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Abstract

The expressive power of graph learning architectures based on the k-dimensional
Weisfeiler–Leman (k-WL) hierarchy is well understood. However, such architec-
tures often fail to deliver solid predictive performance on real-world tasks, limiting
their practical impact. In contrast, global attention-based models such as graph
transformers demonstrate strong performance in practice, but comparing their ex-
pressive power with the k-WL hierarchy remains challenging, particularly since
these architectures rely on positional or structural encodings for their expressivity
and predictive performance. To address this, we show that the recently proposed
Edge Transformer, a global attention model operating on node pairs instead of nodes,
has 3-WL expressive power when provided with the right tokenization. Empirically,
we demonstrate that the Edge Transformer surpasses other theoretically aligned ar-
chitectures regarding predictive performance and is competitive with state-of-the-art
models on algorithmic reasoning and molecular regression tasks while not relying
on positional or structural encodings.

1 Introduction

Graph Neural Networks (GNNs) are the de-facto standard in graph learning [16, 43, 28, 50] but suffer
from limited expressivity in distinguishing non-isomorphic graphs in terms of the 1-dimensional
Weisfeiler–Leman algorithm (1-WL) [35, 50]. Hence, recent works introduced higher-order GNNs,
aligned with the k-dimensional Weisfeiler–Leman (k-WL) hierarchy for graph isomorphism testing
[1, 33, 35, 36, 38], resulting in more expressivity with an increase in k > 1. The k-WL hierarchy
draws from a rich history in graph theory and logic [3, 4, 5, 10, 49], offering a deep theoretical
understanding of k-WL-aligned GNNs. While theoretically intriguing, higher-order GNNs often fail
to deliver state-of-the-art performance on real-world problems, making theoretically grounded models
less relevant in practice [1, 36, 38]. In contrast, graph transformers [17, 19, 31, 41, 52] recently
demonstrated state-of-the-art empirical performance. However, they draw their expressive power
mostly from positional/structural encodings (PEs), making it difficult to understand these models in
terms of an expressivity hierarchy such as the k-WL. While a few works theoretically aligned graph
transformers with the k-WL hierarchy [26, 27, 53], we are not aware of any works reporting empirical
results for 3-WL-equivalent graph transformers on established graph learning datasets.

In this work, we aim to set the ground for graph learning architectures that are theoretically aligned
with the higher-order Weisfeiler–Leman hierarchy while delivering strong empirical performance
and, at the same time, demonstrate that such an alignment creates powerful synergies between
transformers and graph learning. Hence, we close the gap between theoretical expressivity and
real-world predictive power. To this end, we apply the Edge Transformer (ET) architecture, initially
developed for systematic generalization problems [6], to the field of graph learning. Systematic
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Figure 1: Tokenization of the Edge Transformer.
Given a graph G, we construct a 3D tensor where
we embed information from each node pair into
a d dimensional vector.
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Figure 2: Tensor operations in a single triangular
attention head; see Algorithm 1 for a comparison
to standard attention in pseudo-code.

(or compositional) generalization refers to the ability of a model to generalize to complex novel
concepts by combining primitive concepts observed during training, posing a challenge to even the
most advanced models such as GPT-4 [15].

Specifically, we contribute the following:

1. We propose a concrete implementation of the Edge Transformer that readily applies to various
graph learning tasks.

2. We show theoretically that this Edge Transformer implementation is as expressive as the
3-WL without the need for positional/structural encodings.

3. We demonstrate the benefits of aligning models with the k-WL hierarchy by leveraging
well-established results from graph theory and logic to develop a theoretical understanding
of systematic generalization in terms of first-order logic statements.

4. We demonstrate the superior empirical performance of the resulting architecture compared to
a variety of other theoretically motivated models, particularly higher-order GNNs, as well as
competitive performance compared to state-of-the-art models in molecular regression and
neural algorithmic reasoning tasks.

2 Related work

See Appendix A for an extended related work section. Here, we want to highlight PPGN [32], a
simple GNN model that uses a series of MLP layers and matrix multiplications to achieve 3-WL
expressive power, as well as the Relational Transformer (RT) [12], operating on both nodes and
edges and, similar to the ET, builds relational representations, that is, representations on edges.
Although the RT integrates edge information into self-attention and hence does not need to resort
to positional/structural encodings, the RT is theoretically poorly understood, much like other graph
transformers. Other graph transformers with higher-order expressive power are Graphormer-GD [53]
and TokenGT [27]. However, Graphormer-GD is strictly less expressive than the 3-WL [53]. Moreover,
the graph transformers in Kim et al. [27] are infeasible for higher orders. For example, achieving
provably 3-WL expressivity results in a runtime complexity of O(n6).

Finally, systematic generalization has recently been investigated both empirically and theoretically
[6, 15, 25, 42]. In particular, Dziri et al. [15] demonstrate that compositional generalization is lacking
in state-of-the-art transformers such as GPT-4.
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3 Edge Transformers

The ET was originally designed to improve the systematic generalization abilities of machine learning
models. To borrow the example from Bergen et al. [6], a model that is presented with relations such
as MOTHER(x, y), indicating that y is the mother of x, could generalize to a more complex relation
GRANDMOTHER(x, z), indicating that z is the grandmother of x if MOTHER(x, y) ∧ MOTHER(y, z)
holds. The particular form of attention used by the ET, which we will formally introduce hereafter, is
designed to explicitly model such more complex relations. Indeed, leveraging our theoretical results
of Section 4, in Section 5, we formally justify the ET for performing systematic generalization. We
will now formally define the ET.

In general, the ET operates on a graph G with nodes V (G) and consecutively updates a 3D tensor state
X ∈ Rn×n×d, where d is the embedding dimension and Xij or X(u) denotes the representation of
the node pair u := (i, j) ∈ V (G)2; see Figure 1 for a visualization of this construction. Concretely,
the t-th ET layer computes

X
(t)
ij := FFN

(
X

(t−1)
ij + TriAttention

(
LN
(
X

(t−1)
ij

)))
,

for each node pair (i, j), where FFN is a feed-forward neural network, LN denotes layer normalization
[2] and TriAttention is defined as

TriAttention(Xij) :=

n∑

l=1

αiljVilj , (1)

which computes a tensor product between a three-dimensional attention tensor α and a three-
dimensional value tensor V, by multiplying and summing over the second dimension. Here,

αilj := softmax
l∈[n]

( 1√
d
XilW

Q
(
XljW

K
)T) ∈ R (2)

is the attention score between the features of tuples (i, l) and (l, j), and

Vilj := XilW
V1 ⊙XljW

V2 , (3)

we call value fusion of the tuples (i, l) and (l, j) with ⊙ denoting element-wise multiplication.
Moreover, WQ,WK ,W V1 ,W V2 ∈ Rd×d are learnable projection matrices; see Figure 2 for an
overview of the tensor operations in triangular attention and see Algorithm 1 for a comparison to
standard attention [45] in pseudo-code. Note that similar to standard attention, triangular attention can
be straightforwardly extended to multiple heads.

As we will show in Section 4, the ET owes its expressive power to the special form of triangular
attention. In our implementation of the ET, we use the following tokenization, which is sufficient to
obtain our theoretical result.

Tokenization Let G := (V (G), E(G), ℓ) be a graph with n nodes, feature matrix F ∈ Rn×p and
edge feature tensor E ∈ Rn×n×q . If no edge features are available, we randomly initialize learnable
vectors x1,x2 ∈ Rq and assign x1 to Eij if (i, j) ∈ E(G). Further, for all i ∈ V (G), we assign x2

to Eii. Lastly, if (i, j) ̸∈ E(G) and i ̸= j, we set Eij = 0. We then construct a 3D tensor of input
tokens X ∈ Rn×n×d, such that for node pair (i, j) ∈ V (G)2,

Xij := ϕ
(
[Eij Fi Fj ]

)
∈ Rd, (4)

where ϕ : R2p+q → Rd is a neural network. Extending Bergen et al. [6], our tokenization additionally
considers node features, making it more appropriate for the graph learning setting.

Efficiency The triangular attention above imposes a O(n3) runtime and memory complexity, which
is significantly more efficient than other transformers with 3-WL expressive power, such as the higher-
order transformers in Kim et al. [26] and Kim et al. [27] with a runtime ofO(n6). Nonetheless, the ET
is still significantly less efficient than most graph transformers, with a runtime of O(n2) [31, 41, 52].
Thus, the ET is currently only applicable to mid-sized graphs; see Appendix G for an extended
discussion of this limitation.
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Positional/structural encodings Additionally, GNNs and graph transformers often benefit empir-
ically from added positional/structural encodings [13, 31, 41]. We can easily add PEs to the above
tokens with the ET. Specifically, we can encode any PEs for node i ∈ V (G) as an edge feature in
Eii and any PEs between a node pair (i, j) ∈ V (G)2 as an edge feature in Eij . Note that typically,
PEs between pairs of nodes are incorporated during the attention computation of graph transformers
[31, 52]. However, in Section 6, we demonstrate that simply adding these PEs to our tokens is also
viable for improving the empirical results of the ET.

With tokenization as defined above, the ET can now be used on many graph learning problems,
encoding both node and edge features and making predictions for node pair-, edge-, node-, and
graph-level tasks; see Appendix D for additional implementation details. We refer to a concrete set of
parameters of the ET, including tokenization and positional/structural encodings, as a parameterization.
We now move on to our theoretical result, showing that the ET has an expressive power of at least the
3-WL.

4 The Expressivity of Edge Transformers

Here, we relate the ET to the folklore Weisfeiler–Leman (k-FWL) hierarchy, a variant of the k-WL
hierarchy for which, for k > 2, (k − 1)-FWL is as expressive as k-WL [18]. Specifically, we show
that the ET can simulate the 2-FWL, resulting in 3-WL expressive power. For detailed background on
the k-WL and k-FWL hierarchy, see Appendix H. Concretely, we obtain the following theorem; see
Appendix J for a formal statement and proof details.

Theorem 1 (Informal). The ET has exactly 3-WL expressive power.

Note that following previous works [32, 36, 38], our expressivity result is non-uniform in that our
result only holds for an arbitrary but fixed graph size n; see Proposition 7 and Proposition 8 for the
complete formal statements and proof of Theorem 1; see Appendix I for some intuition on how the ET
can simulate the 2-FWL.

Interestingly, our proofs do not resort to positional/structural encodings. The ET draws its 3-WL
expressive power from its aggregation scheme, the triangular attention. In Section 6, we demonstrate
that this also holds in practice, where the ET performs strongly without additional encodings. In what
follows, we use the above results to derive a more principled understanding of the ET in terms of
systematic generalization, for which it was originally designed. Thereby, we demonstrate that graph
theoretic results can also be leveraged in other areas of machine learning, further highlighting the
benefits of theoretically grounded models.

5 The Logic of Edge Transformers

After borrowing the ET from systematic generalization in the previous section, we now return the
favor. Specifically, we use a well-known connection between graph isomorphism and first-order logic
to obtain a theoretical justification for systematic generalization reasoning using the ET. Here, we give
an informal overview over the results. For a detailed and formal discussion; see Appendix C. Recalling
the example around the GRANDMOTHER relation composed from the more primitive MOTHER relation
in Section 3, Bergen et al. [6] go ahead and argue that since self-attention of standard transformers
is defined between pairs of nodes, learning explicit representations of GRANDMOTHER is impossible
and that learning such representations implicitly incurs a high burden on the learner. Conversely, the
authors argue that since the Edge Transformer computes triangular attention over triplets of nodes
and computes explicit representations between node pairs, the Edge Transformer can systematically
generalize to relations such as GRANDMOTHER. While Bergen et al. [6] argue the above intuitively, we
will now utilize the connection between first-order logic (FO-logic) and graph isomorphism established
in Cai et al. [10] to develop a theoretical understanding of systematic generalization; see Appendix H
for an introduction to first-order logic over graphs.

Concretely, the results in Cai et al. [10] establish a correspondence between k-FWL expressivity
and the ability to evaluate first-order logic statements with counting quantifiers and k + 1 variables.
Moreover, the number iterations performed by the k-FWL correspond to the maximum number of
nested quantifiers of statements that can be evaluated.
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Table 1: Average test results and standard deviation for the
molecular regression datasets over five random seeds.

Model ZINC (12K) ALCHEMY (12K)

MAE ↓ MAE ↓
CIN [8] 0.079 ±0.006 –
Graphormer-GD [53] 0.081 ±0.009 –
SignNet [29] 0.084 ±0.006 0.113 ±0.002

BasisNet [21] 0.155 ±0.007 0.110 ±0.001

PPGN++ [40] 0.071 ±0.001 0.109 ±0.001

SPE [21] 0.069 ±0.004 0.108 ±0.001

ET 0.062 ±0.004 0.099 ± 0.001

ET+RRWP 0.059 ±0.004 0.098 ± 0.001

Table 2: ZINC (12K) leaderboard.

Model ZINC (12K)

MAE ↓
Graphormer-GD [53] 0.081 ±0.009

CIN [8] 0.079 ±0.006

Graph-MLP-Mixer [19] 0.073 ±0.001

PPGN++ [40] 0.071 ±0.001

GraphGPS [41] 0.070 ±0.004

SPE [21] 0.069 ±0.004

Graph Diffuser [17] 0.068 ±0.002

Specformer [7] 0.066 ±0.003

GRIT [31] 0.059 ±0.002

ET 0.062 ±0.004

ET+RRWP 0.059 ±0.004

This correspondence lets us, for example, say that the ET, with its 2-FWL expressive power, can
evaluate the example given in Bergen et al. [6], namely,

GRANDMOTHER(x, z) = ∃y
(

MOTHER(x, y) ∧ MOTHER(y, z)
)
.

Here, the grandmother relation is described via a first-order logic statement with 1 quantifier and 3
variables.

More generally, our results in Section 4, combined with the results in Cai et al. [10], result in a
theoretical justification for the intuitive argument made by Bergen et al. [6], namely that the ET
can learn an explicit representation of a novel concept, in our example the GRANDMOTHER relation.
Moreover, note that the GRANDMOTHER relation can be evaluated in a single iteration and is a relation
over 2 variables. As a result, two iterations of the 2-FWL allow us to evaluate the statement

GREATGRANDMOTHER(x, a) = ∃y
(

GRANDMOTHER(x, y) ∧ MOTHER(y, a)
)
,

where GRANDMOTHER is a generalized concept obtained from the primitive concept MOTHER and
GREATGRANDMOTHER is generalized from GRANDMOTHER and MOTHER and can be described with
3 variables and two nested quantifiers; see Appendix C for a more formal treatment of this connection
between first-order logic and the 2-FWL.

To summarize, knowing the expressive power of a model such as the ET in terms of the Weisfeiler–
Leman hierarchy allows us to draw direct connections to the logical reasoning abilities of the model.
Further, this theoretical connection allows an interpretation of systematic generalization as the ability
of a model with the expressive power of at least the k-FWL to iteratively re-combine concepts from first
principles (such as the MOTHER relation) as a hierarchy of first-order logic statements with counting
quantifiers and at most k + 1 variables.

6 Experimental evaluation

Here, we investigate how well the ET performs on various graph-learning tasks. We include tasks on
graph-, node-, and edge-level. Specifically, we answer the following questions.

Q1 How does the ET fare against other theoretically aligned architectures regarding predictive
performance?

Q2 How does the ET compare to state-of-the-art models?
Q3 How effectively can the ET benefit from additional positional/structural encodings?

We provide the full experimental evaluation in Appendix E. Here, we want to highlight a few results
and answer the questions posed above. In our tables, we highlight first , second and third best
results.

6.1 How does the ET fare against other theoretically aligned architectures regarding
predictive performance?

In Table 1, we present results on two popular molecular property prediction tasks, namely ZINC
(12K) [14] and ALCHEMY (12K), comparing the ET to six theoretically grounded graph models. We
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Table 3: Average test micro F1 of different algorithm classes and average test score of all algorithms
in CLRS over ten random seeds; see Appendix E.4 for test scores per algorithm and Appendix E.5 for
details on the standard deviation.

Model Sorting Searching DC Greedy DP Graphs Strings Geometry Average All algorithms

Deep Sets [12] 68.89 50.99 12.29 77.83 68.29 42.09 2.92 65.47 48.60 50.29
GAT [12] 21.25 38.04 15.19 75.75 63.88 55.53 1.57 68.94 41.82 48.08
MPNN [12] 27.12 43.94 16.14 89.40 68.81 63.30 2.09 83.03 49.23 55.15
PGN [12] 28.93 60.39 51.30 76.72 71.13 64.59 1.82 67.78 52.83 56.57
RT [12] 50.01 65.31 66.52 85.32 83.20 65.33 32.52 84.55 66.60 66.18
Triplet-GMPNN [23] 60.37 58.61 76.36 91.21 81.99 81.41 49.09 94.09 74.14 75.98

ET 82.26 63.00 64.44 81.67 83.49 86.08 54.84 88.22 75.51 80.13

evaluate the ET with and without the positional/structural encodings RRWP, proposed in Ma et al.
[31]; see Section 6.3 for a discussion on the impact of these encodings on the performance of the
ET. In summary, we find that the ET outperforms other theoretically grounded models, even without
positional/structural encodings; see Table 1 for an extension of Table 1 with more baselines and one
more molecular property prediction task.

6.2 How does the ET compare to state-of-the-art models?

In Table 2, we provide a comparison of the ET with the best overall models on ZINC (12K). Here, we
find that the ET is highly competitive with the best models, even without using positional/structural
encodings.

Further, we want to evaluate the performance of the ET on another domain than molecular property
prediction. To this end, in Table 3, we evaluate the ET on the CLRS benchmark for neural algorithmic
reasoning [46]. Here, the input, output, and intermediate steps of 30 classical algorithms are translated
into graph data, where nodes represent the algorithm input and edges are used to encode a partial
ordering of the input. The algorithms are divided into 8 algorithm classes, such as sorting, dynamic
programming or divide and conquer. Of independent interest to algorithmic reasoning is the fact that
the CLRS benchmark requires predictions on both node- and edge-level, which serves as a challenging
setting for graph models. We evaluate on two strong baselines on this benchmark and stick closely
to their training and evaluation setup. We find that the ET is a highly competitive model on this
benchmark. In particular, the ET has the highest average performance over all algorithm classes and
all algorithms.

6.3 How effectively can the ET benefit from additional positional/structural encodings?

To determine the impact of positional/structural encodings, we point again to our results in Table 1.
Here, we use RRWP, the positional/structural encodings proposed for GRIT [31], the best model on
ZINC (12K). We find that, while the use of positional/structural encodings has a positive impact on
performance, the ET does not depend on such encodings for strong performance, even when compared
the best models; see Table 2. In comparison, GRIT is highly reliant on RRWP encodings; see Table 5
in Ma et al. [31].

7 Conclusion

Here, we established a previously unknown connection between the Edge Transformer and the 3-WL
and enabled the Edge Transformer for various graph learning tasks, including graph-, node-, and
edge-level tasks. We also utilized a well-known connection between graph isomorphism testing and
first-order logic to derive a theoretical interpretation of systematic generalization. We demonstrated
empirically that the Edge Transformer is a promising architecture for graph learning, outperforming
other theoretically aligned architectures and being among the best models on ZINC (12K) and CLRS.
Furthermore, the ET is a graph transformer that does not rely on positional/structural encodings for
strong empirical performance. Future work could further explore the potential of the Edge Transformer
in neural algorithmic reasoning and molecular learning by improving its scalability to larger graphs,
in particular through architecture-specific low-level GPU optimizations and model parallelism.
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A Extended related work

Many graph learning models with higher-order WL expressive power exist, notably δ-k-GNNs [36],
SpeqNets [38], k-IGNs [34, 33], PPGN [32], and the more recent PPGN++ [40]. Moreover, Lipman
et al. [30] devised a low-rank attention module possessing the same power as the folklore 2-WL
and Bodnar et al. [8] proposed CIN with an expressive power of at least 3-WL. For an overview of
Weisfeiler–Leman in graph learning, see Morris et al. [37].

Many graph transformers exist, notably Graphormer [52] and GraphGPS [41]. However, state-of-the-
art graph transformers typically rely on positional/structural encodings, which makes it challenging to
derive a theoretical understanding of their expressive power. Graph transformers with higher-order
expressive power are Graphormer-GD [53] and TokenGT [27] as well as the higher-order graph
transformers in Kim et al. [26]. However, Graphormer-GD is strictly less expressive than the 3-WL
[53]. Further, Kim et al. [26] and Kim et al. [27] align transformers with k-IGNs and, thus, obtain
the theoretical expressive power of the corresponding k-WL but do not empirically evaluate their
transformers for k > 2. In addition, these higher-order transformers suffer from a O(n2k) runtime
and memory complexity. For comparison, with k = 3, the ET offers provable 3-WL expressivity
with O(n3) runtime and memory complexity, several orders of magnitude more efficient than the
corresponding 3-WL expressive transformer in Kim et al. [27]. For an overview of graph transformers,
see Müller et al. [39].

B Comparison of TriAttention to standard attention

Algorithm 1 shows a comparison between TriAttention and standard attention [45] in pseudo-code.
Since TriAttention operates on pairs of tokens, query-, key- and value- operations are lifted to tensor
operations. In addition, TriAttention uses value fusion to construct the value tensor; see Section 3.

Algorithm 1 Comparison between standard attention and triangular attention in PYTORCH-like
pseudo-code.

function ATTENTION(X : n× d)
Q,K,V← linear(X).chunk(3)
# no op
Ã← einsum(id, jd→ ij,Q,K)

A← softmax(Ã/
√
d,−1)

O← einsum(ij, jd→ id,A,V)
return linear(O)

end function

function TRI_ATTENTION(X : n× n× d)
Q,K,V1,V2 ← linear(X).chunk(4)
V← einsum(ild, ljd→ iljd,V1,V2)

Ã← einsum(ild, ljd→ ilj,Q,K)

A← softmax(Ã/
√
d,−1)

O← einsum(ilj, iljd→ ijd,A,V)
return linear(O)

end function

C Extended: The Logic of Edge Transformers

Here, we use a well-known connection between graph isomorphism and first-order logic to obtain a
theoretical justification for systematic generalization reasoning using the ET by leveraging the results
in Cai et al. [10]. We will now briefly introduce the most important concepts in Cai et al. [10] and
then relate them to systematic generalization of the ET and similar models.

Language and configurations Here, we consider FO-logic statements with counting quantifiers and
denote with Ck,m the language of all such statements with at most k variables and quantifier depth m.
A configuration is a map between first-order variables and nodes in a graph. Concretely, configurations
let us define a statement φ in first-order logic, such as three nodes forming a triangle, without speaking
about concrete nodes in a graph G = (V (G), E(G)). Instead, we can use a configuration to map
the three variables in φ to nodes v, w, u ∈ V (G) and evaluate φ to determine whether v, w and u
form a triangle in G. Of particular importance to us are k-configurations f where we map k variables
x1, . . . , xk in a FO-logic statement to a k-tuple u ∈ V (G)k such that u = (f(x1), . . . , f(xk)). This
lets us now state the following result in Cai et al. [10], relating FO-logic satisfiability to the k-FWL
hierarchy.
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Theorem 2 (Theorem 5.2 [10], informally). Let G := (V (G), E(G)) and H := (V (H), E(H)) be
two graphs with n nodes and let k ≥ 1. Let f be a k-configuration mapping to tuple u ∈ V (G)k and
let g be a k-configuration mapping to tuple v ∈ V (H)k. Then, for every t ≥ 0,

Ck,F
t (u) = Ck,F

t (v),

if, and only, if u and v satisfy the same sentences in Ck+1,t.

Together with Theorem 1, we obtain the above results also for the embeddings of the ET for k = 2.
Corollary 3. Let G := (V (G), E(G)) and H := (V (H), E(H)) be two graphs with n nodes and let
k = 2. Let f be a 2-configuration mapping to node pair u ∈ V (G)2 and let g be a 2-configuration
mapping to node pair v ∈ V (H)k. Then, for every t ≥ 0,

X(t)(u) = X(t)(v),

if, and only, if u and v satisfy the same sentences in C3,t.

Systematic generalization Returning to the example in Bergen et al. [6], the above result tells
us that a model with 2-FWL expressive power and at least t layers is equivalently able to evaluate
sentences in C3,t, including

GRANDMOTHER(x, z) = ∃y
(

MOTHER(x, y) ∧ MOTHER(y, z)
)
,

i.e., the grandmother relation, and store this information encoded in some 2-tuple representation
X(t)(u), where u = (u, v) and u is a grandmother of v. As a result, we have theoretical justifica-
tion for the intuitive argument made by Bergen et al. [6], namely that the ET can learn an explicit
representation of a novel concept, in our example the GRANDMOTHER relation.

However, when closely examining the language C3,t, we find that the above result allows for an even
wider theoretical justification of the systematic generalization ability of the ET. Concretely, we will
show that once the ET obtains a representation for a novel concept such as the GRANDMOTHER
relation, at some layer t, the ET can re-combine said concept to generalize to even more complex
concepts. For example, consider the following relation, which we naively write as

GREATGRANDMOTHER(x, a) = ∃z∃y
(

MOTHER(x, y) ∧ MOTHER(y, z) ∧ MOTHER(z, a)
)
.

At first glance, it seems as though GREATGRANDMOTHER ∈ C4,1 but GREATGRANDMOTHER ̸∈ C3,t
for any t ≥ 1. However, notice that the variable y serves merely as an intermediary to establish the
GRANDMOTHER relation. Hence, we can, without loss of generality, write the above as

GREATGRANDMOTHER(x, a) = ∃y
(
∃a
(

MOTHER(x, a) ∧ MOTHER(a, y)
))

︸ ︷︷ ︸
a is re-quantified and temporarily bound

∧MOTHER(y, a)
)
,

i.e., we re-quantify a to temporarily serve as the mother of x and the daughter of y. Afterwards, a is
released and again refers to the great grandmother of x. As a result, GREATGRANDMOTHER ∈ C3,2
and hence the ET, as well as any other model with at least 2-FWL expressive power, is able to
generalize to the GREATGRANDMOTHER relation within two layers, by iteratively re-combining
existing concepts, in our example the GRANDMOTHER and the MOTHER relation. This becomes even
more clear, by writing

GREATGRANDMOTHER(x, a) = ∃y
(

GRANDMOTHER(x, y) ∧ MOTHER(y, a)
)
,

where GRANDMOTHER is a generalized concept obtained from the primitive concept MOTHER. To
summarize, knowing the expressive power of a model such as the ET in terms of the Weisfeiler–
Leman hierarchy allows us to draw direct connections to the logical reasoning abilities of the model.
Further, this theoretical connection allows an interpretation of systematic generalization as the ability
of a model with the expressive power of at least the k-FWL to iteratively re-combine concepts from
first principles (such as the MOTHER relation) as a hierarchy of statements in Ck+1,t, containing all
FO-logic statements with counting quantifiers, at most k + 1 variables and quantifier depth t.
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D Implementation details

Since the Edge Transformer already builds representations on node pairs, making predictions for node
pair- or edge-level tasks is straightforward. Specifically, let L denote the number of Edge Transformer
layers. Then, for a node pair (i, j) ∈ V (G)2, we simply readout X(L)

ij , where on the edge-level we
restrict ourselves to the case where (i, j) ∈ E(G). In what follows, we propose a pooling method
from node pairs to nodes, which allows us also to make predictions for node- and graph-level tasks.
For each node i ∈ V (G), we compute

ReadOut(i) :=
∑

j∈[n]

ρ1(X
(L)
ij ) + ρ2(X

(L)
ji ),

where ρ1, ρ2 are neural networks. We apply ρ1 to node pairs where node i is at the first position and
ρ2 to node pairs where node i is at the second. We found that making such a distinction has positive
impacts on empirical performance. Then, for graph-level predictions, we first compute node-level
readout as above and then use common graph-level pooling functions such as sum and mean [50] or
set2seq [47] on the resulting node representations.

E Experimental results

Here, we investigate how well the ET performs on various graph-learning tasks. We include tasks on
graph-, node-, and edge-level. Specifically, we answer the following questions.

Q1 How does the ET fare against other theoretically aligned architectures regarding predictive
performance?

Q2 How does the ET compare to state-of-the-art models?
Q3 How effectively can the ET benefit from additional positional/structural encodings?

The source code for our experiments is available at https://github.com/luis-mueller/
towards-principled-gts. To foster research in principled graph transformers such as the ET, we
provide accessible implementations of ET, both in PyTorch and Jax.

Datasets We evaluate the ET on graph-, node-, and edge-level tasks from various domains to
demonstrate its versatility.

On the graph level, we evaluate the ET on the molecular datasets ZINC (12K), ZINC-FULL [14],
ALCHEMY (12K), and PCQM4MV2 [20]. Here, nodes represent atoms and edges bonds between
atoms, and the task is always to predict one or more molecular properties of a given molecule. Due
to their relatively small graphs, the above datasets are ideal for evaluating higher-order and other
resource-hungry models.

On the node and edge level, we evaluate the ET on the CLRS benchmark for neural algorithmic
reasoning [46]. Here, the input, output, and intermediate steps of 30 classical algorithms are translated
into graph data, where nodes represent the algorithm input and edges are used to encode a partial
ordering of the input. The algorithms of CLRS are typically grouped into eight algorithm classes:
Sorting, Searching, Divide and Conquer, Greedy, Dynamic Programming, Graphs, Strings, and
Geometry. The task is then to predict the output of an algorithm given its input. This prediction is
made based on an encoder-processor-decoder framework introduced by Velickovic et al. [46], which is
recursively applied to execute the algorithmic steps iteratively. We will use the ET as the processor in
this framework, receiving as input the current algorithmic state in the form of node and edge features
and outputting the updated node and edge features, according to the latest version of CLRS, available
at https://github.com/google-deepmind/clrs. As such, the CLRS requires the ET to make
both node- and edge-level predictions.

Finally, we conduct empirical expressivity tests on the BREC benchmark [48]. BREC contains
400 pairs of non-isomorphic graphs with up to 198 nodes, ranging from basic, 1-WL distinguishable
graphs to graphs even indistinguishable by 4-WL. In addition, BREC comes with its own training
and evaluation pipeline. Let f : G → Rd be the model whose expressivity we want to test, where f
maps from a set of graphs G to Rd for some d > 0. Let (G,H) be a pair of non-isomorphic graphs.
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Table 4: Average test results and standard deviation for the molecular regression datasets. ALCHEMY
(12K) and ZINC-FULL over 5 random seeds, ZINC (12K) over 10 random seeds.

Model ZINC (12K) ALCHEMY (12K) ZINC-FULL

MAE ↓ MAE ↓ MAE ↓
GIN(E) [50, 40] 0.163 ±0.03 0.180 ±0.006 0.180 ±0.006

CIN [8] 0.079 ±0.006 – 0.022 ±0.002

Graphormer-GD [53] 0.081 ±0.009 – 0.025 ±0.004

SignNet [29] 0.084 ±0.006 0.113 ±0.002 0.024 ±0.003

BasisNet [21] 0.155 ±0.007 0.110 ±0.001 –
PPGN++ [40] 0.071 ±0.001 0.109 ±0.001 0.020 ±0.001

SPE [21] 0.069 ±0.004 0.108 ±0.001 –

ET 0.062 ±0.004 0.099 ± 0.001 0.026 ±0.003

ET+RRWP 0.059 ±0.004 0.098 ± 0.001 0.024 ±0.003

During training, f is trained to maximize the cosine distance between graph embeddings f(G) and
f(H). During the evaluation, BREC decides whether f can distinguish G and H by conducting a
Hotelling’s T-square test with the null hypothesis that f cannot distinguish G and H .

Baselines On the molecular regression datasets, we compare the ET to an 1-WL expressive GNN
baseline such as GIN(E) [51].

On ZINC (12K), ZINC-FULL and ALCHEMY, we compare the ET to other theoretically-aligned
models, most notably higher-order GNNs [8, 36, 38], Graphormer-GD, with strictly less expressive
power than the 3-WL [53], and PPGN++, with strictly more expressive power than the 3-WL [40]
to study Q1. On PCQM4MV2, we compare the ET to state-of-the-art graph transformers to study
Q2. To study the impact of positional/structural encodings in Q3, we evaluate the ET both with and
without relative random walk probabilities (RRWP) positional encodings, recently proposed in Ma
et al. [31]. RRWP encodings only apply to models with explicit representations over node pairs and
are well-suited for the ET.

On the CLRS benchmark, we mostly compare to the Relational Transformer (RT) [12] as a strong
graph transformer baseline. Comparing the ET to the RT allows us to study Q2 in a different domain
than molecular regression and on node- and edge-level tasks. Further, since the RT is similarly
motivated as the ET in learning explicit representations of relations, we can study the potential benefits
of the ET provable expressive power on the CLRS tasks. In addition, we compare the ET to DeepSet
and GNN baselines in Diao and Loynd [12] and the single-task Triplet-GMPNN in Ibarz et al. [23].

On the BREC benchmark, we study questions Q1 and Q2 by comparing the ET to selected models
presented in Wang and Zhang [48]. First, we compare to the δ-2-LGNN [36], a higher-order GNN
with strictly more expressive power than the 1-WL. Second, we compare to Graphormer [52], an
empirically strong graph transformer. Third, we compare to PPGN [32] with the same expressive
power as the ET. We additionally include the 3-WL results on the graphs in BREC to investigate how
many 3-WL distinguishable graphs the ET can distinguish in BREC.

Experimental setup See Table 7 for an overview of the used hyperparameters.

For ZINC (12K), ZINC-FULL, and PCQM4MV2, we follow the hyperparameters in Ma et al. [31].
For ALCHEMY, we follow standard protocol and split the data according to Morris et al. [38]. Here,
we simply adopt the hyper-parameters of ZINC (12K) from Ma et al. [31] but set the batch size to 64.

We choose the same hyper-parameters as the RT for the CLRS benchmark. Also, following the RT,
we train for 10K steps and report results over 20 random seeds. To stay as close as possible to the
experimental setup of our baselines, we integrate our Jax implementation of the ET as a processor
into the latest version of the CLRS code base. In addition, we explore the OOD validation technique
presented in Jung and Ahn [24], where we use larger graphs for the validation set to encourage size
generalization. This technique can be used within the CLRS code base through the experiment
parameters.

Finally, for BREC, we keep the default hyper-parameters and follow closely the setup used by Wang
and Zhang [48] for PPGN. We found learning on BREC to be quite sensitive to architectural choices,
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possibly due to the small dataset sizes. As a result, we use a linear layer for the FFN and additionally
apply layer normalization onto XilW

Q, XljW
K in Equation (2) and Vilj in Equation (3).

For ZINC (12K), ZINC-FULL, PCQM4MV2, CLRS, and BREC, we follow the standard
train/validation/test splits. For ALCHEMY, we split the data according to the splits in Morris et al.
[38], the same as our baselines.

All experiments were performed on a mix of A10, L40, and A100 NVIDIA GPUs. For each run, we
used at most 8 CPU cores and 64 GB of RAM, with the exception of PCQM4MV2 and ZINC-FULL,
which were trained on 4 L40 GPUs with 16 CPU cores and 256 GB RAM.

Table 5: Number of distinguished pairs of non-isomorphic graphs on the BREC benchmark over 10
random seeds with standard deviation. Baseline results (over 1 random seed) are taken from Wang
and Zhang [48]. For reference, we also report the number of graphs distinguishable by 3-WL.

Model Basic Regular Extension CFI All

δ-2-LGNN 60 50 100 6 216
PPGN 60 50 100 23 233
Graphormer 16 12 41 10 79

ET 60 ± 0.0 50 ±0.0 100 ±0.0 48.1 ±1.9 258.1 ±1.9

3-WL 60 50 100 60 270

Results and discussion In the following, we answer questions Q1 to Q3. We highlight first ,
second, and third best results in each table.

We compare results on the molecular regression datasets in Table 4. On ZINC (12K) and ALCHEMY, the
ET outperforms all baselines, even without using positional/structural encodings, positively answering
Q1. Interestingly, on ZINC-FULL, the ET, while still among the best models, does not show superior
performance. Further, the RRWP encodings we employ on the graph-level datasets improve the
performance of the ET on all three datasets, positively answering Q3. Moreover, in Table 2, we
compare the ET with a variety of graph learning models on ZINC (12K), demonstrating that the ET
is highly competitive with state-of-the-art models. We observe similarly positive results in Table 6
where the ET outperforms strong graph transformer baselines such as GRIT [31], GraphGPS [41] and
Graphormer [52] on PCQM4MV2. As a result, we can positively answer Q2.

In Table 3, we compare results on CLRS where the ET performs best when averaging all tasks or
when averaging all algorithm classes, improving over RT and Triplet-GMPNN. Additionally, the ET
performs best on 4 algorithm classes and is among the top 3 in 7/8 algorithm classes. Interestingly,
only some models are best on a majority of algorithm classes. These results indicate a benefit of
the ETs’ expressive power on this benchmark, adding to the answer of Q2. Further, see Table 8 in
Appendix E.3 for additional results using the OOD validation technique.

Finally, on the BREC benchmark, we observe that the ET cannot distinguish all graphs distinguishable
by 3-WL. At the same time, the ET distinguishes more graphs than PPGN, the other 3-WL expressive
model, providing an additional positive answer to Q1; see Table 5. Moreover, the ET distinguishes

Table 6: Average validation MAE on the PCQM4MV2 benchmark over a single random seed.
Model Val. MAE (↓) # Params

EGT [22] 0.0869 89.3M
GraphGPSSmall [41] 0.0938 6.2M
GraphGPSMedium [41] 0.0858 19.4M
TokenGTORF [27] 0.0962 48.6M
TokenGTLap [27] 0.0910 48.5M
Graphormer [52] 0.0864 48.3M
GRIT [31] 0.0859 16.6M
GPTrans-L 0.0809 86.0M

ET 0.0840 16.8M
ET+RRWP 0.0832 16.8M
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Table 7: Hyperparameters of the Edge Transformer across all datasets.

Hyperparameter ZINC(12K) ALCHEMY ZINC-FULL CLRS BREC PCQM4MV2

Learning rate 0.001 0.001 0.001 0.00025 0.0001 0.0002
Grad. clip norm 1.0 1.0 1.0 1.0 – 5.0
Batch size 32 64 256 4 16 256
Optimizer AdamW Adam AdamW Adam Adam AdamW

Num. layers 10 10 10 3 5 10
Hidden dim. 64 64 64 192 32 384
Num. heads 8 8 8 12 4 16
Activation GELU GELU GELU RELU – GELU
Pooling SUM SUM SUM – – SUM
RRWP dim. 32 32 32 – – 128

Weight decay 1e-5 1e-5 1e-5 – 0.0001 0.1
Dropout 0.0 0.0 0.0 0.0 0.0 0.1
Attention dropout 0.2 0.2 0.2 0.0 0.0 0.1

# Steps – – – 10K – 2M
# Warm-up steps – – – 0 – 60K
# Epochs 2K 2K 1K – 20 –
# Warm-up epochs 50 50 50 – 0 –
# RRWP steps 21 21 21 – – 22

more graphs than δ-2-LGNN and outperforms Graphormer by a large margin, again positively answer-
ing Q2. Overall, the positive results of the ET on BREC indicate that the ET is well able to leverage
its expressive power empirically.

E.1 Additional experimental details

Here, we give additional experimental details and results; see Table 7 for an overview of the selected
hyper-parameters for all experiments.

See Appendix E.3 and Appendix E.4 for detailed results on the CLRS benchmark. Note that in the case
of CLRS we evaluate in the single-task setting where we train a new set of parameters for each concrete
algorithm, initially proposed in CLRS, to be able to fairly compare against graph transformers. We
leave the multi-task learning proposed in Ibarz et al. [23] for future work.

E.2 Data source and license

ZINC (12K), ALCHEMY (12K) and ZINC-FULL are available at https://pyg.org under an
MIT license. PCQM4MV2 is available at https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
under a CC BY 4.0 license. The CLRS benchmark is available at https://github.com/
google-deepmind/clrs under an Apache 2.0 license. The BREC benchmark is available at
https://github.com/GraphPKU/BREC under an MIT license.

E.3 Experimental results OOD validation in CLRS

In Table 8, following [24], we present additional experimental results on CLRS when using graphs of
size 32 in the validation set. We compare to both the Triplet-GMPNN [23], as well as the TEAM [24]
baselines. In addition, in Figure 3 we present a comparison on the improvements resulting from the
OOD validation technique, comparing Triplet-GMPNN and the ET. Finally, in Table 9, we compare
different modifications to the CLRS training setup that are agnostic to the choice of processor.

E.4 CLRS test scores

Here, we present detailed results for the algorithms in CLRS; see Table 12 for divide and conquer
algorithms, Table 13 for dynamic programming algorithms, Table 14 for geometry algorithms, Table 16
for greedy algorithms, Table 11 for search algorithms, Table 10 for sorting algorithms, Table 17 for
string algorithms.
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Table 8: Average test scores for the different algorithm classes and average test scores of all algorithms
in CLRS with the OOD validation technique over 10 seeds; see Appendix E.4 for test scores per
algorithm and Appendix E.5 for details on the standard deviation. Baseline results for Triplet-GMPNN
and TEAM are taken from Jung and Ahn [24]. Results in %.

Algorithm Triplet-GMPNN TEAM ET (ours)

Sorting 72.08 68.75 88.35
Searching 61.89 63.00 80.00
DC 65.70 69.79 74.70
Greedy 91.21 91.80 88.29
DP 90.08 83.61 84.69
Graphs 77.89 81.86 89.89
Strings 75.33 81.25 51.22
Geometry 88.02 94.03 89.68

Avg. algorithm class 77.48 79.23 80.91
All algorithms 78.00 79.82 85.01
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Figure 3: Difference in micro F1 with and without the OOD validation technique in Jung and Ahn
[24], for Triplet-GMPNN [23] and ET, respectively.

Table 9: CLRS-30 Processor-agnostic modifications
Processor Markov [9] OOD Validation [24] Avg. algorithm class All algorithms

Triplet-GMPNN ✓ ✗ 79.75 82.89
Triplet-GMPNN ✗ ✓ 77.65 78.00
TEAM ✗ ✓ 79.23 79.82
ET ✗ ✓ 80.91 85.02
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Table 10: Detailed test scores for the ET on sorting algorithms.

Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Bubble Sort 93.60 3.87 87.44 13.48
Heapsort 64.36 22.41 80.96 12.97
Insertion Sort 85.71 20.68 91.74 6.83
Quicksort 85.37 8.70 93.25 9.10

Average 82.26 13.92 88.35 10.58

Table 11: Detailed test scores for the ET on search algorithms.

Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Binary Search 79.96 11.66 90.84 2.71
Minimum 96.88 1.74 97.94 0.87
Quickselect 12.43 11.72 52.64 22.04

Average 63.00 8.00 80.00 8.54

Table 12: Detailed test scores for the ET on divide and conquer algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Find Max. Subarray Kadande 64.44 2.24 74.70 2.59

Average 64.44 2.24 74.70 2.59

Table 13: Detailed test scores for the ET on dynamic programming algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

LCS Length 88.67 2.05 88.97 2.06
Matrix Chain Order 90.11 3.28 90.84 2.94
Optimal BST 71.70 5.46 74.26 10.84

Average 83.49 3.60 84.68 5.28

Table 14: Detailed test scores for the ET on geometry algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Graham Scan 92.23 2.26 96.09 0.96
Jarvis March 89.09 8.92 95.18 1.46
Segments Intersect 83.35 7.01 77.78 1.16

Average 88.22 6.09 89.68 1.19
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Table 15: Detailed test scores for the ET on graph algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Articulation Points 93.06 0.62 95.47 2.35
Bellman-Ford 89.96 3.77 95.55 1.65
BFS 99.77 0.30 99.95 0.08
Bridges 91.95 10.00 98.28 2.64
DAG Shortest Paths 97.63 0.85 98,43 0.65
DFS 65.60 17.98 57.76 14.54
Dijkstra 91.90 2.99 97.32 7.32
Floyd-Warshall 61.53 5.34 83.57 1.79
MST-Kruskal 84.06 2.14 87.21 1.45
MST-Prim 93.02 2.41 93.00 1.61
SCC 65.80 8.13 74.58 5.31
Topological Sort 98.74 2.24 97.53 2.31

Average 86.08 4.73 89.92 3.02

Table 16: Detailed test scores for the ET on greedy algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Activity Selector 80.12 12.34 91.72 2.35
Task Scheduling 83.21 0.30 84.85 2.83

Average 81.67 6.34 88.28 2.59

E.5 CLRS test standard deviation

Here, we compare the standard deviation of Deep Sets, GAT, MPNN, PGN, RT, and ET following
the comparison in Diao and Loynd [12]; see Table 18. We observe that the ET has the lowest overall
standard deviation. Note that we omit Triplet-GMPNN [23] since we do not have access to the test
results for each algorithm on each seed that are necessary to compute the overall standard deviation.
Instead, we compare the standard deviation per algorithm class between Triplet-GMPNN and the ET
in Table 19. We observe that Triplet-GMPNN and the ET have comparable standard deviations except
for search and string algorithms, where Triplet-GMPNN has a much higher standard deviation than
the ET.

F Runtime and memory

Here, we provide additional information on the runtime and memory requirements of the ET in practice.
Specifically, in Figure 4, we provide runtime scaling of the ET with and without low-level GPU
optimizations in PyTorch on an A100 GPU with bfloat16 precision. We measure the time for the
forward pass of a single layer of the ET on a single graph (batch size of 1) with n ∈ {100, 200, ..., 700}
nodes and average the runtime over 100 repeats. We sample random Erdős-Renyi graphs with edge
probability 0.05. We use an embedding dimension of 64 and two attention heads. We find that the
automatic compilation into Triton [44], performed by automatically by torch.compile, improves the
runtime and memory scaling. Specifically, with torch.compile enabled, the ET layer can process
graphs with up to 700 nodes and shows much more efficient runtime scaling with the number of nodes.

Table 17: Detailed test scores for the ET on string algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

KMP Matcher 10.47 10.28 8.67 8.14
Naive String Match 99.21 1.10 93.76 6.28

Average 54.84 5.69 51.21 7.21
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Table 18: Standard deviation of Deep Sets, GAT, MPNN, PGN, RT and ET (over all algorithms and
all seeds).

Model Std. Dev. (%)

Deep Sets 29.3
GAT 32.3
MPNN 34.6
PGN 33.1
RT 29.6

ET 26.6

Table 19: Standard deviation per algorithm class of Triplet-GMPNN (over 10 random seeds) as
reported in Ibarz et al. [23] and ET (over 10 random seeds). Results in %.

Algorithm class Triplet-GMPNN ET

Sorting 12.16 15.57
Searching 24.34 3.51
Divide and Conquer 1.34 2.46
Greedy 2.95 6.54
Dynamic Programming 4.98 3.60
Graphs 6.21 6.79
Strings 23.49 8.60
Geometry 2.30 3.77

Average 9.72 6.35
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Figure 4: Runtime of the forward pass of a single ET layer in PyTorch in seconds for graphs with up
to 700 nodes. We compare the runtime with and without torch.compile (automatic compilation
into Triton [44]) enabled. Without compilation, the ET goes out of memory after 600 nodes.
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Table 20: Runtime of a single run of the ET in CLRS on a single A100 GPU.
Algorithm Time in hh:mm:ss

Activity Selector 00:09:38
Articulation Points 01:19:39
Bellman Ford 00:07:55
BFS 00:07:03
Binary Search 00:05:53
Bridges 01:20:44
Bubble Sort 01:05:34
DAG Shortest Paths 00:29:15
DFS 00:27:47
Dijkstra 00:09:37
Find Maximum Subarray Kadane 00:15:25
Floyd Warshall 00:12:56
Graham Scan 00:15:55
Heapsort 00:57:14
Insertion Sort 00:10:39
Jarvis March 01:34:40
Kmp Matcher 00:57:56
LCS Length 00:08:12
Matrix Chain Order 00:15:31
Minimum 00:21:25
MST Kruskal 01:15:54
MST Prim 00:09:34
Naive String Matcher 00:51:05
Optimal BST 00:12:57
Quickselect 02:25:03
Quicksort 00:59:24
Segments Intersect 00:03:38
Strongly Connected Components 00:56:58
Task Scheduling 00:08:50
Topological Sort 00:27:40

Table 21: Runtime of a single run on the molecular regression datasets, as well as BREC, on L40
GPUs in days:hours:minutes:seconds.

ZINC (12K) ALCHEMY (12K) ZINC-FULL PCQM4MV2 BREC
ET 00:06:04:52 00:02:47:51 00:23:11:05 03:10:35:11 00:00:08:37
ET+RRWP 00:06:19:52 00:02:51:23 01:01:10:55 03:10:22:06 -

Num. GPUs 1 1 4 4 1
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Hardware optimizations Efficient compilation of neural networks is already available via compilers
such as Triton [44]. In addition, we want to highlight FlashAttention [11] available for the standard
transformer as an example of architecture-specific hardware optimizations that can reduce runtime
and memory requirements.

Runtime per dataset/benchmark Here, we present additional runtime results for all of our datasets.
We present the runtime of a single run on a single L40 GPU of ZINC (12K), ALCHEMY (12K), and
BREC. For ZINC-FULL and PCQM4MV2, we present the runtime of a single run on 4 L40 GPUs;
see Table 21.

On CLRS, the experiments in our work are run on a mix of A10 and A100 GPUs. To enable a fair
comparison, we rerun each algorithm in CLRS in a single run on a single A100 GPU and report the
corresponding runtime in Table 20. Finally, we note that these numbers only reflect the time to run the
final experiments and significantly more time was used for preliminary experiments over the course of
the research project.

G Limitations

While proving to be a strong and versatile graph model, the ET has an asymptotic runtime and
memory complexity of O(n3) which is more expensive than most state-of-the-art models with linear
or quadratic runtime and memory complexity. We emphasize that due to the runtime and memory
complexity of the k-WL, a trade-off between expressivity and efficiency is likely unavoidable. At
the same time, the ET is highly parallelizable and runs efficiently on modern GPUs. We hope that
innovations for parallelizable neural networks can compensate for the asymptotic runtime and memory
complexity of the ET. In Figure 4 in the appendix, we find that we can use low-level GPU optimizations,
available for parallelizable neural networks out-of-the-box, to dampen the cubic runtime and memory
scaling of the ET; see Appendix F for runtime and memory experiments and an extended discussion.

H Extended preliminaries

Here, we define our notation. Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use
{{. . . }} to denote multisets, i.e., the generalization of sets allowing for multiple instances for each of
its elements.

Graphs A (node-)labeled graph G is a triple (V (G), E(G), ℓ) with finite sets of vertices or nodes
V (G), edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v} and a (node-)label function ℓ : V (G)→ N. Then
ℓ(v) is a label of v, for v in V (G). If not otherwise stated, we set n := |V (G)|, and the graph is of
order n. We also call the graph G an n-order graph. For ease of notation, we denote the edge {u, v}
in E(G) by (u, v) or (v, u). We define an n-order attributed graph as a pair G = (G,F ), where
G = (V (G), E(G)) and F in Rn×p for p > 0 is a node feature matrix. Here, we identify V (G)
with [n], then F (v) in R1×p is the feature or attribute of the node v ∈ V (G). Given a labeled graph
(V (G), E(G), ℓ), a node feature matrix F is consistent with ℓ if ℓ(v) = ℓ(w) for v, w ∈ V (G) if,
and only, if F (v) = F (w).

Neighborhood and Isomorphism The neighborhood of a vertex v in V (G) is denoted by N(v) :=
{u ∈ V (G) | (v, u) ∈ E(G)} and the degree of a vertex v is |N(v)|. Two graphs G and H
are isomorphic and we write G ≃ H if there exists a bijection φ : V (G) → V (H) preserving
the adjacency relation, i.e., (u, v) is in E(G) if, and only, if (φ(u), φ(v)) is in E(H). Then φ
is an isomorphism between G and H . In the case of labeled graphs, we additionally require that
l(v) = l(φ(v)) for v in V (G), and similarly for attributed graphs. Moreover, we call the equivalence
classes induced by ≃ isomorphism types and denote the isomorphism type of G by τG. We further
define the atomic type atp : V (G)k → N, for k > 0, such that atp(v) = atp(w) for v and w in V (G)k

if, and only, if the mapping φ : V (G)k → V (G)k where vi 7→ wi induces a partial isomorphism, i.e.,
we have vi = vj ⇐⇒ wi = wj and (vi, vj) ∈ E(G) ⇐⇒ (φ(vi), φ(vj)) ∈ E(G).

Matrices Let M ∈ Rn×p and N ∈ Rn×q be two matrices then [M N ] ∈ Rn×p+q denotes
column-wise matrix concatenation. We also write Rd for R1×d. Further, let M ∈ Rp×n and
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N ∈ Rq×n be two matrices then [
M
N

]
∈ Rp+q×n

denotes row-wise matrix concatenation.

For a matrix X ∈ Rn×d, we denote with Xi the ith row vector. In the case where the rows of X
correspond to nodes in a graph G, we use Xv to denote the row vector corresponding to the node
v ∈ V (G).

The Weisfeiler–Leman algorithm We describe the Weisfeiler–Leman algorithm, starting with the
1-WL. The 1-WL or color refinement is a well-studied heuristic for the graph isomorphism problem,
originally proposed by Weisfeiler and Leman [49].1 Intuitively, the algorithm determines if two
graphs are non-isomorphic by iteratively coloring or labeling vertices. Formally, let G = (V,E, ℓ)
be a labeled graph, in each iteration, t > 0, the 1-WL computes a vertex coloring C1

t : V (G) → N,
depending on the coloring of the neighbors. That is, in iteration t > 0, we set

C1
t (v) := recolor

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v in V (G), where recolor injectively maps the above pair to a unique natural number,
which has not been used in previous iterations. In iteration 0, the coloring C1

0 := ℓ. To test if two
graphs G and H are non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the
two graphs have a different number of vertices colored c in N at some iteration, the 1-WL distinguishes
the graphs as non-isomorphic. It is easy to see that the algorithm cannot distinguish all non-isomorphic
graphs [10]. Several researchers, e.g., Babai [3], Cai et al. [10], devised a more powerful generalization
of the former, today known as the k-dimensional Weisfeiler–Leman algorithm (k-WL), operating on
k-tuples of vertices rather than single vertices.

The k-dimensional Weisfeiler–Leman algorithm Due to the shortcomings of the 1-WL or color
refinement in distinguishing non-isomorphic graphs, several researchers, e.g., Babai [3], Cai et al. [10],
devised a more powerful generalization of the former, today known as the k-dimensional Weisfeiler-
Leman algorithm (k-WL), operating on k-tuples of nodes rather than single nodes.

Intuitively, to surpass the limitations of the 1-WL, the k-WL colors node-ordered k-tuples instead of
a single node. More precisely, given a graph G, the k-WL colors the tuples from V (G)k for k ≥ 2
instead of the nodes. By defining a neighborhood between these tuples, we can define a coloring
similar to the 1-WL. Formally, let G be a graph, and let k ≥ 2. In each iteration, t ≥ 0, the algorithm,
similarly to the 1-WL, computes a coloring Ck

t : V (G)k → N. In the first iteration, t = 0, the tuples
v and w in V (G)k get the same color if they have the same atomic type, i.e., Ck

0 (v) := atp(v). Then,
for each iteration, t > 0, Ck

t is defined by

Ck
t (v) := recolor

(
Ck

t−1(v),Mt(v)
)
, (5)

with Mt(v) the multiset

Mt(v) :=
(
{{Ck

t−1(ϕ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck
t−1(ϕk(v, w)) | w ∈ V (G)}}

)
, (6)

and where
ϕj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple v with the node w. Hence, two tuples are
adjacent or j-neighbors if they are different in the jth component (or equal, in the case of self-loops).
Hence, two tuples v and w with the same color in iteration (t− 1) get different colors in iteration t if
there exists a j in [k] such that the number of j-neighbors of v and w, respectively, colored with a
certain color is different.

We run the k-WL algorithm until convergence, i.e., until for t in N

Ck
t (v) = Ck

t (w) ⇐⇒ Ck
t+1(v) = Ck

t+1(w),

1Strictly speaking, the 1-WL and color refinement are two different algorithms. The 1-WL considers neighbors
and non-neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing
vertices in a given graph; see [18] for details. For brevity, we consider both algorithms to be equivalent.
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for all v and w in V (G)k holds.

Similarly to the 1-WL, to test whether two graphs G and H are non-isomorphic, we run the k-WL in
“parallel” on both graphs. Then, if the two graphs have a different number of nodes colored c, for c in
N, the k-WL distinguishes the graphs as non-isomorphic. By increasing k, the algorithm gets more
powerful in distinguishing non-isomorphic graphs, i.e., for each k ≥ 2, there are non-isomorphic
graphs distinguished by (k + 1)-WL but not by k-WL [10]. We now also define the folklore k-WL
hierarchy.

The folklore k-dimensional Weisfeiler–Leman algorithm A common and well-studied variant
of the k-WL is the k-FWL, which differs from the k-WL only in the aggregation function. Instead
of Equation (6), the “folklore” version of the k-WL updates k-tuples according to

MF
t (v) := {{(C

k,F
t−1(ϕ1(v, w)), ..., C

k,F
t−1(ϕk(v, w))) | w ∈ V (G)}},

resulting in the coloring Ck,F
t : V (G)k → N, and is strictly more powerful than the k-WL. Specifically,

for k ≥ 2, the k-WL is exactly as powerful as the (k − 1)-FWL [18].

Computing k-WL’s initial colors Let G = (V (G), E(G)) be a graph, k ≥ 2, and u ∈ V (G)k be a
k-tuple. Then we can present the atomic type atp(v) by a k × k matrix K over {1, 2, 3}. That is, the
entry Kij is 1 if (vi, vj) ∈ E(G), 2 if vi = vj , and 3 otherwise.

H.1 Relationship between first-order logic and Weisfeiler–Leman

We begin with a short review of Cai et al. [10]. We consider our usual node-labeled graph
G = (V (G), E(G), ℓ) with n nodes. However, we replace ℓ with a countable set of color rela-
tions C1, . . . , Cn, where for a node v ∈ V (G),

Ci(v)⇐⇒ ℓ(v) = i.

Note that Cai et al. [10] consider the more general case where nodes can be assigned to multiple colors
simultaneously. However, for our work, we assume that a node is assigned to precisely one color, and
hence, the set of color relations is at most of size n. We can construct first-order logic statements
about G. For example, the following sentence describes a graph with a triangle formed by two nodes
with color 1:

∃x1∃x2∃x3

(
E(x1, x2) ∧ E(x1, x3) ∧ E(x2, x3) ∧ C1(x1) ∧ C1(x2)

)
.

Here, x1, x2, and x3 are variables which can be repeated and re-quantified at will. Statements made
about G and a subset of nodes in V (G) are of particular importance to us. To this end, we define a
k-configuration, a partial function f : {x1, . . . , xk} → V (G) that assigns a node in V (G) to one of k
variables. Let φ be a first-order sentence with free variables x1, . . . , xl, where l ≤ k. Then, we write

G, f |= φ

if φ is true for nodes f(x1), . . . , f(xl). Cai et al. [10] now define the language Ck of all first-order
sentences with at most k variables and counting quantifiers. For example, the following sentence in
Ck lets us describe a graph with exactly 3 triangles where one node has color 3:

∃!3x1∃x2∃x3

(
E(x1, x2) ∧ E(x1, x3) ∧ E(x2, x3) ∧ C3(x1)

)
.

Given two graphs G and H and respective k-configurations f and g with the same domain, we can
now define an equivalence class ≡Ck

and say that G, f and H, g are Ck equivalent, denoted
G, f ≡Ck

H, g

if and only if for all φ ∈ Ck with at most k free variables,
G, f |= φ⇐⇒ H, g |= φ.

It is important to note that configurations are used to define a concept beyond the scope of a concrete
graph. Instead, a concept can be applied to a graph G by defining a configuration, i.e., a mapping
between concrete nodes in G to abstract logical variables.

Now, Cai et al. [10] prove that, given two graphs G and H and respective k-configurations f and g,
we have that u := (f(x1), . . . , f(xk)) ∈ V (G)k and v := (g(x1), . . . , g(xk)) ∈ V (G)k are k-tuples
and

Ck,F
t (u) = Ck,F

t (v)⇐⇒ G, f ≡Ck+1
H, g,

for some t ≥ 0. Using Theorem 1, we can then also say that there exists a parameterization of the ET
such that

X(t)(u) = X(t)(v)⇐⇒ G, f ≡C3
H, g.
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I Intuition on our results

In the following, we provide some intuition of how the ET can simulate the 2-FWL. Given a tuple
(i, j) ∈ V (G)2, we encode its color at iteration t with X

(t)
ij . Further, to represent the multiset

{{(C2,F
t−1(i, l), C

2,F
t−1(l, j)) | l ∈ V (G)}},

we show that it is possible to encode the pair of colors

(C2,F
t−1(i, l), C

2,F
t−1(l, j)) via X

(t−1)
il W V1 ⊙X

(t−1)
lj W V2 ,

for node l ∈ V (G). Finally, triangular attention in Equation (1), performs weighted sum aggregation
over the 2-tuple of colors (C2,F

t−1(i, l), C
2,F
t−1(l, j)) for each l, which we show is sufficient to represent

the multiset; see Appendix J. For the other direction, namely that the ET has at most 3-WL expressive
power, we simply show that the recolor function can simulate the value fusion in Equation (3), as well
as the triangular attention in Equation (1).

J Proofs

Here, we first generalize the GNN from Grohe [18] to the 2-FWL. Higher-order GNNs with the same
expressivity have been proposed in prior works by Azizian and Lelarge [1]. However, our GNNs have
a special form that can be computed by the Edge Transformer.

Formally, let S ⊆ N be a finite subset. First, we show that multisets over S can be injectively mapped
to a value in the closed interval (0, 1), a variant of Lemma VIII.5 in Grohe [18]. Here, we outline a
streamlined version of its proof, highlighting the key intuition behind representing multisets as m-ary
numbers. Let M ⊆ S be a multiset with multiplicities a1, . . . , ak and distinct k values. We define
the order of the multiset as

∑k
i=1 ai. We can write such a multiset as a sequence x(1), . . . , x(l) where

l is the order of the multiset. Note that the order of the sequence is arbitrary and that for i ̸= j it is
possible to have x(i) = x(j). We call such a sequence an M -sequence of length l. We now prove a
slight variation of a result of Grohe [18].
Lemma 4. For a finite m ∈ N, let M ⊆ S be a multiset of order m− 1 and let xi ∈ S denote the ith
number in a fixed but arbitrary ordering of S. Given a mapping g : S → (0, 1) where

g(xi) := m−i,

and an M -sequence of length l given by x(1), . . . , x(l) with positions i(1), . . . , i(l) in S, the sum
∑

j∈[l]

g(x(j)) =
∑

j∈[l]

m−i(j)

is unique for every unique M .

Proof. By assumption, let M ⊆ S denote a multiset of order m− 1. Further, let x(1), . . . , x(l) ∈M
be an M -sequence with i(1), . . . , i(l) in S. Given our fixed ordering of the numbers in S we can
equivalently write M = ((a1, x1), . . . , (an, xn)), where ai denotes the multiplicity of ith number in
M with position i from our ordering over S. Note that for a number m−i there exists a corresponding
m-ary number written as

0.0 . . . 1︸︷︷︸
i

. . .

Then the sum,
∑

j∈[l]

g(x(j)) =
∑

j∈[l]

m−i(j)

=
∑

i∈S

aim
−i ∈ (0, 1)

and in m-ary representation

0.a1 . . . an.
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Note that ai = 0 if and only if there exists no j such that i(j) = i. Since the order of M is m − 1,
it holds that ai < m. Hence, it follows that the above sum is unique for each unique multiset M ,
implying the result.

Recall that S ⊆ N and that we fixed an arbitrary ordering over S. Intuitively, we use the finiteness
of S to map each number therein to a fixed digit of the numbers in (0, 1). The finite m ensures that
at each digit, we have sufficient “bandwidth” to encode each ai. Now that we have seen how to
encode multisets over S as numbers in (0, 1), we review some fundamental operations about the m-ary
numbers defined above. We will refer to decimal numbers m−i as corresponding to an m-ary number

0.0 . . . 1︸︷︷︸
i

. . . ,

where the ith digit after the decimal point is 1 and all other digits are 0, and vice versa.

To begin with, addition between decimal numbers implements counting in m-ary notation, i.e.,

m−i +m−j corresponds to 0.0 . . . 1︸︷︷︸
i

. . . 1︸︷︷︸
j

. . . ,

for digit positions i ̸= j and

m−i +m−j corresponds to 0.0 . . . 2︸︷︷︸
i=j

. . . ,

otherwise. We used counting in the previous result’s proof to represent a multiset’s multiplicities.
Next, multiplication between decimal numbers implements shifting in m-ary notation, i.e.,

m−i ·m−j corresponds to 0.0 . . . 1︸︷︷︸
i+j

. . . .

Shifting further applies to general decimal numbers in (0, 1). Let x ∈ (0, 1) correspond to an m-ary
number with l digits,

0.a1 . . . al.

Then,
m−i · x corresponds to 0.0 . . . 0 a1 . . . al︸ ︷︷ ︸

i+1,...,i+l

.

Before we continue, we show a small lemma stating that two non-overlapping sets of m-ary numbers
preserve their uniqueness under addition.
Lemma 5. Let A and B be two sets of m-ary numbers for some m > 1. If

min
x∈A

x > max
y∈B

y,

then for any x1, x2 ∈ A, y1, y2 ∈ B,

x1 + y1 = x2 + y2 ⇐⇒ x1 = x2 and y1 = y2.

Proof. The statement follows from the fact that if

min
x∈A

x > max
y∈B

y,

then numbers in A and numbers in B do not overlap in terms of their digit range. Specifically, there
exists some l > 0 such that we can write

x := 0.x1 . . . xl

y := 0. 0 . . . 0︸ ︷︷ ︸
l

y1 . . . yk,

for some k > l and all x ∈ A, y ∈ B. As a result,

x+ y = 0.x1 . . . xly1 . . . yk.

Hence, x+ y is unique for every unique pair (x, y). This completes the proof.
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We begin by showing the following proposition, showing that the tokenization in Equation (4) is
sufficient to encode the initial node colors under 2-FWL.
Proposition 6. Let G = (V (G), E(G), ℓ) be a node-labeled graph with n nodes. Then, there exists a
parameterization of Equation (4) with d = 1 such that for each 2-tuples u,v ∈ V (G)2,

C2,F
0 (u) = C2,F

0 (v)⇐⇒X(u) = X(v).

Proof. The statement directly follows from the fact that the initial color of a tuple u := (i, j) depends
on the atomic type and the node labeling. In Equation (4), we encode the atomic type with Eij and
the node labels with

[Eij Fi Fj ]

The concatenation of both node labels and atomic type is clearly injective. Finally, since there are at
most n2 distinct initial colors of the 2-FWL, said colors can be well represented within R, hence there
exists an injective ϕ in Equation (4) with d = 1. This completes the proof.

We now show Theorem 1. Specifically, we show the following two propositions from which Theorem 1
follows.
Proposition 7. Let G = (V (G), E(G), ℓ) be a node-labeled graph with n nodes and F ∈ Rn×p be
a node feature matrix consistent with ℓ. Then for all t ≥ 0, there exists a parametrization of the ET
such that

C2,F
t (v) = C2,F

t (w)⇐= X(t)(v) = X(t)(w),

for all pairs of 2-tuples v and w ∈ V (G)2.

Proof. We begin by stating that our domain is compact since the ET merely operates on at most n
possible node features in F and binary edge features in E, and at each iteration there exist at most
n2 distinct 2-FWL colors. We prove our statement by induction over iteration t. For the base case,
we can simply invoke Proposition 6 since our input tokens are constructed according to Equation (4).
Nonetheless, we show a possible initialization of the tokenization that is consistent with Equation (4)
that we will use in the induction step.

From Proposition 6, we know that the color representation of a tuple can be represented in R. We
denote the color representation of a tuple u = (i, j) at iteration t as T (t)(u) and T

(t)
ij interchangeably.

We choose a ϕ in Equation (4) such that for each u = (i, j)

X
(0)
ij =

[
T

(0)
ij

(
T

(0)
ij

)n2
]
∈ R2,

where we store the tuple features, one with exponent 1 and once with exponent n2 and where T (0)
ij ∈ R

and
(
T

(0)
ij

)n2

∈ R. We choose color representations T (0)
ij as follows. First, we define an injective

function ft : V (G)2 → [n2] that maps each 2-tuple u to a number in [n2] unique for its 2-FWL color
C2,F

t (u) at iteration t. Note that ft can be injective because there can at most be [n2] unique numbers
under the 2-FWL. We will use ft to map each tuple color under the 2-FWL to a unique n-ary number.
We then choose ϕ in Equation (4) such that for each (i, j) ∈ V (G)2,

∣∣∣∣T (0)
ij − n−f0(i,j)

∣∣∣∣
F
< ϵ0,

for all ϵ0 > 0, by the universal function approximation theorem, which we can invoke since our

domain is compact. We will use
(
T

(0)
ij

)n2

in the induction step; see below.

For the induction, we assume that

C2,F
t−1(v) = C2,F

t−1(w)⇐= T (t−1)(v) = T (t−1)(w)

and that ∣∣∣∣T (t−1)
ij − n−ft−1(i,j)

∣∣∣∣
F
< ϵt−1,

for all ϵt−1 > 0 and (i, j) ∈ V (G)2. We then want to show that there exists a parameterization of the
t-th layer such that

C2,F
t (v) = C2,F

t (w)⇐= T (t)(v) = T (t)(w) (7)
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and that ∣∣∣∣T (t)
ij − n−ft(i,j)

∣∣∣∣
F
< ϵt,

for all ϵt > 0 and (i, j) ∈ V (G)2. Clearly, if this holds for all t, then the proof statement follows.
Thereto, we show that the ET updates the tuple representation of tuple (j,m) as

T
(t)
jm = FFN

(
T

(t−1)
jm +

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2)
, (8)

for an arbitrary but fixed β. We first show that then, Equation (7) holds. Afterwards we show that the
ET can indeed compute Equation (8). To show the former, note that for two 2-tuples (j, l) and (l,m),

n−n2

· n−ft−1(j,l) ·
(
n−ft−1(l,m)

)n2

= n−(n2+ft−1(j,l)+n2·ft−1(l,m)),

is unique for the pair of colors (
C2,F

t ((j, l)), C2,F
t ((l,m))

)

where n−n2

is a constant normalization term we will later introduce with β
n . Note further, that we

have
∣∣∣∣T (t−1)

jl ·
(
T

(t−1)
lm

)n2

− n−(n2+ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< δt−1,

for all δt−1 > 0. Further, n−(ft−1(j,l)+n2·ft−1(l,m)) is still an m-ary number with m = n. As a result,
we can set β = n−n2+1 and invoke Lemma 4 to obtain that

β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m)) =

n∑

l=1

n−(n2+ft−1(j,l)+n2·ft−1(l,m)),

is unique for the multiset of colors

{{(C2,F
t−1((l,m)), C2,F

t−1((j, l))) | l ∈ V (G)}},

and we have that

∣∣∣∣β
n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

−
n∑

l=1

n−(n2+ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< γt−1,

for all γt−1 > 0. Finally, we define

A :=
{
n−ft−1(j,m) | (j,m) ∈ V (G)2

}

B :=
{β
n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m)) | (j,m) ∈ V (G)2
}
.

Further, because we multiply with β
n , we have that

min
x∈A

x > max
y∈B

y

and as a result, by Lemma 5,

n−ft−1(j,m) +
β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m))

is unique for the pair
(
C2,F

t−1((j,m)), {{(C2,F
t−1((l,m)), C2,F

t−1((j, l))) | l ∈ V (G)}}
)

and consequently for color C2,F
t ((j,m)) at iteration t. Further, we have that

∣∣∣∣T (t−1)
jm +

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

−n−ft−1(j,m)+
β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< τt−1,
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for all τt−1 > 0. Finally, since our domain is compact, we can invoke universal function approximation
with FFN in Equation (8) to obtain

∣∣∣∣T (t)
jm − n−ft(j,m)

∣∣∣∣
F
< ϵt,

for all ϵt > 0. Further, because n−ft(j,m) is unique for each unique color C2,F
t ((j,m)), Equation (7)

follows.

It remains to show that the ET can indeed compute Equation (8). To this end, we will require a single
transformer head in each layer. Specifically, we want this head to compute

h1(X
(t−1))jm =

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

. (9)

Now, recall the definition of the Edge Transformer head at tuple (j,m) as

h1(X
(t−1))jm :=

n∑

l=1

αjlmV
(t−1)
jlm ,

where

αjlm := softmax
l∈[n]

( 1√
dk

X
(t−1)
jl WQ(X

(t−1)
lm WK)T

)

with

V
(t−1)
jlm := X

(t−1)
jl

[
W V1

1

W V1
2

]
⊙X

(t−1)
lm

[
W V2

1

W V2
2

]

and by the induction hypothesis above,

X
(t−1)
jl =

[
T

(t−1)
jl

(
T

(t−1)
jl

)n2
]

X
(t−1)
lm =

[
T

(t−1)
lm

(
T

(t−1)
lm

)n2
]
,

where we expanded sub-matrices. Specifically, W V1
1 ,W V2

1 ,W V1
2 ,W V2

2 ∈ R d
2×d. We then set

WQ = WK = 0

W V1
1 = [βI 0]

W V1
2 = [0 0]

W V2
1 = [0 I]

W V2
2 = [0 0].

Here, WQ and WK are set to zero to obtain uniform attention scores. Note that then for all j, l, k,
αjlm = 1

n , due to normalization over l, and we end up with Equation (9) as

h1(X
(t−1))jm =

1

n

n∑

l=1

V
(t−1)
jlm

where

V
(t−1)
jlm =

[
T

(t−1)
jl · βI +

(
T

(t−1)
jl

)n2

· 0 0

]
⊙
[
T

(t−1)
lm · 0+

(
T

(t−1)
lm

)n2

· I 0

]

= β ·
[
T

(t−1)
jl ·

(
T

(t−1)
lm

)n2

0

]
.
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We now conclude our proof as follows. Recall that the Edge Transformer layer computes the final
representation X(t) as

X
(t)
jm = FFN

(
X

(t−1)
jm + h1(X

(t−1))jmWO

)

= FFN

([
T

(t−1)
jm

(
T

(t−1)
jm

)n2
]
+

β

n

n∑

l=1

[
T

(t−1)
jl · T (t−1)

lm 0
]
WO

)

=
WO:=I

FFN

([
T

(t−1)
jm

(
T

(t−1)
jm

)n2
]
+
[
β
n

∑n
l=1 T

(t−1)
jl · T (t−1)

lm 0
])

= FFN

([
T

(t−1)
jm + β

n

∑n
l=1 T

(t−1)
jl · T (t−1)

lm

(
T

(t−1)
jm

)n2
])

=
Eq.8

FFN

([
T

(t)
jm

(
T

(t−1)
jm

)n2
])

for some FFN. Note that the above derivation only modifies the terms inside the parentheses and is
thus independent of the choice of FFN. We have thus shown that the ET can compute Equation (8).

To complete the induction, let f : R2 → R2 be such that

f

([
T

(t)
jm

(
T

(t−1)
jm

)n2
])

=

[
T

(t)
jm

(
T

(t)
jm

)n2
]
.

Since our domain is compact, f is continuous, and hence we can choose FFN to approximate f
arbitrarily close. This completes the proof.

Next, we show the other direction of Theorem 1.

Proposition 8. For all parametrizations of the ET, there exists a recolor function such that for all
n > 0 and all node-labeled graphs G = (V (G), E(G), ℓ) with n nodes and node feature matrix
F ∈ Rn×p consistent with ℓ and all t ≥ 0 such that

C2,F
t (v) = C2,F

t (w) =⇒X(t)(v) = X(t)(w),

for all pairs of 2-tuples v and w ∈ V (G)2.

Proof. We begin by stating that our domain is compact since the ET merely operates on at most n
possible node features in F and binary edge features in E and at each iteration t ≥ 0 there exist at
most n2 distinct embeddings X(t)(i, j), for all i, j ∈ V (G). Further, we recall iteration t > 0 of the
2-FWL as computing

C2,F
t (i, j) = recolor

((
C2,F

t−1(i, j), {{(C
2,F
t−1(i, l), C

2,F
t−1(l, j)) | l ∈ V (G)}}

))

for all pairs of nodes i, j ∈ V (G), where recolor is an invertible function mapping tuples of colors to
colors.

We prove the statement by induction over t. For t = 0, the function recolor just maps the initial
embedding X

(0)
ij to a color C2,F

0 (i, j) unique for each unique value of X(0)
ij . Since there at most n2

possible embeddings X(0)
ij , such a mapping always exists and is bijective. We denote this mapping τ0

and have that
τ0(X

(0)
ij ) = C2,F

0 (i, j)

for all pairs of nodes i, j ∈ V (G). We will use τ0 in the induction step. Clearly, we have that

C2,F
0 (v) = C2,F

0 (w) =⇒X(0)(v) = X(0)(w),

for all pairs of 2-tuples v and w ∈ V (G)2.
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For t > 0, we describe recolor step-by-step. By the induction hypothesis we have that

C2,F
t−1(v) = C2,F

t−1(w) =⇒X(t−1)(v) = X(t−1)(w),

for all pairs of 2-tuples v and w ∈ V (G)2. Further, we have an invertible mapping τt−1 such that

τt−1(X
(t−1)
ij ) = C2,F

t−1(i, j),

for all pairs of nodes i, j ∈ V (G). First, recolor decodes its input to obtain colors C2,F
t−1(i, j) and

multiset {{(C2,F
t−1(i, l), C

2,F
t−1(l, j)) | l ∈ V (G)}}, which is possible since recolor is invertible. We

define

X̂
(t−1)
ij := τ−1

t−1(C
2,F
t−1(i, j))

= X
(t−1)
ij

and

Ẑ
(t−1)
ij := {{(τ−1

t−1(C
2,F
t−1(i, l)), τ

−1
t−1(C

2,F
t−1(l, j))) | l ∈ V (G)}}

= {{(X(t−1)
il ,X

(t−1)
lj ) | l ∈ V (G)}},

where recolor uses the inverse of τ−1
t−1 to decode C2,F

t−1(i, j) into its corresponding ET embedding and
the multiset further into a multiset of ET embeddings at iteration t− 1. Now, recolor computes

X
(t)
ij = FFN

(
X

(t−1)
ij + TriAttention

(
X

(t−1)
ij

))
,

where the first summand in the FFN is obtained from X̂
(t−1)
ij and the second summand in the FFN is

obtained from Ẑ
(t−1)
ij since TriAttention(X

(t−1)
ij ) is a function of Ẑ(t−1).

To conclude the induction step, recolor maps X(t)
ij to a color C2,F

t (i, j) unique for each unique value

of X(t)
ij . Since there at most n2 possible embeddings X

(t)
ij , such a mapping always exists and is

bijective. We denote this mapping

τt(X
(t)
ij ) := C2,F

t (i, j).

This concludes the induction and hence, the proof.

Note that unlike the result in Proposition 7, the above result is uniform, in that the concrete choice
of recolor does not depend on the graph size n. Finally, Theorem 1 follows from Proposition 7 and
Proposition 8.
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