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Abstract

Existing low-rank adaptation (LoRA) methods001
face challenges on sparse large language mod-002
els (LLMs) due to the inability to maintain spar-003
sity. Recent works introduced methods that004
maintain sparsity by augmenting LoRA tech-005
niques with additional masking mechanisms.006
Despite these successes, such approaches suf-007
fer from an increased memory and computation008
overhead, which affects the efficiency of LoRA009
methods. In response to this limitation, we in-010
troduce LoRS, an innovative method designed011
to achieve both memory and computation effi-012
ciency when fine-tuning sparse LLMs. To miti-013
gate the substantial memory and computation014
demands associated with preserving sparsity,015
our approach incorporates strategies of weight016
recomputing and computational graph rear-017
rangement. In addition, we also improve the018
effectiveness of LoRS through better adapter019
initialization. These innovations lead to a no-020
table reduction in memory and computation021
consumption during the fine-tuning phase, all022
while achieving performance levels that outper-023
form existing LoRA approaches. Our code is024
available at our anonymous repository.025

1 Introduction026

Large language models (LLMs) (Touvron et al.,027

2023b; Dubey et al., 2024) have demonstrated re-028

markable proficiency in numerous natural language029

processing tasks, which has spurred their increas-030

ing integration into diverse applications. However,031

the deployment of these models is constrained by032

their vast parameter counts, necessitating signifi-033

cant hardware resources that can be prohibitive for034

many users. Moreover, the large scale of LLMs035

can impede inference speed, presenting a challenge036

in scenarios requiring rapid response times.037

To mitigate these issues, various post-training038

pruning methods have been introduced, such039

as SparseGPT (Frantar and Alistarh, 2023),040

Wanda (Sun et al., 2024), and RIA (Zhang et al.,041

2024). These techniques effectively reduce model 042

parameters, transforming dense models into sparse 043

versions with minimal data requirements and 044

within short periods. Despite their efficiency, 045

pruned models still exhibit a performance disparity 046

compared to their original counterparts, especially 047

in small and medium-sized models with unstruc- 048

tured or 2:4 semi-structured sparsity (Mishra et al., 049

2021). This discrepancy limits the practical utility 050

of pruned models. Continuous pre-training could 051

help bridge this gap but comes at a high computa- 052

tional cost. Consequently, there is a pressing need 053

for tuning methods that maintain sparsity while 054

optimizing memory and parameter efficiency. 055

Low-Rank Adaptation (LoRA) (Hu et al., 2021) 056

was developed to ease the computational demands 057

of training dense LLMs. LoRA enables fine- 058

tuning with reduced resource consumption, mak- 059

ing it widely applicable for dense models. Recent 060

studies SPP (Lu et al., 2024) and SQFT (Munoz 061

et al., 2024), have extended LoRA to accommo- 062

date sparse LLMs by incorporating masking mech- 063

anisms. We refer to these methods as Sparsity 064

Preserved LoRA methods (SP-LoRA). SPP and 065

SQFT achieve performance similar to LoRA while 066

ensuring the sparsity of the model. However, they 067

increase computation and memory overhead, un- 068

dermining LoRA’s inherent efficiency. Specifi- 069

cally, SQFT requires twice the memory overhead 070

of LoRA, while SPP reduces the memory over- 071

head to the same as LoRA through gradient check- 072

points (Chen et al., 2016), but greatly increases the 073

time overhead. 074

In response to these limitations, we present an in- 075

novative Low Rank Adaptation method for Sparse 076

LLM (LoRS). LoRS addresses the increased mem- 077

ory and computational overhead caused by mask- 078

ing mechanisms through weight recompute, and 079

computational graph rearrangement. Our approach 080

discards the fitness weights during each forward 081

pass and recalculates them during backward passes, 082
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Figure 1: The workflow of LoRS.

thereby significantly reducing the memory over-083

head at the cost of a small amount of additional084

computation. Meanwhile, we optimize the gradient085

computation by computation graph rearrangement086

in the backward pass, which further reduces the087

computational overhead compared to SQFT and088

SPP. In addition, inspired by the latest LoRA vari-089

ants, we also improve the efficiency of LoRS by090

better adapter initialization.091

We evaluate LoRS on multiple LLMs, initially092

pruning them via post-training methods like Wanda093

or SparseGPT. Subsequently, LoRS is used to fine-094

tune these models using instruction datasets or pre-095

training datasets. The zero-shot performance of the096

tuned sparse LLMs is then assessed across a variety097

of benchmark tasks. The main contributions of this098

paper are summarized in the following:099

(1) We introduce LoRS, a novel fine-tuning100

method for sparse LLMs that preserves sparsity101

while minimizing computation and memory over-102

head. LoRS leverages weight recompute and103

computational graph rearrangement techniques to104

achieve this efficiency and achieve better perfor-105

mance through better adapter initialization.106

(2) Through comprehensive experiments on107

sparse LLMs with different sparsity patterns, we108

show that LoRS can outperform existing SP-LoRA109

methods in terms of performance, memory usage,110

and computation efficiency.111

2 LoRS112

In this section, we begin by reviewing unstructured113

pruning and low-rank adaptation in Section 2.1. We114

then proceed to analyze the memory complexity as- 115

sociated with existing methods in Section 2.2. We 116

then describe how our method LoRS optimizes the 117

memory and computational overhead of existing 118

methods in section 2.3. Finally, in Section 2.4, 119

we describe how the performance of LoRS can be 120

improved by better adapter initialization. 121

2.1 Preliminary 122

Unstructured Pruning. Unstructured prun- 123

ing (Frantar and Alistarh, 2023; Sun et al., 2024; 124

Zhang et al., 2024) converts dense weight matrices 125

of LLMs into sparse matrices to enhance computa- 126

tional efficiency. Given the original dense weight 127

matrix W ∈ RR×C , pruning aims to produce a 128

sparse matrix W̃ through the application of a bi- 129

nary mask M ∈ {0, 1}R×C and weight updates 130

∆W ∈ RR×C . This process is mathematically 131

represented as: W̃ = M ⊙ (W + ∆W), where 132

⊙ denotes element-wise multiplication. The mask 133

M zeros out less important weights, while ∆W 134

fine-tunes the retained weights, ensuring that the 135

pruned model preserves its performance. 136

LoRA. Low-Rank Adaptation (Hu et al., 2021; 137

Wang et al., 2024) is an efficient approach designed 138

to fine-tune LLMs for specific tasks or domains 139

by training only a limited set of parameters. This 140

method allows the model to be adapted to specific 141

tasks while significantly reducing computational 142

cost. 143

The mathematical representation of LoRA is 144

expressed as W(t) = W + A(t) × B(t), where 145
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Algorithm 1: LoRS Forward Pass
Input: Activation X , Sparse weight matrix

W̃ , LoRS adapters A(t),B(t).
Output: Activation Y

1 Update W̃ to W̃(t):
W̃(t) = W̃ +A(t) ∗ B(t) ⊙ (W̃ ≠ 0);

2 Save X into context for backward;
3 Compute Y : Y = W̃(t)X;

W stands for the initial weight matrix of the146

pre-trained model. The term W(t) denotes the147

adapted weight matrix at the t-th iteration of train-148

ing. The matrices A(t) and B(t) represent the train-149

able adapter matrices at the t-th iteration. Specif-150

ically, A ∈ RR×r and B ∈ Rr×C , with r being151

much smaller in dimension compared to R and152

C. Here, R and C represent the dimensions of the153

original weight matrix. In practice, during the adap-154

tation process, only the parameters within A and155

B are updated, while all other parameters remain156

fixed. This strategy ensures that the model can be157

efficiently tuned to new tasks or domains without158

altering the entire pre-trained weights.159

SP-LoRA. To maintain the sparsity of the model160

while adapting, SP-LoRA methods (Lu et al., 2024;161

Munoz et al., 2024) integrate a masking mechanism162

within the LoRA framework. Let us consider a163

sparse large language model (LLM) with a weight164

matrix W̃ and its associated mask M. During each165

training iteration t, the mask is applied to enforce166

the sparsity of the weight matrix, which can be167

mathematically represented as:168

W̃(t) = W̃ +A(t) × B(t) ⊙M. (1)169

Here, ⊙ denotes element-wise multiplication,170

while A(t) and B(t) represent adapter matrices that171

are updated at each iteration.172

The incorporation of the mask, while ensuring173

that the weights remain sparse, modifies the com-174

putational graph of the original LoRA framework.175

This modification results in increased GPU mem-176

ory usage and computation overhead, presenting177

practical challenges. Therefore, we will first in-178

vestigate the reasons behind this elevated GPU179

memory and computation consumption and sub-180

sequently propose an effective solution to mitigate181

this issue.182

Algorithm 2: LoRS Backward Pass
Input: Gradient dY , Activation X , Sparse

weight matrix W̃(t), LoRS adapters
A(t),B(t).

Output: Gradients dA(t), dB(t), and dX

1 Recompute weight W̃(t):
W̃(t) = W̃ +A(t) ∗ B(t) ⊙ (W̃ ≠ 0);

2 Compute gradient of X: dX = W̃(t)⊤dY ;
3 Compute intermediate weight I1w:

I1w = X⊤B(t)⊤;
4 Compute intermediate weight I2w:

I2w = A(t)⊤dY ;
5 Compute gradient of A(t): dA(t) = dY I1w;
6 Compute gradient of B(t): dB(t) = I2wX

⊤;

2.2 Complexity Analysis 183

At the t-th training iteration, let us denote the input 184

to the weight matrix as X ∈ RC×L. For LoRA, the 185

output can be mathematically represented as 186

Y = W̃X +A(t)B(t)X. (2) 187

The computation process unfolds in these steps: 188

I1a = W̃X, I2a = B(t)X,

I3a = A(t)I2a , Y = I1a + I3a ,
189

where I1a , I2a , and I3a represent intermediate activa- 190

tions with dimensions R × L, r × L, and R × L 191

respectively. During back-propagation, gradients 192

for A(t), B(t), and X are computed based on the 193

gradient of Y , denoted as dY . The gradient com- 194

putations are formulated as follows: 195

dA(t) = dY I2⊤a , I4a = A(t)⊤dY,

dB(t) = I4aX
⊤, I5a = W̃⊤dY,

I6a = B(t)⊤I4a , dX = I5a + I6a .

196

In the forward pass, the input X and intermediate 197

activation I2a are stored for back-propagation, in- 198

volving rL+CL parameters. Meanwhile, the corre- 199

sponding multiply-accumulate operations (MACs) 200

for forward is RCL+ rCL+ rRL and for back- 201

ward is RCL+ 2rRL+ 2rCL. 202

For SP-LoRA, the output expression is modified 203

to 204

Y = (W̃ +A(t) × B(t) ⊙M)X, (3) 205

where M acts as a mask indicating non-zero el- 206

ements in W̃ . Unlike LoRA, SP-LoRA requires 207
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Figure 2: Time usage of LoRS, SQFT, and
SPP under different sequence lengths.

Figure 3: Time usage of LoRS, SQFT, and
SPP under different ranks.

Figure 4: Memory usage of LoRS, SQFT and SPP under
different sequence lengths.

computing M⊙ (A(t) × B(t)) before multiplying208

by X . This sequence of operations is outlined as:209

I1w = A(t)B(t), I2w = M⊙ I1w,

I3w = W̃ + I2w, Y = I3wX.
210

Meanwhile, back-propagation for SP-LoRA in-211

volves:212

dX = I3⊤w dY, I4w = dY X⊤,

I5w = I4w ⊙M, dA(t) = I5wB(t)⊤,

dB(t) = A(t)⊤I5w.

213

SP-LoRA’s forward pass necessitates retaining X ,214

M, and I3w for back-propagation including 2RC +215

CL parameters, and the MACs corresponding to216

the forward and backward are RCL+RC + rRC217

and 2RCL+ 2rRC +RC, respectively.218

Based on frequently used model sizes and train-219

ing configurations, we assume that r ≪ R ≈ C ≈220

L. Comparing LoRA and SP-LoRA, it can be seen221

that incorporating masks in SP-LoRA significantly222

raises GPU memory overhead due to traced mask 223

M and weight matrix I3w in the computational 224

graph (rL + CL → 2RC + CL ⇒≈ 2RC ↑). 225

Meanwhile, SP-LoRA requires additional compu- 226

tation in the backward pass due to the need to com- 227

pute the gradient of the weight matrix (RCL + 228

2rRL + 2rCL → 2RCL + 2rRC + RC ⇒≈ 229

RCL ↑). Therefore, optimizing GPU memory us- 230

age and computation overhead in SP-LoRA is es- 231

sential. 232

In this work, we consider the most advanced SP- 233

LoRA methods SPP and SQFT, where SQFT does 234

not take into account the memory and computa- 235

tional overheads and has the same complexity as 236

analyzed above. SPP, on the other hand, optimizes 237

memory usage through PyTorch’s built-in gradient 238

checkpoint API, and its implementation is shown in 239

Appendix A. Thus, on top of LoRA, SPP reduces 240

the number of parameters that need to be stored in 241

the computational graph (rL + CL → CL ⇒≈ 242

rL ↓), but introduces additional computation dur- 243

ing backward pass (RCL + 2rRL + 2rCL → 244

3RCL+ 3rRC + 2RC ⇒≈ 2RCL ↑). 245

2.3 Memory and Computation Optimization 246

After comparing the computational processes of 247

LoRA and SP-LoRA, it is evident that the memory 248

overhead in SP-LoRA arises from the need to main- 249

tain additional masks and adapted weight matrices 250

within the computational graph, and the computa- 251

tion overhead arises from the need to compute the 252

gradient of weight matrices. 253

To address the memory overhead, inspired by 254

gradient checkpoint (Chen et al., 2016), we in- 255

troduce a weight recompute strategy in LoRS, ef- 256

fectively eliminating the necessity for masks and 257

adapted weight matrices in the computation graph. 258

Specifically, we release the intermediate weights 259
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M and I3w directly after the forward pass of the260

LoRS, and recompute them later during the back-261

ward pass. After optimization, only the input activa-262

tion X is saved to the computational graph for sub-263

sequent backward passes. With this optimization,264

for each linear layer, we reduce the recorded param-265

eter from 2RC+CL to CL, while only increasing266

the computational overhead of rRC MACs.267

After that, to reduce the computation overhead268

associated with computing the gradient of the269

weight matrix, we propose the computational graph270

reordering method. Firstly, we find that the mask-271

ing operation of the gradient during backward pass272

(I5w = I4w ⊙M) has minimal effect on the model273

performance and thus can be ignored, which is274

equivalent to estimating the gradient using straight275

through estimator (Bengio et al., 2013; Zhou et al.,276

2021a). After that, we can directly compute gradi-277

ents dA(t) and dB(t) based on A(t), B(t), X , and278

dY , i.e.,279

dA(t) = dY X⊤B(t)⊤,280

dB(t) = A(t)⊤dY X⊤.281

Instead of following the computational graph282

and prioritizing the computation of dY XT , we283

can reorder the computation process to compute284

X⊤B(t)⊤ and A(t)⊤dY first, thus reducing the285

MACs from RCL+2rRC to 2rCL+2rRL. The286

optimized backward propagation processes are as287

follows:288

dX = W̃ t⊤dY, I1w = X⊤B(t)⊤,

I2w = A(t)⊤dY, dA(t) = dY I1w,

dB(t) = I2wX
⊤.

289

Finally, the workflow of LoRS is illustrated in290

Figure 1. Meanwhile, algorithm 1 and 2 details the291

forward pass and backward pass of LoRS. It can292

be seen that after optimization, LoRS only needs293

to store rL parameters in the computational graph,294

and at the same time, it only needs the MACs of295

RCL+rRC+RC in the forward pass and RCL+296

2rRL+2rCL+ rRC+RC in the backward pass.297

Compared to LoRA, LoRS reduces the parameters298

stored in the computational graph and increases299

only the MACs of rRC + RC, superior to SP-300

LoRA, which increases the 2RC parameters stored301

in the computational graph and increases the MACs302

of RCL.303

2.4 Performance Optimization 304

The existing SP-LoRA methods SPP and SQFT 305

use zero initialization and random initialization to 306

initialize the adapters. However, recent advances in 307

LoRA variants highlight the critical impact of ini- 308

tialization strategies on overall performance. Draw- 309

ing inspiration from the methodologies of LoRA- 310

GA (Wang et al., 2024), we introduce a gradient- 311

based initialization technique aimed at enhancing 312

LoRS’s effectiveness. 313

Referring to existing LoRA variants, we initial- 314

ize A(0) to 0, while minimizing the difference be- 315

tween LoRS and full fine-tuning on the first train- 316

ing iteration by initializing B(0). To illustrate, with 317

A(0) = 0 and disregarding masking operations, we 318

derive the following equations: 319

dA(0) = dW̃ (0)B(0)⊤, dB(0) = A(0)⊤dW̃ (0), 320

W̃ (1) − W̃ (0) = A(1)B(1) 321

= (A(0) + dA(0))(B(0) + dB(0)) 322

= dA(0)B(0) 323

= dW̃ (0)B(0)⊤B(0). 324

This derivation illustrates the relation between the 325

adapters and the gradient obtained from the ini- 326

tial training step. Therefore, we determine B(0) 327

through an optimization process as follow: 328

B(0) = argmin
B

∥dW̃ (0) − dW̃ (0)B⊤B∥ (4) 329

This optimization objective can be solved by 330

singular value decomposition, i.e., U, S, V = 331

SVD(dW̃ (0)), B(0) = V:r. 332

While the gradient-based initialization does re- 333

quire access to the gradients of the weight matrices 334

during the first training step, we adopt a layer-by- 335

layer initialization strategy to ensure that this pro- 336

cess can be carried out without imposing additional 337

memory costs. This efficient initialization paves 338

the way for improved performance in subsequent 339

training iterations. 340

3 Experiments 341

In this section, we aim to demonstrate the efficacy 342

of LoRS in training sparse Large Language Models 343

(LLMs) through a series of experiments. 344

Metrics. We assessed both the LoRA and SP- 345

LoRA methods based on two primary metrics: 346

• Efficiency: This includes the memory consump- 347

tion and computational time required during the 348

fine-tuning process. 349
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Model Method Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-7B None None 43.52 76.35 77.74 57.14 31.40 62.82 69.06 59.72

SparseGPT 2:4 31.31 63.93 68.90 43.54 24.60 63.18 65.90 51.62

SparseGPT+SPP 2:4 36.86 69.15 72.91 50.67 28.80 62.45 66.30 55.31

SparseGPT+SQFT 2:4 36.01 64.35 72.17 51.84 29.60 59.93 63.61 53.93

SparseGPT+LoRS 2:4 37.63 70.03 74.22 51.95 30.20 63.90 66.38 56.33

Wanda 2:4 30.03 61.95 68.32 41.21 24.20 53.07 62.35 48.73

Wanda+SPP 2:4 36.26 69.44 72.02 49.64 27.80 55.96 63.77 53.56

Wanda+SQFT 2:4 35.41 65.03 72.39 50.18 30.00 60.29 62.67 53.71

Wanda+LoRS 2:4 37.12 70.71 71.56 51.18 27.60 57.76 64.48 54.34

Llama-3-8B None None 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05

SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 40.78 71.09 75.35 52.01 26.40 59.93 67.88 56.21

SparseGPT+SQFT 2:4 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17

SparseGPT+LoRS 2:4 40.70 70.96 79.08 53.26 28.00 60.65 67.17 57.94

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 38.48 68.64 74.77 49.53 25.20 58.48 64.64 54.25

Wanda+SQFT 2:4 37.46 65.07 73.36 49.48 26.00 63.18 62.75 53.90

Wanda+LoRS 2:4 40.78 70.37 77.03 51.54 26.00 67.87 64.80 56.91

Table 1: Zero-shot evaluation results of Llama-2-7b and Llama-3-8b with models trained on the Alpaca dataset.

• Performance: We measured this by evaluating350

the model’s accuracy across various downstream351

tasks.352

3.1 Experiment Setup353

Our experimental framework utilized several mod-354

els from the Llama series: Llama-2-7B, Llama-355

2-13B and Llama-3-8B (Touvron et al., 2023a,b;356

Dubey et al., 2024). To create sparse models, we357

applied post-training pruning techniques, specifi-358

cally SparseGPT (Frantar and Alistarh, 2023) and359

Wanda (Sun et al., 2024), using unstructured and360

2:4 structured sparsity patterns, following existing361

works. For the efficiency analysis, we fine-tuned362

the pruned models with varying batch sizes and363

adapter ranks to observe their impact on resource364

utilization. Then, the performance evaluation in-365

volved fine-tuning the pruned models on two types366

of datasets: instruction data and pre-training data.367

During this phase, adapters were incorporated into368

all sparse-weight matrices within the models.369

• Instruction Data: For instruction tuning, we em-370

ployed the Stanford-Alpaca dataset (Taori et al.,371

2023). Here, the adapter rank was also set to 16,372

and the batch size was set to 32 samples, with373

the learning rate remaining at 2× 10−5.374

• Pre-training Data: We used a subset of the 375

SlimPajama dataset (Penedo et al., 2023), con- 376

taining 0.5 billion tokens. The setup for this ex- 377

periment included setting the adapter rank to 16, 378

the batch size to 256,000 tokens, and the learning 379

rate to 2× 10−5. 380

Following fine-tuning, we evaluated the zero- 381

shot performance of the models on seven bench- 382

mark datasets from the EleutherAI LM Evaluation 383

Harness (Gao et al., 2024): ARC-Challenge, ARC- 384

Easy (Clark et al., 2018), BoolQ (Clark et al., 2019), 385

Hellaswag (Zellers et al., 2019), OpenBookQA 386

(Mihaylov et al., 2018), RTE, and Winogrande 387

(Sakaguchi et al., 2019). All experiments were 388

conducted on Nvidia A800-80G GPUs and Nvidia 389

A6000-48G GPUs. 390

Baselines. To evaluate the effectiveness of LoRS, 391

we compare LoRS with the SP-LoRA methods SPP 392

and SQFT, two existing methods designed to tune 393

sparse LLMs while preserving sparsity. Refer to 394

Appendix B for a more detailed explanation. 395

3.2 Experiment Results 396

Efficiency Results. We evaluated the time and 397

memory overhead of different methods via Llama- 398
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Model Method Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-2-13B None None 48.38 79.42 80.55 60.04 35.20 65.34 72.30 63.03

SparseGPT 2:4 37.29 69.07 79.05 48.00 25.80 58.84 69.14 55.31

SparseGPT+SPP 2:4 42.06 73.32 78.62 55.02 29.40 65.70 69.77 59.13

SparseGPT+SQFT 2:4 40.78 67.93 76.48 54.68 29.40 71.12 69.38 58.54

SparseGPT+LoRS 2:4 42.32 74.24 77.52 55.81 30.00 68.95 70.56 59.91

Wanda 2:4 34.47 68.48 75.72 46.39 24.40 57.04 66.69 53.31

Wanda+SPP 2:4 39.42 69.40 77.37 54.84 30.40 65.34 68.27 57.86

Wanda+SQFT 2:4 40.02 68.35 76.09 54.17 29.80 64.98 66.93 57.19

Wanda+LoRS 2:4 41.04 72.10 77.46 55.46 29.40 68.95 67.09 58.79

Table 2: Zero-shot evaluation results of Llama-2-13b trained on the Alpaca dataset.

Model Method Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-3-8B SparseGPT 0.5 42.66 73.95 77.16 53.86 29.40 58.84 72.30 58.31

SparseGPT+SPP 0.5 47.53 77.86 80.09 57.77 32.00 65.70 72.53 61.92

SparseGPT+SQFT 0.5 46.76 77.06 80.70 56.76 30.60 64.98 72.93 61.39

SparseGPT+LoRS 0.5 49.15 76.64 81.71 57.66 31.00 69.31 72.45 62.56

Table 3: Zero-shot evaluation results of Llama-3-8b trained on the Alpaca dataset under 50% unstructured sparsity.

3-8B, including LoRS, SQFT, and SPP. The imple-399

mentation details for these methods are provided400

in Appendix A. We conducted experiments for se-401

quence lengths from 512 to 2048 and for adapter402

ranks from 16 to 64, respectively. Figure 2 and 4403

show the time usage and memory usage of the dif-404

ferent methods for different sequence lengths, with405

the adapter rank being 16. It can be seen that406

LoRS outperforms SPP and SQFT in all scenar-407

ios in terms of training throughput and memory408

overhead, respectively. Compared to SPP, LoRS409

has a 40% increase in training speed while having410

the same memory footprint as SPP. LoRS, on the411

other hand, saves 40% of the memory footprint412

with the same training speed compared to SQFT.413

Figure 3, on the other hand, shows how the time414

overhead varies with the adapter rank size for a se-415

quence length of 2048. It can be seen that changes416

in the adapter rank size have almost no impact on417

the time overhead. These results underscore the418

effectiveness of our approach, demonstrating that419

LoRS offers an optimal balance between perfor-420

mance and resource utilization when fine-tuning421

sparse LLMs.422

Performance Results. Tables 1 and 2 present the423

zero-shot performance of the Llama-2-7B, Llama-424

3-8B, and Llama-2-13B models, as well as their425

pruned and fine-tuned variants developed using the426

Stanford Alpaca under 2:4 sparsity type. Mean- 427

while, Table 3 shows the experimental results us- 428

ing unstructured sparsity types. The experimental 429

findings reveal that LoRS significantly boosts the 430

performance of sparse models, with improvements 431

ranging from 7%~25% compared to models ob- 432

tained through post-training pruning. In addition, 433

the effectiveness of LoRS also exceeds that of ex- 434

isting SP-LoRA methods, SPP, and SQFT. Specifi- 435

cally, LoRS has a 1%~2% improvement over SPP 436

and SQFT on the Alpaca dataset due to the better 437

initialization used by LoRS. Table 4, on the other 438

hand, presents the results using the SlimPajama- 439

0.5B datasets. On this dataset, LoRS has only mi- 440

nor enhancements compared to SPP and SQFT, due 441

to it containing enough data that the impact of ini- 442

tialization on performance is reduced at this point. 443

See Appendix C for more experimental results. 444

4 Related Work 445

4.1 Pruning 446

Pruning is a technique for compressing neural net- 447

works by eliminating unimportant weights (Han 448

et al., 2016). It can be divided into structured and 449

unstructured pruning based on the sparsity pattern 450

it induces. Structured pruning removes entire units 451

like channels or layers to simplify the network’s ar- 452

chitecture. In contrast, unstructured pruning targets 453
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Model Method Sparsity ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Average

Llama-3-8B SparseGPT 2:4 32.00 62.67 73.70 43.19 22.20 53.79 65.75 50.47

SparseGPT+SPP 2:4 39.42 69.95 71.93 51.67 25.80 63.18 68.27 55.75

SparseGPT+SQFT 2:4 38.14 70.29 75.87 52.35 26.80 63.90 67.56 56.42

SparseGPT+LoRS 2:4 39.16 70.50 75.60 52.27 27.40 63.54 67.48 56.56

Wanda 2:4 26.45 55.93 66.18 37.51 18.60 52.71 60.06 45.35

Wanda+SPP 2:4 36.77 67.39 72.97 49.49 25.80 59.21 64.88 53.79

Wanda+SQFT 2:4 38.31 69.53 71.56 50.83 28.00 54.87 66.30 54.20

Wanda+LoRS 2:4 38.57 69.61 72.87 50.60 27.80 61.73 64.64 55.12

Table 4: Zero-shot evaluation results of Llama-3-8b trained on the SlimPajama dataset with 0.5B tokens.

individual weights, converting dense matrices into454

sparse ones. Advances in hardware have enabled455

efficient execution of models pruned with specific456

sparse patterns, such as 2:4 sparsity (Mishra et al.,457

2021). From an optimization standpoint, pruning458

methods are also classified as training-based or459

post-training. Training-based pruning gradually re-460

moves weights during the training phase by apply-461

ing regularization techniques, which can introduce462

computational overhead and data requirements that463

are prohibitive for large models (Louizos et al.,464

2018; Sanh et al., 2020; Xia et al., 2022; Hu et al.,465

2024). Post-training pruning, however, allows for466

significant model compression using minimal cal-467

ibration data, making it more suitable for large468

language models (Frantar and Alistarh, 2023; Sun469

et al., 2024; Zhang et al., 2024).470

4.2 Parameter-Efficient Fine-Tuning (PEFT)471

PEFT strategies enable fine-tuning of pre-trained472

models with minimal parameter updates. These473

methods typically freeze the original model and474

introduce trainable adapters, such as prefix tokens,475

side networks, or parallel/serial adapters (Liu et al.,476

2022; Zhang et al., 2020; Houlsby et al., 2019; Hu477

et al., 2023). LoRA and its variants are popular478

PEFT approaches that allow adapter parameters to479

merge with model weights after training (Hu et al.,480

2021; Zhang et al., 2023; Zhao et al., 2024). How-481

ever, this merging process can negate the sparsity482

benefits in sparse LLMs. Our work focuses on483

adapting LoRA to maintain sparsity.484

4.3 Sparsity-Preserved Training485

Sparsity-preserved training methods aim to train486

sparse models from the outset or refine existing487

sparse models. Techniques like STE (Zhou et al.,488

2021b), RigL (Evci et al., 2021), and others (Huang489

et al., 2024; Kurtic et al., 2023) ensure that the 490

trained models retain their sparse structure while 491

achieving performance similar to dense counter- 492

parts. Despite their potential, these methods often 493

require training all model parameters and can de- 494

mand more GPU memory than training dense mod- 495

els, presenting challenges for LLM applications. 496

Recent innovations, such as SPP (Lu et al., 2024) 497

and SQFT (Munoz et al., 2024), attempt to miti- 498

gate this issue by integrating PEFT methods with 499

sparsity-preserved training, offering a streamlined 500

approach to training sparse models with reduced 501

costs. Nonetheless, these methods still face high 502

GPU memory overhead due to the construction of 503

full-size matrices during forward passes. 504

5 Conclusion 505

In this paper, we present LoRS, a novel method 506

designed to train sparse models in a parameter- 507

efficient and memory-efficient manner while pre- 508

serving sparsity. Our approach specifically tackles 509

the challenges of domain adaptation and perfor- 510

mance recovery for sparse large language models 511

(LLMs). By building on the sparsity-preserving 512

LoRA framework, LoRS achieves efficient fine- 513

tuning of LLMs with reduced memory and compu- 514

tation usage through techniques including weight 515

recompute and computational graph reording. Ad- 516

ditionally, LoRS enhances the performance of fine- 517

tuned models by employing more effective param- 518

eter initialization strategies. 519

Our experimental results on the Llama family 520

demonstrate that LoRS can efficiently restore the 521

performance of pruned LLMs, surpassing exist- 522

ing methods like SPP and SQFT. This highlights 523

LoRS’s potential as an advanced solution for en- 524

hancing sparse models without compromising effi- 525

ciency or performance. 526
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6 Limitation527

Firstly, our proposed method LoRS, along with528

baseline methods SPP and SQFT, utilizes masks529

from Wanda and SparseGPT, keeping these530

masks unchanged during training. Recent work,531

MaskLLM (Fang et al., 2024), shows that masks532

acquired through a learning process perform bet-533

ter than those from one-shot pruning methods like534

Wanda and SparseGPT. Thus, exploring how to535

integrate these two approaches to develop more ef-536

ficient sparse models represents a key direction for537

future research.538

Secondly, quantization is a widely used tech-539

nique for model compression that often delivers540

superior results compared to pruning. The baseline541

method SQFT also explores the combination of542

quantization with pruning techniques. In this study,543

we focus solely on pruning, and our next step will544

be to incorporate quantization with our current ap-545

proach to enhance model efficiency further.546
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A Implementation of SPP, SQFT and723

LoRS724

725
def forward_sqft(x, W, A, B):726

M = (W != 0)727
W_adapted = W + M * (A @ B)728
return forward_adapter(x, W, A, B)729730

Listing 1: Implementation of SQFT

731
def forward_ckpt(x, W, A, B):732

M = (W != 0)733
W_adapted = W + M * (A @ B)734
return F.linear(x, W_adapted)735

736
def forward_sqft(x, W, A, B):737

# gradient checkpointing738
return checkpoint(forward_ckpt , x, W739

, A, B)740741

Listing 2: Implementation of SQFT-gc

742
def forward_adapter(x, W, A, B):743

n, m = W.shape744
r = A.shape [1]745
A = torch.repeat_interleave(weight ,746

m // r, dim=1)747
B = torch.repeat_interleave(weight ,748

n, dim=0)749
W_adapted = W * A * B750
return F.linear(x, W_adapted)751

752
def forward_spp(x, W, A, B):753

y1 = F.linear(x, W)754
y2 = forward_adapter(dropout(x), W,755

A, B)756
return y1 + y2757758

Listing 3: Implementation of SPP

759
def forward_adapter(x, W, A, B):760

n, m = W.shape761
r = A.shape [1]762
A = torch.repeat_interleave(weight ,763

m // r, dim=1)764
B = torch.repeat_interleave(weight ,765

n, dim=0)766
W_adapted = W * A * B767
return F.linear(x, W_adapted)768

769
def forward_spp(x, W, A, B):770

y1 = F.linear(x, W)771
# gradient checkpointing772
y2 = checkpoint(forward_adapter ,773

dropout(x), W, A, B)774
return y1 + y2775776

Listing 4: Implementation of SPP-gc

777
def forward_lors(ctx , x, weight , bias ,778

lora_A , lora_B , params):779
output_shape = x.shape [:-1] + (-1,)780
x_view = x.view(-1, x.shape [-1])781
merged_weight = weight\782

.addmm(lora_A , lora_B , alpha=783
params.scaling_factor)\784

.mul_(weight != 0)785

y = x_view.mm(merged_weight.t()). 786
view(output_shape) 787

y.add_(bias) 788
ctx.save_for_backward(x, weight , 789

lora_A , lora_B) 790
ctx.params = params 791
return y 792

793
def backward_lors(ctx , grad_y): 794

x, weight , lora_A , lora_B = ctx. 795
saved_tensors 796

params = ctx.params 797
x_shape = x.shape 798
grad_output_shape = grad_y.shape 799
x = x.view(-1, x_shape [-1]) 800
grad_y = grad_y.view(-1, 801

grad_output_shape [-1]) 802
grad_x = grad_bias = grad_A = grad_B 803

= None 804
merged_weight = weight.addmm(lora_A , 805

lora_B , alpha=params. 806
scaling_factor).mul_(weight != 807
0) 808

grad_x = grad_y.mm(merged_weight). 809
view(* x_shape) 810

grad_bias = grad_y.sum(dim=0) 811
grad_xBt = x @ lora_B.t() 812
grad_A = grad_y.t() @ grad_xBt 813
grad_yA = grad_y @ lora_A 814
grad_B = grad_yA.t() @ x 815
return grad_x , None , grad_bias , 816

grad_A , grad_B , None 817818

Listing 5: Implementation LoRS

B SPP and SQFT 819

SPP (Lu et al., 2024) is a parameter-efficient and 820

sparsity-preserving fine-tuning method. The for- 821

mulation of SPP can be mathematically described 822

as follows: 823

W̃(t) = W̃+ 824

W̃ ⊙ Repeat1(A(t),
C

r
)⊙ Repeat0(B(t), R), 825

where W̃ ∈ RR×C denotes the sparse weight 826

matrix, A ∈ RR×r and B ∈ R1×C rep- 827

resent the learnable parameter matrices, and 828

Repeati(x, n) means repeating the tensor x along 829

axis i for n times. The adjustment to the weight 830

matrix, denoted by W̃ ⊙ Repeat1(A(t), Cr ) ⊙ 831

Repeat0(B(t), R), is formulated as the Hadamard 832

product of these three matrices, thereby maintain- 833

ing the sparsity structure inherent in the matrices 834

involved. Furthermore, the parameters A(t) and 835

B(t) are the only ones subject to training, which 836

significantly reduces the parameters compared to 837

that of W̃ , thus exemplifying the parameter effi- 838

ciency of this approach. 839
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It is observed that SPP can be conceptualized as840

a variant of LoRA. To illustrate this perspective,841

consider partitioning each sequence of r consecu-842

tive elements within B into segments, such that:843

B = [B1,B2, . . . ,BC
r
],844

where each segment Bi is a vector of length r.845

Subsequently, we define a block-diagonal matrix B̂846

constructed from these segments:847

B̂ = [diag(B1), diag(B2), . . . , diag(BC
r
)].848

With this definition, the update rule for the849

weight matrix W̃ can be rewritten as:850

W̃(t) = W̃ + W̃ ⊙ (A(t) × B̂(t)).851

Therefore, SPP can be interpreted as a LoRA852

variant that employs a specialized matrix B̂, aug-853

mented with the initial weight matrix W̃ as a854

weight term, to achieve its parameter-efficient and855

sparsity-preserving properties.856

The distinctions between SPP and LoRA can be857

delineated as follows:858

• SPP employs a composite weight matrix B̂859

formed by stitching together multiple diagonal860

matrices, whereas LoRA utilizes a standard861

matrix B as its weight matrix.862

• SPP incorporates the initial weight matrix W̃863

as an additional weight term on the basis of864

LoRA.865

SQFT (Munoz et al., 2024) is another866

parameter-efficient and sparsity-preserving fine-867

tuning method. The formulation of SQFT can be868

mathematically described as follows:869

W̃(t) = W̃ +A(t) ∗ B(t) ⊙ (W̃ ≠ 0)870

where W̃ ∈ RR×C denotes the sparse weight871

matrix, A ∈ RR×r and B ∈ Rr×C represent the872

learnable parameter matrices.873

C More Experiment Results874

To investigate the role of gradient-based initializa-875

tion, we utilized SparseGPT to prune Llama-3-8B876

with a 2:4 sparsity pattern. Following this, we fine-877

tuned the model using LoRS with both random878

initialization and gradient-based approaches. As879

shown in Table 5, the experimental results indicate 880

that gradient-based adapters outperform their ran- 881

domly initialized counterparts. Furthermore, LoRS 882

with gradient-based initialization yielded the best 883

results among SPP, SQFT, and LoRS, while LoRS 884

with random initialization performed similarly to 885

SQFT but slightly worse than SPP. However, it is 886

important to note that SPP cannot employ gradient- 887

based initialization, so we cannot further optimize 888

the performance of SPP by gradient-based initial- 889

ization. 890

We also included experimental results for 60% 891

and 70% sparsity, obtained by pruning Llama-3-8B 892

using Wanda. The experimental results are shown 893

in Table 6. 894
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ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Avg.

Llama-3-8B

SPP Random 40.78 71.09 75.35 52.01 26.40 59.93 67.88 56.21
SQFT Random 38.05 64.02 73.27 48.89 25.20 60.65 62.12 53.17
LoRS Random 38.14 69.53 71.56 50.83 28.00 54.87 66.30 54.20
LoRS Gradient 40.70 70.96 79.08 53.26 28.00 60.65 67.17 57.94

Llama-2-7B

SPP Random 36.86 69.15 72.91 50.67 28.80 62.45 66.30 55.31
SQFT Random 36.01 64.35 72.17 51.84 29.60 59.93 63.61 53.93
LoRS Random 34.98 68.27 66.61 50.79 27.99 63.18 66.77 53.94
Gradient 37.63 70.03 74.22 51.95 30.20 63.90 66.38 56.33

Llama-2-13B

SPP Random 42.06 69.40 77.37 54.84 30.40 65.34 68.27 57.86
SQFT Random 40.78 67.93 76.48 54.68 29.40 71.12 69.38 58.54
LoRS Random 39.85 72.90 76.30 55.65 30.00 67.51 69.38 58.80
Gradient 42.32 74.24 77.52 55.81 30.00 68.95 70.56 59.91

Table 5: Zero-shot evaluation results of Llama-3-8b trained on the Alpaca under different initialization methods.

ARC-c ARC-e BoolQ Hellaswag OBQA RTE Winogrande Avg.

Llama-3-8B

Dense 50.26 80.09 81.35 60.18 34.80 69.31 72.38 64.05
60% 27.56 60.02 68.81 37.85 20.00 53.07 60.06 46.77

60% + LoRS 34.64 64.02 75.17 50.22 26.00 61.01 64.09 53.59
70% 18.77 30.72 52.63 28.04 12.00 52.71 49.72 34.94

70% + LoRS 25.00 55.35 62.97 40.30 20.60 61.73 54.30 45.75

Table 6: Zero-shot evaluation results of Llama-3-8b trained on the Alpaca dataset under 60% and 70% unstructured
sparsity.
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