1.80
13B L4 7.75 5.64 5.64 5.63 6.16 5.03 3.13 1.66
8B L4 5.31 5.25 5.27 5.23 5.30 4.42 2.79 1.56
3B L4 7.74 5.43 5.43 5.38 5.40 4.49 2.83 1.63

Table 7: Speedup over FP16 PyTorch (using CUTLASS) across different batch sizes for all ternary linear layers in a
transformer block, accounting for the matrix structures in models ranging from 3B to 405B on A40, 3090, A30 and
L4 GPUs.
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Model Size GPU Type Batch Size
(Parameters) 1 2 4 8 16 32 64 128

L40
405B L40 7.99 7.67 7.69 7.78 7.79 7.67 4.04 2.05
123B L40 8.47 7.58 7.57 7.57 7.52 7.44 3.97 2.11
70B L40 7.91 7.39 7.46 7.49 7.64 6.90 3.80 2.02
34B L40 7.93 7.32 7.27 7.38 7.57 6.48 3.63 2.01
13B L40 9.98 6.83 6.83 6.83 6.74 5.46 3.22 1.86
8B L40 8.30 6.57 6.68 6.61 6.42 4.41 2.69 1.70
3B L40 5.98 6.97 6.41 6.83 6.67 3.05 1.97 1.49

A100 (SXM)
405B A100 4.25 4.25 4.30 4.28 4.25 3.05 1.86 1.28
123B A100 4.25 4.11 4.08 4.14 4.04 3.06 1.95 1.12
70B A100 4.66 3.90 3.87 3.93 3.95 2.88 1.81 1.13
34B A100 3.66 3.63 3.66 3.64 3.62 2.70 1.73 1.13
13B A100 3.33 3.30 3.42 3.41 3.42 2.32 1.57 1.26
8B A100 2.79 2.68 2.82 2.90 2.86 2.08 1.49 1.17
3B A100 2.26 2.44 2.26 2.57 2.22 1.42 1.45 0.97

A100 (PCIe)
405B A100 4.98 4.96 4.99 5.06 4.94 3.52 2.19 1.23
123B A100 4.89 4.88 4.74 4.86 4.87 3.51 2.24 1.27
70B A100 4.67 4.48 4.49 4.55 4.58 3.35 2.10 1.31
34B A100 4.21 4.24 4.23 4.24 4.28 3.10 1.98 1.29
13B A100 3.86 3.97 3.57 3.96 3.96 2.73 1.82 1.42
8B A100 3.27 3.37 3.33 3.09 3.37 2.30 1.64 1.32
3B A100 2.93 2.75 2.74 2.72 2.93 1.86 1.22 1.09

4090
405B 4090 7.67 7.65 7.69 7.71 7.77 5.29 2.74 1.48
123B 4090 7.64 7.68 7.68 7.71 7.74 5.20 2.80 1.41
70B 4090 4.96 6.65 7.45 7.51 7.20 5.02 2.60 1.40
34B 4090 7.25 7.28 6.82 6.84 7.34 4.89 2.59 1.43
13B 4090 6.36 6.39 6.39 6.39 6.36 4.18 2.32 1.43
8B 4090 5.42 5.54 5.70 5.94 5.53 3.56 1.99 1.37
3B 4090 3.96 4.29 4.40 4.32 4.15 2.52 1.37 1.37

Table 8: Speedup over FP16 PyTorch (using CUTLASS) across different batch sizes for all ternary linear layers in a
transformer block, accounting for the matrix structures in models ranging from 3B to 405B on L40, A100(SXM),
A100 (PCIe) and 4090 GPUs.
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Figure 12: We evaluate the performance of ternary layers in transformer blocks, showing near-optimal speedup over
PyTorch FP16 on different NVIDIA GPUs using CUTLASS.
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Figure 13: Comparison of TriRun kernels with the FP16 PyTorch baseline on NVIDIA L40S, L40, A40, and 4090 (top to
bottom). More details in Table 9, Table 10, Table 11 and Table 12 (a) Left: Time to first token, (b) Right: Time per output token.
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Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0210 0.0218 0.0219 0.0221 0.0225 0.0237 0.0244
7B Trirun 1 0.0135 0.0146 0.0146 0.0145 0.0146 0.0146 0.0146
7B Speedup - 1.5556 1.4932 1.5000 1.5241 1.5411 1.6233 1.6712

13B Pytorch 1 0.0380 0.0401 0.0402 0.0405 0.0411 0.0431 0.0461
13B Trirun 1 0.0184 0.0195 0.0193 0.0194 0.0207 0.0195 0.0195
13B Speedup - 2.0652 2.0564 2.0829 2.0876 1.9855 2.2103 2.3641

34B Pytorch 2 0.0986 0.1025 0.1027 0.1036 0.1051 0.1126 0.1213
34B Trirun 1 0.0277 0.0292 0.0288 0.0287 0.0288 0.0288 0.0339
34B Speedup - 3.5596 3.5103 3.5660 3.6098 3.6493 3.9097 3.5782

70B Pytorch 4 0.1952 0.2062 0.2066 0.2076 0.2093 0.2300 0.2352
70B Trirun 1 0.0381 0.0399 0.0397 0.0396 0.0397 0.0403 0.0544
70B Speedup - 5.1234 5.1679 5.2040 5.2424 5.2720 5.7072 4.3235

123B Trirun 1 0.0544 0.0556 0.0557 0.0559 0.0566 0.0617 0.0850

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0229 0.0449 0.0889 0.1768 0.3529 0.7047 1.4133
7B Trirun 1 0.0152 0.0299 0.0596 0.1193 0.2374 0.4748 0.9463
7B Speedup - 1.5066 1.5017 1.4916 1.4820 1.4865 1.4842 1.4935

13B Pytorch 1 0.0399 0.0791 0.1573 0.3132 0.6250 1.2494 2.5005
13B Trirun 1 0.0196 0.0388 0.0777 0.1555 0.3114 0.6219 1.2411
13B Speedup - 2.0357 2.0387 2.0245 2.0141 2.0071 2.0090 2.0147

34B Pytorch 2 0.1009 0.2009 0.4011 0.8014 1.6022 3.2050 6.4134
34B Trirun 1 0.0300 0.0603 0.1203 0.2408 0.4815 0.9632 1.9272
34B Speedup - 3.3633 3.3317 3.3342 3.3281 3.3275 3.3275 3.3278

70B Pytorch 4 0.1975 0.3941 0.7877 1.5746 3.1491 6.2989 12.6034
70B Trirun 1 0.0400 0.0808 0.1615 0.3244 0.6501 1.3005 2.6025
70B Speedup - 4.9375 4.8775 4.8774 4.8539 4.8440 4.8434 4.8428

123B Trirun 1 0.0566 0.1126 0.2246 0.4488 0.8976 1.7936 3.5924

Table 9: End-to-end inference time (in seconds) on NVIDIA L40s GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.
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Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0166 0.0174 0.0175 0.0175 0.0179 0.0185 0.0198
7B Trirun 1 0.0085 0.0092 0.0093 0.0093 0.0093 0.0092 0.0117

7B Speedup - 1.9484 1.8871 1.8869 1.8890 1.9288 2.0141 1.6963

13B Pytorch 1 0.0316 0.0325 0.0326 0.0330 0.0336 0.0364 0.0380
13B Trirun 1 0.0106 0.0115 0.0113 0.0112 0.0112 0.0113 0.0177

13B Speedup - 2.9774 2.8384 2.8953 2.9307 2.9911 3.2055 2.1415

34B Pytorch 2 0.0794 0.0809 0.0815 0.0823 0.0840 0.0899 0.0934
34B Trirun 1 0.0171 0.0180 0.0178 0.0178 0.0187 0.0258 0.0408

34B Speedup - 4.6470 4.5056 4.5781 4.6294 4.4869 3.4866 2.2901

70B Pytorch 4 0.1547 0.1598 0.1605 0.1615 0.1633 0.1667 0.1825
70B Trirun 1 0.0285 0.0293 0.0294 0.0295 0.0300 0.0418 0.0712

70B Speedup - 5.4276 5.4595 5.4535 5.4685 5.4451 3.9857 2.5645

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0175 0.0346 0.0688 0.1371 0.2744 0.5477 1.0979
7B Trirun 1 0.0097 0.0193 0.0390 0.0773 0.1546 0.3095 0.6196

7B Speedup - 1.7969 1.7952 1.7629 1.7734 1.7749 1.7694 1.7720

13B Pytorch 1 0.0325 0.0645 0.1286 0.2566 0.5122 1.0240 2.0510
13B Trirun 1 0.0116 0.0232 0.0462 0.0925 0.1850 0.3702 0.7381

13B Speedup - 2.8040 2.7841 2.7841 2.7751 2.7683 2.7658 2.7787

34B Pytorch 2 0.0805 0.1607 0.3211 0.6422 1.2843 2.5693 5.1450
34B Trirun 1 0.0185 0.0373 0.0748 0.1499 0.3039 0.6014 1.2210

34B Speedup - 4.3532 4.3132 4.2912 4.2828 4.2254 4.2721 4.2136

70B Pytorch 4 0.1559 0.3115 0.6230 1.2461 2.4920 4.9844 9.9766
70B Trirun 1 0.0297 0.0590 0.1180 0.2356 0.4725 0.9471 1.8942

70B Speedup - 5.2519 5.2760 5.2804 5.2893 5.2741 5.2626 5.2670

Table 10: End-to-end inference time (in seconds) on NVIDIA 4090 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.
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Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0210 0.0219 0.0220 0.0221 0.0225 0.0244 0.0258
7B Trirun 1 0.0129 0.0139 0.0139 0.0142 0.0139 0.0138 0.0138

7B Speedup - 1.6239 1.5749 1.5810 1.5552 1.6193 1.7617 1.8681

13B Pytorch 1 0.0381 0.0402 0.0403 0.0407 0.0413 0.0458 0.0481
13B Trirun 1 0.0157 0.0170 0.0173 0.0174 0.0174 0.0170 0.0184

13B Speedup - 2.4219 2.3633 2.3306 2.3368 2.3765 2.6850 2.6097

34B Pytorch 2 0.0990 0.1028 0.1031 0.1038 0.1054 0.1180 0.1226
34B Trirun 1 0.0268 0.0281 0.0280 0.0278 0.0281 0.0279 0.0427

34B Speedup - 3.6857 3.6630 3.6814 3.7370 3.7462 4.2331 2.8736

70B Pytorch 4 0.1958 0.2068 0.2071 0.2080 0.2097 0.2167 0.2358
70B Trirun 1 0.0358 0.0371 0.0367 0.0368 0.0372 0.0439 0.0723

70B Speedup - 5.4757 5.5771 5.6356 5.6579 5.6366 4.9367 3.2611

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0227 0.0448 0.0889 0.1769 0.3531 0.7043 1.4104
7B Trirun 1 0.0144 0.0285 0.0571 0.1144 0.2284 0.4579 0.9093

7B Speedup - 1.5759 1.5705 1.5579 1.5464 1.5461 1.5382 1.5511

13B Pytorch 1 0.0399 0.0792 0.1578 0.3145 0.6273 1.2536 2.5101
13B Trirun 1 0.0175 0.0356 0.0711 0.1407 0.2779 0.5560 1.1106

13B Speedup - 2.2862 2.2228 2.2203 2.2343 2.2569 2.2546 2.2600

34B Pytorch 2 0.1013 0.2020 0.4031 0.8054 1.6102 3.2202 6.4492
34B Trirun 1 0.0291 0.0588 0.1173 0.2355 0.4711 0.9484 1.8970

34B Speedup - 3.4876 3.4350 3.4359 3.4195 3.4183 3.3955 3.3997

70B Pytorch 4 0.1987 0.3966 0.7924 1.5842 3.1681 6.3388 12.6871
70B Trirun 1 0.0374 0.0754 0.1514 0.3002 0.6015 1.1935 2.3860

70B Speedup - 5.3117 5.2600 5.2330 5.2774 5.2666 5.3110 5.3172

Table 11: End-to-end inference time (in seconds) on NVIDIA L40 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.
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Size Kernel #GPU 1 2 4 8 16 32 64

Encoding

7B Pytorch 1 0.0280 0.0281 0.0283 0.0286 0.0300 0.0322 0.0325
7B Trirun 1 0.0177 0.0188 0.0189 0.0190 0.0192 0.0189 0.0190

7B Speedup - 1.5840 1.4939 1.4952 1.5058 1.5642 1.7012 1.7150

13B Pytorch 1 0.0509 0.0522 0.0524 0.0528 0.0535 0.0556 0.0573
13B Trirun 1 0.0280 0.0301 0.0302 0.0302 0.0302 0.0301 0.0291

13B Speedup - 1.8139 1.7323 1.7377 1.7470 1.7745 1.8431 1.9732

34B Pytorch 2 0.1277 0.1331 0.1339 0.1335 0.1357 0.1433 0.1472
34B Trirun 1 0.0438 0.0452 0.0462 0.0462 0.0460 0.0453 0.0514

34B Speedup - 2.9170 2.9425 2.8964 2.8877 2.9513 3.1624 2.8633

70B Pytorch 4 0.2580 0.2673 0.2685 0.2702 0.2752 0.2845 0.3494
70B Trirun 1 0.0765 0.0792 0.0784 0.0786 0.0790 0.0789 0.0898

70B Speedup - 3.3734 3.3747 3.4234 3.4393 3.4826 3.6055 3.8922

Decoding - (Input Length: 1 Token)

7B Pytorch 1 0.0299 0.0590 0.1171 0.2334 0.4662 0.9318 1.8670
7B Trirun 1 0.0195 0.0391 0.0773 0.1587 0.3101 0.6184 1.2324

7B Speedup - 1.5341 1.5073 1.5145 1.4709 1.5033 1.5067 1.5150

13B Pytorch 1 0.0527 0.1046 0.2085 0.4159 0.8314 1.6628 3.3312
13B Trirun 1 0.0253 0.0506 0.1013 0.2029 0.4051 0.8122 1.6293

13B Speedup - 2.0871 2.0666 2.0581 2.0503 2.0526 2.0474 2.0446

34B Pytorch 2 0.1302 0.2594 0.5178 1.0353 2.0716 4.1386 8.2878
34B Trirun 1 0.0400 0.0818 0.1631 0.3278 0.6513 1.3201 2.6081

34B Speedup - 3.2521 3.1735 3.1737 3.1582 3.1804 3.1351 3.1777

70B Pytorch 4 0.2608 0.5204 1.0404 2.0823 4.1608 8.3258 16.6702
70B Trirun 1 0.0790 0.1219 0.2229 0.4486 0.9942 1.8002 3.4719

70B Speedup - 3.2997 4.2700 4.6675 4.6413 4.1851 4.6250 4.8015

Table 12: End-to-end inference time (in seconds) on NVIDIA A40 GPUs, comparing Trirun kernels to PyTorch
FP16 for varying sequence lengths, showing the speedup of Trirun relative to PyTorch FP16.
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