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Abstract

While Large Language Models (LLMs) have
demonstrated advanced reasoning capabili-
ties, their comprehensive evaluation in general
Chinese-language contexts remains understud-
ied. To bridge this gap, we propose Chinese
Commonsense Multi-hOp Reasoning (CC-
MOR), a novel benchmark designed to evaluate
LLMSs’ ability to integrate Chinese-specific fac-
tual knowledge with multi-step logical reason-
ing. Specifically, we first construct a domain-
balanced seed set from existing QA datasets,
then develop an LLM-powered pipeline to gen-
erate multi-hop questions anchored on factual
unit chains. To ensure the quality of result-
ing dataset, we implement a human-in-the-loop
verification system, where domain experts sys-
tematically validate and refine the generated
questions. Using CCMOR, we evaluate state-
of-the-art LLMs, demonstrating persistent lim-
itations in LLMs’ ability to process long-tail
knowledge and execute knowledge-intensive
reasoning. Notably, retrieval-augmented gener-
ation substantially mitigates these knowledge
gaps, yielding significant performance gains.
The dataset will be released upon acceptance.

1 Introduction

Recent advances in large language models (LLMs)
have demonstrated exceptional reasoning capa-
bilities, as exemplified by models like OpenAl-
ol (Jaech et al., 2024), DeepSeek-R1 (Guo et al.,
2025), Kimi k1.5 (Team et al., 2025), Qwen-
QwQ (Team, 2025). These specialized models
have achieved significant breakthroughs in com-
plex tasks such as scientific reasoning, program-
ming, mathematical problem-solving and so on.
However, their reasoning performance in general
Chinese-language scenarios remains understudied,
creating a critical research gap.

Multi-hop reasoning, which requires integrating
and synthesizing information from multiple sources

to conclude, is a crucial aspect of advanced reason-
ing skills in the general scenarios (Welbl et al.,
2018). Existing datasets for evaluating multi-hop
reasoning, e.g., HotpotQA (Yang et al., 2018), Wik-
iHop (Welbl et al., 2018), DROP (Dua et al., 2019),
mainly focus on the English language, leaving a sig-
nificant resource gap for evaluating Chinese LLMs
on the reasoning skill.

Unfortunately, constructing a high-quality Chi-
nese multi-hop reasoning dataset faces several chal-
lenges: 1) Cultural Relevance: The dataset needs
to be rooted in Chinese cultural knowledge, id-
ioms, and logical reasoning patterns, which differ
from the widely used English datasets. 2) Breadth
of Knowledge: Covering a diverse range of do-
mains within the vast scope of Chinese culture and
knowledge is crucial for comprehensively evalu-
ating the reasoning abilities. 3) Reasoning over
Memorization: The dataset should prioritize tasks
requiring reasoning over simple memorization. 4)
Quality Assurance: Ensuring the accuracy, con-
sistency, and clarity of question-answer pairs de-
mands accurate design and rigorous quality control
measures specifically tailored to the nuances of the
Chinese language.

To bridge this gap, we propose Chinese
Commonsense Multi-hOp Reasoning (CCMOR), a
novel benchmark designed to evaluate LLMs’ abil-
ity to integrate Chinese-specific factual knowledge
with multi-step logical reasoning. Partially inspired
by MoreHopQA (Schnitzler et al., 2024), we lever-
age existing QA datasets to build a balanced seed
set, and then develop an LLM-powered pipeline
to generate multi-hop questions anchored on fac-
tual unit chains. To ensure the quality of resulting
dataset, we employ human-in-the-loop verification
to validate and refine the generated questions.

Our contributions are summarized as follows:

¢ We introduce a novel benchmark CCMOR for
evaluating the ability of LLMs in Chinese Com-
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Figure 1: An overview of the data construction process. Examples are provided in English for readability.

monsense Multi-Hop Reasoning.

* Experimental results on state-of-the-art LLMs
demonstrate persistent limitations in LLMs’
ability to process long-tail knowledge and exe-
cute knowledge-intensive reasoning.

* Further analysis suggests that domains requir-
ing procedural or abstract reasoning are more
challenging for LLMs, while LLMs with delib-
erate thinking are more capable of solving multi-
hop questions. Notably, retrieval-augmented
generation can mitigate the knowledge gaps and
improve performance significantly.

2 Chinese Commonsense Multi-Hop
Reasoning Dataset

2.1 Overview

We introduce the Chinese Commonsense Multi-
Hop Reasoning Benchmark (CCMOR), filling the
gap in benchmarks for evaluating multi-step reason-
ing capabilities of LLMs in Chinese. Our bench-
mark systematically assesses both factual recall and
multi-hop inferential reasoning. Building upon ex-
isting Chinese commonsense QA datasets, we con-
struct a domain-balanced seed set and develop an
LLM-driven expansion pipeline to generate multi-
hop questions anchored on fact chains. To ensure
both factual accuracy and reasoning coherence, the
pipeline integrates automatic validation by LLMs
with expert human verification. Figure 1 illustrates
the overall data construction process. The result-
ing dataset covers a wide range of domains and
features verifiable multi-hop reasoning paths, pro-
viding a comprehensive resource to evaluate how

LLMs memorize, inference, and reasoning within
Chinese commonsense scenarios.

2.2 Dataset Construction

Seed Data Sampling We sample seed instances
from existing Chinese factual QA datasets, includ-
ing Chinese SimpleQA (He et al., 2024), CHARM-
Memorization (Sun et al., 2024), and others. Fol-
lowing the taxonomy of the Chinese SimpleQA
dataset, we prompt LLM to reclassify all seed ques-
tions into six primary domains: Chinese Culture,
Humanities, Engineering and Technology, Life and
Arts, Society, and Natural Science. To ensure do-
main representativeness, we maintain a balanced
distribution across categories during sampling.

To improve data quality and enable multi-hop
expansion, we employ multiple LLMs to assess the
correctness and clarity of each QA pair. Specifi-
cally, the models verify whether a question is logi-
cally well-formed and unambiguous, and whether
its answer aligns with up-to-date factual knowl-
edge. To support structured multi-hop reasoning,
we further ensure that each answer corresponds
to a well-defined factual unit (e.g., a person, lo-
cation, date and so on). This approach facilitates
systematic expansion in subsequent stages.

Sub-question Generation Given a seed QA pair
(q9,al), we treat the answer a! as the anchor fact
for constructing follow-up questions. At each layer
¢ € [1,N], where N is a predefined maximum
depth, we prompt an LLM to generate n new QA
pairs for each (qf_l, af_l) € QAy_1, based on the

anchor fact a‘ ™1



Accepted Sub-questions

| © Rejected Sub-questions

Q: # ¥ B &AM —F L7

In which year was the People’s Republic of China
founded?

[Concrete and specific]

Q: # F H 2 A 4 iR R L 82
When did the People’s Republic of China founded?

[Vague instruction]

Q: Bl A9 B AR AR I, 72
What is the capital city of Japan?
[Objective and verifiable]

Q: fRINA B AR RAGF 6| 2 — A2
Which city in Japan do you think is the best?
[Subjective and unverifiable]

Q: Fwt+tit/ £ B ERAE?
Who is the 47th president of the United States?
[Specific and temporally stable]

Q: ME£BREHRAM?
Who is the current president of the United States?
[Temporally unstable and context-dependent]

Table 1: Examples of accepted and rejected sub-questions based on our quality criteria.

Q‘AZ = U {(Qf,h af,l)? ) (Qf,rw af,n)}'
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To promote diversity and reduce model-specific
bias, different LLMs are alternated across layers.
This recursive expansion yields a tree-structured set
{QA;, ..., QAN}, where each node corresponds
to an answer, and each directed edge represents a
question that connects an answer to its follow-up.
A complete path from the root to a leaf forms a co-
herent multi-hop question, with each hop grounded
in a preceding factual answer.

LLM-Based Verification For each generated
sub-question, we employ LLMs to assess its quality
and determine whether to retain the corresponding
node for further expansion.

Unlike traditional QA datasets (He et al., 2024)
that assume a single ground-truth answer per ques-
tion, we do not enforce the uniqueness of the an-
swers at the sub-question level. Instead, the an-
swer of each sub-question is concrete, countable,
and verifiable. For sub-questions with multiple
valid answers, we retain all plausible answers, but
only one is selected for further expansion. Table 1
presents examples of some accepted and rejected
sub-questions. Specilfically, the LLM-Based verifi-
cation based on the following criteria :

* Answerability and Verifiability: The sub-
question must admit a concrete and finite set
of plausible answers that can be independently
verified, regardless of whether a single answer
is enforced.

* Specificity and Determinacy: The sub-
question should clearly target a specific fact
or relation, avoiding vague references or am-
biguous phrasing.

* Temporal and Factual Stability: The answer
must reflect an objective, time-invariant fact
that does not depend on evolving context or
subjective interpretation.

Multi-Hop Question Composition After filter-
ing invalid reasoning paths, we prompt the LLM to
compose a coherent multi-hop question from each
valid fact chain. Table 2 provides an example of
composing multi-hop question. Specifically, the
model replaces intermediate facts with appropriate
referential expressions to ensure fluency and main-
tain a natural narrative flow across reasoning steps.
The final question must contain only one explicit
interrogative, while earlier sub-questions should be
embedded implicitly within the contextual descrip-
tion. The question should not reveal the answers to
any intermediate steps, and all sub-parts must be
logically connected through referential or causal
relations to form a coherent reasoning chain. To
enhance the naturalness and readability of the com-
posed question, appropriate contextual information
is added as needed. When any sub-question admits
multiple valid reasoning trajectoies, we introduce
additional constraints to disambiguate the reason-
ing path and ensure that the multi-hop question
yields a concrete and unique final answer.

2.3 Quality Control

We adopt a human-in-the-loop annotation process
to ensure factual accuracy and reasoning quality,
complementing LLM-based verification. Profes-
sional annotators are involved throughout the data
construction pipeline, including seed validation,
sub-question generation, and especially multi-hop
question composition. Each instance is indepen-
dently reviewed by two annotators, with disagree-
ments resolved by a third. Annotators are pro-
vided with the complete data source, including
sub-questions, answers, LLM justifications, and



Seed Anchor: & % (Putin) \

Composed Multi-hop Question

Q: EXTH—FHERIBMT I ELR?
In which year did Putin first become President of Russia?
A 12000

Qo - M2 A2 RIKAF T 20005015 N Rap 42
Who won the Nobel Prize in Physics in 2000?

A IR F X/ ¥/ AR (Alferov / Kroemer
/ Kilby)

Qs : FI R % F R TA—F2
In which year did Alferov pass away?
A3 : 2019

LLM composition:
ERERGBAKRT I ERGF TN —F, FFAH—Iaf
FERRFTENRYEE L, L5420 —F2

When did Putin first become President of Russia, who won the
Nobel Prize in Physics in the same year, and when did he pass

away?

Human annotation:

EREREBERTMERGA—F, —LHRZERETH
MRy . AR T M AEAFE R TH—F2

In the year Putin was first elected President of Russia, a scientist
won the Nobel Prize in Physics, in which year did this Russian
scientist pass away?

Table 2: An example of composing a multi-hop question from a chain of sub-questions, based on the seed entity “&
7 (Putin)”. Red indicates inappropriate wording, while Blue denotes suitable revisions.

Statistics 3-Hops 6-Hops
Initial Samples 1000 1000
# LLM-Generated Subquestions 1563 1164
# Composed Multihop Sample 521 194
# After Human Annotation 480 166
Avg. # Subquestion Length 16.73 18.17
Avg. # Subquestion Answer Length ~ 5.32 6.62
Avg. # Whole Question Length 39.19 68.51
Avg. # Whole Answer Length 4.85 6.48
Avg. # Domain Coverage 1.65 2.26

Table 3: Overall statistics of CCMOR.

final composed questions. They are instructed to
verify all facts against authoritative sources (e.g.,
Wikipedia, Baidu Baike). Each instance is evalu-
ated based on the following criteria: (1) Global an-
swer uniqueness : the reasoning chain must con-
verge to a unique, concrete, and verifiable answer;
(2) Sequential consistency : the steps must re-
flect genuine multi-hop inference without shortcuts
or redundancy; (3) Harmlessness : all content
must be free from harmful information or social
bias. Instances that do not meet these criteria are
either revised or discarded. The final dataset has
undergone LLM verification and human validation,
supported by authoritative evidence sources.

2.4 Dataset Statistics

Table 3 details the construction and key proper-
ties of our multi-hop QA dataset. All samples un-
dergo multiple rounds of rigorous filtering, includ-
ing LLM-based verification and human annotation,
ensuring high quality and reliability. Unlike typi-
cal common-sense datasets, each question in our
collection often spans multiple domains, with 6-
hop questions averaging 2.26 domains, enabling a
assessment of cross-domain reasoning capabilities.

Importantly, our dataset explicitly provides inter-
mediate sub-questions and answers, allowing for
fine-grained supervision of the reasoning process
rather than merely evaluating final answers. This
design not only enhances interpretability, but also
enables targeted training and diagnosis of inter-
mediate reasoning failures. Moreover, many sub-
questions admit multiple plausible answers, requir-
ing models to perform reasoning with backtracking
to identify the correct path. These characteristics
make our dataset a comprehensive benchmark for
evaluating multi-step inference and traceable rea-
soning in large language models.

3 Experiments

3.1 Evaluated Models

We evaluate a variety of mainstream large language
models, categorized into two groups based on their
reasoning paradigms: System-1-style and System-2-
style models.

System-1-style models rely on short chain-of-
thought reasoning, favoring fast, intuitive, and
heuristic-driven response. They typically produce
concise answers with minimal intermediate rea-
soning steps. Representative models in this cate-
gory include the Qwen2.5 (Team, 2024), Qwen3,
and LLaMA (Al@Meta, 2024) series, among other
widely used LLMs (DeepSeek-Al et al., 2025;
Wake et al., 2025; Lin et al., 2024; Google, 2025).

In contrast, recently emerging System-2-style
models such as DeepSeek-R1 (Guo et al., 2025),
OpenAl-ol (Jaech et al., 2024), and Qwen-
QwQ (Team, 2025) adopt long chain-of-thought
reasoning, characterized by more deliberate and
structured analytical processes. This reasoning
paradigm aligns with the principles of System 2



1-Hop ‘ 3-Hops ‘ 6-Hops
Models OA SQA 0A SQA 0A Avg.
Rouge-L.  LLM-Judge | Rouge-L. LLM-Judge Rouge-L LLM-Judge | Rouge-L LLM-Judge Rouge-L  LLM-Judge
System-1-Style Models
Qwen?2.5-14B-Instruct 53.91 41.22 62.69 55.95 4493 29.02 63.65 57.84 39.32 25.83 32.02
Qwen2.5-32B-Instruct 56.68  43.98 66.18 62.63 50.74  41.22 67.32 60.38 41.18 30.46 | 38.55
Qwen?2.5-72B-Instruct 64.19 5444 7276 67.06  60.23 48.96 75.14 6840  55.00 43.71 49.04
Qwen3-14B 5726  46.15 65.73 63.31 50.91 41.37 66.38 60.51 31.93 21.85 36.46
Qwen3-32B 61.69  46.75 67.20  63.39 52.17 43.15 69.97 63.87 39.58 27.15 39.02
Qwen3-30A3B 5427  44.18 61.83 57.19 37.60 21.13 65.42 60.88 30.16 17.88 27.73
Qwen3-235A22B 66.28 61.74 7412 7246  60.09 51.19 76.43 7456  48.15 4133 | 5142
Yi-lightning 69.63 67.85 76.97 76.10  65.90 61.01 80.50 79.42 6244 5430 | 61.05
Moonshot-v1 62.47 55.34 7639 7245 52.69 36.76 78.08  74.03 45.79 31.79 | 41.30
Baichuan4-Turbo 63.09  68.05 73.03 80.49 55.56  43.30 72.62 80.55 37.01 26.49 | 4595
GLM-4-air 69.57 68.18 81.30 82.72 55.73 46.58 84.40 8529  53.01 4595 | 53.57
Doubao-1.5-pro 65.17 65.48 82.04  78.87 69.25 63.84 83.42 80.13 60.01 53.64 | 60.99
Deepseek-V3 65.15 69.82 82.39 82.28 72.01 7277 84.41 83.92 71.61 64.24 | 68.94
LlaMA3-70B-Instruct 52.09  43.79 62.27 55.95 45.81 30.51 67.88 63.47 42.47 29.80 | 34.70
GPT-4.1 68.50  62.33 75.23 7236 61.12  48.21 78.98 76.57 62.14 5430 | 54.95
GPT-40 57.93 52.07 69.45 65.43 64.44 56.10 73.56 70.28 5592 49.67 | 52.61
Gemini-2.5-flash 75.78 69.63 80.98 82.03 65.87 65.62 82.20 82.96 57.81 5430 | 63.18
System-2-Style Models
Qwen3-14B-Think 55.55 45.36 66.22 63.94 5584  46.88 68.60 67.66 48.45 40.40 | 44.21
Qwen3-32B-Think 62.94  52.07 69.26  65.23 56.87 49.55 72.67 68.85 49.13 41.72 | 47.78
Qwen3-30A3B-Think 57.79  50.60 67.23 66.02  55.98 49.33 70.65 68.58 4898  41.89 | 47.27
Qwen3-235A22B-Think | 69.93 64.16 7746 7441 66.48 62.91 80.00 7724  58.67 51.72 | 59.60
Qwen-QwQ-32B 61.38 53.65 67.94 6546  55.87 46.43 7191 69.98 49.76 4040 | 46.83
GLM-Z1-air 71.86  65.81 83.84 82.55 58.79  49.11 85.15 85.51 46.21 37.33 | 50.75
Doubao-1.5-Think 72.50  67.65 81.20 81.71 71.47 68.45 82.15 82.01 67.81 62.25 | 66.12
Deepseek-R1 76.66  75.15 85.98 85.91 78.91 75.89 86.80 86.87 71.72 66.89 | 72.64
openai-ol 71.67 70.30 79.54  79.97 73.23 71.01 76.47 8346  74.36 72.66 | 71.32
Gemini-2.5-Pro 77.55 7791 82.96 85.12  74.17 73.38 85.87 87.47 71.98 69.54 | 73.61

Table 4: Performance of baseline models on our proposed benchmark. 1-Hop refers to results on single-hop seed
questions. 3-Hops and 6-Hops correspond to multi-hop questions with increasing reasoning complexity. SQA and
OA denote Stepwise Question Answering and Overall Answering settings, respectively. Rouge-L and LLM-Judge
represent ROUGE-L recall and LLM-as-Judge accuracy. Avg. reports the average LLM-as-Judge accuracy for

overall answering across all questions.

thinking (Evans, 2003; Kannengiesser and Gero,
2019), which emphasizes slow, reflective, and log-
ically grounded cognition. These models are typ-
ically trained to explicitly generate intermediate
reasoning steps, thereby improving both answer
accuracy and interpretability.

3.2 Evaluation

We evaluate model performance from two comple-
mentary perspectives:

Stepwise Question Answering (SQA): In this
setting, each multi-hop question is decomposed
into sub-questions. The model is prompted to an-
swer them respectively, with the reference answer
from the previous step substituted into subsequent
sub-questions to eliminate coreference ambiguity.
This setting assesses the model’s ability to address
each component of a multi-hop reasoning chain,
reflecting its factual recall capabilities.

Overall Answering (OA): In this setting, the
model is presented with the complete multi-hop
question and tasked with producing the final an-
swer. This setup evaluates not only the model’s
ability to recall knowledge for each implicit sub-
question, but also its capacity to integrate these
steps into a coherent reasoning process coherently.

For both SQA and OA, we adopt two evalua-
tion metrics: Rouge-L Recall and LLM-as-Judge
Accuracy. Rouge-L recall measures the lexical
overlap between model output and gold answer,
serving as an automatic indicator of surface-level
correctness. Since we observe that models tend to
generate redundant content in their answers, we use
recall rather than f1 score. LLM-as-Judge accuracy
offers a semantic-level evaluation by leveraging
three independent judge models to assess the align-
ment of predicted answers with the reference in
terms of meaning and reasoning validity. The final



decision is determined by majority voting among
the three judges. Detailed evaluation settings and
prompt templates are provided in the Appendix A.

3.3 Main Results

Table 4 summarizes the performance of base-
line models on our benchmark. Models such as
DeepSeek-R1, OpenAI-o1, Doubao-1.5-Pro, and
Gemini-2.5-Pro exhibit strong performance, par-
ticularly on more complex multi-hop questions.
However, even top-performing models score below
75% in average multi-hop accuracy, highlighting
the overall difficulty of our benchmark.
Closed-source models generally outperform
open-source ones, likely due to larger model sizes
and more extensive training data. Within the same
model family (e.g., Qwen2.5 and Qwen3), larger
variants consistently achieve better results. Chinese
community models such as Yi-lightning, GLM-4,
and Baichuan4-Turbo perform particularly well
in the SQA setting, suggesting that language adap-
tation and corpus coverage are critical for Chi-
nese commonsense QA task. System-2-style mod-
els (e.g., DeepSeek-R1, Doubao-1.5-Think, and
Gemini-2.5-Pro) consistently outperform their
System-1-style counterparts (e.g., DeepSeek-V3,
Doubao-1.5-Pro, and Gemini-2.5-Flash) in the
OA setting, indicating that structured reasoning is
more effective for multi-hop tasks. Moreover, per-
formance declines significantly as the number of
reasoning hops increases. The persistent perfor-
mance gap between SQA and OA across all mod-
els suggests that, although models can handle sub-
questions well, synthesizing intermediate answers
into a final correct response remains challenging.

4 Analysis

4.1 Domain-wise Performance

Figure 2 illustrates the performance of representa-
tive models across different domains. Most models
achieve strong results in the Natural Science do-
main, with an average score of 83.93, while perfor-
mance in the Life and Art domain is notably lower,
averaging 66.61. This suggests that fact-centric do-
mains are generally more manageable for current
models, whereas domains requiring procedural or
abstract reasoning remain more challenging.
Moreover, Chinese community models such as
GLM-4, Doubao-1.5-Pro, and the DeepSeek series
tend to outperform others in the Chinese Culture
domain, likely due to domain-specific training on

Domain-wise Accuracy

O
o0
e

Figure 2: Domain-wise LLM-as-Judge accuracy for dif-
ferent models. CC, HU, ET, LA, SO and NS repre-
sent “Chinese Culture”, “Humanities”, “Engineering
and Technology”, “Life and Art”, “Society”, and “Natu-
ral Science”, respectively.

Chinese data. Overall, the relatively small perfor-
mance gap across domains suggests that our dataset
is well-balanced in difficulty and does not exhibit
significant domain-specific bias.

4.2 Reasoning-style Comparsion

We explore the performance of different reasoning
styles on both single-hop and multi-hop tasks, and
investigate whether long-CoT reasoning provides
measurable benefits for complex multi-hop ques-
tions. As shown in Figure 3, models employing
system-2-style reasoning consistently outperform
system-1-style models in both the sub-question an-
swering and overall answering settings. This in-
dicates that deliberate reasoning can be beneficial
even for commonsense tasks that are primarily in-
volve factual recall.

A more notable contrast emerges when compar-
ing different reasoning modes of the same model,
such as Qwen-3 series, which is highlighted with
dashed boxes in the Figure 3. Although both modes
achieve comparable performance in the SQA set-
ting, suggesting similar capabilities in factual re-
call, the think mode demonstrates a significant im-
provement in OA scores. This suggests that explicit
reasoning steps enhance the model’s ability to inte-
grate the memory of individual sub-questions into
a coherent multi-step reasoning chain, ultimately
leading to more accurate final answers.

4.3 Prompting Strategies

We compare the impact of different prompting
strategies. Experiments are conducted on a sub-
set consisting of 200 3-hops and 100 6-hops ques-



Reasoning style Comparsion between SQA and OA

Model Series
7 v @ Qwen2.5-14B-Instruct
B Qwen2.5-32B-Instruct
@ Qwen2.5-72B-Instruct
4 Quwen3-14B
& Qwen3-328
60 ° & Qwen3-235A228
b * <« moonshot-v1-128k
g p  Baichuand-Turbo
9 @  Llama3-70B-Instruct
< A ¢ GLM-d-air
é\ s A GPT-4o
3 V¥ Deepseek-v3
$ * . . %  Doubao-1.5-pro
= ® Gemini-2.5-flash
B Y Qwen3-14B-Thinking
b Qwen3-32B-Thinking
40 Qwen3-235A22B-Thinking
Qwen-QwQ-328
|| . > GLM-Z1-air
< GPT-01
* Deepseek-R1
30| ® Doubao-1.5-Think
Gemini-2.5-Pro
[ )

50 55 60 65 70 75 80
SQA LLM-as-Judge Accuracy

Figure 3: Performance of models with different rea-
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Figure 4: LLM-as-Judge accuracy of different baselinse
models with RAG.

tions. We evaluate a set of Chinese community
models ( Qwen2.5-72B-Instruct and Doubao-1.5-
pro ) and a set of English community models (
LLaMA3-70B-Instruct and GPT-40 ), using the
average LLM-as-Judge accuracy under different
prompting settings as the evaluation metric. Specif-
ically, we compare: (1) Direct and CoT prompting,
where the CoT prompt guides the model perform
step-by-step reasoning; (2) Chinese and English
prompting, where the origin chinese prompt are
translated into english; (3) Zero-shot and Few-shot
prompting, where the few-shot prompting includes
an example to illustrate multi-hop reasoning.

As shown in Table 5, prompt language (Chinese
vs. English) and the use of few-shot examples
have limited impact on accuracy. In contrast, in-
troducing heuristic, guided reasoning via chain-
of-thought (CoT) prompts yields more substan-

Prompt Strategy | CN-LLMs EN-LLMs
Direct | Chinese | Zero-shot 62.5 57.5
Direct | Chinese | Few-shot 62.0 59.5
Direct | English | Zero-shot 64.5 60.0
Direct | English | Few-shot 61.5 56.0
CoT | Chinese | Zero-shot 65.5 60.5
CoT | Chinese | Few-shot 65.5 61.0
CoT | English | Zero-shot 61.0 61.5
CoT | English | Few-shot 63.5 60.5

Table 5: LLM-as-Judge accuracy with different prompt
strategies.

tial improvements. This indicates that common-
sense multi-hop reasoning tasks are relatively ro-
bust to superficial prompt settings but benefit from
prompts that explicitly guide the reasoning process.

4.4 Effect of Retrieval-Augmented Generation

We investigate the impact of retrieval-augmented
generation (RAG) on enhancing multi-hop rea-
soning capabilities. Experiments are conducted
on a subset of 50 three-hop and 50 six-hop ques-
tions using five models: Doubao-1.5-Pro, Kimi,
Kimi-Think, Wenxin, and Wenxin-Think. For
each model, retrieval is implemented via its official
interface. “Think” variants denote configurations
with the “deep thinking” option enabled, while all
other settings remain at their default values.

As shown in Figure 4, integrating RAG consis-
tently yields substantial improvements across all
models, with an average accuracy gain of approxi-
mately 9.5 percentage points. However, the mag-
nitude of improvement varies significantly across
models. For instance, Kimi and Wenxin show rel-
atively limited gains. Our analysis reveals that in
these cases, the retrieved content often lacks rele-
vant information, leading the models to reject an-
swer even for questions they could answer correctly
without retrieval. In contrast, Doubao demonstrates
significant improvements, likely due to its adap-
tive utilization of retrieved content and support for
multi-turn retrieval, which is particularly advanta-
geous for multi-hop reasoning. We provide detailed
examples in Appendix C.

4.5 Agreement between LLM-as-Judge and
Human Evaluation

Table 6 reports the Cohen’s Kappa scores measur-
ing agreement between human annotators and the
LLM-as-Judge evaluation for both single-hop and
multi-hop tasks, using Deepseek-v3, Doubao-1.5-
pro and GPT-4o0 as evaluators. In all cases, the
Cohen’s Kappa score exceeds 95%, indicating al-



Level Agreement (x 1)
Doubao-1.5-pro  Deepseek-v3 GPT-4o0
95.6 96.4 95.6

91.7 95.3 96.8

Single-hop
Multi-hops

Table 6: Cohen’s Kappa agreement (x) between human
evaluation and LLM-as-Judge.

most perfect agreement between LLM-based and
human judgments. By adopting majority voting
from three independent LLM judges, we mitigate
model-specific bias and strengthen the robustness
and credibility of LLM-as-Judge evaluation.

5 Related Works
5.1 Multi-hop Reasoning Benchmarks

The development of multi-hop reasoning bench-
marks evolves from early Wikipedia-based datasets
to more advanced and specialized evaluations.
The seminal HotpotQA (Yang et al., 2018) intro-
duces core paradigms for evidence-based reason-
ing, while 2WikiMultiHopQA (Ho et al., 2020) ap-
plies adversarial filtering to improve robustness.
Subsequent benchmarks target specific challenges:
MuSiQue (Trivedi et al., 2022) promotes verifi-
able reasoning through question decomposition,
Multihop-RAG (Tang and Yang, 2024) evaluates
the integration of retrieval in multi-hop generation,
and MQuAKE (Zhong et al., 2023b) focuses on
knowledge editing via multi-Hop questions. Re-
cent works (Schnitzler et al., 2024; Wu et al., 2024;
Zhu et al., 2024; Veuthey et al., 2025; Zhou et al.,
2025) leverages LLMs to construct higher-quality
multi-hop questions and extend benchmark cover-
age to multimodal reasoning tasks. However, Chi-
nese multi-hop reasoning remains underexplored.
While efforts such as NLPCC-MH (wavewangyue),
CoreCode (Shi et al., 2024), and CHARM (Sun
et al., 2024) represent initial progress by incorpo-
rating cultural knowledge into Chinese multi-hop
datasets, they do not systematically support verifi-
able multi-step reasoning through explicit decom-
position. These limitations highlight the need for
native Chinese benchmarks that combine cultural
relevance with explicitly decomposed, verifiable
reasoning steps, and adopt robust design method-
ologies to minimize annotation bias.

5.2 Chinese Commonsense Benchmarks

The development of Chinese commonsense rea-
soning benchmarks has evolved through multiple
stages, yet significant gaps persist compared to

their English counterparts. Early efforts primar-
ily involved translating existing English bench-
marks (Conneau et al., 2018; Ponti et al., 2020).
Subsequent work introduced native Chinese evalu-
ations with varying degrees of commonsense cov-
erage, including general language understanding
tests (Xu et al., 2020; Li et al., 2023), logical rea-
soning assessments (Liu et al., 2020; Zhong et al.,
2023a). Benchmarks such as C3 (Sun et al., 2019)
and CMQA (Ju et al., 2022) , have further advanced
the field by introducing more complex and diverse
question formats. Among existing benchmarks,
Chinese SimpleQA (He et al., 2024) stands out for
its comprehensive coverage and high-quality con-
struction. Each question undergoes a rigorous val-
idation process involving multiple large language
models and human annotators to ensure quality and
cultural appropriateness. However, existing Chi-
nese SimpleQA benchmarks primarily focus on
single-hop, fact-based questions, which fall short
in evaluating the advanced reasoning capabilities of
large language models. Our proposed CCMOR ex-
tends existing Chinese QA resources into multi-hop
questions. It enables more effective benchmarking
of state-of-the-art models on Chinese multi-hop
scenario, while providing verifiable intermediate
reasoning steps for process-level evaluation.

6 Conclusion

We present a novel benchmark for evaluating Chi-
nese multi-hop commonsense reasoning. The
dataset is constructed via an LLM-driven gener-
ation pipeline, followed by expert human verifi-
cation to ensure both quality and coverage. It ex-
plicitly targets the integration of Chinese cultural
knowledge, verifiable intermediate reasoning steps,
and factual information across diverse domains.

Our empirical analysis reveals that, despite
strong sub-question answering performance, state-
of-the-art models still struggle with knowledge-
intensive and compositional reasoning, especially
in long-tail scenarios. We further analyze the im-
pact of different reasoning styles, prompting strate-
gies, and the incorporation of retrieval augmen-
tation, demonstrating their varying effectiveness
in enhancing multi-hop performance. This bench-
mark fills a critical gap in the landscape of Chinese
multi-hop commonsense reasoning datasets, offer-
ing a rigorous and culturally grounded resource for
evaluating and advancing capabilities in LLMs.



Limitations

While our benchmark provides a valuable resource
for evaluating Chinese multi-hop commonsense
reasoning, it has several limitations.

* The dataset construction process depends on
LLM-generated question-answer pairs, which
may introduce hallucinations or inherent biases
from the models. Although we adopt round-
robin strategy to query multiple LLMs and em-
ploy expert human verification, some subtle er-
rors or inconsistencies in reasoning may persist.

* The evaluation of model performance relies on
LLM-as-a-judge, which, while effective for scal-
able open-ended assessment, may be influenced
by model-specific preferences or limitations in
understanding complex reasoning. Although
we supplement this with Rouge-L. Recall for
additional reference, such lexical metrics may
not fully reflect reasoning accuracy or semantic
correctness.

* Our benchmark focuses on multi-hop reason-
ing based on textual commonsense knowledge.
Scenarios requiring multimodal reasoning, pro-
cedural understanding, or interactive dialogue
are not covered in the current dataset and are
left for future exploration.

We hope CCMOR will support future research in
multilingual reasoning, dataset development, and
the design of reasoning-specialized models.

Ethical Considerations

We employ human annotators to construct and ver-
ify our dataset. They are recruited through a pro-
fessional annotation platform and are fairly com-
pensated in accordance with local standards. Prior
to annotation, all annotators review detailed task
guidelines and prompt templates in Appendix A),
where data usage policies and content safety re-
quirements are clearly specified.

All annotators provide informed consent and are
explicitly instructed to avoid generating content
that involves bias, private information, or ethical
risks. Annotators are professional language work-
ers based in China, with relevant experience and
no conflicts of interest.
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A Prompt Templates

We provide prompt templates for seed question
and sub-question classification, sub-question fil-
tering, multi-hop QA Composition, and multi-hop
QA verification (Figures 5, 6, 7, and 8). The entire
pipeline is executed using round-robin and cross-
model verification strategies with several state-of-
the-art LL.Ms, including GPT-40, DeepSeek-R1,
and Doubao-1.5-Pro.

B Data Examples

Table 7 presents some constructed examples of
three-hops and six-hops multihop questions.

C Case Study

In this section, we present case studies of model
responses, including examples of three-hop reason-
ing in Table 8, six-hop reasoning in Table 9, and
cases incorporating RAG in Table 10.
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Figure 5: The prompt for reclassifying seed factual questions into six domains.
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Figure 6: The prompt for sub-question quality verification.
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Figure 7: Prompt for multi-hop QA composition from sub-questions.
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TR — 2T RIEERIED, AT EMERZ BRI E BRI T RS, AHES
P BRI - RS (RIE DL R, MR SRR T ETRE,
HIMER S B A G4, LEBERZEH A SR RE -

PEAGHERE .
1. 2FHEFRE—M: ZBRIBLHT W — W B BRI RAE—ER . MG
FAEE M N G . RAERN NEREIESE, A% 4 - PLHEL
ELpRET [8] %5
zﬁﬂﬁwn . (R AR b 2 BRI RRAE IRl (] B R PR 128 FE K
KR NMEFERS (FTABTEIE) - FEEUR . PEEARSGFEHEREXNRES
] -
3. 1B BASHEREE: MERANFEERESHEHSIR, BEHD, HER -
Iﬂ;&ﬁ@ﬁLLV‘éE’Jﬁﬂ PRIBEL b XCRIEH TS M8, J@ﬁaﬁ&ﬁﬁnﬂf)ﬁ
4, NWEZ2M: RRENS N LR £ B 2% ER, LI EHT
NS e -

#HHE DU & —EEoR 5] #H

Z BRIRIRE: 1954953 DRI RAG TR L2207 R0 T — 42
RAEZR: 18914F

PEAN . MEERRESSERE, PRI AR, EEFRIAEW, LR E TR
A [AH%]

Z BRI 195441 TUR 25 T 5L IR 22 BT A B

RAER: 18914F

WA RIRERIAE, R¥5E IR A28, BB BEANE, B [RVEASBA A -
AW (NEH8)

SRR 1954535 DR 22215 F RS L 200 B R 22 BRI A E1954FE K15 T 15
DURM 2222

?& . SEYNHT- R R SR

WA FEZHEELS, HEETRM; RN RS R FAERRNER, HERRE

TUAR -

AW [ EH%]

BRI KYE AR, ST BRRERER AT R R, ARG -

Figure 8: Prompt for verifying the quality of composed multi-hop questions.
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Sub-Questions Sub-Question An- Multihop Question Final An-
swers swer

1. (AL E) 9tk =i HE CrmLE) a9t B Pk 16445

2. LK) GER B A 4 AR, GARRLR = TH—

P72k 69 3R R A3 K2 Fo

3. AMBAL R = FI—F2 16444

1. B T FHFEEBHR, it 454 AT HEBEEME, # R

RIS H R R ELGGESETERR

2. P L ELBEAEHE ] EORE R s e

A B RN K2

3. AEBHKEHA A L&

1. R B R L TFH—42 1945 BA B R LR —F 6% N & A

2. 19455 694 M R L &5k RXFLORFZOELEZ

15 Rk ok F FER TAE 2

3N RILFZEF e X7 B4 R

KRB R EEZRA

BE? % #)

1 e R AR-XiEL THH K = mBAH A AR XL L 804

G H AL E AW Mg LB L, ik AR

2. B BIFHERZHE 17924 —FEENEBREL, RE

#TFI—F9 GEg B ANETEAN, &

3. 1TNFAEAEHERELG A frib KM ASM B9 B O 69 i E R 5 A

k2 2?

4. F BERAE L BEMEGH #ERIN

& 308 TR M2

5. b E RN B I AEIA 2 iHT

PR

6. HWEREMELHTE & 804

ER 5 R A

. TEHFBHNITHRRE L ARER F 4K PEAEBHINITHR B AL G i

TR KB ZE? TR KkEORMBERST L it

2. Ab BT KETHRR Ik TR+ 24z, 2

P 484 BeAs & k2 %R F R B A2017F F4F

3. RER A K 69 Be A% Ak gk ik B Sl K% ENRALZRGARET

13 TIRAT R F M+ 2450
4, =Sl R FH M A
FE2017FRAFH N RALE £
o A2

5. 20174 M RAG 3 & R A%
H B FTIERFEZT WA
PNES AR LR o A

6. 2002FERE X TRK
FAR KW AZE?

ETEXZ

R

— T RFEGHEFF T F
1%, 2002F 421212 K E R Kk
A RW?

Table 7: Data examples of three-hops and six-hops multihop questions.
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Question AERRRLKGRGELTENBRER, 2B R G A ZIERT?
GPT-40 AR R K LIREZFN LR, ERSERMZ 0N (Aconcagua) » L FIMTARZE
HA

o FTARIE 69 & AR & A 1 B LA

B R>H R LA M </ B R >

A

Gemini-2.5-flash

R K 6 LK AL % B BTk o 52 5 AT LRk 8) R F 0% A T 2 ARl (Aconcagua) -
Fo L AL T RTARKESE N o FTARIE 6 & ARIR T & A0 0 8 3CA T .

<BESH BN XA H</ B %>

GLM-4-air

AR RKLRAEZEI LK ERZERME RN, ZTFTFRERA . FREY
AR A T e T A B .
<%t%>;l? ET%Miﬂ;‘iﬁ</%t§»

DeepSeek-R1

B, BAFALA A RA AP . H 2, M AR SRR K6 Lk BT
NERFER, RERBZINBRGEGHRZMERT . KFEZ—FF RIFMEANFA .
Bh, BEATEEREZKOGLKEZMT 2. REFEATZ LGOI FR, RO LKA
GRAEREIHLRE? REHLKIEThEN, LTAEBREEN, GEEAER, e
FWWE. TRRS R G HAER. FH . MBREEF . 2 HHLARAEEER
L& keG.LAk, KERLLT000NE, fe?
%T%,M@ﬁﬂ%%i&%km%%ﬁ%@o%%%%m%%ﬁg&%%*ﬁ%?
FACHF S B BT LBk 8 & 2% & T % he )b (Aconcagua) s AL T FTAREILA - [ % o Ji
LB B K Z6961K, TmEMORHE, LEZENISRH[OLE. T, &
I % e )N B A FTARE QIR A -

AR ARZE ) B AR A Bk TR 69 B AR 2 A T e 87 XA 27 (Buenos Aires) - i
KA —TREEZELTEM, BRICHT - thie, AEATRZEHNLRGOES
A R ER? B A R AR E? e, zéi—“Fl‘FIE;bo)li\méMiﬁ, ELHROGET
AR . RBFH M NLETHRENNSEY, FAFANLR, LEIETH
ARIE . BT ARIA R FTARZE .

MEL—T, RELREZEI LK, SR T he N AEFARE, FAREW B AR
BEEH XA . FTAE R R %R TiEd A B .

<BE>SH BRI LA M BEE>

Gemini-2.5-Pro

<BEESHBHEH XA D </ B B> vt WRAR . x| 2R KLk 2 FHATL
Fk (Andes Mountains) - 2. **% % 37 .1 bk 69 & &%+ . [ = Ao JA.L (Mount Aconcagua)
HBAR6960.8K o 3. T = hw N L BT 69 B 7ok FARIE (Argentina) - 4. FHFTARE A H
ARwx . A BT AT (Buenos Aires) -

GLM-z1-air

B, BARAAREZEZRBEAHREZRLROEZSSHABRYEHRN. G4 KF
BT E LR AEER E &K REFREIMLIRZ T ERKGLK, SEBE
MeG iR EA, N — A AR B F A Fo AR, fv@? AR CH) & 5% 15 &
M e oy, 2EeR? M de NS T RARER A, FTARSSMEOBEREMMRE .
BTk MBREGEREATEH LA . T2, RFBRAAN-TRALEFZEZLTE
B, BERICHET .

Bk, RMRERKLK. RN LKRAET AR EZ KGN KEBLT00NE. @
ELEBURKERS, FRERKE. FFARSSEZREH LRGN, &
HOE961 K, AL TITARIE . REMAREG AT TR LA, B IAEZEE%
REARBEH LAY . <BE>H TREH LA B>

Table 8: Comparison of responses from different LLMs on three-hops quesiton.
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Question HEBRERMNG AR T RETRA R, RETRRAELZRTHILEANL
#2000 B AT A RGAELETHRARR? ©
GPT-40 #Eramg RGN EK % EEMN (Graubinden) » EBH/AE R (Chur) - & RAZT

FHAEARA . FRTRALETZEEAMAEANLE . 20005 S R EEAT T KRG
Wb g iE A% %A (Ahmed Aboutaleb) » H#uih 4 T EEF .

BESBBI</EE>

A

Gemini-2.5-flash

mEdEMmR AN (4% EEM/Graubiinden) # & ZER (Chur) - ERIETERT
(Rhine) &7 (AARXHEAMREHNERTEOLER) - FRTREETZGRSE
# (Rotterdam) M#IEXNILHE . 2009F L BHE AT RGAZ AT THEHH
(Ahmed Aboutaleb) > #.F200941F58 A% . X obigi& Ak 42 FE%T.

<BESBEBF<BE>

GLM-4-air BBABIANRAE, ENFEZEFT>HHAA F 69128 .
1. *3 IR ERMNG G, T EREZROMNER ST EZEMN (Graubiinden) » H
HhE A& R (Chur) - )
2. kkE RALTF R &TMAAL A, ERALTEH T (Rhine River) #4& & -
3. e RH AT RALE LW T RV EAE . FHTRLAEBESET (Rotterdam) WL iE
A& .
4. #2009 B b 4 T T K69 Akx . 2009F Sk AT K ZF IR EEEE (Ivo
Opstelten) - fluihi & F 47 2.
B, 20094 % &R T ROGARETHZ .
<BESHEJEE>

DeepSeek-R1 B, BAFMAARAE AEE, THEREREFE. A4, MARGERTOR

RRKOMGERAETELTROER, BETARLEEIRTHTLENLE. &
Ja, 2009 LG THRGALAERABR . KEFE—FHIHMRIBETL.

Bh HBETABRRRGOMNERAR? HEOMARS, R REN . AREMN . &
FEBEMNEE. RedBTaRERONEZAK ST ZEEM (Graubiinden) » B A AR
PHKS LR, ARKER. RITHEHE. THEEMA—T. 2xHeE, 3
+TEBRRROMNAERKGEEN, BRZER (Chur) -

BTk ERETHRETROERAR? ERETERTO—F LA TR, THRZWNE
#7T (Vorderrhein) H.%/5 ¥ B (Hinterthein) » A ETHaMHE, EAEFTH L
A FTHEHTOTAALTAZCERNL, ERLAZAFHTOERD? &M
K RRAFAAREREAPCANERTFREERT, LEBERAMRENHERT, AL
R ERIETHREFERTHELE, 52 £, ERMELFHTOLEE .
KRG, REMARKEANILE, MEANLBYRTLNRIR? EHRTRLLETZHE
BT ANE . PTAR A b 69« T % A48 BT - A4, 20094 & ik i
FROGARBER? TRE—T RAFIE T KA2009F 09 B JE 6T KEL
o 48 T A 3% % (Ahmed Aboutaleb) » #F200941 A stAE 45 A % o ey 4
BREZESRT, HAtbATFEEFGNEHER (BeniSidel) -

FTA, BANBEANGAE: BETRRONERFZER, vRERETERTAR, %
?g%ﬁ&%%Wﬁxkﬁ,mw#ﬁﬁﬁ%ﬁﬁ&%%i%ﬁ%ﬂﬁ%%ﬁ,&
A .

<BESBBF<BEE>

B
3

Gemini-2.5-Pro

FBY O 1L EAR R RN 6 B, o 2 @A R K69 M R A& % EE M (Graubiin-
den) . * 4% % % BN 6 B ZE R (Chur) - 2. AL F X K FTAA £+ * E /R (Chur) 42
T £ 7R (Plessur) 8948 &, L EFRTMAERWAICAER T (Rhine) - & RAK
GUREREMEALEFAETR TS . ZRINEGEFA, REHOEELTR ETHRZ
BEET. ERAFEXAT (MEEHERTR) 9K (KE) - 3. =X TR
B IR B E LB x R T (Rhine) RARLZM 2. £ RAFH (Rotterdam)
P38 L = A R AL o 4. #%20094F 3 7% T K69 A A TARAER? wex 0%
45 69 % o457+ (Rotterdam) - * 20094 % 3% (£ FR 2200951 A58 L4E) R4F4+7F K
82 X 5B 4E A% ¥ | (Ahmed Aboutaleb) - * X0 &M A% E M EATERF
(Morocco) - & EATR, RABERRBET . <BESBEF<BE%E>

Table 9: Comparison of responses from different LLMs on six-hops quesiton.
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Question

B8 (FRHA) GRARE0IIFES XA RREEELS, %A TIGITIQ
AR—FS5A14B BT —AMAR, HABRIEAGKTFRIBE?

Doubao-1.5-pro

FTH—. MERE (FRHA) RUEZREMXAR BE (FRHEA) 974
FRMANAE . 20115 A EEEE4E (RIBON) AFRIERERBES .

F I = . B (RIBON) @] T 8 A & =t & 48 42 (RIBON) 4| TI
F1955%F, 1955F5H 148 Mty mp 2Ll vymey (Hfmdsy) .
T, REEHRIARKTFEE LY EA—FKIIN L FHFER S AMH
k. HERAABRMILT, KTRZDRIEHERE. IFRIEAF =
RPFR R 4w .

Brvk, BALARZIAGKTRIFRIEHFERK .

Doubao-1.5-pro with RAG

% 3 <<:?’-«f32‘/§§ﬂ>>élj/?4’?%" A A E 2011F, ¥E5 B K
£ % A4 (RIBON) A Fl % + B 2 4 . <<RIBON>> H ﬂ & F
%mﬁﬁ»1%5$wM4EﬁJﬁﬁﬁﬁmz+J$Jﬁmmo e ih ZHmR
LR34 %fk#lﬁfﬁ@ﬁ@%%ﬁ%ﬁmﬁ%%%%ﬁ%% %%A@
RERAENER, AAANHE—QREA, AT, REAAEZL, L%
%iﬁ@ﬁA%k%mﬁ

—

A

Question

2018411 A 424t & B AL 28 215 B KRR A 5057 BT % 69 AL 19865 5 AL F & Af
RE, 202256 AEZRERKGAZ220FERT —AH, &P ERAEY
B BRAL T ARA T2

Doubao-1.5-pro

BB ARREGZ LR &, REAHLRG RGAY . KFARSHHE HR
HFAL, SRR EATE D HBRAEERAERT  (RTANAL S Fwmiz
B oM XA E . KRELRF, AMERLERARBE .

Doubao-1.5-pro with RAG

2018511 AdefEF B aM 2R B REMA R KRG LELE . #19865F %
LFITKREFEREFE . 202F6A 2ETRER LG THF . £20205F,
BhARRZTPEREZHRFCIHRIE. RBALSHERABERT (B
BE) , ARRKEREMFERTH LA L. KBAL D BREG a4
TR, IR TERRERITRE1TS .

Table 10: Examples of the effect of RAG on multi-hop quesitons.
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