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Abstract

Over the past few years we have developed
the inference machine framework for ad-
dressing structured prediction problems aris-
ing in computer vision applications. This
workshop paper serves to summarize our re-
cent and ongoing work for scene parsing and
human pose estimation.

1. Introduction

Many applications in computer vision can be framed
as a form of structure prediction. An important prob-
lem is scene parsing, i.e., semantic classification of all
objects in an observed scene, as illustrated in Fig. 1. A
prevalent method to encode structure/relations in the
prediction is with a joint probabilistic or energy-based
model which enables one to naturally write down these
interactions (Lafferty et al., 2001; Taskar et al., 2003).
Unfortunately performing inference over these expres-
sive models leads to an NP-hard optimization problem
which must be approximated and, consequently, poses
theoretical and empirical difficulties when learning the
model (Kulesza & Pereira, 2007; Finley & Joachims,
2008). Furthermore, using approximate inference on
any learned model often leads to suboptimal predic-
tions due to the approximations. As we ultimately
care about predicting the correct labeling of an envi-
ronment, and not necessarily learning a joint model
of the data, we instead view the approximate infer-
ence process as a modular procedure that is directly
trained in order to produce correct labelings, inspired
by work in natural language processing (Cohen & Car-
valho, 2005; Daume III et al., 2009). That is, we can
view an iterative inference algorithm, such as message
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Figure 1. Examples inferred scene parsings in images (top)
and 3-D point clouds (bottom).

passing in a factor graph, as a network of computa-
tional modules taking in observations and other local
computations on the graph (messages). We can then
iteratively train each of these modules to output ideal
intermediate messages, culminating in a holistic inter-
pretation of the scene. In the following, we demon-
strate that this iterative decoding approach achieves
state-of-the-art performance on a variety of image and
3-D point cloud datasets while also being extremely
computationally efficient in practice.

2. Scene Parsing

2.1. Images

The following summarizes work originally presented at
ECCV 2010 (Munoz et al., 2010) for parsing images,
with using a more efficient and accurate implementa-
tion.

A synthetic illustration of the inference procedure is
illustrated in Fig. 2. Given an image, we first create a
hierarchy of regions that range from very large regions
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Figure 2. Hierarchical representation

in the image (potentially including the image itself as
one region at the top) down to small regions (e.g.,
superpixels) at the bottom; we use a standard graph-
based segmentation algorithm (Felzenszwalb & Hut-
tenlocher, 2004) to create this region hierarchy. We
represent the inference process as a series of predic-
tions that traverses over the regions in the hierarchy.
It is important to note that we do not expect each
region to contain one class/label. Instead, we explic-
itly model the distribution of object classes within in
each region. That is, given the region’s computed fea-
ture descriptor, we train a predictor to match the em-
pirical ground truth distribution of object categories
contained within each region. In practice, we train
a multi-class MaxEnt model to predict the per-region
probability distributions.

We initialize the inference procedure by making an ini-
tial prediction at the bottom level of this hierarchy.
These predictions are passed in an bottom-up manner
to the subsequent coarser levels and used as additional
features in the MaxEnt predictors. Similarly, predic-
tions are refined as the procedure traverses top-down
to the child level in the hierarchy. Since we model label
proportions over regions: we are robust to imperfect
segmentation, we can use features defined over large
regions, and we do not make hard commitments dur-
ing inference. Furthermore, since we are no longer at-
tempting to model a join probability distribution, we
can encode arbitrary interactions/predictions among
the regions in the scene, and the entire inference pro-
cedure is a deterministic sequence of efficient MaxEnt
predictions.

We evaluate our approach on the popular Stanford
Background Dataset (SBD) (Gould et al., 2009), which
contains 8 classes, and the Cambridge Video Dataset
(CamVid) (Brostow et al., 2008), which contains 11
classes; we follow the same training/testing evalua-
tion procedures as originally described in the respec-

Segmentation Features Inference
Time (s) 0.095 0.462 0.037

Table 1. Average computation timings on SBD for each
component of the entire inference procedure.

VMR-Oakland Freiburg

Number of 3-D points 44,198 452,330
Total time (s) w/ F-H 0.794 3.15
Total time (s) w/ Grids 0.215 0.597

Table 2. Average processing timings for processing 3-D
point clouds in two datasets when using a region hierarchy
formed using F-H segmentation and gridded partitioning
(Hu et al., 2013).

tive works.

Table 1 breaks down the computation timings for SBD
of the three main components of classification: 1) hi-
erarchical image segmentation, 2) feature computation
time for all regions, 3) inference over the hierarchy via
MaxEnt predictions. All times were computed on a
4-core Intel i7-2960XM processor. The table demon-
strates the feature extraction dominates the current
pipeline with the actual MaxEnt predictions consti-
tuting a small portion of the time. In Table 3, we
demonstrate that our approach achieves state-of-the-
art classification performance.

2.2. 3-D Point Clouds

As regions are the atomic elements of how the data is
represented, our inference procedure is invariant to the
underlying form of the data, e.g., it does not assume
an organized lattice structure of the data. Our only re-
quirements are that regions can be extracted from the
data and that discriminative feature representations
can be computed. Hence, parsing scenes in 3-D data
can be analogously performed under this framework
by extracting and operating over 3-D regions.

In work presented at ICRA 2011 (Xiong et al., 2011),
we constructed this 3-D hierarchical segmentation
again using the F-H graph-based segmentation tech-
nique (Felzenszwalb & Huttenlocher, 2004). Classifi-
cation performances on the VMR-Oakland (Xiong et al.,
2011) and GML-PCV (Shapovalov et al., 2010) are shown
in Table 4.

Recently we have demonstrated improved efficiency in
3-D classification by using a much simpler representa-
tion of the scene (Hu et al., 2013). Instead of using
a precise segmentation algorithm, such as F-H, that
attempts to obey borders/discontinuities, we observed
that using multiple, inexact partitions/grids of the en-
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(Farabet et al., 2013) 95.7 78.7 88.1 89.7 68.7 79.9 44.6 62.3 76.0 81.4
(Socher et al., 2011) - - - - - - - - - 78.1
Inference Machine 92.4 76.6 90.5 81.7 68.2 82.8 13.2 68.8 71.8 81.6
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(de Nijs et al., 2012) 59 75 93 84 45 90 53 27 0 55 21 54.7 75.0
(Ladicky et al., 2010)† 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8
Inference Machine 83.5 85.1 94.5 78.3 41.7 95.5 38.7 18.0 15.2 78.3 36.2 60.5 85.7

Table 3. Accuracies on 2-D datasets SBD (top) and CamVid (bottom) where Avg. is the average class accuracy and Pixel
is the per-pixel accuracy. †Uses additional training data not leveraged by other techniques.

vironment is able achieve much faster classifications
without any loss in accuracy. Table 2 demonstrates
the improvement in efficiency of the entire inference
pipeline on the VMR-Oakland and Freiburg (Behley
et al., 2012) datasets.

2.3. Image + 3-D Data

Inexpensive sensors returning both image and depth
data, e.g., the Microsoft Kinect, have re-spurred inter-
est in multi-modal data processing. Some sensors may
observe readings that have close to one-to-one corre-
spondence between modalities. In such cases, it is nat-
ural to restrict the representation to a single modality
and incorporate feature statistics computed over the
other. However, in general (and is typically the case
in mobile robotics), there is a severe discrepancy and
often many-to-one correspondences between the data
sources. In work presented at ECCV 2012 (Munoz
et al., 2012), we demonstrate that it is favorable to
not restrict the representation to one modalities and
to instead treat both modalities as first-class objects
by iterating predictions over both hierarchies simulta-
neously, i.e., co-inference, as illustrated in Fig. 3.

3. Pose Estimation

Another challenging vision problem is estimating hu-
man body pose, i.e., predicting individual limb/joint
locations, from a single image. As the locations of
joint locations are highly correlated this is another
natural structured prediction problem. In joint work
with Varun Ramakrishna, we have applied the infer-
ence machine framework to this problem to jointly de-
code part locations. An example parsing is illustrated
in Fig. 4, and we plan to present more thorough results
at the workshop.

Figure 3. Illustration of the co-inference procedure. The
region hierarchies are constructed separately in the image
(left) and 3-D point cloud (right) domains with predictions
propagated across and within domains.
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(Shapovalov et al., 2010) 98 81 89 57 81.3
Inference Machine 99 92 97 52 85.0

Table 4. Accuracies on 3-D datasets VMR-Oakland (top), GML-PCV-A (bottom-left), and GML-PCV-B (bottom-right).

Figure 4. Human pose estimation with inference machines. In the top-left image, the colored lines trace the inferred joint
locations, whose ground truth locations are indicated by the red circles. The remaining images are predicted score maps
(red = high score, blue = low score) for each joint location at each position in the image, with the lower-right image
denoting the background class.
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