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ABSTRACT

The capability of predicting environmental dynamics underpins both biological
neural systems and general embodied AI in adapting to their surroundings. Yet
prevailing approaches rest on static world models that falter when confronted with
novel or rare configurations. We investigate in-context learning (ICL) of world
models, shifting attention from zero-shot performance to the growth and asymptotic
limits of the world model. Our contributions are three-fold: (1) we formalize ICL
of a world model and identify two core mechanisms: environment recognition
(ER) and environment learning (EL); (2) we derive error upper-bounds for both
mechanisms that expose how the mechanisms emerge; and (3) we empirically
confirm that distinct ICL mechanisms exist in the world model, and we further
investigate how data distribution and model architecture affect ICL in a manner
consistent with theory. These findings demonstrate the potential of self-adapting
world models and highlight the key factors behind the emergence of EL/ER, most
notably the necessity of long context and diverse environments.

1 INTRODUCTION

The ability to predict future environmental states is crucial for reasoning and decision-making in both
animals and humans. Inspired by this principle, constructing predictive models, especially the world
model (Ha & Schmidhuber, 2018b), to forecast environmental dynamics and outcomes forms the
foundation for enabling agents to plan effective decisions and behaviors (Hafner et al., 2025; Zhang
et al., 2023a; Mazzaglia et al., 2024; Samsami et al., 2024; Alonso et al., 2024). Consequently, world
models are widely applied in fields such as navigation (Bar et al., 2025; Mendonca et al., 2021; Koh
et al., 2021; Duan et al., 2024; Liu et al., 2025), autonomous driving (Hu et al., 2023; Russell et al.,
2025; Gao et al., 2024; Zhang et al., 2024a; Wang et al., 2024c), robotics (Zhang et al., 2023b; Wu
et al., 2023; Hansen et al., 2024; Pang et al., 2025; Zhou et al., 2024; Barcellona et al., 2025), and are
considered a cornerstone of embodied artificial intelligence.

Despite their proven effectiveness across various applications, previous prediction frameworks largely
rely on static world models optimized for zero-shot, few-shot, or instantaneous performance. In
contrast, humans and animals achieve real-time adaptation (Vorhees & Williams, 2014) through
predictive coding—a process where prediction errors drive attention, generate feedback, and motivate
learning and adjustment (Rao & Ballard, 1999; Salvatori et al., 2023). For instance, when confronted
with rare environments, humans experience surprise yet rapidly recalibrate their predictions for that
setting, whereas static models continue to fail unless explicitly retrained on the relevant data. The
ability to dynamically modify predictive mechanisms based on observational evidence, rather than
relying solely on fixed parametric memory and external mapping modules, can effectively enable the
model to adapt to environments unseen during training. This capability can be effectively addressed
by In-Context Learning (ICL), as evidenced by recent advances in Large Language Models (Brown
et al., 2020). However, the potential of ICL for resolving plasticity in world models remains largely
underexplored in current literature. Addressing this gap could further improve the generalization
scope for embodied AI.

Following the Bayesian hypothesis of ICL (Panwar et al., 2023; Xie et al., 2024), we clarify two
potential underlying mechanisms for ICL in world models: environment recognition (ER), which
relies on parametric memory of the training environment, and environment learning (EL), which
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does not. By deriving upper error bounds for both ICL modes, we theoretically demonstrate that
the emergence of ICL depends on environment diversity, complexity, and context length. This
insight motivates the development of long-context adaptive world modeling. Consequently, we
introduce the Linear-attention Long-context world model, L2World, which enables self-adaptation
to environments through efficient memory updates within the context. Across cart-pole control and
vision-based indoor navigation tasks, we empirically demonstrate that distributional properties and
long-context capacity govern the ICL ability of world models. Despite employing lightweight image
encoders and decoders in L2World, it establishes a new state-of-the-art for long-sequence observation
prediction in cross-environment adaptation, outperforming methods that rely on computationally
intensive diffusion-based image backbones. These results underscore the importance and potential of
enhancing ICL through intentionally diversified datasets and long-context modeling architectures
within world models, rather than focusing solely on immediate or zero-shot frame-level performance.

2 RELATED WORK

2.1 DYNAMIC PREDICTION AND WORLD MODELS

Dynamic models, also referred to as world models (Ha & Schmidhuber, 2018b; Forrester, 1958),
encompass probabilistic, physical, or generative frameworks that formalize an AI system’s envi-
ronmental understanding (Sutton, 1990; Battaglia et al., 2013; Ha & Schmidhuber, 2018a; LeCun,
2022). These models predict future states by leveraging historical observations and play a pivotal
role in advancing reinforcement learning (RL) methodologies and related domains. Specifically,
they constitute foundational components in model-based RL (Finn & Levine, 2017; Schrittwieser
et al., 2020), enable simulations that facilitate agent learning through virtual experiences (thereby
reducing reliance on direct environmental interaction) (Hafner et al., 2019a; 2025; Samsami et al.,
2024; Sutton, 1991; Kaiser et al., 2020), and serve as auxiliary tasks to augment model supervision
(Jaderberg et al., 2016; Hu et al., 2022; Zhang et al., 2024c).

World models demonstrate robustness in integrating multi-modal raw sensor data, including visual,
textual, inertial, and tactile inputs. To mitigate challenges posed by high-dimensional sensory inputs,
representation learning paradigms such as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoders (VAEs) (Kingma & Welling, 2013) are widely utilized
to compress raw data into compact latent spaces. Subsequent temporal modeling in these reduced
dimensions is achieved through latent world model architectures (Hafner et al., 2025; Wang et al.,
2024d; Mazzaglia et al., 2024; Samsami et al., 2024; Hafner et al., 2019b; Zhang et al., 2024c;
Garrido et al., 2024; Li et al., 2024), which capture sequential dependencies and enable coherent
long-term predictions.

In navigation, early systems relied on traditional, hand-crafted pipelines such as SLAM. Recent
work replaces these modules with generative world models, including diffusion (Bar et al., 2025),
VAE (Koh et al., 2021), and RL-enhanced variants (Poudel et al., 2023; Duan et al., 2024), which
reconstruct dynamics or simulate semantics (Nie et al., 2025; Liu et al., 2023). However, most
existing methods disregard continual adaptation, especially across episodes, leaving a persistent gap
between zero-shot performance and lifelong operation.

2.2 IN-CONTEXT LEARNING AND META-LEARNING

The approach based on parametric memory, which predominantly relies on gradient-based optimiza-
tion or In-Weight Learning (IWL), has faced criticism for its lack of plasticity and the associated
challenges it poses in continual learning scenarios (Dohare et al., 2024). Conversely, ICL has emerged
as a pivotal capability in large language models (Brown et al., 2020), facilitating generalization to
novel tasks without the necessity of parameter fine-tuning. ICL leverages contextual memory for
task solutions, rather than depending on parametric memory. The concept of ICL is not novel. Meta-
learning (Santoro et al., 2016; Duan et al., 2016), which focuses on acquiring learning capabilities
rather than mastering specific skills, utilizes well-curated environments or data instead of relying
on large-scale, uncurated pre-training data. Nevertheless, the lack of well-structured, task-rich, and
cost-efficient datasets continues to present a significant challenge.

ICL has been utilized to encode a diverse array of learning mechanisms, including language learn-
ing (Akyürek et al., 2024), regression (Garg et al., 2022), reinforcement learning (Laskin et al.,
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2023; Lee et al., 2023; Wang et al., 2025), and world models (Anand et al., 2022; Gupta et al.,
2024), highlighting its resemblance to biological plasticity (Lior et al., 2024). Yet existing work
concentrates on few-shot in-context adaptation, overlooking ICL’s potential as contexts grow indefi-
nitely. Concurrent studies have identified various mechanisms and circuits underlying ICL, including
distinctions between task learning and task recognition (Pan et al., 2023), as well as retrieval versus
inference (Park et al., 2025), among others. Key factors influencing the emergence of ICL have also
been investigated, such as transience, task diversity, and context length (Chan et al., 2022; Anand
et al., 2022; Wurgaft et al., 2025; Nguyen & Reddy, 2025), along with the relationship between IWL
and ICL (Chan et al., 2025; Singh et al., 2025). However, these studies primarily focus on simplified
regression and classification problems, while theoretical frameworks addressing the incentivization
of ICL within world models remain underexplored.

3 METHODOLOGIES

We consider an environment e specified by a Partially Observable Markov Decision Process (POMDP)
e : ⟨O,S,A, Te, Ze⟩, where S is the state space, A is the action space, O is the observation space,
Te(s, a, s

′) = pτ,e(s
′|s, a) is the transition model, and Ze(s, o) = pz,e(o|s) is the observation model.

1 A fully observable MDP is denoted with e : ⟨S,A, Te⟩ with o ≡ s. We denote a world model with
the following equation:

World Model: ôt+1 ∼ p̂θ(·|qt) = fθ(qt),with qt = (st, at) (MDP)
or qt = (ot−∆t, at−∆t, . . . , ot, at) (POMDP) . (1)

Let θ denote the model parameters; values marked with a hat denote predictions, and unmarked
values denote the ground truth. Consider extra contexts of observations and actions, CT =

(o
(C)
1 , a

(C)
1 , . . . , o

(C)
T , a

(C)
T ), where T indexes the context length; the ICL capability of the world

model is then characterized by the following condition:

∀T1 > T2, D[p̂θ(·|qt, CT1
)||pe(·|qt)] < D[p̂θ(·|qt, CT2

)||pe(·|qt)], (2)

Here, D represents a metric measuring the error between two distributions (lower values indicate
better performance). Notably, the ICL of the world model fundamentally relies on cross-episode
contexts rather than intra-episode state estimation. To distinguish these concepts clearly, we use qt
to denote short-term state estimation and CT to represent long-term ICL. While these are typically
aligned in a single sequence in practice, maintaining this distinction facilitates rigorous theoretical
analysis. Building on prior work that partitions in-context learning into different modes (Kirsch et al.,
2022; Pan et al., 2023; Park et al., 2025), theoretically, we are able to identify two analogous modes
within world-model ICL: Environment Recognition (ER) and Environment Learning (EL). We then
derive error bounds that characterize the conditions under which each mode emerges.

3.1 ENVIRONMENT RECOGNITION (ER)

To clarify Equation (2), we consider a world model optimized on the finite environment set
E = {e1, . . . , e|E|}. Assume the system possesses an environment-specific model p̂θ,e for every
environment e, then p̂θ decomposes as follows:

p̂θ,ER(ot+1|qt, CT ) =
∑
e∈E

p̂θ(e|qt, CT )︸ ︷︷ ︸
Environment Recognition

· p̂θ,e(ot+1|qt)︸ ︷︷ ︸
Environment-Specific World Model

(3)

p̂θ,e(ot+1|qt) =
∫

p̂θ,s,e(st|qt)︸ ︷︷ ︸
State Estimation

· p̂θ,τ,e(st+1|st, at)︸ ︷︷ ︸
Dynamics

· p̂θ,z,e(ot+1|st+1)︸ ︷︷ ︸
Observation Model

dst

Equation (3) implies that in-context learning in world models arises mainly from the continual
refinement of environment recognition, since the context yields no improvement to the environment-
specific world-model term p̂θ,e = {p̂θ,s,e, p̂θ,τ,e, p̂θ,z,e}. Therefore, in the ER regime, the model first
acquires world models for the entire environment set through IWL or parametric memory, and then
uses the context solely to identify the current environment.

1While most prior work integrates the reward model into the world model, our analyses omit explicit
consideration of rewards. Nonetheless, since rewards can typically be derived from the state or observation, our
framework allows for straightforward extension to incorporate reward-related considerations.
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3.2 ENVIRONMENT LEARNING (EL)

Equation (3) is efficient when the environment set E is small, yet its effectiveness diminishes rapidly
as the size and diversity of E grow or when the system faces open worlds. However p̂θ can also be
approximated without estimating e at all, by directly accumulating the evidence for (qt, ot+1) across
all contexts:

p̂θ,EL(ot+1|qt, CT ) =
p(qt, ot+1|CT )

p(qt|CT )
(4)

An intuitive observation of Equation (4) is that EL functions, at minimum, as a in-context memorizer.
For highly complex environments, its performance might degrade sharply, because accurate estimation
of the transition of qt demands contexts that scale with the environment’s complexity.

3.3 THEORETICAL ANALYSES OF ER AND EL

Although the training process and data distribution play a key role in effectively incentivizing
ICL (Chan et al., 2022), how does the data distribution determine whether EL or ER emerges? If
training consistently minimizes predictive error, the error bounds of EL and ER become the decisive
factor in selecting the emergent mode. To investigate the conditions governing the emergence of the
two modes (ER and EL), we analyze the error upper bounds for each paradigm. For tractable analysis,
we introduce the following simplifying assumptions: (1) The observation, state, and action spaces are
discrete; (2) Both modes achieve ideal state estimation pe(s|q); (3) The context CT has a uniform
state-action distribution. Under these assumptions, we derive an upper bound on the error of the
world model optimized over environment set E , measured by the total variation (TV) distance, when
deployed in an unseen environment e0 at context horizon T . Formally, the TV error is bounded by:

Theorem 1. For Environment Recognition and Environment Learning whose predictive models
p̂ER/EL have been sufficiently optimized on the training environments E , the upper bound of the
total-variation (TV) distance between the predicted and the ground-truth transition, given a context
CT of length T , can be estimated as:

TV(p̂ER, pe0) ≤min[α/3 · (|E| − 1) · T−1/2︸ ︷︷ ︸
Recognition Error

, max
e1,e2∈E

TV (pe1 , pe2)︸ ︷︷ ︸
Diversity

] + min
e∈E

TV (p̂θ,e, pe0)︸ ︷︷ ︸
Best Matching Error

TV(p̂EL, pe0) ≤
√
2|O||S||A|log(4|O|/δ)︸ ︷︷ ︸

Environment Complexity

·T−1/2,

with probability 1− δ, and T > 4|S|2|A|2 log(4|S||A|/δ) (5)

Proofs and detailed assumptions for the above theorems are deferred to Appendix A. An immediate
observation from Theorem 1 is that EL enjoys an ideal error upper bound that decays as T−1/2,
whereas ER carries a non-decaying residual term (the best-matching error) that becomes the dominant
obstacle to generalizing across unseen environments. To enhance generalization, we therefore ask:
under what condition is EL preferred to ER? For the entire training set E , EL dominates whenever
Ee∈E

[
TV(p̂EL, pe)

]
≪ Ee∈E

[
TV(p̂ER, pe)

]
; The opposite inequality favors ER. Although the errors

themselves are intractable to evaluate directly, the following insights are obtained by comparing their
upper bounds:

(1) Lower environmental complexity and a greater number of environments favor EL over
ER: Note that the best-matching error is effectively zero because the model is evaluated only on
environments seen during training. The cardinality of the training set, |E|, affects only the ER bound,
whereas the environmental complexity, |O||S||A|, influences only the EL bound. Consequently,
lower complexity combined with a larger training set pushes the EL bound below the ER bound.

(2) Long context and environment diversity are key to both ER and EL: As the upper error
bound of ER effectively approaches zero when diversity is low, the emergence of both ER (where the
identification error would never dominate) and EL is precluded. Once the training set is sufficiently
diverse, both ER and EL obtain an upper error bound that decays as T−1/2, demonstrating that long
context is indispensable for either mechanism.

4
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(3) Over-training and powerful IWL facilitate ER over EL: we hypothesize that IWL perfectly
models the environment-specific dynamics (p̂θ,e) in the training set, so the best-matching error is
nearly zero during training; however, this is not always true. Early in training, IWL can still incur large
errors, transiently pushing the model toward EL instead of ER. This transiency is also investigated by
prior works in ICL (Singh et al., 2023; 2025). As training proceeds and IWL becomes increasingly
accurate, the model may revert to ER.

In the following section, we empirically confirm that these insights hold not only for discrete settings
but also for continuous MDPs and POMDPs. Because theory predicts that large environmental diver-
sity and low task complexity are required for incentivizing EL, and most of the closed benchmarks
can not satisfy those requirements. We construct our dataset from randomly sampled cart-poles and
procedurally generated mazes to evaluate the performance of ER and EL.
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Figure 1: The world model structure for the empirical study.

3.4 L2WORLD: LONG-CONTEXT AND LINEAR-ATTENTION WORLD MODELS

Prior work relies on multi-token representations or diffusion models to deliver high-fidelity single-
frame reconstructions specifically for images. While these approaches set the state-of-the-art for
static images, they introduce prohibitive memory and computational bottlenecks when sequences
grow to the length required for EL. We therefore introduce L2World that trade per-frame fidelity
for temporal scalability: for image observations, we compress each frame ot into a latent state
st with a lightweight variational auto-encoder (VAE) (Kingma & Welling, 2014) whose encoder
fI and decoder gI are ResNet stacks; for low-dimensional observations, we simply apply a small
multi-layer perceptron encoder/decoder pair. For computational efficiency, we do not model the full
state estimation with p̂(st|qt). Instead, we construct a pseudo-state that depends solely on the instant
observation and leaves all temporal-related encoding to transition modeling (Mazzaglia et al., 2024).
We then construct the adaptive world model p̂θ(ot+1|qt, CT ) using an efficient sequence decoder fθ.
Here we implement gated slot attention layers (Wang et al., 2020; Yang et al., 2024; Zhang et al.,
2024b) with chunk-wise parallelization during the training phase, while retaining the recurrent form
during the inference phase. The predictor of transition at first yields the output ht, which is further
processed by the decoder gS to produce the predicted state ŝ, corresponding to predicting a Gaussian
distribution over the latent space p̂ ∼ N (ŝt, σ

2
s). Although this assumption could lead to significant

loss of accuracy in stochastic environments, for the navigation tasks we consider, it is acceptable and
greatly increases computational efficiency. The model and the target function are listed as follows
(see details in Appendix B.2):

Observation Encoder : st, σs,t = fI(ot) Observation Decoder : ôt = gI(ŝt)

Latent Decoder : ŝt, σ̂s,t = gS(ht) Action Encoder : at = fA(Action[t])

Chunk-wise Temporal Modeling : ϕt, h1, ..., ht = fθ(s1, a1, ..., st, at)

Recurrent Temporal Modeling (Evaluating) : ϕt, ht+1 = fθ(ϕt−1, st, at)

Observation Reconstruction Loss : Lo = ||ot − gI(ŝt)||+ λKL(N (st, σs,t)||N (0, 1))

State Transition Loss:Ls = −
∑
t

KL(N (st, σs,t)||N (ŝt, σ̂s,t))

When the observation is an image, we first pre-train the image encoder fO and decoder gO on
pre-sampled observations; after this stage, their parameters are frozen while the temporal model
is trained. For lower-dimensional observations, all encoders/decoders are updated jointly with the
temporal model in a single end-to-end phase.
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4 EXPERIMENTS

Although prior studies (Chan et al., 2022; Singh et al., 2023; Raventós et al., 2023) have validated
the influence of data distribution on ICL, they have largely concentrated on simplified tasks such
as regression and classification. To examine how data distribution, model architecture, and training
procedure jointly affect the emergence of EL/ER, we select two canonical benchmarks. First, the cart-
pole, a classical continuous-control problem, in which EL primarily targets the acquisition of varying
embodiments and physical constants. Second, indoor navigation, a widely recognized POMDP, in
which EL focuses on learning and memorizing spatial coefficients. These two experiments confirm
not only the impact of each factor on EL but also demonstrate that EL spans a broad generalization
spectrum, extending from spatial reasoning and memorization to adaptation of embodiment and
physical constants.

4.1 RANDOM CART-POLES

Experiment Setting. To investigate EL and ER in cart-pole environments, we randomized four
variables in the environment settings: gravity g, cart mass mc, pole mass mp, and pole length l. We
focus on two different scopes of the configurations to investigate the impact of the diversity issue:
Scope 1 remains close to the original task, whereas Scope 2 covers a larger region and excludes Scope
1 (details are left to Figure 6). For each environment, we first trained an RL agent and then collected
trajectories with an expert policy perturbed by uniform noise spanning [0.3, 0.7] to ensure adequate
coverage of the state-action space. We trained five comparison models; all share the same data scale
(128K trajectories × 200 step/trajectory) but differ in the number and scope of the environments.

• 1-Env: 96K trajectories are sampled from the original environment (g = 9.8,mc =
1.0,mp = 0.1, l = 0.5), with 200 steps per trajectory.

• 4-Envs: 4 environments sampled from Scope 1+2, each with 24K trajectories.
• 16-Envs: 16 environments sampled from Scope 1+2, each with 8K trajectories.
• 8K-Envs (Scope 1/1+2): 8,000 environments sampled from Scope 1 or 1+2, each with 16

trajectories.

We evaluate with three test sets: (1) Seen 4-Envs, but the trajectories are independently sampled; (2)
256 environments from Scope 1; and (3) 256 environments from Scope 2. We evaluate mainly with
the average prediction error, which is averaged over each of the context lengths T .

1.00E-04

1.00E-03

1.00E-02

T∈(0,10] T   ∈(10,20] T  ∈(180,200]

Evaluating on Scope 1 Envs

T∈(0,10] T     ∈(10,20] T   ∈(180,200]

Evaluating on Scope 2 Envs

T∈(0,10] T     ∈(10,20] T   ∈(180,200]

Evaluating on 4 Seen Envs

Prediction 
Error

Figure 2: Comparison of models trained on different datasets (color-coded) in Cart-Poles. Perfor-
mance varies markedly with the training data, revealing distinct tendencies toward ER, EL, or an
inability to perform ICL.

We plot the evaluation results in Figure 2, where the following insight is worth noting:

Importance of both environment scope and environment number: A comparison between the
model trained on 1 environment (1 Env) and 4 environments (4 Envs) with the other group demon-
strates that an insufficient number of environments leads to the absence of ICL and generalization,
except in the tasks that the model has already seen. The 4 Envs group exhibits clear ER characteristics,
with a substantial performance gap between seen and unseen tasks. The 16 Envs (Scope 1 + 2) and
8K Envs (Scope 1) groups display similar capabilities; however, they lag significantly behind the 8K
Envs (Scope 1 + 2) group, indicating that both the scope of tasks and the number of tasks are crucial.
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Divergence between few-shot and many-shot performances: Another insight gleaned from the
comparison between 4-Envs and 8K-Envs is that the latter, which has a broader generalization scope,
also requires more context to learn. This is evidenced by the fact that the performance of the latter
group does not surpass that of the former group until T > 10. This also validates the theoretical
analysis, indicating that a longer context is a cost for achieving better generalization.

Over-training reduces generalization when training environments are insufficient: To isolate the
effect of over-training, we extract an early-stage checkpoint from the 4-Env group and evaluate it
across all environments. Although its performance in seen environments is sub-optimal, it generalizes
to unseen environments with a considerable margin over the over-trained model, confirming the shift
from ICL- to IWL-based reliance.

Figure 3: Best Matching Error (BME)
versus prediction error for various mod-
els across 130 test cart-poles.

EL exhibits a smaller generalization gap and a rela-
tively lower upper error bound. According to Equa-
tion (5), as the context length increases, the Best Matching
Error (BME) remains within the upper error bound in ER,
thereby limiting generalization. In contrast, EL is not af-
fected by this term. To further investigate these differences
on a case-by-case basis, we examine the correlation be-
tween the BME of each of the 130 unseen test cart-poles
and their corresponding prediction errors. The BME for
each model and testing environment is estimated by apply-
ing the ground-truth world model of each environment in
the training set to the test environment and selecting the
minimum error. Note that we plot the prediction error for
T > 100; therefore, the terms containing T−1/2 are negli-
gible, reflecting asymptotic performance. The results, shown in Figure 3, reveal that the model trained
with only four environments exhibits upper error bounds close to the line error = BME, whereas
the upper error bound progressively moves below this line as the number of training environments
increases. This not only validates the BME as a crucial term in Equation (5) but also confirms a
transition from ER to EL mode as the number of environments increases.

4.2 NAVIGATION

Experiment settings. Procedurally generated mazes are a demanding test-bed for transition prediction
(Pašukonis et al., 2023; Wang et al., 2024a). By stripping observations of semantic cues, the maze
framework keeps task complexity low while still exposing models to stochastic, partially observable
dynamics. We amplify diversity through fully randomized configurations that vary topology, textures,
object placement, and agent embodiment 1. Room-tour data are collected in a way similar to cart-pole:
we perturb the oracle object-navigation policy (Ehsani et al., 2024; Pašukonis et al., 2023) with
random noise levels in [0.05, 0.95] and record the complete trajectory of an agent in each environment.
The oracle policy was derived using Dijkstra’s algorithm based on the ground truth 2-D occupancy
maps. Observations are RGB images standardized to 128 × 128 pixels; The action space comprises
17 discrete actions, each corresponding to a unique offset and rotational movement. Table 1 lists the
resulting training sets, each drawn from a different number of environments and exhibiting varying
trajectory lengths. To isolate the effect of data distribution, all maze datasets contain the same
number of frames but differ in the coverage of trajectories and environments. To further investigate
transferability to more realistic environments, we also collect trajectories from the semantically rich
ProcTHOR simulation, which offers a wide variety of assets (Kolve et al., 2017; Deitke et al., 2022).
Specifically, we curate two datasets: a larger one with 40,000 trajectories and a smaller one with
5,000 trajectories, each trajectory having a length of 2,000 frames.

For training, inspired by overshooting (Hafner et al., 2019b) and Hu et al. (2022), we randomly mask
the st of the input sequences at some positions to enhance the model’s capability to predict the distant
future (see training details in Appendix B.1). Evaluation is conducted on both seen and unseen tasks.
By default, we use an evaluation set scale of |E| = 256. The evaluation process involves encoding
a context of length t for EL and then predicting future k-step transitions using auto-regression and

1Procedural Maze environments:
https://github.com/FutureAGI/Xenoverse/tree/main/xenoverse/mazeworld
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Table 1: A summary of data distribution across the training datasets.

Training DataSet # envs (|E|) Len. Traj. # Traj. # frames Indoor area

Maze-32K-L 32K 10K 32K 320M 380 ∼ 3422m2

Maze-32K-S 32K 100 3.2M 320M 380 ∼ 3422m2

Maze-128-L 128 10K 32K 320M 380 ∼ 3422m2

Maze-128-S 128 100 3.2M 320M 380 ∼ 3422m2

ProcTHOR-5K 5K 2K 5K 10M 40 ∼ 600m2

ProcTHOR-40K 40K 2K 40K 80M 40 ∼ 600m2

f. L2World (32K-S)e. L2World (128-S)d. L2World (128-L)

c. NWM (32K-L)b. Dreamer (32K-L)a. L2World (32K-L)

P
S

N
R

Context Length (T)

Figure 4: Comparison of k-step autoregressive PSNR in Mazes(Unseen).

the ground truth action records at+1, at+2, ..., at+k. We assess the error in both the latent spaces and
the decoded images, which we refer to as k-step prediction with context length T = t. For example,
T = 10 and k = 4 predict future 4 steps with a context length of 10.

We evaluate two additional baselines alongside the proposed long-context world model: (1) Naviga-
tion World Model (NWM) (Bar et al., 2025), which employs diffusion layers to predict the next frame
from the preceding four frames; (2) Dreamer-v3 (Hafner et al., 2019a), which uses LSTM layers for
temporal encoding. For NWM, we retain its original pre-trained image encoders and re-train only the
diffusion layers on the target dataset. For Dreamer-v3, we remove the policy components and train
only the world-model module to ensure a fair comparison.

Table 2: Comparison of the performances (PSNR ↑) of 1-step future prediction in Mazes.

Model Seen Unseen

T=1 T=10 T=100 T=1000 T=10000 T=1 T=10 T=100 T=1000 T=10000

L2World (Maze-32K-L) 16.80 20.97 23.11 24.65 25.05 16.37 21.24 23.17 24.66 24.65
L2World (Maze-32K-S) 18.57 19.28 19.67 20.21 20.48 18.45 19.24 19.63 20.29 20.31
L2World (Maze-128-S) 19.47 20.39 20.58 22.02 21.77 18.01 18.63 19.00 19.67 19.63
L2World (Maze-128-L) 18.54 20.86 23.32 25.65 26.00 17.54 19.43 20.96 21.54 21.52
Dreamer (Maze-32K-L) 16.40 21.82 19.24 21.26 21.89 16.81 20.48 21.40 22.65 22.12
Dreamer (Maze-128-L) 17.13 20.64 21.83 22.20 22.43 14.26 14.54 14.09 13.46 13.50
NWM (Maze-32K-L) 20.84 20.21 19.19 22.32 21.06 16.20 16.71 17.00 17.37 17.85

Impact of data distribution and model architecture on ICL. Table 2 reports the next-frame
prediction quality estimated by PSNR (k = 1) for models trained on different datasets. Three
empirical findings corroborate Theorem 1: (1) The 32K-L dataset yields the best generalization to
unseen environments, whereas the 128-L dataset excels on seen ones; in both cases, peak performance
occurs at the asymptotic stage, not at the beginning of the context. (2) Long-context training
consistently produces stronger ICL than short-context training, confirming that extensive context is
necessary for ICL to emerge. (3) Dreamer and NWM fall short even with a long-context dataset:
Dreamer’s LSTM backbone and NWM’s 4-frame horizon show that architectures incapable of fully
leveraging long contexts cannot achieve many-shot ER. Figure 4 further presents the k = {1, 2, 4, 8}-
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step prediction performances on unseen Mazes, measuring how far ahead the world models can
reliably foresee. For k > 1, the performance–context-length curve largely tracks the next-frame trend
across models, except for Dreamer (Maze 32K-L): at k = 8, its performance plateaus once T > 100,
whereas k = 1 keeps improving, revealing a larger compound-error accumulation than in our method.

Table 3: Comparison of the PSNR of 1-step future prediction in ProcTHOR (Unseen)

Model Pre-train Post-train T=1 T=10 T=100 T=1000 T=10000
L2World -

ProcTHOR-5K

15.49 18.22 19.02 19.74 19.81
L2World Maze-32K-L 16.46 20.23 21.05 21.89 22.04
L2World Maze-32K-S 19.80 19.45 19.86 20.57 20.61
L2World Maze-128-L 19.16 19.60 20.20 20.94 16.46

Dreamer -

ProcTHOR-40K

19.82 22.61 23.99 23.51 22.76
NWM - 18.30 21.41 21.11 21.02 20.08
L2World - 21.57 22.67 23.39 24.92 22.98
L2World Maze-32K-L 17.21 22.81 24.32 25.40 23.94

EL transfers better than ER. In Table 3, we train L2World on ProcTHOR trajectories and evaluate
it on unseen ProcTHOR scenarios. The EL model pre-trained on Maze-32K-L not only excels in
unseen mazes but also maintains its advantage when fine-tuned on the small ProcTHOR-5K dataset.
Its transferability significantly surpasses that of Maze-128-L and other baselines, demonstrating
EL’s domain generality. Further increasing the amount of ProcTHOR data leads to continuous
improvement in our model while preserving a substantial margin over Dreamer and NWM. However,
performance at T = 1K to T = 10K begins to deteriorate when the ProcTHOR training data
increases from 5K to 40K, suggesting that insufficient-length data (T ≤ 2K) impairs the long-ICL
ability acquired in Maze scenarios.

P
S

N
R

Context Length

20% context swap 50% context swap

Figure 5: The decline in performance of EL (trained with
Maze-32K-L) and ER (trained with Maze-128-L) when ob-
servations in contexts are shuffled, measured by PSNR.

EL is more sensitive to context per-
turbations than ER. We investigate
how models trained on datasets with
varying levels of diversity (Maze-32K-
L versus Maze-128-L) respond to per-
turbations in context. Specifically,
to assess the importance of context
on performance, we randomly shuf-
fle 20% or 50% of the observations
within contexts while keeping the ac-
tions unchanged. The results are illus-
trated in Figure 5. Interestingly, we
find that models trained on Maze-32K-
L (which are expected to exhibit EL)
are more severely affected by these perturbations than those trained on Maze-128-L. This suggests
that EL depends more heavily on context, whereas ER relies more on model parameters and is
therefore less influenced by changes in context.

5 CONCLUSIONS AND LIMITATIONS

Conclusions: This work investigates in-context learning of world models, specifically dynamic
models, focusing on the possible modes of EL and ER in MDP and POMDP. Theoretically, we
analyze error upper bounds for both modes to characterize their properties and identify the conditions
under which each excels. Empirically, we introduce L2World and validate these insights in cart-pole
and navigation tasks. Our results underscore that both high environment diversity and sufficient
context length of the world model are essential to elicit EL.

Limitations: At present, our analysis is confined to the dynamic model; the reward and policy models
can be addressed subsequently. This work constitutes a first step toward broader ICL mechanisms
such as In-Context Reinforcement Learning. More sophisticated validations on real-world datasets
and environments are desirable in the future.
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A ASSUMPTIONS AND PROOFS FOR THEOREM 1

We first define

∆(e1, e2) = EqDKL(p̂θ,e1(·|q), p̂θ,e2(·|q))
κ(e1, e2) = max

q
DKL(p̂θ,e1(·|q), p̂θ,e2(·|q))

ê0 = argmine∈E∆(e, e0)

κi = inf
e∈E,e̸=ê0

κ(e, ê0)

κs = sup
e∈E,e̸=ê0

κ(e, ê0)

pe(CT ) =
∏

(qt,ot+1)∈CT

pe(ot+1|qt)

We then make the following Assumptions:

• Queries qt = (st, at) are sampled i.i.d. from a distribution µ(s, a) with µ(s, a) ≡ 1
|S||A| .
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• κ(e1, e2) = α(e1, e2)
2∆(e1, e2) with α(e1, e2) =

√
κ(e1,e2)
∆(e1,e2)

, α > 1. We further define

α = maxe1,e2 α(e1, e2), so that ∆(e1, e2) ≥ κ(e1,e2)
α2 . Note that α can be interpreted

as the measure of ”non-uniformity” between any two environments in the set: it attains
maximum when the two environments are almost identical yet differ significantly at only a
few positions, and approaches 1 when the environments are either completely different or
exactly the same.

• The environment recognizer selects closest task ê by ê = argmaxe∈Epe(CT )

Proof for the first part of Theorem 1: First, we gave that

TV (p̂ER, pe0) = TV (p̂θ,ê, pe0) ≤ TV (p̂θ,ê, p̂θ,ê0) + TV (p̂θ,ê0 , pe0)

= TV (p̂θ,ê, p̂θ,ê0) + min
e∈E

TV (p̂θ,e, pe0) (6)

We then estimate the first term and use the Chernoff bound for derivation:

TV (p̂θ,ê, p̂θ,ê0) =
∑

e∈E,e̸=ê0

p(pe(CT ) > pê0(CT ))TV (p̂θ,e, p̂θ,ê0)

≤
∑

e∈E,e̸=ê0

α · exp(−T ·∆(e, ê0))︸ ︷︷ ︸
Chernoff bound

√
1/2∆(e, ê0)︸ ︷︷ ︸

Pinsker’s Inequality

<
∑

e∈E,e̸=ê0

α

2
√
e · T︸ ︷︷ ︸

achieved maximum when T ·∆(e,ê0)=1/2

<
α(|E| − 1)

3
√
T

(7)

On the other hand, by definition, the TV of ER satisfies the following upper bound:

TV (p̂ER, pe0) ≤ max
e0∈E

TV (p̂θ,e, pe0),

≤ max
e1,e2∈E

TV (pe1 , pe2) + min
e∈E

TV (p̂θ,e, pe0). (8)

By synthesizing Equation (6), Equation (7), and Equation (8), the proof is complete.

Proof for the second part of Theorem 1. We keep the aforementioned assumptions that the
distribution of the context CT is uniform on the state and action space. We denote n(s, a) as times of
appearance of (s, a) in CT . It is first straightforward to prove with Hoeffding’s inequality that with
probability of 1− δ/2,

T

|S||A|
−
√

T log (4|S||A|/δ)
2

≤ n(s, a ∈ CT ) ≤
T

|S||A|
+

√
T log (4|S||A|/δ)

2
∀s, a

Then, by add the constraint T > 4|S|2|A|2 log(4|S||A|/δ), with at least probability of 1− δ/2,

n(s, a) >
T

2|S||A|
(9)

To estimate p̂EL(s
′|s, a), we use Equation (4) to acquire:

p̂θ,EL(ot+1|qt, CT ) =
p(qt, ot+1|CT )

p(qt|CT )

=

∑
s p(s, at, ot+1|CT )p(s|qt)∑

s p(s, at|CT )p(s|qt)
(10)
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Now employ Equation (9) and Equation (10) in the calculation of TV:

TV (p̂EL, pe0) = TV (

∑
s p(s, at, ot+1|CT )p(s|qt)∑

s p(s, at|CT )p(s|qt)
,

∑
s p(s, at, ot+1)p(s|qt)∑

s p(s, at)p(s|qt)
)

≤ max
s

TV (
n(s, at, ot+1 ∈ CT )

n(s, at ∈ CT )
,
p(s, at, ot+1)

p(s, at)
)

≤

√
|O|log(4|O|/δ)
n(s, at ∈ CT )︸ ︷︷ ︸

Hoeffding’s inequality

with probability at least 1− δ/2

<

√
2|O||S||A|log(4|S|/δ)

T
with probability at least 1− δ

This finishes the proof of Theorem 1

B ADDITIONAL EXPERIMENT SETTINGS

B.1 ENVIRONMENTS AND DATASETS

𝑙

𝑔

𝑚𝑝

𝑚𝑐

g mc mp l

Scope 1 [8,12] [0.8, 1.2] [0.08, 0.12] [0.4, 0.6]
Scope 1+2 [2,16] [0.5, 2.0] [0.05, 0.20] [0.20, 1.0]

t-SNE visualization of cart-pole envs

16 Envs
4 Envs
Original Task
Test Scope 1
Test Scope 2

DataSets # envs (|E|) Len. Traj. # Traj. # time steps Scope

1-Env 1 200 128K 25.6M Original
4-Envs 4 200 32K 25.6M Scope 1 & Scope 2
16-Envs 16 200 8K 25.6M Scope 1 & Scope 2
8K-Envs (Scope 1) 8K 200 16 25.6M Scope 1
8K-Envs (Scope 1+2) 8K 200 16 25.6M Scope 1 & Scope 2
Evaluation (Scope 1) 256 200 4 205K Scope 1
Evaluation (Scope 2) 256 200 4 205K Scope 2
Evaluation (4-Envs) 4 200 256 205K Scope 1 & Scope 2

Figure 6: Configuration scopes and cases of random Cart-Poles (upper left), t-SNE visualization of
the configuration distribution (upper right), and a list of training and evaluation datasets.

Cart-pole: Figure 6 lists the scopes of the Cart-Pole environment variants, their t-SNE visualization,
and details of the training and evaluation data. All datasets share a trajectory length of 200, which is
sufficient for ICL in Cart-Pole variants. The training data comprises a total of 25.6M timesteps to
avoid interference from data scale on performance, and the evaluation data contains 205K steps in
total.

Mazes: Our maze environment is closely related to the settings described in Pašukonis et al. (2023);
Wang et al. (2024b), which are generated on a 15× 15 grid world. The distribution of the sampled
mazes is shown in Figure 7 and Figure 8. The primary distinction between our mazes and those in
previous work is the enhanced environmental diversity achieved through randomized configurations,
which include the following:

• The textures of the ceiling, ground, and walls are randomly selected from a collection of 87
real-world textures.

• The scale of each grid varies from 1.5m to 4.5m, and the indoor height ranges from 2m to
6m.
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Figure 7: bird’s-eye view of 128 procedurally generated mazes in the Homogeneous dataset.

Area Occupation Rate Objects Number

P
ro

b
ab

il
it

y

Figure 8: Distribution of the configurations (area, occupancy rate, and number of objects in each
scene) in the 32K procedurally generated mazes

• The ground clearance and the field of view (FOV) of the camera are varied between
[1.6m, 2.0m] and [0.3π, 0.8π], respectively.

• Two-wheeled dynamics are employed for the embodiment.

• Each environment involves [5, 15] objects, each marked with a crossable, translucent light
wall of a different color.

• The agent receives a reward of 1.0 when reaching the goal, and a negative reward for
collisions with walls, which is dependent on the agent’s speed.

ProcTHOR: We sample 336 training and 256 evaluating houses from the ProcTHOR-10K dataset.
Unless otherwise specified, we keep both the trajectories and the environments of the validation
datasets in ProcTHOR and Mazes separate from those of the training datasets. In seen-task validation,
the environments have overlaps, but the trajectories are resampled.

B.2 DETAILS OF MODEL STRUCTURES

The framework consists of the following modules:

(a) Procedurally Generated Mazes (b) ProcTHOR

Figure 9: Illustration of the embodiment, the observation and the trajectories in procedurally generated
mazes (a) and ProcTHOR (b).
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Environments Encoder & Decoder D L d lM
Cart-pole Raw 128 4 4 64
Navigation Image 1024 18 32 64

Table 4: Model architecture and hyper-parameters for the two classes of environments

• Observation Encoder (Image): A convolutional encoder that processes 128×128 images into
a D-dimensional latent vector through 9 convolution layers and 8 residual blocks.

• Observation Decoder (Image): A deconvolutional decoder that reconstructs 128×128 images
from a D-dimensional latent vector through 1 convolution layer, 8 residual blocks, and 3
transposed-convolution layers.

• Observation Encoder (Raw): A linear layer mapping from hidden size of 4 to D.

• Observation Decoder (Raw): A linear layer mapping from hidden size of D to 4.

• Latent Decoder: A 1-layer MLP with input size D, hidden size D, layer normalization, and
residual connections.

• Action Encoder: A 1-layer MLP that encodes discrete actions into a D-dimensional hidden
state.

• Sequence Decoder: A gated self-attention architecture with L layers, hidden size D, inner
hidden size D, d attention heads, memory length lM , layer normalization, and block
recurrence.

The hyper-parameters are specified as Table 4.

B.3 DETAILS OF TRAINING

All models were trained on NVIDIA A800 GPUs using the AdamW optimizer with the default
settings in PyTorch (Paszke et al., 2019).

Cart-pole training details. We train the model with a per-GPU batch size of 128, an epoch of 100,
an initial learning rate of 1.0e−4 and decayed to 2.04e−5.

Maze pre-training details. We first train the Image Encoder and Image Decoder with a per-GPU
batch size of 400, an epoch of 50, and an initial learning rate of 3e−4. Subsequently, we train all
model components with a per-GPU batch size of 10, an epoch of 10, an initial learning rate of 2.0e−4,
and decayed to 8.8e−5.

ProcTHOR training details. We first train the Image Encoder and Image Decoder using the same
settings as in Maze pretraining, except for the initial learning rate, which is set to 2.0e−4. The VAE is
then frozen, while the remaining modules are initialized from the weights trained on the Maze dataset
and further fine-tuned on ProcThor data. For the 40k version of ProcThor, we train for 10 epochs
with a per-GPU batch size of 10 and an initial learning rate of 2.0e−4, decayed to 1.2e−4. For the 5k
version, we use the same settings but train for 20 epochs.

C ADDITIONAL RESULTS

Additional reults of the performances of L2World in Mazes. Table 5 presents the prediction error
(measured as the mean square error between observations) of L2World and the other baselines on
the Maze datasets. The prediction errors are fully consistent with the PSNR evaluation; therefore,
we report only the PSNR results in the remaining experiments. Table 6 details the K-step prediction
performance, corresponding to the histograms in Figure 4.

EL and ER in navigation world models implicitly perform global mapping. We further show that
predicting transitions alone, without any specifically designed tasks, can potentially capture the global
map implicitly. We collect 12 trajectories from 4 unseen mazes (3 trajectories in each maze) and
track the transformation of memory states (ϕt) across each of the linear attention layers. Among the
18 layers used in the transition model, we select layers {1, 6, 12, 18} for t-SNE visualization of the
memory states (ϕt). To ensure that the 4 unseen mazes are not trivially discriminable, for instance, by
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Table 5: 1-step prediction error(↓) of different world models in Mazes.

Model Seen Unseen

T=1 T=10 T=100 T=1000 T=10000 T=1 T=10 T=100 T=1000 T=10000

L2World (Maze-32K-L) 2.09× 10−2 8.01× 10−3 4.89× 10−3 3.43× 10−3 3.13× 10−3 2.30× 10−2 7.51× 10−3 4.82× 10−3 3.42× 10−3 3.42× 10−3

L2World (Maze-32K-S) 1.39× 10−2 1.18× 10−2 1.08× 10−2 9.53× 10−3 8.96× 10−3 1.43× 10−2 1.19× 10−2 1.09× 10−2 9.35× 10−3 9.31× 10−3

L2World (Maze-128-S) 1.13× 10−2 9.15× 10−3 8.74× 10−3 6.28× 10−3 6.66× 10−3 1.58× 10−2 1.37× 10−2 1.26× 10−2 1.08× 10−2 1.09× 10−2

L2World (Maze-128-L) 1.40× 10−2 8.20× 10−3 4.66× 10−3 2.72× 10−3 2.51× 10−3 1.76× 10−2 1.14× 10−2 8.02× 10−3 7.01× 10−3 7.04× 10−3

Dreamer (Maze-32K-L) 2.29× 10−2 6.57× 10−3 1.19× 10−2 7.47× 10−3 6.47× 10−3 2.08× 10−2 8.95× 10−3 7.25× 10−3 5.43× 10−3 6.14× 10−3

Dreamer (Maze-128-L) 1.94× 10−2 8.63× 10−3 6.56× 10−3 6.02× 10−3 5.72× 10−3 3.75× 10−2 3.51× 10−2 3.90× 10−2 4.50× 10−2 4.46× 10−2

NWM (Maze-32K-L) 8.22× 10−3 9.52× 10−3 1.20× 10−2 5.86× 10−3 7.83× 10−3 2.02× 10−2 2.26× 10−2 2.48× 10−2 1.70× 10−2 1.28× 10−2

Table 6: Average PSNR of k-Step auto-regressive prediction in Mazes (Unseen).

Model
T=1 T=10 T=100 T=1000 T=10000

k = 1 k = 2 k = 4 k = 8 k = 1 k = 2 k = 4 k = 8 k = 1 k = 2 k = 4 k = 8 k = 1 k = 2 k = 4 k = 8 k = 1 k = 2 k = 4 k = 8

L2World (Maze-32K-L) 16.94 15.79 14.74 13.39 21.02 19.88 18.96 15.83 23.24 22.16 20.85 18.31 24.60 23.57 21.33 18.03 24.80 24.11 21.81 18.72
L2World (Maze-32K-S) 18.44 17.41 16.82 15.61 19.23 19.05 17.92 16.73 19.62 19.43 18.19 16.69 20.29 20.17 18.89 17.03 20.31 20.21 18.83 17.00
L2World (Maze-128-S) 18.00 16.83 16.23 15.17 18.62 18.18 17.06 15.96 18.98 18.53 17.39 15.93 19.65 19.09 17.86 16.10 19.62 19.12 17.91 16.18
L2World (Maze-128-L) 17.53 15.99 15.38 14.53 19.45 18.73 17.67 16.64 20.96 20.47 19.11 17.57 21.54 20.76 19.45 17.48 21.53 21.05 19.58 17.65
Dreamer (Maze-32K-L) 16.16 15.80 14.62 13.12 19.66 18.96 17.72 16.25 21.89 20.99 20.33 17.74 23.13 22.08 20.57 17.00 23.16 21.85 20.23 16.14
NWM (Maze-32K-L) 16.20 13.37 11.68 11.16 16.71 13.34 11.65 11.00 17.00 13.86 12.13 11.48 17.37 13.82 12.24 12.60 17.85 14.51 12.60 12.46

Prediction Error

∆
P
S
N
R

∆
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S
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R

𝑘 = 1

𝑘 = 8

Figure 10: We investigated the correlation between the average prediction error and the performance
change. The performance change was quantified by ∆PSNR. ∆PSNR is acquired by the loss of
accuracy by replacing the input st with predicted ŝt and then measuring the loss of PSNR in future
predictions with k = 1 and k = 8.
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geometric and embodiment configurations in one-shot, we maintain identical configurations for most
aspects of the evaluated 4 mazes while varying only their topology, such as the arrangement of walls.
We employ silhouette scores (Rousseeuw, 1987) to quantify clustering quality, where higher values
indicate better environment separation. As visualized in Figure 11, we highlight two insights: first,
training solely on transition prediction across diverse environments and long contextual windows
implicitly learns a spatial map, potentially removing the need for auxiliary mapping modules; second,
EL and ER behave differently across layers, suggesting distinct underlying mechanisms.

Silhouette score: 0.12 Silhouette score: 0.53 Silhouette score: 0.40Silhouette score: 0.38

Silhouette score: 0.05 Silhouette score: -0.03 Silhouette score: 0.54Silhouette score: 0.53

M
az

e-
3
2
K

-L
M

az
e-

1
2
8
-L

layer 1 layer 18layer 12layer 6

Figure 11: t-SNE visualization of the memory states ϕt in state transition prediction for Maze-32K-
L and Maze-128-L groups. We visualize the memory states from layers 1, 6, 12, and 18. The
visualization encompasses 12 trajectories across 4 distinct environments that are similar yet exhibit
slight differences. Trajectories originating from the same environment are indicated by similar colors.
The Silhouette score is computed by treating trajectories from each environment as individual classes.

Investigating EL from perspectives of predictive coding. The concept of predictive coding has
emerged as a foundational mechanism in both biological and artificial learning systems (Rao &
Ballard, 1999), in which the discrepancy between expected and observed outcomes drives attention
and learning. To investigate the correlation between EL and predictive coding, we conducted
experiments to examine how prediction error influences learning progress. Specifically, we selected
three positions T = {10, 100, 1000} for each of 256 evaluating sequences. At these positions, we
replaced the ground-truth observations st with model-generated predictions, thereby suppressing
error-correction signals derived from real-world feedback. We then compared the accuracy loss in
subsequent frames (including k = 1 and k = 8) with and without this replacement. This comparison
quantifies the importance of ground-truth observations for learning progress. As illustrated in
Figure 10, we observed a clear positive correlation between the mean performance difference
(∆PSNR) and the prediction error (MSE loss) of the replaced frame. This finding suggests that EL
progress is sensitive to prediction error, a phenomenon reminiscent of predictive coding in biological
systems. These results further validate ICL as a prospective mechanism for adapting world models to
variant environments.

Cases. Figure 12 illustrates 10-step-ahead predictions at T = {1, 100, 10K} for our method,
Dreamer, and NWM, all trained on Maze-32K-L. NWM produces visually convincing frames with
fine textures and a plausible layout; however, frame-wise fidelity alone is insufficient for accurate
long-range forecasting because the model lacks long-term memory and spatial reasoning. Figure 13
juxtaposes the performance of L2World trained with 32K-L and 32K-S, clearly demonstrating the
benefit of longer sequences in promoting EL. Figure 14 shows two failure cases of L2World (Maze-
32K-L) on unseen maze environments. These failures appear to result from excessive blurring in
the predictions, causing the compound error to escalate rapidly as k increases. Building on this
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Figure 12: Example predictions produced by L2World and the baselines in Mazes and ProcTHOR for
T = {1, 100, 10000} and k = 10, together with the corresponding ground-truth sequences.

observation, a natural extension of our work is to incorporate additional overshooting during training
so that the world model can better forecast distant futures.

D USE OF LLMS

We used large language models (LLMs) only as an auxiliary tool to improve the clarity and presenta-
tion of this paper. The assistance was limited to:

• Language refinement: grammar checking, wording suggestions, and improving sentence
fluency while preserving the authors’ original technical content.

• Mathematical support: helping verify the correctness and readability of some derivations
and notations, without introducing new technical results.

No LLM was used for generating research ideas, designing experiments, analyzing results, or writing
original scientific content. All conceptual and technical contributions were made by the authors.
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Figure 13: Example predictions by L2World trained with Maze-32K-L and Maze-32K-S at T =
{1, 10, 100, 1000, 10000} and k = 8.
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Figure 14: 2 failed examples produced by L2World on Mazes with T = {1, 100, 10000} and k = 8.
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