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Summary
This work introduces Disentangled Diffusion Policy (DisDP), an Imitation Learning (IL)

method that enhances robustness by integrating multi-view disentanglement into diffusion-
based policies. For robots to be deployed on a large scale across various applications they have
to be robust against different perturbations, including sensor noise, complete sensor dropout
and environmental variations. Existing IL methods struggle to generalize under such condi-
tions, as they typically assume consistent, noise-free inputs. To address this limitation, DisDP
structures sensory inputs into shared and private representations, preserving task-relevant
global features while retaining distinct details from individual sensors. Additionally, Disentan-
gled Behavior Cloning (DisBC) is introduced, a disentangled Behavior Cloning (BC) policy, to
demonstrate the general applicance of disentanglement for IL. This structured representation
improves resilience against sensor dropouts and perturbations. Evaluations on The Colosseum
and Libero benchmarks demonstrate that disentangled policies achieve better performance in
general and exhibit greater robustness to any perturbations compared to their baseline policies.

Contribution(s)
1. Introducing Disentangled Diffusion Policy (DisDP), an Imitation Learning (IL) method

that improves robustness to sensor noise and dropouts by structuring sensor inputs into
shared and private representations.

Context: Prior IL methods rely on consistent, noise-free sensor inputs, which lim-
its their effectiveness in real-world scenarios.

2. Leveraging Multi-View Disentanglement for enhancing robustness and interpretability of
the behavior policies.

Context: This implementation displays the general application of Multi-view dis-
entanglement for robot policies. It uses contrastive and orthogonality constraints to
separate shared and unique information. This approach enhances the interpretability by
visualizing the shared and private representations.

3. Provides an extensive experimental analysis on the effect of the Colosseum and Libero
benchmarks in sensor failure and environment perturbation scenarios.

Context: This work shows the performance degradation of behavior policies with
unreliable sensors and environmental variations. Additionally, it shows how disentangled
latent spaces benefit in these scenarios.
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Abstract

This work introduces Disentangled Diffusion Policy (DisDP), an Imitation Learning1
(IL) method that enhances robustness. Robot policies have to be robust against differ-2
ent perturbations, including sensor noise, complete sensor dropout and environmental3
variations. Existing IL methods struggle to generalize under such conditions, as they4
typically assume consistent, noise-free inputs. To address this limitation, DisDP struc-5
tures sensors into shared and private representations, preserving global features while6
retaining details from individual sensors. Additionally, Disentangled Behavior Cloning7
(DisBC) is introduced, a disentangled BC policy, to demonstrate the general applicance8
of disentanglement for IL. This structured representation improves resilience against9
sensor dropouts and perturbations. Evaluations on The Colosseum and Libero bench-10
marks demonstrate that disentangled policies achieve better performance in general and11
exhibit greater robustness to perturbations compared to their baseline policies.12

1 Introduction13

For robots to be deployed on a large scale across various applications, they have to be robust14
against different perturbations, including environmental variations, sensor noise, and complete sen-15
sor modality dropout. Sensor modality dropout refers to the unavailability of sensors during infer-16
ence, that have been available during training. While current research has explored environmental17
variations, and perturbations in behavior learning scenarios Pumacay et al. (2024), sensor modal-18
ity dropout remains an understudied challenge. Current methods that try to solve sensor modality19
dropout struggle on challenging datasets Skand et al. (2024); Hao et al. (2023b). To tackle this chal-20
lenge, we propose Disentangled Diffusion Policy (DisDP), a method that disentangles the latent21
space of different sensor modalities into shared and private embeddings.22

Integrating information from multiple sensors has shown to improve the robust and adaptive per-23
formance of the learned policies, especially in scenarios where a single sensor may be insufficient24
or unreliable (Li et al., 2022; Shridhar et al., 2023; Thankaraj & Pinto, 2023; Liu et al., 2024c;25
Jones et al., 2025). However, multi-sensor setups are prone to a variety of challenges. Sensors26
can introduce noise due to calibration errors, hardware or environmental conditions. Additionally,27
sensor failures or data dropouts can occur due to hardware malfunctions. Most of the current robot28
learning approaches depend on consistent noise-free sensory input during inference(Shridhar et al.,29
2023; Thankaraj & Pinto, 2023; Reuss et al., 2024b). This dependency limits their effectiveness in30
handling noisy sensors and sensor dropouts as shown in Section 4. This work focuses on image31
modalities and the influence on robot policies, when one or more sensors are unreliable or unavail-32
able, as illustrated in Figure 1. Among the various robot learning approaches, Imitation Learning33
(Argall et al., 2009; Osa et al., 2018) has emerged as a widely used method for teaching robots com-34
plex behaviors through expert demonstrations. SOTA multi-task IL methods demonstrated strong35
performance on diverse robot learning tasks (Pari et al., 2021; Shafiullah et al., 2022; Shridhar et al.,36
2023; Hao et al., 2023b; Reuss et al., 2024b; 2023; Chi et al., 2023; Donat et al., 2025). Despite37
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Figure 1: Robotic policies depend on multiple sensory inputs, making them susceptible to sensor
failures. This work investigates how disentangling sensory information into shared and private em-
beddings can enable robust policy learning under sensor dropouts.

these advancements, most IL methods rely on latent representations not explicitly designed to handle38
noisy or missing sensory data, making them vulnerable to sensor degradation or dropout.39

Therefore, the contribution of this paper is the introduction of disentanglement for IL policies to40
enhance robustness. Sensor inputs are separated into shared and private embeddings, enhancing ro-41
bustness and interpretability of the policy. The key issues addressed include added noise in camera42
inputs, camera modality dropouts and environmental perturbations. The disentanglement is applied43
on a score-based diffusion policy for robot action prediction (Reuss et al., 2023; 2024b), as well as44
traditional BC using a Transformer backbone (Mandlekar et al., 2021a). The extensive experimen-45
tal analysis shows, that disentangling the latent space improves overall performance and reduces46
performance loss under unreliable sensors and environmental perturbations.47

2 Related Work48

2.1 Multi-modal Imitation Learning49

Imitation Learning (IL) (Argall et al., 2009; Osa et al., 2018) has demonstrated strong performance50
across diverse robotic manipulation tasks (Zitkovich et al., 2023; Octo Model Team et al., 2024). In51
particular, diffusion models (Ho et al., 2020; Karras et al., 2022) have emerged as effective IL poli-52
cies (Chi et al., 2023; Reuss et al., 2023; Jia et al., 2025), enabling robots to acquire more complex53
and diverse skills (Jia et al., 2024a). Most of these methods rely on multi-modal observations for54
behavior learning (Zhao et al., 2023; Chi et al., 2023; Reuss et al., 2023; 2024b; Jia et al., 2024b;55
Reuss et al., 2024a), typically using images as state representations and language as task instruc-56
tions. These approaches rely on all available modalities during inference. Due to this dependency,57
in scenarios of camera dropouts or noisy camera information, the performance of learned behavior58
can degrade (Skand et al., 2024; Hao et al., 2023b). In contrast, DisDP learns a disentangled latent59
space that alleviates the reliance on individual cameras during inference.60

2.2 Robustness in Behavior Learning61

Behavior learning suffers from generalization limitations, leading to sharp performance degrada-62
tion in unfamiliar environments due to overfitting and insufficient adaptability to unseen varia-63
tions (Zhang et al., 2018; Cobbe et al., 2019; Jiang et al., 2023; Kirk et al., 2023; Zare et al., 2024).64
To address this, various methods have been proposed to enhance robustness under modality dropout65
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and improve generalization in robot learning (Pari et al., 2021; Yuan et al., 2024; Liu et al., 2024b;66
Xie et al., 2024; Hoque et al., 2024; Becker et al., 2024). One line of work focuses on estimating67
missing modalities. SMIL (Ma et al., 2021) uses Bayesian meta-learning with variational infer-68
ence to infer the posterior of missing inputs, while CCM (Lee et al., 2021) utilizes self-supervision69
to identify and discard corrupted sensor inputs before reconstructing multimodal representations.70
However, these methods do not account for complete sensory failure.71

Several approaches have been proposed to enhance system robustness by handling missing or irrele-72
vant modalities. Masking-based methods either drop certain modalities during training (Skand et al.,73
2024) or selectively mask irrelevant ones based on task relevance (Hao et al., 2023b). MIL (Hao74
et al., 2023a) applies masking before constructing policy representations but does not explicitly ad-75
dress single or multiple sensor failures. Hierarchical representation learning offers another solution.76
Nexus (Vasco et al., 2022) and MUSE (Vasco et al., 2021) model shared and private modality repre-77
sentations using dropout-based training. While Nexus aggregates modality-specific features through78
averaging, which limits expressiveness, MUSE employs a Product-of-Experts mechanism for more79
effective integration. In contrast, DisDP simplifies this process by adopting a contrastive learning80
framework, eliminating the need for hierarchical representations. Multi-camera setups have also81
been explored within reinforcement learning, using multi-view disentanglement techniques (Dunion82
& Albrecht, 2024) to maintain robustness when only a single camera view is available. These meth-83
ods have been evaluated on Metaworld tasks and PyBullet-based environments like Panda Reach84
and cube grasping. DisDP extends multi-view disentanglement to imitation learning, benchmarking85
its performance on Colosseum and Libero, two widely used imitation learning datasets.86

2.3 Multi View Disentanglement87

Multi-view disentanglement has been widely explored in computer vision and multimodal learn-88
ing, aiming to separate information into distinct representations for improved learning. A common89
approach is to decompose features into shared and private components across multiple views or90
modalities. Several approaches have been proposed to achieve this disentanglement. Orthogonal91
denoising autoencoders enforce orthogonality constraints to learn independent view representations92
(Ye et al., 2016). Self-supervised methods further refine this idea by explicitly minimizing inter-93
view overlap (Jain et al., 2023; Ke et al., 2023). These methods propose self-supervised multi-view94
disentanglement techniques that extract view-specific representations while preserving essential in-95
formation. Their models introduce multiple loss functions to enforce alignment for shared features:96
orthogonalization and reconstruction-based regularization. Other methods leverage information-97
theoretic principles to enhance disentanglement, like FactorCL (Liang et al., 2023). It factorizes98
task-relevant information into shared and unique components while optimizing mutual information99
bounds, improving generalization by maximizing relevant features and suppressing irrelevant ones.100

In DisDP, disentanglement techniques discussed above are extended to the multi-task IL setting,101
specifically within diffusion policy frameworks. The approach is designed to handle complex102
robotic manipulation tasks, with experiments conducted on diverse benchmarks. The experiments103
evaluate effectiveness under various sensor conditions.104

3 Method105

In this work, we focus on improving robustness in multi-task IL with multiple input modalities. The106
robot is trained to learn manipulation skills on a diverse set of tasks by imitating expert demonstra-107
tions captured with multiple cameras. These modalities can become unreliable or unavailable during108
deployment due to occlusion, sensor failure, or noise. The goal of this paper is to develop a robust109
framework capable of handling partial or imperfect inputs when such sensor issues occur.110
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3.1 Problem Formulation111

IL aims to train an agent to perform tasks by learning from expert demonstrations. Given a dataset112
of expert trajectories Dτ = {τ i}Ni=1, where each trajectory113

τ i = ((s1,a1), (s2,a2), . . . , (sK ,aK)) (1)

represents a sequence of observed state-action pairs. The objective is to learn a policy π(a|s) that114
maps observations s to actions a while minimizing a some distance or divergence to the observed115
behavior L (π(a|sk),ak). The exact definition of the loss L depends on the particular IL approach.116
In a multi-modal IL setting the state information contains multiple modalities, typically across dif-117
ferent sensors. In this work these modalities include:118
Language instructions Lk, which provides high-level, natural language annotations for each task119
demonstration. Task annotations are usually provided per demonstration. However, the instruction120
can be simply reused at each timestep of the given trajectory sk ∈ τ i ⇒ Lk := Li.121
RGB images from multiple cameras Ik, which capture visual scene information from different122
viewpoints Ik = (I

(1)
k , I

(2)
k , . . . , I

(C)
k )123

We additionally define reliability masks for each camera input to formulate various noise levels and124
the availability of different sensors Mk = (M

(1)
k ,M

(2)
k , . . . ,M

(C)
k ). Mk = 1 represents a fully125

reliable sensor, values between 0 and 1 denote varying degrees of noise, and Mk = 0 indicates and126
unavailable camera input. Thus, each state in the framework is defined as127

sk = (Lk, Ik ⊙Mk) ∈ S, (2)

with ⊙ denoting the Hadamard Product and S denoting the overall state space. During the training128
this masking is fixed to Mk = 1. During inference, however, is masking is used to introduce noise129
or complete modality dropout, depending on the evaluation. Furthermore, the behavior is generally130
not conditioned directly on the raw sensor input but rather a learned feature embedding zk = ϕ(sk),131
where ϕ represents an encoder generating the embedding from the sensor input. Current approaches132
either learn a single embedding that encodes all modalities at once (Mandlekar et al., 2021b) or133
individual embedding per sensor input and modality (Reuss et al., 2024b; Jia et al., 2024a; Reuss134
et al., 2023; 2024a; Jia et al., 2025),135

zk = ϕ
(
Lk, I

(1)
k ⊙M

(1)
k , I

(2)
k ⊙M

(2)
k , . . . , I

(C)
k ⊙M

(C)
k

)
or (3)(

zL,k, z
(1)
I,k, z

(2)
I,k, . . . ,z

(C)
I,k

)
= ϕ

(
Lk, I

(1)
k ⊙M

(1)
k , I

(2)
k ⊙M

(2)
k , . . . , I

(C)
k ⊙M

(C)
k

)
. (4)

Theoretically, learning individual embeddings provides mechanisms to improve robustness against136
modality dropout. In practice, however, the learned policies usually still require the presence of137
all embeddings and assume reliable information for each. This work in contrast, does not learn138
embeddings for individual sensors nor single embeddings across all sensors but instead explicitly139
learns shared embeddings v across sensors and private embeddings u for each sensor140 (

zL,k, z
(1)
I,k, z

(2)
I,k, . . . ,z

(C)
I,k

)
⇒

(
zL,k,

(
v
(1)
I,k,u

(1)
I,k

)
,
(
v
(2)
I,k,u

(2)
I,k

)
, . . . ,

(
v
(C)
I,k ,u

(C)
I,k

))
(5)

The shared embeddings v(c) contain information that sensor c shares with other sensors, while the141
private embeddings u(c) contain information that is unique to the sensor. This formulation allows142
the policy to learn a more robust representation of unreliable sensors. If the sensor c drops out, the143
private information u(c) of the sensor is not available, however, the information that would have144
been contained in the shared embedding v(c) is covered by the other sensors.145

Finally, recent work introducing action chunking(Zhao et al., 2023) has shown that predicting a146
sequence of actions generally performs better than generating single step actions. Following this147
insight the action space is redefined as148

āk = (ak,ak+1, . . . ,ak+H) ∈ AH , (6)
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where H is the prediction horizon, A denotes the action space and the sequence of actions149
(ak,ak+1, . . . ,ak+H) was observed in any of the demonstrated trajectories τ i.150

The final policy is represented as āk ∼ π (āk|ϕ(sk)) and trained using the dataset151

D =
⋃

τ∈Dτ

{(ā, s)|(ā, s) ∈ τ} , (7)

which contains pairs of action sequences and states across all demonstrated trajectories. Here, the152
union

⋃
allows for potentially duplicate entries in the final dataset to maintain the statistical occur-153

rence of state-action pairs.154

3.2 Preliminaries155

Score-based Diffusion Policy: We model the policy using a continuous-time denoising diffusion156
process based on the EDM formulation(Karras et al., 2022; Lu & Song, 2024). Denoising diffusion157
models aim to reverse a stochastic noising process that transforms data into Gaussian noise (Song158
et al., 2020), enabling the generation of new samples that match the data distribution. The denoising159
process follows a stochastic differential equation (SDE):160

dā =
(
βtσt − σ̇t

)
σt∇ā log pt(ā|ϕ(s))dt+

√
2βtσtdBt, (8)

where βt controls the noise injection, Bt is a standard Wiener process, and ∇ā log pt(ā|ϕ(s)) is the161
score function that guides samples toward regions of high data density. A neural network approxi-162
mates the score ∇ā log pt(ā|ϕ(s)) by minimizing the Score Matching objective (Vincent, 2011),163

Ldiffusion = Eσt,ā,s,ϵ

[
α(σt)∥Fθ(ā+ ϵ,ϕ(s), σt)− ā∥22

]
, (9)

where Fθ(ā+ϵ,ϕ(s), σt) is the trainable network. During training, noise sampled from a predefined164
distribution is added to an action sequence, and the network learns to predict the denoised actions.165
After training, new action sequences are generated by sampling an action āT ∼ N (0, σ2

T I) from166
the prior distribution and progressively denoising it by approximating the reverse SDE. The efficient167
DDIM ODE-Solver (Song et al., 2020) enables denoising in just a few steps (Reuss et al., 2023).168

Multi-view disentanglement: This technique separates representations into shared, v, and private,169
u, components across sensors and modalities. Shared representations capture the global informa-170
tion consistent across multiple views, while private representations encode unique information that171
is specific to a camera view. Separating the information of multiple sensors into shared and private172
components enhances the robustness as shared information provides stability in scenarios where in-173
formation from a certain modality is either absent or unreliable. Meanwhile, private representations174
embed fine-grained details which can improve the task performance when available.175

3.3 Disentangled Diffusion Policy176

Disentangled Diffusion Policy (DisDP) combines a Transformer based encoder-decoder diffusion177
model (Reuss et al., 2023; 2024b) with multi-view disentanglement, as illustrated in Figure 2. A178
more general architecture for any given IL method integrating disentanglement can be found in Ap-179
pendix A. In the first step, every camera input I(c)k is embedded using a separate vision encoder.180
These vision-embeddings are processed through disentanglement branches to obtain a shared em-181
bedding v

(c)
k and a private embedding u

(c)
k .182

The shared embedding module extracts global features, that are consistent across all camera views183
I
(1:C)
k . By focusing on features that remain stable across viewpoints, the shared-embedding en-184

coder provides a robust foundation for downstream tasks, especially when one or more cameras185
become unreliable, occluded, or noisy. The private embedding module captures fine-grained and186
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Figure 2: Overview of Disentangled Diffusion Policy (DisDP). The model processes multi-view
image inputs by separating them into shared and private representations. Each camera input is
encoded using ResNet-18, followed by disentanglement modules that extract shared embeddings
across all views and private embeddings for individual views. These embeddings are processed by
a multimodal transformer encoder and serve as conditioning inputs to the denoising transformer
decoder for action prediction. The model is trained with a combination of diffusion loss, multi-view
disentanglement loss, and orthogonality loss to enforce representation separation. This structured
representation learning enhances robustness to sensor noise, failures, and environmental variations.

view-specific details for each camera view I
(c)
k . These private features enrich the policy with infor-187

mation unique to each perspective, preserving distinctive cues when global signals are insufficient.188

The effective separation of shared and private features is ensured using a contrastive learning ap-189
proach based on the InfoNCE(x,x+,x−) loss (Oord et al., 2018; Chen et al., 2020). The con-190
trastive learning loss requires positive x+ and negative samples x− for each point x. The InfoNCE191
loss then rewards embeddings that are close to positive samples while punishing embeddings that192
are close to negative samples.193

For the shared embedding vc of sensor c we obtain the positive samples vc
+ by sampling shared194

embeddings of different sensors at the same state. While negative samples vc
− are sampled from195

shared embeddings of different states. The corresponding disentanglement loss is defined as196

Lshared = Es∈D,c∈C,vc∈ϕ(s) InfoNCE(vc,vc
+,v

c
−). (10)

For the private embedding uc of sensor c the positive samples uc
+ are drawn form the same camera197

at different states and the negative samples uc
− are drawn from any other sensor at any state. The198

corresponding disentanglement loss is defined analogously to the shared loss199

Lprivate = Es∈D,c∈C,uc∈ϕ(s) InfoNCE(uc,uc
+,u

c
−). (11)

Both loss functions can be combined into the disentanglement loss200

Ldisent = Lshared + Lprivate, (12)

which ensure maximization of similarity among the shared representation, minimization of similar-201
ity between shared and private representations and minimization of similarity between individual202
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private representations. Apart from the contrastive objective, DisDP adds an orthogonality loss203

Lortho = Es∈D,c∈C,(vc,uc),∈ϕ(s)⟨vc,uc⟩2, (13)

to further disentangle the shared and private embeddings by minimizing the squared dot product204
⟨·, ·⟩ between them for each camera. Together with the diffusion loss, this results in the final loss205

L = Ldiffusion + λdisent · Ldistent + λortho · Lortho, (14)

where λdisent and λortho are hyperparameters scaling the importance of the disentanglement and206
orthogonality loss.207

4 Evaluation208

The experiments conducted in this paper try to answer 4 research questions increasing in difficulty209
towards robustness and 1 research question with focus on interpretability:210
RQ1: Does disentanglement affect the performance of IL policies?211
RQ2: Do disentangled latent spaces improve resilience to noisy sensor input?212
RQ3: Do disentangled latent spaces improve resilience to complete sensor dropout?213
RQ4: How resilient are policies to environmental perturbations and sensor dropout?214
RQ5: Does disentanglement results in more interpretable latent spaces?215

To answer these questions all policies are evaluated on two sota IL benchmarks, The Colosseum216
(Pumacay et al., 2024) and Libero (Liu et al., 2024a). Both environments provide multi-camera217
image observations with 5 cameras for The Colosseum and 2 cameras for Libero. The Colosseum218
is constructed using tasks from RLBench (James et al., 2020), to benchmark complex robot manip-219
ulation tasks. It has 20 tabletop tasks with different variations in each task, including changes in220
lighting, texture, object colors and properties. Libero consists of diverse robot manipulation tasks221
categorized into object, spatial, goal, and long-horizon tasks. These tasks evaluate robotic skills222
on different skill ranges, making it a comprehensive benchmark for generalization in robotic ma-223
nipulation. In both benchmarks, Policy performance is assessed using success rate, defined as the224
percentage of rollouts that successfully complete the task within a specified number of steps.225

4.1 Evaluated approaches226

During the evaluation, three baselines are considered:227
BC: Behavior Cloning (BC) is usually used as a default baseline for imitation learning. We apply228
an encoder-decoder Transformer architecture to perform action prediction, which is optimized by229
Mean Squared Error (MSE).230
BESO-ACT: BEhavior generation with ScOre-based Diffusion Policies (BESO) (Reuss et al., 2023)231
is a diffusion-based policy that represents the denoising process using a continuous Stochastic-232
Differential Equation (SDE). Beyond that, we build BESO-ACT by using the same Transformer233
in BC and applying action chunking (Zhao et al., 2023).234
BESO-ACT-dropout: This baseline uses BESO-ACT but introduces random modality dropout in235
training at a rate of 10 percent to gain robustness.236

Our Contributed methods are:237
DisBC: DisBC extends the BC baseline by introducing disentangled latent spaces.238
DisDP: DisDP integrates disentangled representations in the BESO-ACT architecture239

240

4.2 Experimental Setup241

The Colosseum: With regards to RQ1, experiments are conducted on 10 of the 20 Colosseum242
tasks: basketball in hoop, close box, close laptop lid, hockey, meat on grill, move hanger, open243
drawer, reach and drag, scoop with spatula, and slide block to target. These tasks were selected244
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based on their strong performance using the baseline method, ensuring a fair comparison. The245
proposed methods and baselines are trained on the no-variation setting within the Colosseum suite246
for 200 epochs on the same hyperparameters to avoid biases. The trained models are evaluated on247
noisy camera sensor input and complete dropout to address RQ2 and RQ3. Included cameras are:248
0 left view, 1 right view, 2 wrist view and 3 front view. The bird view is disregarded because initial249
performance did not increase when including it. Dual camera dropouts are only reported for 0 1250
and 1 2 because other combinations achieve low success rate for all methods. Regarding RQ4, the251
trained models are evaluated on 8 different Colosseum variations: no-variation, background texture,252
camera pose, distractor, light color, object color, table color, table texture. The dataset contains 100253
demonstrations for each task with images captured from the five camera views. The policies are254
evaluated using three seeds, with 25 rollouts per task and a maximum of 300 steps per rollout.255
Libero: Addressing RQ1 policies are evaluated on 3 of the 4 categories, excluding long-horizon256
tasks for computation reasons. Models are trained for 50 epochs on 60 percent of demonstrations on257
same hyperparameters to ensure fair comparison. Libero includes 2 camera views: Agent camera258
0 and in-hand camera 1. Regarding RQ3, policies are evaluated on dropping out either the agent259
or in-hand view. The methods are evaluated using three different seeds with 25 rollouts per task in260
each dataset split. Each episode has maximum 260 steps per rollout.261

4.3 Result analysis262

The following section discusses the 5 introduced research questions with regard to the experimental263
results on The Colosseum (Pumacay et al., 2024) and Libero (Liu et al., 2024a) benchmarks. Further264
results regarding evaluations can be found in Appendix B.265

Benchmark BC DisBC BESO-ACT BESO-ACT-Dropout DisDP

Colosseum 0.361 ± 0.11 0.540 ± 0.08 0.709 ± 0.03 0.435 ± 0.04 0.896 ± 0.05

Libero - Object 0.684 ± 0.00 0.736 ± 0.02 0.752 ± 0.00 0.514 ± 0.05 0.816 ± 0.02
Libero - Spatial ± 0.00 0.583 ± 0.02 0.580 ± 0.03 0.552 ± 0.04 0.701 ± 0.04
Libero - Goal 0.047 ± 0.065 ± 0.576 ± 0.02 0.418 ± 0.05 0.680 ± 0.09

Table 1: The Colosseum and Libero results for all policies with reliable modality inputs. Using
disentangled IL policies does overall improve performance on both benchmarks.

RQ1: Does disentanglement affect the performance of IL policies?266

The first research question aims at analyzing the quality of policies when adding disentanglement,267
because of the trade-off between performance and interpretability. Table 1 displays the results for all268
three baselines and the two proposed methods using disentangled shared and private embeddings. In269
both benchmarks, using the disentangled version of the baseline does improve overall performance.270
DisDP achieves 0.896 success rate compared to the 0.709 of BESO-ACT on the Colosseum tasks. It271
also improves results on the Libero benchmark between 0.06 and 0.12, compared to the BESO-ACT272
baseline. In general, disentangled IL policies do improve overall performance.273

RQ2: Do disentangled latent spaces improve resilience to noisy sensor input?274

The first step of unreliable sensors include adding noise to the camera input of the model, as this is a275
common failure case. For all methods, the overall performance on The Colosseum benchmark does276
drop significantly, as shown in Table 2. The disentangled methods still outperform their correspond-277
ing baseline methods and with less performance loss. Especially the DisBC still performs similar278
to the non-noisy results. It even outperforms the DisDP, when dropping out the front view 3 and279
both dual combinations 0 1 and 1 2. The traditional BC, on the other hand, completely fails when280
confronted with noisy sensor inputs. In the noisy scenario, the BESO-ACT-dropout is also able to281
retain more of its original performance, compared to the BESO-ACT. These observations answer282
RQ2: Disentangled IL policies are much more resilient towards noisy sensor inputs.283

RQ3: Do disentangled latent spaces improve resilience to complete sensor dropout?284
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Noisy BC DisBC BESO-ACT BESO-ACT-Dropout DisDP

None 0.361 ± 0.11 0.540 ± 0.08 0.709 ± 0.03 0.435 ± 0.04 0.896 ± 0.05

0 0.160 ± 0.05 0.444 ± 0.04 0.000 ± 0.00 0.020 ± 0.02 0.568 ± 0.11
1 0.028 ± 0.03 0.496 ± 0.05 0.288 ± 0.07 0.326 ± 0.07 0.500 ± 0.12
2 0.100 ± 0.02 0.196 ± 0.03 0.008 ± 0.01 0.280 ± 0.01 0.306 ± 0.08
3 0.130 ± 0.02 0.440 ± 0.02 0.252 ± 0.03 0.210 ± 0.07 0.280 ± 0.04

0 1 0.020 ± 0.01 0.420 ± 0.01 0.000 ± 0.00 0.020 ± 0.01 0.378 ± 0.05
1 2 0.080 ± 0.07 0.370 ± 0.02 0.000 ± 0.00 0.186 ± 0.04 0.172 ± 0.04

Table 2: Colosseum no variation Dataset Evaluation with Noisy Camera Views. The numbers
in the column Noisy correspond to the specific camera: 0 left view, 1 right view, 2 wrist view, and
3 front view. The evaluation examines how noisy sensors affect task success rates and assesses the
resilience of different methods under these conditions. The disentangled methods perform much
better compared to their baseline implementations. Especially the DisBC has a small decrease in
performance, when adding noise.

Across both Libero and Colosseum, BESO-ACT and BESO-ACT-Dropout experience significant285
performance drops when critical camera views are unavailable, highlighting their reliance on com-286
plete visual input. Notably, BESO-ACT-Dropout fails to mitigate sensor failures, showing that naive287
modality dropout during training does not improve robustness but instead leads to the loss of im-288
portant task-relevant information. In Colosseum, displayed in Table 3, evaluation is conducted with289
four cameras, providing redundancy and robustness to sensor failures due to overlapping viewpoints.290
In contrast, Libero only has two cameras in total, relying heavily on both of them. Table 4 shows the291
impact of sensor dropout in Libero, where performance declines sharply across the object, spatial,292
and goal task suites when the 0 agent or 1 in-hand camera is masked.293

Masked BC DisBC (Ours) BESO-ACT BESO-ACT-Dropout DisDP (Ours)

None 0.361 ± 0.11 0.540 ± 0.08 0.709 ± 0.03 0.435 ± 0.04 0.896 ± 0.05

0 0.096 ± 0.01 0.206 ± 0.03 0.068 ± 0.05 0.096 ± 0.01 0.440 ± 0.03
1 0.120 ± 0.02 0.140 ± 0.03 0.196 ± 0.04 0.168 ± 0.02 0.632 ± 0.04
2 0.048 ± 0.01 0.228 ± 0.01 0.292 ± 0.03 0.100 ± 0.03 0.420 ± 0.02
3 0.028 ± 0.02 0.096 ± 0.01 0.040 ± 0.03 0.004 ± 0.00 0.060 ± 0.03

0 1 0.056 ± 0.01 0.100 ± 0.02 0.028 ± 0.02 0.048 ± 0.01 0.196 ± 0.05
1 2 0.000 ± 0.00 0.092 ± 0.01 0.070 ± 0.01 0.040 ± 0.02 0.192 ± 0.07

Table 3: Colosseum no variation Dataset Evaluation with Masked Camera Views. Columns
0, 1, 2, and 3 represent the masking of individual cameras: 0 (left view), 1 (right view), 2 (wrist
view), and 3 (front view). The evaluation examines how sensor failures affect task success rates and
assesses the resilience of different methods under these conditions.

Unlike BC and BESO-ACT, the disentangled-based methods DisBC and DisDP exhibit greater re-294
silience to sensor failures, maintaining higher success rates across masked conditions. DisDP con-295
sistently outperforms all baselines, even when multiple modalities are missing. For instance, in296
Colosseum when 0 left view is masked, DisDP retains a success rate of 0.440, significantly higher297
than BC with 0.096 and BESO-ACT with 0.068, as shown in Table 3. These results highlight298
DisDP’s ability to adapt to missing sensory inputs through its disentanglement-based structure. Ad-299
ditionally, the front view emerges as the most critical modality in Colosseum, where its removal300
leads to the largest performance drop. A similar trend is observed in Libero, where DisDP maintains301
the highest performance for all task suites and masked cameras, except for Goal - 0, where BESO-302
ACT achieves the highest result. This observation further confirms the reliance on full visual input303
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Masked BC DisBC BESO-ACT BESO-ACT-Dropout DisDP

Object - None 0.684 ± 0.00 0.736 ± 0.02 0.752 ± 0.00 0.514 ± 0.05 0.816 ± 0.02
Spatial - None 0.556 ± 0.00 0.583 ± 0.02 0.580 ± 0.03 0.552 ± 0.04 0.701 ± 0.04
Goal - None - - 0.576 ± 0.02 0.418 ± 0.05 0.680 ± 0.09

Object - 0 0.000 ± 0.00 0.110 ± 0.03 0.204 ± 0.00 0.004 ± 0.00 0.295 ± 0.04
Spatial - 0 0.000 ± 0.00 0.000 ± 0.00 0.028 ± 0.00 0.023 ± 0.00 0.144 ± 0.02
Goal - 0 - - 0.084 ± 0.01 0.040 ± 0.00 0.004 ± 0.00

Object - 1 0.000 ± 0.00 0.000 ± 0.00 0.012 ± 0.01 0.000 ± 0.00 0.226 ± 0.03
Spatial - 1 0.000 ± 0.00 0.004 ± 0.00 0.004 ± 0.00 0.023 ± 0.04 0.112 ± 0.00
Goal - 1 - - 0.012 ± 0.00 0.004 ± 0.00 0.200 ± 0.04

Table 4: Libero dataset evaluation: The evaluation examines three task suites—Object, Spatial,
and Goal—across three conditions: normal (all cameras available), agent view camera masked (0),
and in-hand camera masked (1). The results demonstrate the effect of modality dropout on task
success and highlight that policies trained with disentangled methods exhibit better adaptability to
missing sensory inputs.

of BESO-ACT. The impact of masking the 1 in-hand camera is even more severe, with DisDP still304
achieving 0.113, whereas BESO-ACT drops to 0.009.305

DisDP achieves the highest performance retention under modality dropout, demonstrating that dis-306
entangled representations effectively preserve task-relevant features despite missing inputs. While307
DisBC also leverages shared and private representation separation and improves robustness over308
BC, it does not match the adaptability of DisDP, which benefits from diffusion policies in addition309
to disentangled representations. This analysis answers RQ3 and shows that disentangled represen-310
tations help retain important task information and handle sensor dropout. Separating shared and311
private representations makes models more adaptable to sensor failures, reducing dependence on a312
single modality and improving robustness in different conditions.313

RQ4: How resilient are policies to environmental perturbations and sensor dropout?314

To evaluate the robustness of policies on environmental perturbations and modality dropouts, Colos-315
seum provides 7 different variations for all tasks. Previous experiments showed that the diffusion-316
based methods perform best on The Colosseum, therefore only those two methods are evaluated on317
the variations of The Colosseum.318

Figure 3 presents the evaluations on the environmental variations from The Colosseum. The no-319
variation condition serves as the baseline, achieving the highest performance across all tasks. Figures320
for individual tasks are given in Appendix B. The results indicate the degradation in performance321
on environmental perturbations. The performance decreases further when certain camera views are322
dropped out. Overall, DisDP demonstrates greater robustness compared to BESO-ACT, particularly323
in handling object color, table color, and background texture variations.324

The results show that disentangled representations help handle environmental changes. Even with-325
out training on these variations, our method remained more robust. Variations in camera pose,326
table texture, and lighting were the most disruptive factors, affecting the model’s spatial reasoning327
and fine-grained perception. These observations address RQ4, as it highlights how disentangled328
representations enable improved generalization to environmental perturbations by preserving task-329
relevant features while filtering out irrelevant variations.330

RQ5: Does disentanglement results in more interpretable latent spaces?331

DisDP’s superior performance in Libero and Colosseum shows that separating shared and private332
components enhances robustness and adaptability under both normal and unreliable camera condi-333
tions. To investigate the interpretability of the disentangled latent space, we examine the saliency334
maps of the learned shared and private representations in Figure 4, using the close-box task as an335
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Figure 3: Colosseum results on variations, comparison between BESO-ACT and DisDP. The
no-variation condition serves as a baseline, showing the highest performance. Spatial, textural, and
lighting variations significantly impact success rates, with camera pose and table texture masking
causing the most degradation.

example. The shared representation focuses on box edges, a crucial feature for proper alignment and336
closure, ensuring that essential task information remains consistent across views. This cross-view337
consistency allows the model to retain key information, even when some camera inputs are miss-338
ing or degraded. In contrast, the private representations capture view-specific details, such as robot339
joints and table shadows, which provide additional contextual information for precise manipulation.340

By clearly separating shared and private representations, disentanglement improves generalization341
and enhances robustness to sensor failures. When a camera is not available, the shared representa-342
tion still preserves essential task features, enabling stable execution. In addition, disentanglement343
enhances interpretability by clarifying the distinct role of each view in decision-making. To further344
analyze the structure of disentangled representations, we used Uniform Manifold Approximation345
and Projection (UMAP) to plot the shared and private embeddings, displayed in Figure 5. This346
separation confirms that disentanglement structures the latent space in a way that improves both347
interpretability and robustness.348

5 Conclusion349

This work introduced Disentangled Diffusion Policy (DisDP), a method for improv-350
ing robustness in IL by leveraging multi-view disentanglement. By structuring sen-351
sor inputs into shared and private representations, DisDP enhances the model’s abil-352
ity to handle sensor noise, dropouts and environmental variations better. Our evalua-353
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Figure 4: Saliency maps for disentangled embeddings. In the close box task, the shared embed-
dings capture the box edges, which are crucial for task completion and visible across different views.
In contrast, the private embeddings focus on specific details, such as robot joints and table shadows,
which contribute to task execution, while others capture unique but less relevant scene elements.

tions on The Colosseum and Libero demonstrate that disentangled methods achieve bet-354
ter performance than their baseline implementation, even when all sensors are available.355

Figure 5: UMAP plot - shared private disentan-
glement.The visualization confirms the separation
process: shared embeddings from all four cameras
cluster at the center, while private embeddings re-
main dispersed, capturing view-specific features.

Evaluations with noisy or unreliable sen-356
sors demonstrated the robustness improvement357
through disentangled IL methods. Furthermore,358
disentanglement additionally provides more ro-359
bustness towards environmental changes, mak-360
ing models more robust in general. The separa-361
tion of private and shared embeddings allows362
for visualization of the latent space through363
Gradient-weighted Class Activation Mapping364
(Grad-CAM) and UMAP. These visualizations365
give insight into the focus of the model and how366
private and shared embeddings are separated.367
Limitations of DisDP can be observed when368
looking at camera dropout combinations. If369
specific combinations of cameras are not avail-370
able, disentanglement does not retain informa-371
tion to complete tasks reliably. Furthermore,372
less cameras decrease the efficiency of disen-373
tangled methods, because the shared embed-374
ding has less overlap between viewpoints.375
Future work will focus on improving robust-376
ness under less modality inputs and to reduce377
performance loss if more then one modality is378
not available. The next steps will also include379
real robot experiments, to confirm the proposed380
method outside of simulation. Furthermore, including other sensor modalities beside vision would381
be interesting and could enhance model performance.382
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Figure 6: General Architecture

Supplementary Materials542

The following content was not necessarily subject to peer review.543
544

A General Architecture for Disentanglement in Imitation Learning545

A general architecture for introducing disentangled latent spaces in Imitation learning is shown in546
Figure 6 with n number of modalities.547

B Evaluation on environment variations548

We have added a few individual task results for the environment variations for the Colosseum bench-549
mark to analyze the effect of perturbations on tasks.550

Simple tasks like close box remain relatively robust across most of variations except the camera551
pose. The performance of open drawer task reduces a lot under variations like table color, texture,552
and even background texture and lighting changes. It shows the representations are still focusing on553
table pixels. Tasks like reach and drag, and basketball experience reduced performance by adding554
distractor objects, which confuses the policies.555
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Figure 7: Close box Variations

Figure 8: Open Drawer Variations
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Figure 9: Reach and Drag Variations

Figure 10: Basketball Task Variations
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