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ABSTRACT

Constrained bilevel optimization tackles nested structures present in constrained
learning tasks like constrained meta-learning, adversarial learning, and distributed
bilevel optimization. However, existing bilevel optimization methods mostly are
typically restricted to specific constraint settings, such as linear lower-level con-
straints. In this work, we overcome this limitation and develop a new single-
loop, Hessian-free constrained bilevel algorithm capable of handling more gen-
eral lower-level constraints. We achieve this by employing a doubly regularized
gap function tailored to the constrained lower-level problem, transforming con-
strained bilevel optimization into an equivalent single-level optimization problem
with a single smooth constraint. We rigorously establish the non-asymptotic con-
vergence analysis of the proposed algorithm under the convexity of lower-level
problem, avoiding the need for strong convexity assumptions on the lower-level
objective or coupling convexity assumptions on lower-level constraints found in
existing literature. Additionally, the generality of our method allows for its ex-
tension to bilevel optimization with minimax lower-level problem. We evaluate
the effectiveness and efficiency of our algorithm on various synthetic problems,
typical hyperparameter learning tasks, and generative adversarial network.

1 INTRODUCTION

Bilevel optimization (BiO), which subsumes minimax optimization as a special case, is a hierarchi-
cal optimization comprising two levels, with one problem nested within another. There is grow-
ing interest in BiO that is driven by an abundance of applications. Examples in machine learning
(ML) include hyperparameter optimization (Pedregosa, 2016; Franceschi et al., 2018; Mackay et al.,
2019), meta-learning (Franceschi et al., 2018; Zügner & Günnemann, 2018; Rajeswaran et al., 2019;
Ji et al., 2020a), and reinforcement learning (Kunapuli et al., 2008; Hong et al., 2023). Typically, the
lower-leve (LL) problems of BiO in ML literature handle learning tasks as unconstrained optimiza-
tion problems. However, constraints are crucial for learning tasks and are becoming increasingly
important in designing robust, fair, and safe ML systems (Silva & Najafirad, 2020; Mehrabi et al.,
2021; Yang et al., 2023). The resulting constrained bilevel problem applies to a wider range of ap-
plications than the unconstrained one, such as adversarial learning (Madry et al., 2018; Wong et al.,
2019; Zhang et al., 2022), federated learning (Fallah et al., 2020; Tarzanagh et al., 2022; Yang et al.,
2024), continual learning (Lopez-Paz & Ranzato, 2017), and meta-learning for few-shot learning
(Xu & Zhu, 2023).

Existing BiO methods mainly focus on the LL unconstrained case (Franceschi et al., 2018; Ghadimi
& Wang, 2018; Grazzi et al., 2020; Ji et al., 2020b; Chen et al., 2021; Ji et al., 2022; Hong et al.,
2023; Arbel & Mairal, 2022; Dagréou et al., 2022; Kwon et al., 2023; Huang, 2023). Recently, a
few approaches have emerged to tackle BiO problems with constraints. However, most of these
approaches are limited to linear constraints or constraints that rely solely on the LL variable. In
this study, we address more general constrained BiO problems, where the LL problems involve
constraints coupling both upper-level (UL) and LL variables. Explicitly, we consider the constrained
bilevel optimization problem of the following form:

min
x∈X,y∈Y

F (x, y) s.t. y ∈ S(x), (1)
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with S(x) being the set of optimal solutions of the constrainted lower-level problem,

min
y∈Y

f(x, y) s.t. g(x, y) ≤ 0, (2)

where x ∈ Rn, y ∈ Rm, X and Y are closed convex sets in Rn and Rm, respectively. The UL
objective F : X × Y → R, the LL objective f : X × Y → R, and the LL constraint mapping
g : X × Y → Rp are continuously differentiable functions.

The constrained BiO problem (1) is challenging due to the implicit constraint y ∈ S(x), which re-
quires y to be a solution of an optimization problem. The LL constraints introduce extra complexity,
especially when dealing with coupled LL constraints. This complexity hinders the straightforward
extension of existing methods to constrained BiO problems (Kwon et al., 2024).

In the pursuit of solving constrained BiO problem, several algorithms have been developed to ad-
dress specific cases of (1). For instance, the works (Tsaknakis et al., 2022; Khanduri et al., 2023;
Kornowski et al., 2024) handle constrained BiO problems with g(x, y) = Ay − b and f(x, y) being
strong convexity with respect to (w.r.t.) y. As for coupling constrained LL problem, Xiao et al.
(2023) introduces an alternating projected SGD approach for a family of BiO problems with cou-
pling LL linear equality constraints Ay + h(x) − c = 0, where A represents a matrix, c denotes
a vector, and h(x) is a vector-valued function. Beyond the confines of a specific setting, Xu &
Zhu (2023) develops a gradient-based approach for general BiO problems, where the LL problem
is convex with equality and inequality constraints. Since the methods presented in these works pre-
dominantly utilize implicit gradient-based techniques, it is unexpected that they all presuppose the
strong convexity of the LL objective w.r.t. y, alongside other regularity conditions, to ensure the
uniqueness and smoothness of the LL solution mapping. More importantly, the algorithms in these
studies would tolerate the heavier memory and computational cost of using second-order calcula-
tions in large-scale applications.

Therefore, it is imperative to develop first-order methods that do not necessitate explicit estimation
of the implicit gradients, thereby facilitating the resolution of a broader class of constrained BiO
problems. In pursuit of this goal, the value function approach has garnered considerable attention
due to its efficacy in designing first-order, single-loop numerical algorithms (Ye & Zhu, 1995; Kwon
et al., 2023; Shen & Chen, 2023). However, challenges arise when the LL problem involves con-
straints. Specifically, the value function, v(x) := miny∈Y {f(x, y) | g(x, y) ≤ 0}, is usually an
implicit nonsmooth function, even when the underlying problem functions possess favorable prop-
erties. This difficulty is further exacerbated in the presence of coupled LL constraints, where v(x)
is typically nonsmooth, making it challenging to compute or approximate its generalized gradient.
Recently, Jiang et al. (2024) proposed a primal-dual-assisted penalty approach to address these chal-
lenges associated with coupled LL constraints, based on the value function reformulation.”

A notable distinctive approach for addressing general constrained BiO problems has recently been
presented in Yao et al. (2024), which introduces a novel proximal Lagrangian value function to
tackle constrained LL problems. By utilizing this function, they convert the constrained BiO prob-
lem into an equivalent optimization problem with smooth constraints. Notably, their reformulation
preserves the coupling LL constraints, akin to the value function approach. Consequently, the pro-
posed algorithm (LV-HBA) in Yao et al. (2024) involves Euclidean projection onto the coupled LL
constraint set. However, such an operation typically requires the assumption of coupling convexity
and can be costly when the set is complex. Therefore, a natural question arises: Can we develop a
first-order algorithm to overcome possibly coupled lower-level constraints in bilevel optimization?

Our response to this question is affirmative. Next, we highlight the main contributions of this study.
Additional related work is provided in Appendix A.1.

• Reducing constrained bilevel optimization into an equivalent optimization problem
with only a single smooth inequality constraint. We propose a novel single-level
smoothed reformulation for constrained BiO with possibly coupled LL constraints. A key
technique is the doubly regularized gap function defined in (3), which serves as an op-
timality metric for the LL problems and allows for straightforward Hessian-free gradient
evaluation, as shown in (4). Furthermore, this type of gap function can be readily extended
to tackle more complex bilevel optimization scenarios involving minimax lower-level prob-
lems.
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• Developing a single-loop first-order algorithm without projection onto the coupled
lower-level constraint set. Building upon the newly introduced single-leve reformula-
tion, we propose Bilevel Constrained GAp Function-based First-order Algorithm (BiC-
GAFFA), a first-order algorithm that can be implemented entirely within a single-loop
framework. Furthermore, we rigorously establish the non-asymptotic convergence analysis
of BiC-GAFFA under the convexity of LL problem, avoiding the necessity for either the
strong convexity assumption on the LL objective or the full convexity assumption on the
LL constraints.

• We validate the effectiveness and efficiency of BiC-GAFFA on various synthetic problems,
typicial hyper-parameter learning tasks, and generative adversarial network. These experi-
ments collectively substantiate the superior performance of BiC-GAFFA.

2 REGULARIZED GAP FUNCTION AND EQUIVALENT REFORMULATION

Transforming a BiO problem to a single-level optimization problem is a useful strategy from both
theoretical and computational perspectives. In this section, we introduce a novel smoothed refor-
mulation tailored for constrained BiO problems with potentially coupled LL constraints. For this
purpose, we define the following doubly regularized gap function for the LL problem (2):

Gγ(x, y, z) := max
θ∈Y,λ∈Rp

+

{
L(x, y, λ)− 1

2γ2
∥λ− z∥2 − L(x, θ, z)− 1

2γ1
∥θ − y∥2

}
, (3)

where z ∈ Rp, the Lagrangian function L(x, y, z) := f(x, y) + zTg(x, y), and γ := (γ1, γ2) >
0 is the regularization (or proximal) parameters. This regularized gap function concept has been
previously applied in various contexts, such as variational inequalities (Fukushima, 1992), standard
Nash games (Gürkan & Pang, 2009), and the generalized Nash equilibrium problem (Von Heusinger
& Kanzow, 2009). However, its application in studying BiO problems with constrained lower-level
problem remains unexplored.

When the LL problem is convex, and the associated multipliers exist for any y ∈ S(x), that is,
M(x, y) :=

{
λ ∈ Rp+ | 0 ∈ ∇yf(x, y) + λT∇yg(x, y) +NY (y), λ

Tg(x, y) = 0
}
̸= ∅, the single

inequality constraint Gγ(x, y, z) ≤ 0 can equivalently characterizes the solution set of LL problem.
Lemma 2.1. Assume that both f(x, ·) and g(x, ·) are convex for any x ∈ X . Let γ1, γ2 > 0, we
have Gγ(x, y, z) ≥ 0 for any (x, y, z) ∈ X×Y ×Rp+. Furthermore, for any (x, y, z) ∈ X×Y ×Rp+,
Gγ(x, y, z) ≤ 0 if and only if y ∈ S(x) and z ∈ M(x, y).

Another advantageous property of Gγ is its continuously differentiability when both functions f and
g exhibit continuous differentiability.
Lemma 2.2. Assume that both f(x, y) and g(x, y) are convex in y on Y for any x ∈ X and be
continuously differentiable on an open set containing X × Y . Then Gγ(x, y, z) is continuously
differentiable on X × Y × Rp+, and for any (x, y, z) ∈ X × Y × Rp+,

∇Gγ(x, y, z) =

∇xf(x, y) + (λ∗)T∇xg(x, y)
∇yf(x, y) + (λ∗)T∇yg(x, y)

− (z − λ∗) /γ2

−

∇xf(x, θ
∗) + zT∇xg(x, θ

∗)
(y − θ∗) /γ1
g(x, θ∗)

 , (4)

where θ∗ and λ∗ denote θ∗(x, y, z) and λ∗(x, y, z), respectively, defined as

θ∗(x, y, z) := argmin
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
,

λ∗(x, y, z) := argmax
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
= ProjRp

+
(z + γ2g(x, y)) .

(5)

Now we derive a smooth single-level reformulation for the constrained BiO problem (1):

min
(x,y,z)∈X×Y×Rp

+

F (x, y) s.t. Gγ(x, y, z) ≤ 0. (6)

This reformulation problem (6) is equivalent to the original BiO problem (1).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 2.3. Assume that both f(x, ·) and g(x, ·) are convex for any x ∈ X . Let γ1, γ2 > 0, the
reformulation (6) is equivalent to the bilevel optimization problem (1), provided that for any feasible
point (x, y) of (1), a corresponding multiplier of the lower-level problem (2) exists at (x, y), i.e.,
M(x, y) ̸= ∅. Specifically, (x∗, y∗) is an optimal solution to the bilevel optimization problem (1)
and z∗ ∈ M(x∗, y∗) if and only if (x∗, y∗, z∗)is an optimal solution to the reformulation (6).
Remark 2.4. The equivalent reformulation (6) possesses two noteworthy characteristics. First, the
formulation includes only one inequality constraint. Second, the LL constraints g(x, y) ≤ 0 are not
explicitly stated in the reformulation (6), in contrast to the value function-based reformulation as
well as the formulation presented in (Yao et al., 2024). Note also that the proofs of Lemmas and
Theorem presented in this section are available in Appendix A.3.
Remark 2.5. The assumption of the existence of the multiplier of the lower-level problem (2) in The-
orem 2.3 can be guaranteed when the lower-level constraint g(x, y) ≤ 0 satisfies a constraint quali-
fication condition such as the Guignard’s CQ, linear independence constraint qualification (LICQ),
or Mangasarian-Fromovitz constraint qualification (MFCQ).

3 GAP FUNCTION-BASED FIRST-ORDER ALGORITHM

Building upon the newly introduced reformulation, we proceed to the algorithm design phase.

First, to enhance the stability of the proposed numerical algorithms, we introduce an upper bound
constraint on the variable z. Consequently, we consider the following truncated variant of the refor-
mulation (6):

min
(x,y,z)∈X×Y×Z

F (x, y) s.t. Gγ(x, y, z) ≤ 0, (7)

where Z := [0, r]p with r ≥ 0 is a compact subset of Rp+. It is demonstrated that if r is appropriately
chosen such that a solution (x∗, y∗, z∗) to (6) satisfies ∥z∗∥∞ ≤ r, then any optimal solution to (7)
is also an optimal solution to the original reformulation (6).
Proposition 3.1. Suppose γ1, γ2 > 0 and that an optimal solution (x∗, y∗, z∗) to (6) exists with
z∗ ∈ Z, then any optimal solution of (7) is also optimal for the reformulation (6).

Second, to develop a gradient-based algorithm for solving (7), we explore its penalty formulation:
min

(x,y,z)∈X×Y×Z
F (x, y) + cGγ(x, y, z), (8)

where c > 0 is a penalty parameter. This work focuses on first-order penalty methods for the
constrained BiO problem (1). To this end, we propose algorithms to find approximate stationary
solutions of (8), in alignment with several previous works (Liu et al., 2021; 2023a; Shen & Chen,
2023; Kwon et al., 2024).

Third, we study the relationship between the penalty formulation (8) and a relaxed problem of (7):
min

(x,y,z)∈X×Y×Z
F (x, y) s.t. Gγ(x, y, z) ≤ ε, (9)

where ε > 0 is the relaxation parameter. The relation between the penalized and relaxed problems
of BiO problems has been previously studied in (Shen & Chen, 2023) across various single-level
reformulations. Herein, we discuss the relationship between (8) and (9).
Proposition 3.2. Assume that F (x, y) is bounded below by F on X × Y . For any ε > 0, there
exists c̄ > 0 such that any global solution (xc, yc, zc) to the penalty formulation (8) with penalty
parameter c ≥ c̄ is also a global solution to the relaxed problem (9) with some relaxation parameter
εc satisfying εc ≤ ε. Moreover, if (xc, yc, zc) is a local solution to the penalty formulation (8), then
it is also a local solution to the relaxed problem (9) with relaxation parameter εc := Gγ(xc, yc, zc).

If we consider the penalty formulation (8) with an increasing sequence of penalty parameter ck such
that ck → ∞, any accumulation point of the sequence of solutions associated penalty formulation
problem (15) with varying values of ck is a solution to the problem (7).
Theorem 3.3. Assume thatX and Y are closed, and functions F , f and g are continuous onX×Y .
Suppose that ck → ∞ and let

(xk, yk, zk) ∈ argmin
(x,y)∈X×Y×Z

F (x, y) + ck Gγ(x, y, z).

Then, any accumulation point (x̄, ȳ, z̄) of the sequence {(xk, yk, zk)} is a solution to problem (7).

4
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The proofs of the lemmas and theorem presented in this section are provided in Appendix A.4.
Remark 3.4. The truncation technique applied to the multiplier of lower-level problem in reformu-
lation problems (7) and (8) is commonly used in the literature on numerical augmented Lagrangian
methods for nonlinear program (see, e.g., Andreani et al. (2008)). Applying this truncation technique
can enhance the stability of the proposed numerical algorithms. As demonstrated in Proposition 3.1,
theoretically, if the bound r is selected such that a solution (x∗, y∗, z∗) to (6) exists with ∥z∗∥∞ ≤ r,
then the optimal solution of (7) will also be optimal to (6). Propositions 3.1-3.2 and Theorem 3.3,
along with the numerical experiments in Section 6, illustrate that the penalized problem (8) serves
as an effective surrogate for the original bilevel problem.

3.1 THE PROPOSED ALGORITHM

Now we introduce a first-order gradient-based, single-loop algorithm to solve the truncated and
penalized approximation problem (8) with a potentially varying penalty parameter ck. Note that
solving (8) still requires care since it involves an optimal value function Gγ(x, y, z) for another
optimization problem.

Lemma 2.2 establishes that Gγ is continuously differentiable, implying that the objective function of
(8) is also continuously differentiable. Consequently, we can apply a gradient descent-type method
to solve (8). However, as also noted in Lemma 2.2, computing the gradient ∇Gγ(xk, yk, zk) at
the current iterate (xk, yk, zk) requires solving the minimization problem in (5) to obtain the exact
solution θ∗(xk, yk, zk), a process which can be computationally intensive.

To mitigate this computational challenge, we introduce an auxiliary sequence {θk} as an approxi-
mation to θ∗. At each iteration, we employ a single projected gradient descent step to update θk+1

to approximate θ∗(xk, yk, zk), as follows:
θk+1 = ProjY

(
θk − ηkd

k
θ

)
, (10)

where ηk > 0 is the step size, and

dkθ := ∇yf(x
k, θk) + (zk)T∇yg(x

k, θk) +
1

γ1
(θk − yk). (11)

Furthermore, we introduce iterate λk+1 to represent λ∗(xk, yk, zk) as follows:
λk+1 = λ∗(xk, yk, zk) = ProjRp

+

(
zk + γ2g(x

k, yk)
)
. (12)

By substituting (θk+1, λk+1) for (θ∗, λ∗) in (4), we can approximate the gradients of the objective
function in (8) to define the update directions:

dkx :=
1

ck
∇xF (x

k, yk)

+∇xf(x
k, yk) + (λk+1)T∇xg(x

k, yk)−∇xf(x
k, θk+1)− (zk)T∇xg(x

k, θk+1),

dky :=
1

ck
∇yF (x

k, yk) +∇yf(x
k, yk) + (λk+1)T∇yg(x

k, yk)− (yk − θk+1)/γ1,

dkz :=− (zk − λk+1)/γ2 − g(xk, θk+1).

(13)

Finally, we implement an update for the variables (x, y, z) using a step size αk > 0:
(xk+1, yk+1, zk+1) = ProjX×Y×Z

(
(xk, yk, zk)− αk(d

k
x, d

k
y , d

k
z)
)
. (14)

The complete algorithm is presented in Algorithm 1. Notably, our proposed algorithm uses only the
gradient information of the problem’s functions and can be easily implemented when the projections
onto the setsX and Y are computationally simple. Furthermore, the updates of xk+1, yk+1 and zk+1

can be executed in parallel, enhancing computational efficiency.

4 NON-ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we rigorously establish the non-asymptotic analysis for BiC-GAFFA towards the
truncated and penalized approximation problem

min
(x,y,z)∈X×Y×Z

ψc(x, y, z) := F (x, y) + cGγ(x, y, z). (15)

The proofs of Lemmas and Theorem presented in this section are available in Appendix A.5.
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Algorithm 1 Bilevel Constrained GAp Function-based First-order Algorithm (BiC-GAFFA)

Input: (x0, y0, z0) ∈ X×Y ×Z, θ0 ∈ Y , stepsizes αk, ηk > 0, proximal parameter γ = (γ1, γ2),
penalty parameter ck;
for k = 0 to K − 1 do
• calculate dkθ as in (11);
• update

θk+1 = ProjY
(
θk − ηkd

k
θ

)
, λk+1 = ProjRp

+

(
zk + γ2g(x

k, yk)
)
;

• calculate dkx, d
k
y , d

k
z as in (13);

• update

(xk+1, yk+1, zk+1) = ProjX×Y×Z
(
(xk, yk, zk)− αk(d

k
x, d

k
y , d

k
z)
)
.

end for

4.1 GENERAL ASSUMPTIONS

The following assumptions formalize the smoothness property of the UL objective F , and smooth-
ness and convexity properties of the LL objective f and the LL constraints g.
Assumption 4.1 (UL objective). The UL objective F is LF -smooth on X × Y . Additionally, F is
bounded below on X × Y , i.e., F := inf(x,y)∈X×Y F (x, y) > −∞.
Assumption 4.2 (LL objective). Assume that the following conditions hold:

(i) For each x ∈ X , f is convex w.r.t. LL variable y on Y .

(ii) f is continuously differentiable on an open set containing X×Y and is Lf -smooth on X×Y .
Assumption 4.3 (LL constraints). Assume that the following conditions hold:

(i) For each x ∈ X , g is convex w.r.t. LL variable y on Y .

(ii) g(x, y) is Lg-Lipschitz continuous on X × Y .

(iii) g(x, y) is continuously differentiable on an open set containing X × Y , ∇xg(x, y) and
∇yg(x, y) are Lg1 and Lg2 -Lipschitz continuous on X × Y , respectively.

Our assumptions solely require the first-order differentiability of the problem functions, avoiding
(possibly) higher-order smoothness. The setting of this study substantially relaxes the existing re-
quirement for second-order differentiability in constrained BiO literature. Moreover, we do not
impose either the strong convexity on the LL objective f(x, ·) or the fully convexity of the LL
constraints g(x, y).

4.2 CONVERGENCE RESULTS

The proof of non-asymptotic convergence for BiC-GAFFA primarily hinges on establishing the
sufficient descent property of the merit function defined as follows:

Vk := ϕck(x
k, yk, zk) + Cθ

∥∥θk − θ∗(xk, yk, zk)
∥∥2 ,

where
ϕck(x, y, z) :=

1

ck

(
F (x, y)− F

)
+ Gγ(x, y, z),

and Cθ := Lf + rLg1 + 1
γ1

+ Lg. With appropriately chosen step sizes αk and ηk, the following
inequality holds

Vk+1 − Vk ≤ − 1

4αk

∥∥wk+1 − wk
∥∥2 − ηkCθ

2γ1
∥θk − θ∗(wk)∥2,

where wk := (xk, yk, zk). See Lemma A.5 for a detailed description.
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We define the residual function for problem (15) as follows

R(x, y, z) := dist (0,∇ψc(x, y, z) +NX×Y×Z(x, y, z)) ,

noting that R(x, y, z) = 0 if and only if (x, y, z) is a stationary point to (15), i.e.,

0 ∈ ∇ψc(x, y, z) +NX×Y×Z(x, y, z).

Theorem 4.4. Under Assumptions 4.1, 4.2 and 4.3, assume that X , Y are compact sets, γ1 > 0,
γ2 > 0, c > 0 and ηk ∈ (η, 1/(Lf + rLg2 + 1/γ1)) with η > 0. Then there exists cα > 0 such
that when αk ∈ (α, cα) with α > 0, the sequence of (xk, yk, zk, θk, λk) generated by Algorithm 1
satisfies

min
0≤k≤K

R(xk+1, yk+1, zk+1) = O

(
1

K1/2

)
.

In subsequent analysis, we consider Algorithm 1 and the penalty approximation problem (15) with
an iteratively increasing penalty parameter ck, leading to the following convergence result based on
the residual function Rk(x, y, z) := dist (0,∇ψck(x, y, z) +NX×Y×Z(x, y, z)) .

Theorem 4.5. Under Assumptions 4.1, 4.2 and 4.3, assume that X , Y are compact sets, γ1 > 0,
γ2 > 0, ck = c(k + 1)ρ with c > 0, ρ ∈ [0, 1/2) and ηk ∈ (η, 1/(Lf + rLg2 + 1/γ1)) with
η > 0. Then there exists cα > 0 such that when αk ∈ (α, cα) with α > 0, the sequence of
(xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2ρ)/2

)
.

Furthermore, if ρ > 0 and ψck(x
k, yk, zk) is uniformly bounded above, then the sequence of

(xk, yk, zk) satisfies

0 ≤ Gγ(xK , yK , zK) = O

(
1

Kρ

)
.

Remark 4.6. The hypergradient norm is commonly employed as a stationary measure for BiO prob-
lems, when the LL problem is unconstrained and strongly convex. However, for constrained BiO
problems, even if the LL objective is (strongly) convex w.r.t. the LL variable, the differentiability of
variants of hypergradient, including optimistic and pessimistic ones, is not fully understood. To our
best knowledge, no universally recognized stationary measure is known in this scenario. Different
methods use various stationary measures. For instance, the KKT residual function is utilized in (Liu
et al., 2023b; Lu, 2023). The residual functions in the above theorems originate from the corre-
sponding penalized problems, aligning with several previous prior on first-order penalty methods
(Liu et al., 2023a; Shen & Chen, 2023; Lu & Mei, 2023; Kwon et al., 2024).

5 EXTENSION TO BILEVEL OPTIMIZATION WITH MINIMAX LOWER-LEVEL
PROBLEM

In this section, we explore the extension of our proposed gradient-based, single-loop, Hessian-free
algorithm, originally designed for bilevel optimization problems with constrained lower-level prob-
lems, to bilevel optimization problems with minimax lower-level problem (Beck et al., 2023; Sato
et al., 2021),

min
x∈X,y∈Y,z∈Z

F (x, y, z) s.t. (y, z) ∈ SP(x), (16)

where SP(x) denotes the set of saddle points for the convex-concave minimax problem,

min
y∈Y

max
z∈Z

f(x, y, z), (17)

where x ∈ Rn, y ∈ Rm and z ∈ Rp, the sets X , Y and Z are closed convex sets in Rn, Rm and Rp,
respectively. The UL objective F : X × Y × Z → R, and the LL objective f : X × Y × Z → R
are continuously differentiable with f being convex in y and concave in z. Building upon the idea
applied in the development of the regularized gap function (3), we introduce the doubly regularized
gap function for lower-level minimax problems, defined as:

Gsaddle
γ (x, y, z) := max

θ∈Y,λ∈Z

{
f(x, y, λ)− 1

2γ2
∥λ− z∥2 − f(x, θ, z)− 1

2γ1
∥θ − y∥2

}
. (18)
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By employing proof techniques analogous to those used in Lemma 2.1 or Theorem 3.3 from
Von Heusinger & Kanzow (2009), we can derive similar results for the doubly regularized gap
function Gsaddle

γ (x, y, z).
Lemma 5.1. Assume that f(x, y, z) is convex in y on Y for any given x ∈ X, z ∈ Z and concave
in z on Z for any given x ∈ X, y ∈ Y . Let γ1, γ2 > 0, we have Gsaddle

γ (x, y, z) ≥ 0 for any
(x, y, z) ∈ X × Y × Z, and

Gsaddle
γ (x, y, z) ≤ 0,

if and only if (y, z) ∈ SP(x).

This characteristic of the newly introduced gap function enables the following equivalent single-
level reformulation of the problem (16),

min
(x,y,z)∈X×Y×Z

F (x, y, z) s.t. Gsaddle
γ (x, y, z) ≤ 0. (19)

Using Lemma 5.1 and the proof techniques in Theorem 5.2, we can establish the equivalence be-
tween the reformulation (19) and the bilevel optimization problem (16).
Theorem 5.2. Assume that f(x, y, z) is convex in y on Y for any given x ∈ X, z ∈ Z and concave
in z on Z for any given x ∈ X, y ∈ Y . Let γ1, γ2 > 0, the reformulation (19) is equivalent to the
bilevel optimization problem (16).

Utilizing the reformulation (19) and the gradient formula of the gap function Gsaddle
γ (x, y, z) pro-

vided in Lemma A.7 in the Appendix, analogous to BiC-GAFFA, we can propose a gradient-based,
single-loop, Hessian-free algorithm for problem (16), as detailed in Algorithm 2.

Algorithm 2 single-loop Hessian-free algorithm for bilevel optimization problems with minimax
lower-level problem

Input: (x0, y0, z0) ∈ X×Y ×Z, θ0 ∈ Y , stepsizes αk, ηk > 0, proximal parameter γ = (γ1, γ2),
penalty parameter ck;
for k = 0 to K − 1 do
• calculate dkθ and dkλ as in (55);
• update

θk+1 = ProjY
(
θk − ηkd

k
θ

)
, λk+1 = ProjZ

(
λk − ηkd

k
λ

)
;

• calculate dkx, d
k
y , d

k
z as in (56);

• update

(xk+1, yk+1, zk+1) = ProjX×Y×Z
(
(xk, yk, zk)− αk(d

k
x, d

k
y , d

k
z)
)
.

end for

While the primary focus of this paper is the bilevel optimization with constrained lower-level prob-
lems, we defer the convergence analysis of this algorithm to future work.

6 NUMERICAL EXPERIMENTS

To validate both the theoretical and practical performance of our proposed algorithm (BiC-GAFFA),
we conduct experiments on both synthetic tests and real-world applications. We compare BiC-
GAFFA with various related algorithms on the synthetic tests and some real-world applications.
Detailed information about the experiments can be found in Appendix A.2.

6.1 SYNTHETIC EXPERIMENTS

Here we consider the following synthetic bilevel optimization problem:
min
x∈X ,

(y1,y2)∈Y

(y1 − 2 · 1n)
T(x− 1n) + ∥y2 + 3 · 1n∥2

s.t. (y1,y2) ∈ argmin
(y1,y2)∈Y

{1
2
∥y1∥2 − xTy1 + 1

T
ny2 s.t.

n∑
i=1

h(xi) + 1
T
ny1 + 1

T
ny2 = 0

}
,

(20)
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where X = Rn, Y = Rn × Rn, and h(t) : R 7→ R is defined as h(t) = tq . We consider the
cases q = 1 and q = 3. Note in both cases, the optimal solution is x∗ = 1n, y∗

1 = 2 · 1n,
y∗
2 = −3 · 1n, and S(x) = {(x + 1n,y2)|

∑n
i=1 h(xi) + 1T

n(x + 1n) + 1T
ny2 = 0}, where 1n

denotes the n-dimensional vector with all elements equal to 1.

0 1 2 3 4 5

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

||x
−
x
∗ ||
/||
x
∗ ||

0 1 2 3 4 5

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

d
is

t(
y
,S

(x
))
/||

P
ro

j S
(x

)(
y
)||

AIPOD GAM BVFSM LV-HBA BiC-GAFFA

0 10 20 30 40 50 60 70 80

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||x
−
x
∗ ||
/||
x
∗ ||

0 10 20 30 40 50 60 70 80

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

d
is

t(
y
,S

(x
))
/||

P
ro

j S
(x

)(
y
)||

Figure 1: The first two pictures are results for the problem (20) with q = 1, n = 1000, and the third
and fourth pictures are results for the problem (20) with q = 3, n = 1000.

We compare our algorithm (BiC-GAFFA) with AiPOD (Xiao et al., 2023), GAM (Xu & Zhu, 2023),
BVFSM (Liu et al., 2023a), and LV-HBA (Yao et al., 2024) on the synthetic tests. Hyperparameters
are collected in Appendix A.2.1. The comparison results are collected in Figure 1. From this, we
can see that BiC-GAFFA converges fast and correctly in both cases, while AiPOD fails to optimize
either of the problems, algorithm GAM and BVFSM run slowly on both cases, the algorithm LV-
HBA converges well in the case of q = 1 but runs slowly in the case of q = 3 due to the high
complexity of the projection step.

Table 1: Sensitivity analysis on problem (20) with q = 3, n = 100.

γ1 γ2 αk ηk p Time (s)

10 1.0 0.001 0.01 0.3 2.24
7 1.0 0.001 0.01 0.3 3.04
5 1.0 0.001 0.01 0.3 2.47
3 1.0 0.001 0.01 0.3 2.28
1 1.0 0.001 0.01 0.3 2.66

10 0.1 0.001 0.01 0.3 2.89
10 0.3 0.001 0.01 0.3 2.72
10 0.5 0.001 0.01 0.3 2.60

γ1 γ2 αk ηk p Time (s)

10 0.7 0.001 0.01 0.3 2.88
10 1.0 0.0001 0.001 0.3 22.74
10 1.0 0.0003 0.003 0.3 7.69
10 1.0 0.0005 0.005 0.3 4.64
10 1.0 0.0007 0.007 0.3 3.25
10 1.0 0.001 0.01 0.1 0.45
10 1.0 0.001 0.01 0.2 1.34
10 1.0 0.001 0.01 0.4 2.92
10 1.0 0.001 0.01 0.49 1.95

100 300 500 1000 3000 5000 10000 30000

Dimension (n)

10−2

10−1

100
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103
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e
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)
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Figure 2: Time cost v.s. n.

Sensitivity analysis. We conduct a sensitivity analysis on the problem (20) to show the performance
of BiC-GAFFA under different hyperparameters and problem sizes. We use the computational time
when ∥xk − x∗∥/∥x∗∥ < 0.01 as a metric to measure the performance. The comparison results
for different hyperparameters are presented in Table 1, which demonstrates the robustness of BiC-
GAFFA. Figure 2 shows the results based on the problem’s dimension, which is plotted on logarith-
mic scales for both axes, indicating that BiC-GAFFA scales well for large-scale problems. Detailed
reports and additional information are provided in Appendix A.2.1.

6.2 HYPERPARAMETER OPTIMIZATION

Table 2: Results on the sparse group Lasso hyper-
parameter selection problem with nTr = 100, nVal
= 100, nTest = 300.

Method Time(s) Val Err Test Err

Grid 17.3 ± 0.9 35.9 ± 7.2 37.7 ± 6.7
Random 17.4 ± 0.7 33.6 ± 6.7 35.7 ± 6.2

TPE 16.9 ± 0.7 33.9 ± 7.0 36.0 ± 5.6
IGJO 21.2 ± 2.2 19.7 ± 2.8 25.6 ± 4.4

VF-iDCA 12.4 ± 0.5 14.6 ± 2.6 25.4 ± 3.9
BiC-GAFFA 21.4 ± 0.7 7.3 ± 1.3 22.3 ± 3.0

Hyperparameter optimization (HO) is an inher-
ent bilevel optimization. According to Theorem
3.1 of Gao’s work (Gao et al., 2022), we can
turn the hyperparameter optimization problem
of a statistical learning model into an equiva-
lent constrained BiO problem. Three HO prob-
lems are considered in this section. Detailed re-
sults and information are provided in Appendix
A.2.2.

Sparse group LASSO problem. For the HO
problem for the sparse group LASSO model,
we compare BiC-GAFFA with some widely-
used algorithms, including Grid Search, Ran-
dom Search, TPE (Bergstra et al., 2013), IGJO (Feng & Simon, 2018), and VF-iDCA (Gao et al.,
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2022). Detailed settings are provided in Appendix A.2.2. From Table2, we can see that BiC-GAFFA
outperforms the other algorithms in terms of both validation and test errors.

Support vector machine (SVM). In this part, we apply BiC-GAFFA to a HO problem where the
lower model (base learner) is a SVM and the upper model is a signed distance based loss. We
compare BiC-GAFFA with GAM (Xu & Zhu, 2023) and LV-HBA and the results are shown in Figure
3. We can see that BiC-GAFFA converges faster than GAM and achieves a better performance.
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Figure 3: Results of the SVM problem on the
diabetes dataset.
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Figure 4: Results of the data hyper-cleaning
problem on the breast-cancer dataset.

Data hyper-cleaning. Data hyper-cleaning (Franceschi et al., 2017) is to train a classifier based on
data where part of their labels are corrupted with a probability pc, to achieve this goal, we need to
train a classifier that can recognize the wrong labeled data. Such a process can be modeled as a HO
problem. Results are shown in Figure 4, from which we can see that BiC-GAFFA outperforms the
other algorithms in terms of both validation and test accuracies.

6.3 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GAN) (Goodfellow et al., 2014) models are also investigated in
our paper. It involves a hierarchical structure of optimization with two interacting components: the
generator and the discriminator. We compared different training strategies for a distribution recovery
problem. Detailed information is provided in Appendix A.2.3. The numerical results in Figure 5
and Table 3 show BiC-GAFFA can train such a generative model efficiently.
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Figure 5: Earth mover’s distance v.s Time.

Table 3: Time to meet the required accuracy,
(n*) records the number of failures.

Method Time to reach target accuracy

EM< 0.5 EM< 0.1

GAN 60.0 ± 13.0 64.5 ± 12.5
WGAN 17.2 ± 2.3 32.1 ± 6.0

WGAN-GP 31.5 ± 3.5 37.7 ± 6.2
Con-GAN 36.4 ± 11.5 39.7 ± 12.3

UGAN 22.3 ± 17.0 (3*) 24.1 ± 18.2 (4*)
Bi-GAN (BiC-GAFFA) 2.0 ± 1.0 6.3 ± 4.3
Bi-WAN (BiC-GAFFA) 2.6 ± 0.5 29.4 ± 69.0

Bi-ConGAN (BiC-GAFFA) 2.1 ± 0.2 7.9 ± 10.5

7 DISCUSSION AND CONCLUSION

This work introduces BiC-GAFFA, a single-loop first-order algorithm tailored for a broader class
of bilevel optimization problems, where the LL constraints may depend on the UL variables. A
key technique employed here to address constrained LL problem is the newly introduced doubly
regularized gap function, which serves as an optimality metric for the LL problems and allows for
straightforward gradient evaluation. We also study the non-asymptotic performance guarantees of
BiC-GAFFA. The experimental results validate the effectiveness of BiC-GAFFA.
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A APPENDIX

The appendix is organized as follows:

• We give a brief review of additional related work in Section A.1.
• Experimental details are provided in Section A.2.
• Proofs in Section 2 can be found in Section A.3.
• Proofs in Section 3 are presented in Section A.4.
• Proofs in Section 4 are given in Section A.5.
• Details regarding the extension to bilevel optimization with minimax lower-level problem

are discussed in Section A.6.

A.1 ADDITIONAL RELATED WORK

In the section, we give a brief review of additional related works that are directly related to ours.

Gap functions. Transforming a BiO problem into a single-level optimization problem is useful
both theoretically and computationally. Gap functions are crucial in this process. Among them, the
most commonly used one is the value function, originally proposed in (Outrata, 1990; Ye & Zhu,
1995). When the LL problem is unconstrained and its smooth objective is strongly convex w.r.t.
the LL variable, the value function of the LL problem is smooth and has a closed-form gradient
with the LL solution. Benefiting from this property, fully first-order gradient-based algorithms have
been developed, see, e.g., Liu et al. (2023a); Ye et al. (2022); Shen & Chen (2023); Kwon et al.
(2023); Lu & Mei (2023). However, the value function is often nonsmooth when the LL problem is
constrained or its objective is merely convex. As a result, the value function reformulation usually
leads to a nonsmooth single-level optimization problem. Recently, the Moreau envelope-based gap
functions have emerged, see, e.g., Gao et al. (2023); Yao et al. (2024); Liu et al. (2024). Among
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these works, by utilizing the Moreau envelope-based reformulation for unconstrained LL problem,
the very recent study (Liu et al., 2024) proposes a novel single-loop gradient-based algorithm for
general BiO problems with nonconvex and potentially nonsmooth LL objective functions. In con-
trast, both Gao et al. (2023) and Yao et al. (2024) address constrained BiO problems. The key
difference is that the Moreau envelope-based reformulation in Gao et al. (2023) is nonsmooth, while
the reformulation in Yao et al. (2024) is smooth. The smoothness is achieved by leveraging a novel
proximal Lagrangian value function to handle constrained LL problem. When the LL problem has
(coupling) inequality constraints, it is important to note that all the reformulations in these works
explicitly preserve these (coupling) inequality constraints. In contrast, this work introduces a novel
reformulation that integrates the LL (coupling) inequality constraints into a doubly regularized gap
function. Consequently, it achieves the minimal smooth constraint, with only one smooth constraint
in the single-level reformulation. This provides a significant advantage in algorithm design because
it removes the need for Euclidean projection onto the (coupled) LL constraint set. This expands the
range of applications and significantly reduces computational costs.

First-order algorithms. Many applications involve optimization problems with thousands or mil-
lions of variables. First-order algorithms are popular because their storage and computational costs
can be kept at a tolerable level. In bilevel optimization, the value function approach avoids recur-
rent second-order calculations like those involving the Hessian matrix in implicit gradient-based
methods. This makes it particularly useful for developing efficient first-order, single-loop numer-
ical algorithms, see, e.g., Kwon et al. (2023); Chen et al. (2023), in cases where the LL problem
is unconstrained and its smooth objective is strongly convex w.r.t. the LL variable. When the LL
problem involves constraints, challenges arise. For instance, the value function is often nonsmooth
and lacks an exact straightforward gradient evaluation. To address the nonsmooth issue, Liu et al.
(2023a) introduces a sequential minimization algorithm framework using penalty and barrier func-
tions. The recent study (Shen & Chen, 2023) provides a sufficient condition under which the value
function is (Lipschitz) smooth and proposes first-order algorithms through the lens of the penalty
method for bilevel problems with constraints that rely solely on the LL variable. Also, through the
lens of the penalty method, a first-order method with complexity guarantees is developed in Lu &
Mei (2023) using a novel minimax approach, and the recent study (Kwon et al., 2024) proposes a
first-order stochastic bilevel optimization algorithm when the LL constraints depend only on the LL
variable. Other advances in first-order algorithms for bilevel optimization include: primal-dual al-
gorithms (Sow et al., 2022); primal nonsmooth reformulation-based algorithm (Helou et al., 2023);
and low-rank implicit gradient-based methods (Giovannelli et al., 2021).

A.2 DETAILS OF EXPERIMENTS

All the experiments in this paper are performed on a computer with Intel(R) Core(TM) i9-9900K
CPU @ 3.60GHz and 16.00 GB memory. Except for the manual experiments, the reported data for
all the other experiments (including the sparse group LASSO problems, SVM, data hyperclean and
GAN) are the statistical results after repeating each experiment 20 times.

A.2.1 SYNTHETIC PROBLEMS

For all the experiments on this problem, we use the initial point (x0,y0,y1) = (0n,0n,0n), where
0n represents the n-dimensional zero vector. For the synthetic experiments recorded in Figure 1, we
use the following settings:

• For AIPOD, we set S = 5, T = 2, β = 0.0001, α = 0.0005;

• For GAM, we solve the lower level problem with a convex solver Clarabel (Goulart &
Chen, 2024) and set stepsize α = 0.01;

• For BVFSM, we solve the subproblem (10) and (11) in (Liu et al., 2023a) with Clarabel,
use the quadratic penalty function with θk = µk = ρk = 1/k0.5 and stepsize α = 0.01;

• For LV-HBA, we set γ1 = 10, γ2 = 1, α = 0.005, β = 0.002, η = 0.03;

• For BiC-GAFFA, we set γ1 = 1, γ2 = 0.1, α = 0.001, η = 0.01, r = 1, ρ = 0.2.

They are applied for both problems, i.e., for both n = 1000, q = 1 problem and n = 1000, q = 3
problem. Note that AIPOD requires the calculation of matrix inversion, which is computationally
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expensive, however, due to the special structure of the problem, the matrix inversion in each iteration
returns the same result, so we only calculate it once and use the result in all iterations. For LV-
HBA, the projection step is the most time-consuming part generally, it gets benefits from the special
structure of the problem where q = 1 since the projection is efficient in that case, which is the
reason why it performs well in the first case. However, for the problem where q = 3, the projection
step is much more complex, which requires solving a nonlinear optimization problem, therefore, it
performs poorly in the second case.

Table 4: Sensitivity analysis on the hyperparemeters for the problems with n = 3, where q = 1 in
the left table and q = 3 in the right table.

γ1 γ2 αk ηk ρ Time (s)

1 1.0 0.001 0.01 0.3 2.96
3 1.0 0.001 0.01 0.3 2.84
5 1.0 0.001 0.01 0.3 2.95
7 1.0 0.001 0.01 0.3 2.63

10 0.1 0.001 0.01 0.3 3.02
10 0.3 0.001 0.01 0.3 3.14
10 0.5 0.001 0.01 0.3 2.98
10 0.7 0.001 0.01 0.3 3.09
10 1.0 0.0005 0.005 0.3 4.50
10 1.0 0.0007 0.007 0.3 3.68
10 1.0 0.003 0.03 0.3 0.83
10 1.0 0.005 0.05 0.3 0.42
10 1.0 0.001 0.01 0.1 0.59
10 1.0 0.001 0.01 0.2 1.76
10 1.0 0.001 0.01 0.4 2.66
10 1.0 0.001 0.01 0.49 2.00
10 1.0 0.001 0.01 0.3 2.20

γ1 γ2 αk ηk ρ Time (s)

1 1.0 0.001 0.01 0.3 2.66
3 1.0 0.001 0.01 0.3 2.28
5 1.0 0.001 0.01 0.3 2.47
7 1.0 0.001 0.01 0.3 3.04

10 0.1 0.001 0.01 0.3 2.89
10 0.3 0.001 0.01 0.3 2.72
10 0.5 0.001 0.01 0.3 2.60
10 0.7 0.001 0.01 0.3 2.88
10 1.0 0.0001 0.001 0.3 21.98
10 1.0 0.0003 0.003 0.3 7.28
10 1.0 0.0005 0.005 0.3 4.79
10 1.0 0.0007 0.007 0.3 3.30
10 1.0 0.001 0.01 0.1 0.45
10 1.0 0.001 0.01 0.2 1.34
10 1.0 0.001 0.01 0.4 2.92
10 1.0 0.001 0.01 0.49 2.04
10 1.0 0.001 0.01 0.3 2.51

To see how parameters impact the performance of the algorithms, we conduct a series of sensitivity
analyses, the results are collected in Table 5. Besides, we also conduct experiments to investigate the
relationship between the problem’s dimension and the time cost, the results are shown in Figure 2.
For these expriments, we set γ1 = 10, γ2 = 1, r = 1, ρ = 0.3, and choose (αk, ηk) = (20/n, 2/n)
for problems with q = 1, (αk, ηk) = (10/n, 1/n) for problems with q = 3. Such a choice is quite
rough, but it is sufficient to demonstrate the scalability of BiC-GAFFA.

A.2.2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization is an inherent bilevel optimization. According to Theorem 3.1 of
Gao’s work (Gao et al., 2022), we can turn the hyperparameter optimization problem of a statistical
learning model which consists of data fitting Ldata(x) and convex regularization terms Pi(x) to the
following constrained bilevel optimization problem.

min
x∈Rn,r∈RJ

Lval(x) s.t. x ∈ argmin
x∈Rn

{
Ltr(x) s.t. Pi(x) ≤ ri, i = 1, · · · , J

}
.

Sparse Group LASSO Problem. The sparse group LASSO problem (Simon et al., 2013) is an
advanced statistical learning model, which aims to find the grouped structure of the predictors and
select the relevant ones. It is critical to select the weights of the regularization terms. The direct
form of the problem is as follows:

min
β∈Rp,λ∈RM+1

+

1

2

∑
i∈Ival

|bi − βTai|2

s.t. β ∈ argmin
β̂∈Rp

{
1

2

∑
i∈Itr

|bi − β̂Tai|2 +
M∑
m=1

λm∥β̂(m)∥2 + λM+1∥β̂∥1
}
.

(21)
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Table 5: Sensitivity analysis on the hyperparameters for the synthetic experiments.
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By decoupling the data fitting term and regularization terms, we can reformulate the problem to the
following bilevel optimization problem:

min
β∈Rp,r∈RM+1

+

1

2

∑
i∈Ival

|bi − βTai|2

s.t. β ∈ argmin
β̂∈Rp

1

2

∑
i∈Itr

|bi − β̂Tai|2

s.t. ∥β̂(m)∥2 ≤ rm,m = 1, . . . ,M, ∥β̂∥1 ≤ rM+1.

(22)

From our practice, we find that the proposed BiC-GAFFA algorithm works better on the squared
two norms rather than two norms directly, so by introducing u ∈ RM+1

+ such that um = r2m for
m = 1, . . . ,M , and uM+1 = rM+1, we can reformulate the problem to the following bilevel
optimization problem:

min
β∈Rp,u∈RM+1

+

1

2

∑
i∈Ival

|bi − βTai|2

s.t. β ∈ argmin
β̂∈Rp

1

2

∑
i∈Itr

|bi − β̂Tai|2

s.t. ∥β̂(m)∥22 ≤ um,m = 1, . . . ,M, ∥β̂∥1 ≤ uM+1.

(23)

Grid Search, Random Search, Bayesian Optimization and VF-iDCA are applied to the model (22),
IGJO is applied to the model (21), and BiC-GAFFA is applied to the model (23). The experimental
results are collected in Table 6.

Data used in these experiments are generated by the following procedures: we random smapled
ai ∈ Rp from the standard normal distribution, and set the true weights β to be a grouped sparse
vector, specifically, it was defined as β = [β(1),β(2), . . . ,β(5)], where the first 5 entries of β(i) are
1, 2, 3, 4, 5, and the rest entries are all zeros. The responses are defined as bi = βTai + σϵi, where
the ϵi are generated from the standard normal distribution, and σ is chosen such that the signal-to-
noise ratio is 3. The training set, validation set, and test set are split randomly, and the size of the
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training set is denoted as nTr, the size of the validation set is nVal, and the size of the test set is
nTest. For all the experiments in this part, p = 150, M = 30.

The detailed settings of each algorithm are provided as follows:

• For Grid Search, we set the grid size to be 20, the range of rm is [1, 10] for m = 1, . . . ,M ,
and the range of rM+1 is [1, 100];

• For Random Search, we set the number of iterations to be 400, the range of rm is [0, 10] for
m = 1, . . . ,M , and the range of rM+1 is [0, 100], uniformly sampled method is adopted;

• For TPE, we set the number of iterations to be 400, and use uniform distribution for each
hyperparameter, the range of rm is [0, 10] for m = 1, . . . ,M , and the range of rM+1 is
[0, 100];

• For IGJO, we set the number of iterations to be 100 for each hyperparameter, and the initial
guess is 0.1× 1M+1;

• For VF-iDCA, we set the number of iterations to 50 for each hyperparameter. As to the
initial guess, we firstly solve the lower level problem of (21) with hyperparameters 0.1 ×
1M+1, denote that rm = ∥β̂(m)∥2 for m = 1, . . . ,M , rM+1 = ∥β̂∥1, then take the r as
the initial guess for the bilevel problem of (22);

• For BiC-GAFFA, we set the number of iterations to be 30000 for each hyperparameter. As
to the initial guess, we firstly solve the lower level problem of (21) with hyperparameters
0.1 × 1M+1, denote that um = ∥β̂(m)∥22 for m = 1, . . . ,M , uM+1 = ∥β̂∥1, then take
the u as the initial guess for the bilevel problem of (23). For this problem, we always take
γ1 = 10, γ2 = 1, ηk = 0.1, αk = 0.01, r = 0.5, and ρ = 0.3.

Table 6: Results on the sparse group Lasso hyperparameter selection problem.

Method nTr = 100, nVal = 100, nTest = 300 nTr = 300, nVal = 300, nTest = 300

Time (s) Val Err Test Err Time (s) Val Err Test Err

Grid 17.3 ± 0.9 35.9 ± 7.2 37.7 ± 6.7 78.7 ± 1.9 18.9 ± 2.3 19.8 ± 1.8
Random 17.4 ± 0.7 33.6 ± 6.7 35.7 ± 6.2 78.6 ± 2.5 18.7 ± 2.4 19.5 ± 1.9

TPE 16.9 ± 0.7 33.9 ± 7.0 36.0 ± 5.6 74.7 ± 2.2 18.9 ± 2.3 19.8 ± 1.9
IGJO 21.2 ± 2.2 19.7 ± 2.8 25.6 ± 4.4 49.9 ± 2.6 16.5 ± 2.5 18.1 ± 1.4

VF-iDCA 12.4 ± 0.5 14.6 ± 2.6 25.4 ± 3.9 40.7 ± 1.7 14.9 ± 2.1 17.2 ± 1.3
BiC-GAFFA 21.4 ± 0.7 7.3 ± 1.3 22.3 ± 3.0 22.0 ± 1.0 12.8 ± 1.4 17.1 ± 1.3

From Table 6, we can see that BiC-GAFFA outperforms other algorithms in terms of the validation
error and test error, and when the number of data is increased, the time cost of BiC-GAFFA does
not increase significantly, which indicates that BiC-GAFFA is scalable to large-scale problems.

Support Vector Machine. The mathematical model can be written as follows:

min
c∈RNtr ,w∈Rp,b∈R,ξ∈RNtr

LDval(w, b),

s.t. (w, b, ξ) ∈ argmin
w∈Rp,b∈R,ξ∈RNtr

1

2
∥w∥2 + 1

2

Ntr∑
i=1

eciξ2i

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , Ntr.

Here we use (Dtr,Dval) to denote the split of the training set and validation set of data, and Ntr to
denote the number of data in the training set. The upper-level objective function is defined in the
following way:

LDval(w, b) :=
1

|Dval|
∑

(xi,yi)∈Dval

Sigmoid
(
−yi(w

Txi + b)

∥w∥2
)
.

The function inner the sigmoid function gives an opposite of a signed distance between point (xi, yi)
and the decision hyperplane {x ∈ Rp|wTx + b = 0}. Specifically, the inner part is positive when
the sign of the prediction wTxi + b is different with its label yi, and negative otherwise. And the
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sigmoid function converts the distance values to some probability value. Such a composition makes
the objective function to be a smooth approximation of the validation accuracy.

The dataset we used in this experiment is the scaled diabetes dataset provided in the repository
(Chang & Lin, 2011), which contains 768 data points and 8 features. In each experiment, the
training set, validation set, and test set are split randomly, and the size of the training set is 400,
and the size of the validation set is 150, the rest part is the test set.

The initial values of c in this problem are sampled from a uniform distribution on [−6,−5], the
initial values for other parameters are solutions of the lower level problem with hyperparameters c.
The hyperparameters for all the three algorithms are:

• For GAM, we keep the same setting as the original paper (Xu & Zhu, 2023) did, the maxi-
mal iteration number is set to be 80.

• For LV-HBA, we use α = 0.001, η = 0.001, γ1 = 0.1, γ2 = 0.1, the maiximal iteration
number is set to be 400.

• For BiC-GAFFA, we use γ1 = 10, γ2 = 0.01, ηk = 0.01, r = 10, αk = 0.001, ρ = 0.3,
the maximal iteration number is set to be 5000.

Data Hyperclean. For this problem, we use the same model as the one in the SVM experiments,
but we change the dataset to the scaled breast-cancer dataset provided in the repository (Chang &
Lin, 2011), which contains 683 data points and 10 features. In each experiment, the training set,
validation set, and test set are split randomly, and the size of the training set is 400, and the size of
the validation set is 180, the rest part is the test set. For the training dataset, we change the label with
probability pc = 40%, and the validation set and test set are kept unchanged. This means the data
used in lower training is not reliable, the researcher need to find out which data are more reliable and
give them higher weights while giving the unreliable data lower weights. Such a weighting process
can be viewed as a data clean procedure. Here we do such a procedure by regarding the weights as
hyperparameters and evaluating their effects on the validation set, such a process is regarded as data
hyper cleaning. Therefore, such a problem is quite similar to the aforementioned SVM, the main
difference occurs in the training data.

The hyperparameters for all the three algorithms are:

• For GAM, we keep the same setting as the original paper (Xu & Zhu, 2023) did, the max-
imal iteration number is set to be 30. The initial values of c are chosen from a uniformed
distribution (1., 2.).

• For LV-HBA, we use α = 0.001, η = 0.001, γ1 = 0.1, γ2 = 0.1, the maiximal iteration
number is set to be 400. The initial values of c are chosen from a uniformed distribution
(−5,−4);

• For BiC-GAFFA, we use γ1 = 10, γ2 = 0.01, ηk = 0.1, αk = 0.001, r = 10, ρ = 0.3,
the maximal iteration number is set to be 2000. The initial values of c are choosen from a
unifromed distribution (−5,−4).

A.2.3 GENERATIVE ADVERSARIAL NETWORK

We also apply our algorithm to the GAN, which is a popular model in the field of deep learning. It
can be written as the following bilevel optimization problem:

min
G,D

Lgen(G,D) s.t. D ∈ argminD∈D Ldet(G,D)

The main idea of GAN is to find a network that learns the distribution of the given training data.
This paper investigates the fitting of two-dimensional distributions (i.e., 8-Gaussians model and
25-Gaussians model, refer to Gulrajani et al. (2017)) using GANs. For such simple distributions,
we can approximate the earth mover’s distance (EMD) between the generated distribution and the
true distribution by calculating the Sinkhorn distance (Cuturi, 2013). This allows us to observe the
optimization progress of the network during the iteration process, and make comparisons between
different strategies.

For all the 8 GANs we make a comparison here, we use similar structures and similar parameters,
though the loss functions exhibit slight variations. The generator and discriminator are both three-
layer neural networks with 128 hidden units, and the activation function except the last layer is
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Figure 6: How EMD changes w.r.t time for different GAN models. The true distribution in the
left picture is the 8 Gaussians mixture model, and the true distribution in the right picture is the 25
Gaussians mixture model.

ReLU. The output size of the generator is 256. For the WGAN and WGAN-GP, the last layer of the
discriminator is the linear layer while other models have a sigmoid activation function after the linear
layer in their discriminator. The batch size is 512, and the number of iterations is 2701. According
to the practical advice in Gulrajani et al. (2017), we train the discriminator 5 steps and then the
generator 1 step in 1 loop. We use Adam with b1 = 0.5, b2 = 0.999 for all the learnable parameters
in all the models. The specific objectives and additional parameter details are listed below:

• GAN (Goodfellow et al., 2014):

Lgen(G,D) =Ez∼N[BCELoss(D(G(z)),1n)],

Ldet(G,D) =
1

2
Ex∼Pr

[BCELoss(D(x),1n)] +
1

2
Ez∼N[BCELoss(D(G(z)),0n)].

We set learning rate of generator as 10−3, learning rate of discriminator as 10−4.
• WGAN (Arjovsky et al., 2017):

Lgen(G,D) =− Ez∼N[D(G(z)],

Ldet(G,D) =− Ex∼Pr
[D(x)] + Ez∼N[D(G(z)],

with a box constraint that ∥D∥∞ ≤ cclip. We set learning rate of generator as 10−3,
learning rate of discriminator as 10−4, the clip value as 0.001;

• WGAN-GP (Gulrajani et al., 2017):

Lgen(G,D) =− Ez∼N[D(G(z)],

Ldet(G,D) =− Ex∼Pr
[D(x)] + Ez∼N[D(G(z)] + λgpEx̂∼Px̂

(∥∇D(x̂)∥2 − 1)2,

where λgp is the parameter of gradient penalty, and Px̂ is defined by sampling uniformly
along straight lines between pairs of points sampled from the data distribution Pr and the
generator distribution Pg := {G(z)|z ∈ N}. We set learning rate of generator as 10−4,
learning rate of discriminator as 10−4, lambda of gradient penalty as 0.1;

• Con-GAN (Chao et al., 2021):

Lgen(G,D) =Ez∼N[BCELoss(D(G(z)),1n)],

Ldet(G,D) =Ex∼Pr
[BCELoss(D(x),1n)] + Ez∼N[BCELoss(D(G(z)), n)] + λh(G,D),

where
h(G,D) := E{x∼Pr,z∼N}[log(D(x))− logD(G(z))]2.

We set learning rate of generator as 10−3, learning rate of discriminator as 10−4, lambda
of constant penalty as 0.3;

• UGAN (Metz et al., 2016):

Lgen(G,D) =Ez∼N[BCELoss(D(G(z)),1n)],

Ldet(G,D) =
1

2
Ex∼Pr

[BCELoss(D(x),1n)] +
1

2
Ez∼N[BCELoss(D(G(z)), n)].

We set the learning rate of the generator as 10−3, the learning rate of the discriminator as
10−4, the unrolled step as 5 and let it update the discriminator just 1 step in 1 loop;
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• Bi-GAN (BiC-GAFFA):

Lgen(G,D) =Ez∼N[BCELoss(D(G(z)),1n)],

Ldet(G,D) =
1

2
Ex∼Pr

[BCELoss(D(x),1n)] +
1

2
Ez∼N[BCELoss(D(G(z)), n)].

We set the learning rate of the generator as 10−3, the learning rate of the discriminator as
10−4, ρ = 0.1, the learning rate of the auxiliary generator as 10−3, the upper bound for the
auxiliary dual variable (r) as 0.1;

• Bi-WGAN (BiC-GAFFA):

Lgen(G,D) =− Ez∼N[D(G(z)],

Ldet(G,D) =− Ex∼Pr
[D(x)] + Ez∼N[D(G(z)],

with constriant
max
x̂∈Px̂

∥∇D(x̂)∥2 ≤ 1,

where Px̂ is defined by sampling uniformly along straight lines between pairs of points
sampled from the data distribution Pr and the generator distribution Pg := {G(z)|z ∈ N}.
We set the learning rate of the generator as 10−3, the learning rate of the discriminator as
10−4, r = 0.1, ρ = 0.1, the learning rate of the auxiliary generator as 10−3, the learning
rate of the auxiliary dual variable as 10−4, the upper bound for the auxiliary dual variable
(r) as 0.1. Note here we turn the gradient penalty introduced in Gulrajani et al. (2017)
to one constraint by taking a maximum over the sample points, and by our practice, the
original GAN structure seems more stable with this optimization method, further study is
still required;

• Bi-ConGAN (BiC-GAFFA):

Lgen(G,D) =Ez∼N[BCELoss(D(G(z)),1n)],

Ldet(G,D) =Ex∼Pr
[BCELoss(D(x),1n)] + Ez∼N[BCELoss(D(G(z)), n)],

with constraint

h(G,D) := E{x∼Pr,z∼N}[log(D(x))− logD(G(z))]2 ≤ ϵ.

We set the learning rate of the generator as 10−3, the learning rate of the discriminator as
10−4, ρ = 0.1, the learning rate of the auxiliary generator as 10−3, the learning rate of the
auxiliary dual variable (r) as 10−4, the upper bound for the auxiliary dual variable as 0.1.
We realize the constraint proposed in Chao et al. (2021) with ε = 0.1.

Different analyses and assumptions lead to various regularization requirements for these models.
When constrained optimizers are unavailable, such a regularization method can only be achieved by
penalizing them to the objective (Gulrajani et al., 2017; Chao et al., 2021), potentially compromising
the interpretability of the model and complicating analysis. Our algorithms mitigate these issues
without significant computational overhead. The effectiveness of our algorithms is demonstrated in
the numerical results presented in Figures 6.

A.3 PROOFS IN SECTION 2

A.3.1 PROOF OF LEMMA 2.1

Lemma 2.1 can be proved using proof techniques similar to those in Theorem 3.3 from
Von Heusinger & Kanzow (2009). For completeness, we present an alternative proof of Lemma
2.1 here.
Lemma 2.1. Assume that both f(x, ·) and g(x, ·) are convex for any given x ∈ X . Let γ1, γ2 > 0,
we have Gγ(x, y, z) ≥ 0 for any (x, y, z) ∈ X × Y × Rp+. Furthermore,

Gγ(x, y, z) ≤ 0,

if and only if y ∈ S(x) and z ∈ M(x, y), where M(x, y) denotes the set of multipliers of the
lower-level problem at (x, y), i.e.,

M(x, y) :=
{
λ ∈ Rp+ | 0 ∈ ∇yf(x, y) + λT∇yg(x, y) +NY (y), λ

Tg(x, y) = 0
}
.
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Proof. For any (x, y, z) ∈ X × Y × Rp+, we have

min
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
≤ f(x, y) + zTg(x, y)

≤ max
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
,

(24)

which implies that

Gγ(x, y, z) = max
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
−min
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
≥ 0.

Therefore, Gγ(x, y, z) = 0 if and only if

max
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
= min

θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
.

Then, (24) yields that Gγ(x, y, z) = 0 if and only if

y ∈ argmin
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
,

z ∈ argmax
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
.

(25)

Given that the function f(x, θ) + zTg(x, θ) is convex with respect to variable θ, and that λTg(x, y)
is concave with respect to λ, (25) is equivalent to

y ∈ argmin
θ∈Y

{
f(x, θ) + zTg(x, θ)

}
,

z ∈ argmax
λ∈Rp

+

{
f(x, y) + λTg(x, y)

}
,

(26)

which is equivalent to that (y, z) is a saddle point to

min
θ∈Y

max
λ∈Rp

+

f(x, θ) + λTg(x, θ).

Consequently, applying the classical minimax theorem to this convex-concave min-max problem,
we obtain that Gγ(x, y, z) = 0 if and only if y ∈ S(x) and z ∈ M(x, y).

A.3.2 PROOF OF LEMMA 2.2

Lemma 2.2. Assume that both f(x, y) and g(x, y) are convex in y on Y for any given x ∈ X and
are continuously differentiable on an open set containing X × Y . Then Gγ(x, y, z) is continuously
differentiable on X × Y × Rp+, and for any (x, y, z) ∈ X × Y × Rp+,

∇Gγ(x, y, z) =

∇xf(x, y) + (λ∗)T∇xg(x, y)
∇yf(x, y) + (λ∗)T∇yg(x, y)

− (z − λ∗) /γ2

−

∇xf(x, θ
∗) + zT∇xg(x, θ

∗)
(y − θ∗) /γ1
g(x, θ∗)

 ,

where θ∗ and λ∗ denote θ∗(x, y, z) and λ∗(x, y, z), respectively, defined as

θ∗(x, y, z) := argmin
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
,

λ∗(x, y, z) := argmax
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
= ProjRp

+
(z + γ2g(x, y)) .
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Proof. We first define two auxiliary functions,

G1,γ(x, y, z) := min
θ∈Y

{
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

}
,

G2,γ(x, y, z) := max
λ∈Rp

+

{
f(x, y) + λTg(x, y)− 1

2γ2
∥λ− z∥2

}
.

Then, it follows that Gγ(x, y, z) = G2,γ(x, y, z) − G1,γ(x, y, z). Since by assumptions that f and
g are both continuous differentiable on an open set containing X × Y , it can be easily shown that
f(x, θ) + zTg(x, θ) + 1

2γ1
∥θ − y∥2 satisfies the inf-compactness condition in Theorem 4.13 of

Bonnans & Shapiro (2013) with respect to θ ∈ Y on any point (x̄, ȳ, z̄) ∈ X × Y × Rp+, i.e., for
any (x̄, ȳ, z̄) ∈ X × Y × Rp+, there exist c ∈ R, compact set D and neighborhood W of (x̄, ȳ, z̄)
such that the level set {θ ∈ Y | f(x, θ) + zTg(x, θ) + 1

2γ1
∥θ− y∥2 ≤ c} is nonempty and contained

in D for any (x, y, z) ∈ W . And because of the convexity of f(x, y) and g(x, y) with respect
to y ∈ Y for any x ∈ X , argmin

θ∈Y

{
f(x, θ) + zTg(x, θ) + 1

2γ1
∥θ − y∥2

}
is a singleton for any

(x, y, z) ∈ X × Y × Rp+. Then, by the differentiablility of f and g, we can derive from Theorem
4.13, Remark 4.14 of Bonnans & Shapiro (2013) that G1,γ(x, y, z) is differentiable at any point on
X × Y × Rp+ and for any (x, y, z) ∈ X × Y × Rp+,

∇G1,γ(x, y, z) =
(
∇xf(x, θ

∗) + zT∇xg(x, θ
∗), (y − θ∗) /γ1, g(x, θ

∗)
)
. (27)

By using similar arguments, we can also demonstrate that G2,γ(x, y, z) is differentiable at any point
on X × Y × Rp+ and for any (x, y, z) ∈ X × Y × Rp+,

∇G2,γ(x, y, z) =
(
∇xf(x, y) + (λ∗)T∇xg(x, y),∇yf(x, y) + (λ∗)T∇yg(x, y),− (z − λ∗) /γ2

)
.

(28)
And then the conclusion follows from Gγ(x, y, z) = G2,γ(x, y, z)− G1,γ(x, y, z).

A.3.3 PROOF OF THEOREM 2.3

Theorem 2.3. Assume that both f(x, ·) and g(x, ·) are convex for any given x ∈ X . Let γ1, γ2 > 0,
the reformulation (6) is equivalent to the bilevel optimization problem (1), provided that for any
feasible point (x, y) of (1), a corresponding multiplier of the lower-level problem (2) exists at (x, y),
i.e., M(x, y) ̸= ∅.

Proof. Let (x, y, z) be any feasible point of problem (6), then we have (x, y) ∈ X × Y , z ∈ Rp+,
Gγ(x, y, z) ≤ 0. And it follows from Lemma 2.1 that Gγ(x, y, z) = 0, y ∈ S(x) and thus (x, y) is
feasible to bilevel program (1).

Now, suppose (x, y) is an feasible point of bilevel program (1), then we have (x, y) ∈ X × Y and
y ∈ S(x). According to the assumption that a multiplier z ∈ Rp+ of the lower-level problem (2)
exists at (x, y), i.e., z ∈ M(x, y). Then it follows from Lemma 2.1 that Gγ(x, y, z) = 0 and thus
(x, y, z) is feasible to reformulation problem (6).

A.4 PROOFS IN SECTION 3

A.4.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. Suppose γ1, γ2 > 0 and an optimal solution (x∗, y∗, z∗) to (6), with z∗ ∈ Z,
exists, then any optimal solution of (7) is optimal to reformulation (6).

Proof. For any feasible point (x, y, z) of problem (7), (x, y, z) is also feasible to problem (6) and
thus the optimal value of problem (7) is larger or equal to that of problem (6). Let (x∗, y∗, z∗) be
an optimal solution of reformulation problem (6) with z∗ belonging to the set Z, then (x∗, y∗, z∗) is
also feasible to problem (7). Therefore, the optimal value of problem (7) is equal to that of problem
(6). Then, because any feasible point (x, y, z) of problem (7) is feasible to problem (6), we get the
conclusion.
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A.4.2 PROOF OF PROPOSITION 3.2

Proposition 3.2. Assume that F (x, y) is bounded below by F on X × Y . For any ε > 0, there
exists c̄ > 0 such that any global solution (xc, yc, zc) to the penalty formulation (8) with penalty
parameter c ≥ c̄ is also a global solution to the relaxed problem (9) with some relaxation parameter
εc satisfying εc ≤ ε. Moreover, if (xc, yc, zc) is a local solution to the penalty formulation (8), then
it is also a local solution to the relaxed problem (9) with relaxation parameter εc := Gγ(xc, yc, zc).

Proof. Let (x̄, ȳ, z̄) ∈ X × Y ×Z be a feasible point to problem (7) and (xc, yc, zc) ∈ X × Y ×Z
be a global solution of problem (8) with penalty parameter c > 0. We then have

F (xc, yc) + cGγ(xc, yc, zc) ≤ F (x̄, ȳ) + cGγ(x̄, ȳ, z̄) = F (x̄, ȳ),

implying
Gγ(xc, yc, zc) ≤ (F (x̄, ȳ)− F )/c.

Thus, for any ε > 0, there exists c̄ > 0 such that for any c ≥ c̄,

εc := Gγ(xc, yc, zc) ≤ ε.

Next, we demonstrate that (xc, yc, zc) is a global solution to problem (9) with relaxation parameter
εc. Assume, for the sake of contradiction, that there exists (x, y, z) ∈ X×Y ×Z with Gγ(x, y, z) ≤
εc and F (x, y) < F (xc, yc). This leads to

F (x, y) + cGγ(x, y, z) < F (xc, yc) + cεc = F (xc, yc) + cGγ(xc, yc, zc),
which contradicts the global optimality of (xc, yc, zc)to problem (8) with penalty parameter c > 0.

By analogous reasoning, the assertion concerning the local optimality of (xc, yc, zc) for problem (8)
holds similarly.

A.4.3 PROOF OF THEOREM 3.3

Theorem 3.3. Assume thatX and Y are closed and functions F , f and g are continuous onX×Y .
Suppose ck → ∞ and let

(xk, yk, zk) ∈ argmin
(x,y)∈X×Y×Z

F (x, y) + ck Gγ(x, y, z).

Then, any accumulation point (x̄, ȳ, z̄) of the sequence {(xk, yk, zk)} is a solution to problem (7).

Proof. Applying the proof techniques used in Lemma 2 of Liu et al. (2020), we can establish that
Gγ(x, y, z) is lower semi-continuous onX×Y ×Z. The theorem’s conclusion follows by employing
the same proof techniques from Theorem 1 of Liu et al. (2020).

A.5 PROOFS IN SECTION 4

The proof of non-asymptotic convergence for BiC-GAFFA primarily hinges on establishing the
sufficient descent property of the merit function defined as follows

Vk := ϕck(x
k, yk, zk) + Cθ

∥∥θk − θ∗(xk, yk, zk)
∥∥2 ,

where
ϕck(x, y, z) :=

1

ck

(
F (x, y)− F

)
+ Gγ(x, y, z),

and
Cθ := Lf + rLg1 +

1

γ1
+ Lg.

To establish the sufficiently decreasing property of the merit function, we initially derive several cru-
cial auxiliary lemmas. These lemmas establish the Lipschitz continuity of θ∗(x, y, z) and λ∗(x, y, z)
(as detailed in Lemma A.1), the Lipschitz continuity of ∇Gγ(x, y, z) (as detailed in Lemma A.2)
and a descent property with bounded errors for the function ϕck(x, y, z) at each iteration (as detailed
in Lemma A.4).
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A.5.1 AUXILIARY LEMMAS

The Lipschitz properties of θ∗(x, y, z), λ∗(x, y, z), and ∇Gγ(x, y, z) are crucial for the convergence
analysis. We establish these properties in the subsequent lemmas.
Lemma A.1. Under Assumptions 4.2 and 4.3, and let γ1 > 0, γ2 > 0, for any (x, y, z), (x′, y′, z′) ∈
X × Y × Z, the following inequalities hold

∥θ∗(x, y, z)− θ∗(x′, y′, z′)∥ ≤ (γ1Lf + γ1rLg2) ∥x− x′∥+ ∥y − y′∥+ γ1Lg∥z − z′∥
≤ Lθ∥(x, y, z)− (x′, y′, z′)∥,

∥λ∗(x, y, z)− λ∗(x′, y′, z′)∥ ≤ γ2Lg∥(x, y)− (x′, y′)∥+ ∥z − z′∥
≤ Lλ∥(x, y, z)− (x′, y′, z′)∥,

(29)

where Lθ :=
√
3max{γ1Lf + γ1rLg2 , 1, γ1Lg} and Lλ :=

√
2max{γ2Lg, 1}.

Proof. To simplify notation, we denote (x, y, z), (x′, y′, z′) ∈ X×Y ×Z byw andw′, respectively.
Considering that θ∗(w) and λ∗(w) are optimal solutions to optimization problems in (5), it follows
from the stationary conditions that

0 ∈ ∇yf(x, θ
∗(w)) + zT∇yg(x, θ

∗(w)) + (θ∗(w)− y)/γ1 +NY (θ
∗(w)),

0 ∈ −g(x, y) + (λ∗(w)− z)/γ2 +NRp
+
(λ∗(w)).

(30)

Same results apply to θ∗(w′) and λ∗(w′)

0 ∈ ∇yf(x
′, θ∗(w′)) + (z′)T∇yg(x

′, θ∗(w′)) + (θ∗(w′)− y′)/γ1 +NY (θ
∗(w′)),

0 ∈ −g(x′, y′) + (λ∗(w′)− z′)/γ2 +NRp
+
(λ∗(w′)).

(31)

Defining

T (x, y, z, θ) := ∇θ

(
f(x, θ) + zTg(x, θ) +

1

2γ1
∥θ − y∥2

)
.

and exploiting the monotonicity of NY , we have from (30) and (31) that〈
− T (w, θ∗(w)) + T (w, θ∗(w′)), θ∗(w)− θ∗(w′)

〉
+
〈
− T (w, θ∗(w′)) + T (w′, θ∗(w′)), θ∗(w)− θ∗(w′)

〉
≥ 0

(32)

Under Assumptions 4.2 and 4.3, and given that γ1 > 0, it holds that for any (x, y, z) ∈ X×Y ×Rp+,

f(x, θ) + zTg(x, θ) +
1

2γ1
∥θ − y∥2

is 1
γ1

-strongly convex with respect to θ. According to Rockafellar & Wets (2009), T (x, y, z, θ) is
1/γ1-strongly monotone. Consequently, we have that

⟨T (w, θ∗(w))− T (w, θ∗(w′)), θ∗(w)− θ∗(w′)⟩ ≥ ∥θ∗(w)− θ∗(w′)∥2/γ1. (33)
Under Assumptions 4.2 and 4.3, we establish that
∥ − T (w, θ∗(w′)) + T (w′, θ∗(w′))∥

≤∥∇yf(x, θ
∗(w′))−∇yf(x

′, θ∗(w′))∥+ ∥zT∇yg(x, θ
∗(w′))− (z′)T∇yg(x

′, θ∗(w′))∥+ ∥y − y′∥/γ1
≤Lf∥x− x′∥+ ∥zT∇yg(x, θ

∗(w′))− zT∇yg(x
′, θ∗(w′))∥

+ ∥zT∇yg(x
′, θ∗(w′))− (z′)T∇yg(x

′, θ∗(w′))∥+ ∥y − y′∥/γ1
≤Lf∥x− x′∥+ rLg2∥x− x′∥+ Lg∥z − z′∥+ ∥y − y′∥/γ1,
where the last inequality follows from the Lg2 -Lipschitz continuity of ∇yg on X × Y ,
maxx∈X,y∈Y ∥∇yg(x, y)∥ ≤ Lg , (x′, θ∗(w′)) ∈ X × Y and z ∈ Z. Combining this inequality
with (32) and (33), we have

∥θ∗(w)− θ∗(w′)∥ ≤ (γ1Lf + γ1rLg2) ∥x− x′∥+ ∥y − y′∥+ γ1Lg∥z − z′∥.
Further, exploiting the monotonicity of NRp

+
, we obtain from (30) and (31) that

⟨g(x, y) + (z − λ∗(w))/γ2 − g(x′, y′)− (z′ − λ∗(w′))/γ2, λ
∗(w)− λ∗(w′)⟩ ≥ 0. (34)

Then, invoking Assumption 4.3, we have that
∥λ∗(w)− λ∗(w′)∥ ≤ γ2Lg∥(x, y)− (x′, y′)∥+ ∥z − z′∥.
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Lemma A.2. Under Assumptions 4.2 and 4.3, assume that X , Y are compact sets, and γ1 > 0,
γ2 > 0. Then, there exists LG > 0 such that for any points (x, y, z), (x′, y′, z′) ∈ X × Y × Z,

∥∇Gγ(x, y, z)−∇Gγ(x′, y′, z′)∥ ≤ LG∥(x, y, z)− (x′, y′, z′)∥,
and

−Gγ(x′, y′, z′) ≤ −Gγ(x, y, z)−⟨∇Gγ(x, y, z), (x′, y′, z′)−(x, y, z)⟩+LG
2
∥(x, y, z)−(x′, y′, z′)∥2.

Proof. For conciseness, we denote (x, y, z), (x′, y′, z′) ∈ X × Y × Z by w and w′, respectively.
Recalling from Lemma A.1, we have

∥θ∗(w)− θ∗(w′)∥ ≤ Lθ∥w − w′∥, ∥λ∗(w)− λ∗(w′)∥ ≤ Lλ∥w − w′∥. (35)

As specified in (5), the norm of λ∗(w) is bounded above by

∥λ∗(w)∥ = ∥ProjRp
+
(z + γ2g(x, y)) ∥ ≤ ∥z + γ2g(x, y)∥ ≤ r + γ2Mg, ∀w ∈ X × Y × Z,

where Mg := maxx∈X,y∈Y ∥g(x, y)∥. Drawing upon Lemma 2.2, Assumptions 4.2 and 4.3, and
(35), for any w,w′ ∈ X × Y × Z, we have

∥∇xGγ(w)−∇xGγ(w′)∥
≤∥∇xf(x, y)−∇xf(x

′, y′)∥+ ∥λ∗(w)T∇xg(x, y)− λ∗(w′)T∇xg(x
′, y′)∥

+ ∥∇xf(x, θ
∗(w))−∇xf(x

′, θ∗(w′))∥+ ∥zT∇xg(x, θ
∗(w))− (z′)T∇xg(x

′, θ∗(w′))∥
≤Lf∥(x, y)− (x′, y′)∥+ Lf∥(x, θ∗(w))− (x′, θ∗(w′))∥

+ ∥λ∗(w)T∇xg(x, y)− λ∗(w)T∇xg(x
′, y′)∥+ ∥λ∗(w)T∇xg(x

′, y′)− λ∗(w′)T∇xg(x
′, y′)∥

+ ∥zT∇xg(x, θ
∗(w))− zT∇xg(x

′, θ∗(w′))∥+ ∥zT∇xg(x
′, θ∗(w′))− (z′)T∇xg(x

′, θ∗(w′))∥
≤Lf∥(x, y)− (x′, y′)∥+ Lf∥x− x′∥+ LfLθ∥w − w′∥

+ (r + γ2Mg)Lg1∥(x, y)− (x′, y′)∥+ LgLλ∥w − w′∥
+ rLg1∥x− x′∥+ rLg1Lθ∥w − w′∥+ Lg∥z − z′∥,

where the last inequality follows from θ∗(w′) ∈ Y , z ∈ Z and maxx∈X,y∈Y ∥∇xg(x, y)∥ ≤ Lg .
Similarly, for gradients with respect to y and z, for any w,w′ ∈ X × Y × Z, we have

∥∇yGγ(w)−∇yGγ(w′)∥
≤∥∇yf(x, y)−∇yf(x

′, y′)∥+ ∥λ∗(w)T∇yg(x, y)− λ∗(w)T∇yg(x
′, y′)∥

+ ∥λ∗(w)T∇yg(x
′, y′)− λ∗(w′)T∇yg(x

′, y′)∥+ 1

γ1
∥y − y′∥+ 1

γ1
∥θ∗(w)− θ∗(w′)∥

≤Lf∥(x, y)− (x′, y′)∥+ (r + γ2Mg)Lg2∥(x, y)− (x′, y′)∥

+ LgLλ∥w − w′∥+ 1

γ1
∥y − y′∥+ 1

γ1
Lθ∥w − w′∥,

where the last inequality follows from the fact that maxx∈X,y∈Y ∥∇yg(x, y)∥ ≤ Lg , and

∥∇zGγ(w)−∇zGγ(w′)∥

≤ 1

γ2
∥z − z′∥+ 1

γ2
∥λ∗(w)− λ∗(w′)∥+ ∥g(x, θ∗(w))− g(x′, θ∗(w′))∥

≤ 1

γ2
∥z − z′∥+ Lλ

γ2
∥w − w′∥+ Lg∥x− x′∥+ LgLθ∥w − w′∥.

The above inequalities together yields the existence of constant LG > 0 such that

∥∇Gγ(x, y, z)−∇Gγ(x′, y′, z′)∥ ≤ LG∥(x, y, z)− (x′, y′, z′)∥.
Then the conclusion follows from Lemma 5.7 of Beck (2017).

The update of θk constitutes a single gradient descent step to the minimization problem defined in
(5). The progress of this update is quantified in the subsequent lemma.
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Lemma A.3. Under Assumptions 4.2 and 4.3, let γ1 > 0, γ2 > 0 and ηk ∈ (0, 1/(Lf + rLg2 +
1/γ1)), then the sequence of (xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies

∥θk+1 − θ∗(xk, yk, zk)∥2 ≤ (1− ηk/γ1)∥θk − θ∗(xk, yk, zk)∥2, (36)

and
λk+1 = λ∗(xk, yk, zk).

Proof. Consider (xk, yk, zk) ∈ X×Y ×Z. For brevity, we denote θ∗(xk, yk, zk) and λ∗(xk, yk, zk)
by θ∗ and λ∗, respectively. Under Assumptions 4.2 and 4.3, and given γ1 > 0, the function

f(xk, θ) + (zk)Tg(xk, θ) +
1

2γ1
∥θ − yk∥2,

is 1
γ1

-strongly convex and (Lf + rLg2 + 1/γ1)-smooth with respect to θ. invoking Theorem 10.29
of Beck (2017), we obtain

∥θk+1 − θ∗∥2 ≤ (1− ηk/γ1) ∥θk − θ∗∥2.
Additionally, according to (5), it follows that λk+1 = λ∗.

The update of variables (x, y, z) in (14) can be viewed as an inexact alternating proximal gradi-
ent step from (xk, yk, zk) on solving min(x,y,z)∈X×Y×Z ϕck(x, y, z). In the lemma below, we
demonstrate that the function ϕck(x, y, z) exhibits a decreasing property with bounded errors at
each iteration.

Lemma A.4. Under Assumptions 4.2 and 4.3, assume X , Y are compact sets, and let γ1 > 0,
γ2 > 0. Then the sequence of (xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk)−
(

1

2αk
− Lϕk

2

)
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2

+
αk
2

(
Lf + uzLg1 +

1

γ1
+ Lg

)∥∥θ∗(xk, yk, zk)− θk+1
∥∥2 .

(37)
where Lϕk

:= LF /ck + LG .

Proof. For clarity, we denote (xk, yk, zk), (xk+1, yk+1, zk+1) as wk and wk+1, respectively. Under
the Assumptions 4.2 and 4.3, where ∇F and ∇f are LF - and Lf -Lipschitz continuous on X × Y ,
and applying Lemma 5.7 of Beck (2017) and Lemma A.2, we obtain

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk) + ⟨∇ϕck(xk, yk, zk), (xk+1, yk+1, zk+1)− (xk, yk, zk)⟩

+
Lϕk

2
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2,

(38)
with Lϕk

:= LF /ck + LG . Based on the update rule of variables (x, y, z) in (14), the convexity of
X × Y × Z and the property of the projection operator ProjX×Y×Z , we have〈

(xk, yk, zk)− αk(d
k
x, d

k
y , d

k
z)− (xk+1, yk+1, zk+1), (xk, yk, zk)− (xk+1, yk+1, zk+1)

〉
≤ 0,

yielding〈
(dkx, d

k
y , d

k
z), (x

k+1, yk+1, zk+1)− (xk, yk, zk)
〉
≤ − 1

αk
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2.

Integrating this inequality with (38), we infer that

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk)−
(

1

αk
− Lϕk

2

)
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2

+
〈
∇ϕck(xk, yk, zk)− (dkx, d

k
y , d

k
z), (x

k+1, yk+1, zk+1)− (xk, yk, zk)
〉
.

(39)
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Furthermore, considering wk ∈ X × Y × Z and with θ∗(wk), θk ∈ Y for all k, and utilizing the
formula of ∇Gγ(x, y, z) derived in Lemma 2.2, along with the definitions of dkx, dky and dkz in (13)
and λk+1 = λ∗(wk) from Lemma A.3, we can obtain from Assumptions 4.2 and 4.3 that∥∥∇ϕck(xk, yk, zk)− (dkx, d

k
y , d

k
z)
∥∥

≤
∥∥∇xGγ(xk, yk, zk)−∇xf(x

k, yk)− (λk+1)T∇xg(x
k, yk) +∇xf(x

k, θk+1) + (zk)T∇xg(x
k, θk+1)

∥∥
+
∥∥∇yGγ(xk, yk, zk)−∇yf(x

k, yk)− (λk+1)T∇yg(x
k, yk) + (yk − θk+1)/γ1

∥∥
+
∥∥∇zGγ(xk, yk, zk) + (zk − λk+1)/γ2 + g(xk, θk+1)

∥∥
≤
∥∥λ∗(wk)T∇xg(x

k, yk)− (λk+1)T∇xg(x
k, yk)

∥∥+ ∥∥∇xf(x
k, θ∗(wk))−∇xf(x

k, θk+1)
∥∥

+
∥∥(zk)T∇xg(x

k, θ∗(wk))− (zk)T∇xg(x
k, θk+1)

∥∥
+
∥∥λ∗(wk)T∇yg(x

k, yk)− (λk+1)T∇yg(x
k, yk)

∥∥+ 1

γ1

∥∥θ∗(wk)− θk+1
∥∥

+
1

γ2

∥∥λ∗(wk)− λk+1
∥∥+ ∥∥g(xk, θ∗(wk))− g(xk, θk+1)

∥∥
≤Lf

∥∥θ∗(wk)− θk+1
∥∥+ rLg1

∥∥θ∗(wk)− θk+1
∥∥+ 1

γ1

∥∥θ∗(wk)− θk+1
∥∥+ Lg

∥∥θ∗(wk)− θk+1
∥∥

=

(
Lf + rLg1 +

1

γ1
+ Lg

)∥∥θ∗(wk)− θk+1
∥∥ .

(40)
This yields that〈

∇ϕck(xk, yk, zk)− (dkx, d
k
y , d

k
z), (x

k+1, yk+1, zk+1)− (xk, yk, zk)
〉

≤ αk
2

(
Lf + rLg1 +

1

γ1
+ Lg

)∥∥θ∗(wk)− θk+1
∥∥2 + 1

2αk
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2,

Combining this with (39) leads to the following inequality

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk)−
(

1

2αk
− Lϕk

2

)
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2

+
αk
2

(
Lf + rLg1 +

1

γ1
+ Lg

)∥∥θ∗(wk)− θk+1
∥∥2 .

(41)

A.5.2 SUFFICIENT DESCENT PROPERTY OF Vk

Utilizing the auxiliary lemmas established previously, we now proceed to demonstrate the sufficient
decreasing property of Vk.

Lemma A.5. Under Assumptions 4.1, 4.2 and 4.3, suppose X , Y are compact sets, γ1 > 0, γ2 > 0
and ηk ∈ (η, 1/(Lf + rLg2 + 1/γ1)) with η > 0. Then there exists cα > 0 such that when
0 < αk ≤ cα, the sequence of (xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies

Vk+1 − Vk ≤ − 1

4αk

∥∥wk+1 − wk
∥∥2 − ηkCθ

2γ1
∥θk − θ∗(wk)∥2. (42)

Proof. For clarity and conciseness, we represent (xk, yk, zk), (xk+1, yk+1, zk+1) as wk and wk+1,
respectively. Recall (37) from Lemma A.4 that

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk)−
(

1

2αk
− Lϕk

2

)
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2

+
αk
2

(
Lf + rLg1 +

1

γ1
+ Lg

)∥∥θ∗(xk, yk, zk)− θk+1
∥∥2 .

(43)
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Given that ck+1 ≥ ck, it follows that (F (xk+1, yk+1) − F )/ck+1 ≤ (F (xk+1, yk+1) − F )/ck.
Combining this with (43) leads to

Vk+1 − Vk =ϕck+1
(wk+1)− ϕck(w

k) + Cθ
∥∥θk+1 − θ∗(wk+1)

∥∥2 − Cθ
∥∥θk − θ∗(wk)

∥∥2
≤ϕck(w

k+1)− ϕck(w
k) + Cθ

∥∥θk+1 − θ∗(wk+1)
∥∥2 − Cθ

∥∥θk − θ∗(wk)
∥∥2

≤ −
(

1

2αk
− Lϕk

2

)
∥wk+1 − wk∥2 + Cθ

∥∥θk+1 − θ∗(wk+1)
∥∥2 − Cθ

∥∥θk − θ∗(wk)
∥∥2

+
αk
2

(
Lf + rLg1 +

1

γ1
+ Lg

)∥∥θ∗(wk)− θk+1
∥∥2

= −
(

1

2αk
− Lϕk

2

)
∥wk+1 − wk∥2 + Cθ

∥∥θk+1 − θ∗(wk+1)
∥∥2 − Cθ

∥∥θk − θ∗(wk)
∥∥2

+
αk
2
Cθ
∥∥θ∗(wk)− θk+1

∥∥2
(44)

where the last equation follows from defining Cθ := Lf + rLg1 + 1
γ1

+ Lg . Further, we can
demonstrate that∥∥θk+1 − θ∗(wk+1)

∥∥2 − ∥∥θk − θ∗(wk)
∥∥2 + αk

2

∥∥θ∗(wk)− θk+1
∥∥2

≤ (1 + ϵk + αk/2)
∥∥θk+1 − θ∗(wk)

∥∥2 − ∥∥θk − θ∗(wk)
∥∥2 + (1 +

1

ϵk
)∥θ∗(wk+1)− θ∗(wk)∥2

≤ (1 + ϵk + αk/2)(1− ηk/γ1)∥θk − θ∗(wk)∥2 −
∥∥θk − θ∗(wk)

∥∥2 + (1 +
1

ϵk
)L2

θ

∥∥wk+1 − wk
∥∥2 ,

for any ϵk > 0, where the second inequality is a consequence of Lemmas A.1 and A.3. By setting
ϵk = 1

4ηk/γ1 in the above inequality, we obtain that when αk ≤ 1
2ηk/γ1, the following inequalities

hold

(1 + ϵk + αk/2)(1− ηk/γ1) ≤ (1 +
1

2
ηk/γ1)(1− ηk/γ1) ≤ 1− ηk

2γ1
.

Consequently, we establish the inequality∥∥θk+1 − θ∗(wk+1)
∥∥2 − ∥∥θk − θ∗(wk)

∥∥2 + αk
2

∥∥θ∗(wk)− θk+1
∥∥2

≤ − ηk
2γ1

∥θk − θ∗(wk)∥2 +
(
1 +

4γ1
ηk

)
L2
θ

∥∥wk+1 − wk
∥∥2 . (45)

Combining (44) and (45) implies

Vk+1 − Vk ≤ −
[

1

2αk
− Lϕk

2
−
(
1 +

4γ1
ηk

)
L2
θCθ

] ∥∥wk+1 − wk
∥∥2 − ηkCθ

2γ1
∥θk − θ∗(wk)∥2.

(46)
When ck+1 ≥ ck, ηk ≥ η > 0, αk ≤ 1

2η/γ1, it holds that for any k, αk ≤ 1
2ηk/γ1,

Lϕk

2
+

(
1 +

4γ1
ηk

)
L2
θCθ ≤

Lϕ0

2
+

(
1 +

4γ1
η

)
L2
θCθ =: Cα.

If cα > 0 satisfies

cα ≤ min

{
1

2
η/γ1,

1

4Cα

}
,

then, for 0 < αk ≤ cα, it is guaranteed that

1

2αk
− Lϕk

2
−
(
1 +

4γ1
ηk

)
L2
θCθ ≥

1

4αk
.

Therefore, the conclusion follows directly from (46).
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A.5.3 PROOFS OF THEOREM 4.4 AND THEOREM 4.5

Indeed, Theorem 4.4 is a special case of Theorem 4.5 with ρ = 0. Consequently, we present the
proof of Theorem 4.5.

Theorem 4.5. Under Assumptions 4.1, 4.2 and 4.3, assume that X , Y are compact sets, γ1 > 0,
γ2 > 0, ck = c(k + 1)ρ with c > 0, ρ ∈ [0, 1/2) and ηk ∈ (η, 1/(Lf + rLg2 + 1/γ1)) with
η > 0. Then there exists cα > 0 such that when αk ∈ (α, cα) with α > 0, the sequence of
(xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies

min
0≤k≤K

∥∥θk − θ∗(xk, yk, zk)
∥∥ = O

(
1

K1/2

)
,

and

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2ρ)/2

)
.

Furthermore, if ρ > 0 and ψck(x
k, yk, zk) is uniformly bounded above, then the sequence of

(xk, yk, zk) satisfies

0 ≤ Gγ(xK , yK , zK) = O

(
1

Kρ

)
.

Proof. Lemma A.5 establishes the existence of cα > 0 such that (42) holds when αk ≤ cα. Sum-
ming (42) over k = 0, 1, . . . ,K − 1, we obtain

K−1∑
k=0

(
1

4αk
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2 +

ηCθ

2γ1
∥θk − θ∗(xk, yk, zk)∥2

)
≤V0 − VK ≤ V0,

(47)

where the last inequality follows from the nonnegativity of VK . Consequently, it holds that
∞∑
k=0

∥θk − θ∗(xk, yk, zk)∥2 <∞,

and

min
0≤k≤K

∥∥θk − θ∗(xk, yk, zk)
∥∥ = O

(
1

K1/2

)
.

According to the update rule for variables (x, y, z) in (14), we derive

0 ∈ ck(d
k
x, d

k
y , d

k
z) +NX×Y×Z(x

k+1, yk+1, zk+1) +
ck
αk

(
(xk+1, yk+1, zk+1)− (xk, yk, zk)

)
.

(48)
Following the definitions of dkx, dky and dkz in (13), we obtain

ek ∈ ∇ψck(xk+1, yk+1, zk+1) +NX×Y×Z(x
k+1, yk+1, zk+1),

where

ek := ∇ψck(xk+1, yk+1, zk+1)− ck(dkx, dky , dkz)−
ck
αk

(
(xk+1, yk+1, zk+1)− (xk, yk, zk)

)
. (49)

Next, we estimate ∥ek∥. We have

∥ek∥ ≤∥∇ψck(xk+1, yk+1, zk+1)−∇ψck(xk, yk, zk)∥+ ∥∇ψck(xk, yk, zk)− ck(d
k
x, d

k
y , d

k
z)∥

+
ck
αk

∥∥(xk+1, yk+1, zk+1)− (xk, yk, zk)
∥∥ .

For the first term in the right hand side of the above inequality, by using Assumptions 4.1, 4.2 and
4.3, along with Lemma A.1, we establish the existence of Lψ := LF + LG > 0 such that

∥∇ψck(xk+1, yk+1, zk+1)−∇ψck(xk, yk, zk)∥ ≤ ckLψ∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥.
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Using (40) and Lemma A.3, we have

∥∇ψck(xk, yk, zk)− ck(d
k
x, d

k
y , d

k
z)∥ = ck

∥∥∇ϕck(xk, yk, zk)− (dkx, d
k
y , d

k
z)
∥∥

≤ ckCθ
∥∥θ∗(xk, yk, zk)− θk+1

∥∥
≤ ckCθ

∥∥θ∗(xk, yk, zk)− θk
∥∥ . (50)

with Cθ = Lf + rLg1 +
1
γ1

+ Lg . Consequently, we have

∥ek∥ ≤ ckLψ∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥+ ck
αk

∥∥(xk+1, yk+1, zk+1)− (xk, yk, zk)
∥∥

+ ckCθ
∥∥θ∗(xk, yk, zk)− θk

∥∥ .
Using this bound on ∥ek∥, we have that

Rk(x
k+1, yk+1, zk+1) ≤ ck (Lψ + 1/αk) ∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥

+ ckCθ
∥∥θ∗(xk, yk, zk)− θk

∥∥ .
Utilizing this inequality, and given that αk ∈ (α, cα) for some positive constant α, we can establish
the existence of a constant CR > 0 such that

1

c2k
Rk(x

k+1, yk+1, zk+1)2

≤CR

(
1

4αk
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥2 +

ηCθ

2γ1
∥θk − θ∗(xk, yk, zk)∥2

)
.

(51)

This inequality, combined with (47), implies that
∞∑
k=0

1

c2k
Rk(x

k+1, yk+1, zk+1)2 <∞. (52)

Because 2ρ < 1, it follows that
K∑
k=0

1

c2k
=

K∑
k=0

(
1

k + 1

)2ρ
1

c2
≥
(∫ K+2

1

1

x2ρ d x

)
1

c2
=

(
(K + 2)1−2ρ − 1

1− 2ρ

)
1

c2
,

leading us to conclude from (52) that

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2ρ)/2

)
.

Given that ψck(x
k, yk, zk) ≤M and F (xk, yk) ≥ F for all k, it follows that

ckGγ(xk, yk, zk) ≤M − F , ∀k.
From ck = c(k + 1)ρ and ρ > 0, we can obtain that

Gγ(xK , yK , zK) = O

(
1

Kρ

)
.

A.6 EXTENSION TO BILEVEL OPTIMIZATION WITH MINIMAX LOWER-LEVEL PROBLEM

In this part, we explore the extension of our proposed gradient-based, single-loop, Hessian-free algo-
rithm, originally designed for bilevel optimization problems with constrained lower-level problems,
to bilevel optimization problems with minimax lower-level problem,

min
x∈X,y∈Y,z∈Z

F (x, y, z) s.t. (y, z) ∈ SP(x),

where SP(x) denotes the set of saddle points for the convex-concave minimax problem,

min
y∈Y

max
z∈Z

f(x, y, z),
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where x ∈ Rn, y ∈ Rm and z ∈ Rp, the sets X , Y and Z are closed convex sets in Rn, Rm and Rp,
respectively. The UL objective F : X × Y × Z → R, and the LL objective f : X × Y × Z → R
are continuously differentiable with f being convex in y and concave in z. Building upon the idea
applied in the development of the regularized gap function (3), we introduce the doubly regularized
gap function for lower-level minimax problems, defined as:

Gsaddle
γ (x, y, z) := max

θ∈Y,λ∈Z

{
f(x, y, λ)− 1

2γ2
∥λ− z∥2 − f(x, θ, z)− 1

2γ1
∥θ − y∥2

}
.

By employing proof techniques analogous to those used in Lemma 2.1 or Theorem 3.3 from
Von Heusinger & Kanzow (2009), we can derive similar results for the doubly regularized gap
function Gsaddle

γ (x, y, z).

Lemma A.6. Assume that f(x, y, z) is convex in y on Y for any given x ∈ X, z ∈ Z and concave
in z on Z for any given x ∈ X, y ∈ Y . Let γ1, γ2 > 0, we have Gsaddle

γ (x, y, z) ≥ 0 for any
(x, y, z) ∈ X × Y × Z, and

Gsaddle
γ (x, y, z) ≤ 0,

if and only if (y, z) ∈ SP(x).

Similarly, utilizing the proof methods in Lemma 2.2, we establish the differentiability of
Gsaddle
γ (x, y, z) and derive the formula for its gradient.

Lemma A.7. Assume that f(x, y, z) is convex in y on Y for any given x ∈ X, z ∈ Z and concave
in z on Z for any given x ∈ X, y ∈ Y and is continuously differentiable on an open set containing
X × Y × Z. Then Gsaddle

γ (x, y, z) is continuously differentiable on X × Y × Z, and for any
(x, y, z) ∈ X × Y × Z,

∇Gsaddle
γ (x, y, z) =

(∇xf(x, y, λ
∗)

∇yf(x, y, λ
∗)

− (z − λ∗) /γ2

)
−
(∇xf(x, θ

∗, z)
(y − θ∗) /γ1
∇zf(x, θ

∗, z)

)
, (53)

where θ∗ and λ∗ denote θ∗(x, y, z) and λ∗(x, y, z), respectively, defined as

θ∗(x, y, z) := argmin
θ∈Y

{
f(x, θ, z) +

1

2γ1
∥θ − y∥2

}
,

λ∗(x, y, z) := argmax
λ∈Z

{
f(x, y, λ)− 1

2γ2
∥λ− z∥2

}
.

(54)

This newly introduced gap function enables the following equivalent single-level reformulation of
the problem (16),

min
(x,y,z)∈X×Y×Z

F (x, y, z) s.t. Gsaddle
γ (x, y, z) ≤ 0.

Using Lemma A.6 and the proof techniques in Theorem 2.3, we can establish the equivalence be-
tween the reformulation (19) and the bilevel optimization problem (16).
Theorem A.8. Assume that f(x, y, z) is convex in y on Y for any given x ∈ X, z ∈ Z and concave
in z on Z for any given x ∈ X, y ∈ Y . Let γ1, γ2 > 0, the reformulation (19) is equivalent to the
bilevel optimization problem (16).

Utilizing this reformulation, analogous to BiC-GAFFA, we can propose a gradient-based, single-
loop, Hessian-free algorithm for problem (16). At each iteration, we employ a single projected
gradient descent step to update θk+1, λk+1 to approximate θ∗(xk, yk, zk) and λ∗(xk, yk, zk), as
follows:

θk+1 = ProjY
(
θk − ηkd

k
θ

)
,

λk+1 = ProjZ
(
λk − ηkd

k
λ

)
,

where ηk > 0 is the step size, and

dkθ := ∇yf(x
k, θk, zk) +

1

γ1
(θk − yk),

dkλ := −∇zf(x
k, yk, λk) +

1

γ2
(λk − zk).

(55)
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By substituting (θk+1, λk+1) for (θ∗, λ∗) in (53), we can approximate the gradients of the function

1

c
F (x, y, z) + Gsaddle

γ (x, y, z)

to define the update directions:

dkx :=
1

ck
∇xF (x

k, yk, zk) +∇xf(x
k, yk, λk+1)−∇xf(x

k, θk+1, zk),

dky :=
1

ck
∇yF (x

k, yk, zk) +∇yf(x
k, yk, λk+1)− (yk − θk+1)/γ1,

dkz :=
1

ck
∇yF (x

k, yk, zk)− (zk − λk+1)/γ2 −∇zf(x
k, θk+1, zk).

(56)

Finally, we implement an update for the variables (x, y, z) using a step size αk > 0:

(xk+1, yk+1, zk+1) = ProjX×Y×Z
(
(xk, yk, zk)− αk(d

k
x, d

k
y , d

k
z)
)
.

The complete algorithm is presented in Algorithm 2.

While the primary focus of this paper is the bilevel optimization with constrained lower-level prob-
lems, we defer the convergence analysis of this algorithm to future work.
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