
Under review as a conference paper at ICLR 2024

LAYER-WISE PRE-WEIGHT DECAY

Anonymous authors
Paper under double-blind review

ABSTRACT

In deep learning, weight decay is a regularization mechanism been widely adopted
to improve the generalization performance. Previously, a common understanding
of the role of weight decay was that it contributes by pushing the model weights
to approach 0 at each time step. However, our findings challenge this notion and
argue the objective of weight decay is to make the weights approach the negative
value of the update term instead of 0, thereby indicating a delay defect in certain
steps that results in opposing penalties. In addition, we study the negative side
effect of weight decay, revealing it will damage the inter-layer connectivity of
the network while reducing weight magnitude. To address these issues, we first
propose real-time weight decay (RWD) to fix the delay defect by penalizing both
the weights and the gradients at each time step. Then, we advance the decay step
before the update function as pre-weight decay (PWD) to mitigate the performance
drop raised by the side effect. To further improve the general performance and
enhance model robustness towards the decay rate, we finally introduce a layer-wise
pre-weight decay to adjust the decay rate based on the layer index. Extensive
analytical and comparative experiments demonstrate that the proposed layer-wise
pre-weight decay (LPWD) (i) exhibits remarkable robustness to the decay rate, and
(ii) significantly improves the generalization performance across various conditions.

1 INTRODUCTION

Weight decay (WD) has gained growing popularity in recent years as an effective regularization
mechanism to improve the generalization performance of deep neural networks (Hanson & Pratt, 1988;
Ergen et al., 2023; Stock et al., 2019). Weight decay is also frequently referred to L2 regularization
since they are equivalent in the standard SGD optimizer (Loshchilov & Hutter, 2017).

Existing research endeavors have revealed the effect of weight decay (Loshchilov & Hutter, 2017;
2018; Alshammari et al., 2022; Neyshabur et al., 2014). Graves (2011) interpreted weight decay from
the Bayesian perspective, thinking weight decay restricts model capacity by indicating a Gaussian
prior over the model weights. Zhang et al. (2018) elucidated three different roles of weight decay.
Xie et al. (2020) proposed insights into weight decay from the perspective of learning dynamics. In
summary, there is a consensus that weight decay improves the generalization performance of a model
by encouraging the weights to approach zero at each time step (Krogh & Hertz, 1991). However, our
findings raise doubt about this interpretation and additionally reveal another flaw of traditional weight
decay.

WD has a delay defect. WD penalizes the weights calculated from previous step, introducing a
delay defect where WD actually pushes current weights to the negative value of the current
gradient instead of 0. The delay defect will lead larger weights after penalizing when the
four current factors (learning rate, gradient, weight decay rate and weights) meet certain
conditions. This situation opposes the intended target of weight decay and ultimately leads
to a deterioration in generalization performance.

WD potentially impairs performance. Wd reduces the output of each layer by scaling down
the weights of those layers. However, due to the prevalent usage of numerous non-linear
activation functions in deep neural networks, WD also potentially distorts the feature
distribution of hidden layers. In other words, weight decay weakens the interconnections
between network layers, ultimately resulting in a decline in performance.

1



Under review as a conference paper at ICLR 2024

Table 1: Classification results on both Cifar-10 and Cifar-100 datasets using
ConvNexttiny/SwinTransformertiny and Adam/SGDM. We compare LPWD with Baseline
(use neither), L2 (L2 regularization), and WD. The mean and standard deviation of the best 10 test
Top-1 accuracy during training are reported. The best settings of learning rate and weight decay rate
for each method are searched in Table 2.

Cifar-10 Cifar-100

ConvNexttiny SwinTransformertiny ConvNexttiny SwinTransformertiny

Method Adam SGDM Adam SGDM Adam SGDM Adam SGDM

Baseline 90.53±0.08 89.97±0.01 89.28±0.08 88.72±0.04 73.06±0.07 72.51±0.02 71.91±0.10 71.13±0.11
L2 89.85±0.12 90.06±0.04 88.84±0.10 88.56±0.16 72.74±0.36 72.46±0.17 71.61±0.08 71.26±0.16
WD 90.77±0.05 90.13±0.02 89.47±0.10 88.74±0.09 73.88±0.22 72.81±0.03 72.07±0.10 71.42±0.10
LPWD (ours) 91.03±0.11 90.28±0.05 89.73±0.10 88.98±0.08 74.48±0.04 73.38±0.08 72.70±0.09 71.95±0.10

0 20 40 60 80 100
Epoch

0.00

0.08

0.16

0.24

0.32

Lo
ss

ConvNexttiny

0 20 40 60 80 100
Epoch

50

55

60

65

70

To
p1

-A
cc

 (%
)

ConvNexttiny

0 20 40 60 80 100
Epoch

0.0
0.1
0.2
0.3
0.4
0.5

Lo
ss

SwinTransformertiny

0 20 40 60 80 100
Epoch

50

55

60

65

70

To
p1

-A
cc

 (%
)

SwinTransformertiny

WD LPWD

Figure 1: Training loss and test top1-accuracy comparison of LPWD and WD with strong penalty on
cifar-100. Experiments are based on ConvNexttiny/SwinTransformertiny and Adam is adopted. The
learning rate η and weight decay rate λ are set to 0.001 and 0.5 respectively.

In this paper, we propose a novel layer-wise pre-weight decay (LPWD) focusing on overcoming
the delay defect, mitigating the performance drop raised by conventional weight decay, and further
enhancing decay strategy through customizing decay strength for each layer. Specifically, to avoid
opposing penalty, we first present real-time weight decay (RWD), which penalizes both the weights
and the gradient. RWD promises that applying weight decay will always drive the weights smaller in
magnitude. Then, we propose to decay before the learning phase as pre-weight decay (PWD). After
the model is around converged, the learning phase will then help to mitigate the feature distortion
through strengthening the connectivity between layers, reducing the performance drop additionally.
For deep neural networks, high-level features possess fewer samples and more abstract semantic
information than low-level features, leading to a greater risk of overfitting. Therefore, we finally
introduce layer-wise pre-weight decay (LPWD) to customize the weight decay rate for each layer
based on their index, imposing a weaker penalty for shallow layers and a stronger penalty for deep
layers.

We conducted comprehensive analysis and experiments on various datasets (Cifar-10 and Cifar-
100 (Krizhevsky et al., 2009)), using different optimizers (SGD (Loshchilov & Hutter, 2017) with
momentum(SGDM) and Adam (Kingma & Ba, 2014)) and different the state of the art architectures
(ConvNext (Liu et al., 2022) and Swin Transformer (Liu et al., 2021)). Our proposed LPWD
consistently outperforms weight decay and other methods in all conditions, as listed in Table 1.
In particular, when using a large learning rate and weight decay rate, LPWD exhibits even more
significant improvements compared to tradition WD, as shown in Figure 1. This highlights the strong
robustness of LPWD to weight decay rates.

2 FINDINGS

2.1 DELAY DEFECT

Previously, weight decay was wildly interpreted as a strategy to constrain the complexity of the
model by encouraging the weights of the model to approach 0 gradually. However, our findings
have uncovered a different reality. Weight decay can sometimes impose incorrect penalties due to a
delay effect. For any given optimizer, the weight update function for weights θ at time step t can be

2



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20
R o

p
ConvNexttiny+Adam

0 20 40 60 80 100
Epoch

0.000

0.015

0.030

0.045

0.060

R o
p

ConvNexttiny+SGDM

0 20 40 60 80 100
Epoch

0.00

0.08

0.16

0.24

0.32

R o
p

SwinTransformertiny+Adam

0 20 40 60 80 100
Epoch

0.000

0.004

0.008

0.012

0.016

R o
p

SwinTransformertiny+SGDM

= base * 10
= base * 50

= base * 1
= base * 1

= base * 0.1
= base * 0.05

(a) The trend of Rop during training.

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

ConvNexttiny+Adam
(6.77e-04~1.53e-01)%

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

SwinTransformertiny+Adam
(7.11e-04~1.80e-01)%

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

ConvNexttiny+SGDM
(2.38e-04~4.53e-02)%

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

SwinTransformertiny+SGDM
(1.46e-04~1.19e-01)%

0.00 0.05 0.10 0.15 0.20

(b) Mean Rop across various η and λ.

Figure 2: Investigation of the opposing penalty rate Rop of WD. We conduct experiments on cfiar-100
using ConvNexttiny/SwinTransformertiny and Adam/SGDM. ηbase is set to 10−4 for Adam, 10−2

for SGDM, and λbase is set to 10−2 for both optimizers. The identification rule of opposing penalty
is illustrated in section 4.1 and the detailed searching ranges of η and λ are introduced in Table 2.
(The black circle denotes the maximum of Rop)

simplified as:
θt+1 = θt − ηtUg

t − λθt, (1)
where λ represents the weight decay rate, and Ug

t is the update term calculated from the gradient,
then multiplied by the learning rate ηt. In this case, weight decay performs the penalty based on
the weights obtained from the previous step. Surprisingly, when limλ→1 θt+1 = −ηtUg

t , which
contradicts initial expectations of the weight decay and may harm the generalization performance of
the network. Specifically, consider the following inequality:

(θt − ηtUg
t − λθt)2 > (θt − ηtUg

t )
2, (2)

which can be simplified as: {
ηtU

g
t < (1− λ

2 )θt, if θt < 0,

ηtU
g
t > (1− λ

2 )θt, if θt > 0.

When ηt, U
g
t , λ and θt satisfy the above conditions, WD will drive the current weights away from 0,

resulting large weights compare to not apply it and potentially increasing the risk of overfitting. This
is contrary to the initial exception of employing WD. We observed the mean rate of incorrect penalty
during training, as shown in Figure 2. While the incorrect penalty rate is generally low, considering
the large number of parameters in deep neural networks, this defect will impair generalization
performance seriously. Similarly, the delay defect also exist in other regularization methods such as
L2 regularization, L1 regularization, etc.

2.2 WEIGHT DECAY POTENTIALLY IMPAIRS PERFORMANCE

When incorporating weight decay with an optimizer, the update function at the time step t can be
separated into two independent sub-steps:

sub− step1 : θ̂t+1 = θt − ηtUg
t , (3)

sub− step2 : θt+1 = θ̂t+1 − λθt, (4)

3



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Step

0

15

30

45

60

75

To
p1

-A
cc

 (%
)

Weights: trained with baseline

Weights: All 0

ConvNexttiny

SwinTransformertiny

(a) Zero-shot weight decay using both
ConvNexttiny and SwinTransformertiny models
trained on Cifar-100 adopting Baseline method. We
decay model weights to 0 in 100 steps without extra
training.

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e 

To
p1

-A
cc

 (%
)

=1
=5
=10

(b) Relative improvements of PWD over RWD
(AccPWD-AccRWD) across vairous λ. Experi-
ments are based on ConvNexttiny and Adam with a
learning rate of 0.001. The mean of the best 10 test
Top-1 accuracy during training is reported.

Figure 3: Subfigure (a) and (b) report the the results of zero-shot weight decay and RWD vs. PWD
experiments respectively. (a) is related to Section 2.2 while (b) is related to Section 3.2.

where θ̂t+1 represents the estimated next weights. Sub-step 1 aims to encourage the model to learn
the current task, while Sub-step 2 is intended to scale down the weights in magnitude to limit the
model’s capacity and improve generalization. However, sub-step 2 has a side effect in that it can
potentially disrupt the distribution when employing non-linear activation functions. Specifically,
given a layer index i, the function of the ith layer to process the input Xi can be defined as:

X̂i+1 = ψ(W⊤
i Xi), (5)

where ψ(∗) denotes the activation function such as GELU (Hendrycks & Gimpel, 2016) and sigmoid
(Finney, 1947), and Wi indicates the matrix consisting of weights and biases. After applying weight
decay, this becomes:

Xi+1 = ψ((1− λ)W⊤
i Xi). (6)

The application of ψ(∗) leads that X̂i+1 and Xi+1 are not linearly related: X̂i+1 ̸= 1
1−λXi+1. This

not only reduces the weight scale but also alters the internal relationships within the distribution of the
input to the next layer. Since the cascading effects in deep neural networks, this change may further
significantly harm performance. To visualize the adverse effects of weight decay comprehensively, we
conduct zero-shot weight decay experiments. As shown in Figure 3a, accuracy consistently declines
as the weight decay rate increases.

3 METHODS

In this section, we illustrate the proposed layer-wise pre-weight decay (LPWD) exhaustively. Specif-
ically, we first design real-time weight decay (RWD) to fix the delay defect, then enhance it as
pre-weight decay (PWD) to mitigate the performance drop raised by the side effect. We additionally
propose to incorporate PWD with a layer-wise decay rate strategy (LPWD), which further boosts the
general performance and improve model robustness towards the weight decay rate significantly.

3.1 REAL-TIME WEIGHT DECAY (RWD)

The delay defect usually arises from the potential incompatibility between the current weights and
the forthcoming update term. To address this issue, we propose a RWD that simultaneously decays
both the current weights and the update term. This can be mathematically expressed as:

θt+1 = θt − ηtUg
t − λ(θt − ηtU

g
t ). (7)

This equation can also be regarded as the decay of θ̂t+1 (from Equation 3), where θt+1 = θ̂t+1−λθ̂t+1.
RWD ensures decay in real time, such that, limλ→1 θt = 0. Furthermore, it guarantees

(θt − ηtUg
t − λ(θt − ηtU

g
t ))

2 ≤ (θt − ηtUg
t )

2 (8)

4



Under review as a conference paper at ICLR 2024

always holds for λ ∈ (0, 1]. As a result, this straightforward approach promises to consistently drives
the weights to be smaller at every time step if θt − ηtUg

t ̸= 0, avoiding incorrect penalties during
training completely. Algorithm 1 illustrate RWD in detail.

Algorithm 1:
Real-time weight Decay
(RWD)

repeat
t← t+ 1

Update Function:
gt ← ∇ft(θt)
Ug
t ← gt

θ̂t+1 = θt − ηtUg
t

θt+1 = θ̂t+1 − λθt
until θt+1 converged
return θt+1

Algorithm 2:
Pre-weight Decay
(PWD)

repeat
t← t+ 1
θt = θt − λθt

Update Function:
gt ← ∇ft(θt)
Ug
t ← gt

θt+1 = θt − ηtUg
t

until θt+1 converged
return θt+1

Algorithm 3:
Layer-wise Pre-weight
Decay (LPWD)

Initial:
λi = λ i

n
repeat
t← t+ 1
θt = θt − λiθt

Update Function:
gt ← ∇ft(θt)
Ug
t ← gt

θt+1 = θt − ηtUg
t

until θt+1 converged
return θt+1

3.2 PRE-WEIGHT DECAY (PWD)

While RWD effectively overcomes the delay defect, it still suffer from the side effects discussed in
Section 2.2, especially when applying a large decay rate. To mitigate the performance drop associated
with weight decay, we propose a PWD. As the PWD algorithm 2 illustrates, weight decay is applied
before the update function. This means that after the model has converged, weight decay still affects
the connectivity between layers, but the learning function (Equation 3) subsequently helps counteract
this negative influence at each time step. However, experiments comparing RWD and PWD reveal
that PWD significantly contributes to performance improvement only in cases where a large decay
rate is utilized (as shown in Figure 3b).

3.3 LAYER-WISE PRE-WEIGHT DECAY (LPWD)

Given dataset D = {xs, ys}Ns=1, from the perspective of feature pyramid (Lin et al., 2017; Zhang
et al., 2020), it can be reformulated as D = {{ljs}

as
j=1, ys}Ns=1 or D = {{hks}

bs
k=1, ys}Ns=1, where ljs

and hks represent the j-th low-level feature and the k-th high-level feature of sample xs, respectively.
In the feature extraction pipeline, low-level features such as color, shape and texture tend to have
more samples than high-level features w.r.t semantic information such as a cat and a dog. This can be
expressed as as ≫ bs. . Therefore, shallow layers are less risky to overfit compared to deep layers.
To maximize the benefits of weight decay, we additionally propose to customize the weight decay
rate for each layer based on layer index i (i ∈ [1, n]). This process can be mathematically expressed
as:

λi = λ
i

n
, (9)

where n is the total number of layers of the model. In this case, the penalty becomes stronger as
i increases. Moreover, since shallow layers are less sensitive to the initial decay rate, LPWD also
shows strong robustness to the decay rate. As shown in Figure 1, LPWD demonstrates a much slighter
performance drop than WD while the weight decay rate increases.

4 EMPIRICAL VALIDATION

We theoretically introduced the findings and our proposed LPWD in previous sections. In this section,
we empirically demonstrate the findings and validate the advantages of LPWD over other methods
comprehensively. we explore delay defects under various conditions and present delay defects that
occur when using different models and optimizers in Section 4.1. Then we analyze the side effects of
WD in Section 4.2, demonstrating it will impair the performance seriously especially. In Section 4.3,
we compare LPWD with Baseline, L2 regularization, and WD on different datasets, and the proposed
method achieves remarkable improvements over other methods, and the gap is more noticeable

5



Under review as a conference paper at ICLR 2024

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

ConvNexttiny+Adam
(Best Top1-Acc: 73.88%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

SwinTransformertiny+Adam
(Best Top1-Acc: 72.07%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

ConvNexttiny+SGDM
(Best Top1-Acc: 72.79%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

SwinTransformertiny+SGDM
(Best Top1-Acc: 71.42%)

64 66 68 70 72

(a) WD on Cifar-100

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

ConvNexttiny+Adam
(Best Top1-Acc: 74.48%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-4
)

SwinTransformertiny+Adam
(Best Top1-Acc: 72.70%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

ConvNexttiny+SGDM
(Best Top1-Acc: 73.38%)

50 10 5 1 0.5 0.10.05
 (*0.01)

10
5
1

0.5
0.1

 (*
1e

-2
)

SwinTransformertiny+SGDM
(Best Top1-Acc: 71.95%)

64 66 68 70 72

(b) LPWD on Cifar-100

Figure 4: Detailed test results of LPWD and WD on Cifar-100 across various settings of learning rate
η and weight decay rate λ. ConvNexttiny/SwinTransformertiny and Adam/SGDM are adopted. The
mean of the best 10 test Top-1 accuracy during training is adopted. (The black circle denotes the best
results.)

especially when given a strong penalty. We additionally investigate LPWD at different model scales
in Section 4.5, where it enjoys a more significant boost compared to WD as the model scale increases.
Ultimately, we conduct ablation experiments in Section 4.6 presenting the contributions of each
sub-method of LPWD in detail.
Datasets and Augmentations. All experiments are based on two popular datasets: Cifar-10 and
Cifar-100 (Krizhevsky et al., 2009). For augmentations, HorizontalFlip with a probability of 0.5 from
albumentations (Buslaev et al., 2020) is employed.
Models and Optimizers. We conduct experiments using the state-of-the-art models: ConvNext
(CNN) (Liu et al., 2022) and SwinTransformer (Transformer) (Liu et al., 2021), both are load from
timm library (Wightman, 2019) with ImageNet-21k (Russakovsky et al., 2015) pretrained weights.
ConNext-tiny and Swintransformer-tiny are employed if there are no specific instructions. We chose
SGD with momentum (SGDM) (Polyak, 1964) and Adam as the base optimizer, where the momentum
factor of SGDM is set to 0.9 and Adam with (β1 = 0.9, β2 = 0.999, ϵ = 10−8) are adopted for all
experiments.
Implementation Details. Images are normalized using ImageNet (Deng et al., 2009) default means
and standard deviations. Image size and batch size are set to 32 × 32 and 512 respectively. We set
a base learning rate ηbase of 10−2 for SGDM and 10−4 for Adam, and the base weight decay rate
λbase is set to 10−2 for both optimizers. All ηbase and λbase are grid searched over ranges listed in
Table 2. For all experiments, models are trained for 100 epochs with a constant η. The maximum of
λi for LPWD is set to 2λ to ensure 1

n

∑n
i=1 λi = λ. To mitigate randomness, the mean of the best 10

Top-1 accuracy on the test set during training is adopted.

4.1 OPPOSING PENALTIES RAISED BY DELAY DEFECT

We first study the opposing penalty rate Rop of WD been theoretically analyzed in Section 2.1. For
weight θjt at time step t, if

(θjt − ηtU
j
t − P j)2 > (θjt − ηtU

j
t )

2, (10)

6



Under review as a conference paper at ICLR 2024

Table 2: Settings of learning rate η and weight decay rate λ for Adam and SGDM in most experiments.
Various optimizers prefer different η.

Hyper-parameters Adam SGDM

ηbase 0.0001 0.01
λbase 0.01 0.01
η {0.001, 0.0005, 0.0001, 0.00005, 0.00001} {0.1, 0.05, 0.01, 0.005, 0.001}
λ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005} {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}

Table 3: Ablation studies on Cifar-100 using ConvNexttiny and Adam. We ablate each method with
the corresponding optimal settings searched over Table 2. The mean and standard deviation of the
best 10 test Top-1 accuracy during training are reported.

Method WD RWD PWD LPWD Top-1 Acc (%)

Baseline ✓ 73.88±0.22
Baseline ✓ 74.19±0.08
Baseline ✓ 74.29±0.11
Baseline ✓ 74.48±0.04

the penalty term P j applied to θjt will be marked as opposing penalty P j
o , Rop is defined as:

Rop =

∑
P j
o∑

P j +
∑
P j
o

. (11)

As shown in Figure 2b, the delay defect exists in different types of models and optimizers, and the
mean Rop for each combination of model and optimizer constantly increases as η and λ growing,
but it’s low overall during training. However, according to the cascading effect, it may still matter
significantly in deep neural networks. Figure 2a shows the changes of Rop during training using
various η and λ, where Rop doesn’t present a definite changing rule during training.

4.2 ZERO-SHOT WEIGHT DECAY

We investigate the impact of the side effect mentioned in Section 2.2 by applying penalties of varying
intensity. When a large learning rate η or decay rate λ is given, the loss will lead to None. To avoid
such a dilemma, We propose to only conduct decay steps to study the relationship between the side
effect and the weight decay rate λs comprehensively, where s indicates step index. Specifically, the
weights θs of the model are scheduled to decay to 0 in 100 steps,

θs = θ0 −
λs
100

θ0. (12)

As shown in Figure 3a, for both ConvNext and SwinTransformer models, the accuracy constantly
decreases as λs grows, presenting the side effects that exist in different types of models and will
seriously impair the general performance especially when giving a large λs.

4.3 COMPARISON OF LPWD WITH OTHER METHODS

In this section, we empirically evaluate the performance of our method across various conditions. We
compare LPWD with baseline, L2 regularization, and WD using different networks and optimizers.
As listed in Table 1, LPWD achieves state-of-the-art generalization performances with a significant
improvement compared to other methods. Figure 4 presents the detailed test results of LPWD and
WD, where the proposed method outperforms WD in many cases, demonstrating a more robust
hyper-parameter space.

4.4 EXAMINING LPWD UNDER STRONG PENALTY

In practical applications, η and λ are often not set to be optimal (hyper-parameter exporting can be
extremely computationally expensive), indicating a robust regularization mechanism is crucial. In
addition, we examine the sensitivity of LPWD towards the weight decay rate. We directly turn to a
large penalty since a small one doesn’t reflect noticeable differences. Given large η and λ (weight

7



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Epoch

70

71

72

73

74

75

To
p1

-A
cc

 (%
)

ConvNexttiny 0.60

0 20 40 60 80 100
Epoch

72

73

74

75

76

77

To
p1

-A
cc

 (%
)

ConvNextsmall 0.63

0 20 40 60 80 100
Epoch

74

75

76

77

78

79

To
p1

-A
cc

 (%
)

ConvNextbase 0.71

0 20 40 60 80 100
Epoch

76

77

78

79

80

81

To
p1

-A
cc

 (%
)

ConvNextlarge 0.73

WD LPWD

Figure 5: comparison of WD vs. LPWD at different model scales using ConvNext series models and
Adam optimizer. The curve denotes the mean of the best 10 test Top-1 accuracy during training and
the shadow indicates the related standard deviation.

decay term is multiply by η and λ), as shown in Figure 1, the loss of LPWD constantly lower than
WD while the test top1-accuracy of LPWD constantly higher than WD, both with significant gap,
demonstrating LPWD exhibits stronger robustness towards weight decay rate than WD through
different conditions.

4.5 EXPLORING LPWD AT DIFFERENT MODEL SCALES

Recently, large models have gained growing popularity. Since previous experiments were based on
tiny models with less computation, we experimented with LPWD on larger models. We compare
LPWD with WD at different model scales to explore the influence in detail. As shown in Figure 5,
LPWD demonstrates more significant improvements compared to WD as the model scale increases.
It can be attributed to the cascading effect inherent in deep neural networks, where the negative
consequences of delay defects and side effects tend to amplify as the depth of the network increases.

4.6 ABLATION STUDY

In Section 3, we propose and analyze the advantages of the RWD, PWD, and LPWD. To verify the
importance of the proposed method, this section shows detailed comparison and ablation studies. As
listed in Table 3, RWD contributes most significantly, a Top-1 accuracy improvement of around 0.31%,
while PWD helps minimally (the η and λ are small), and LPWD generally boosts the performance
further. However, the contribution of PWD can be exceptionally impressive when large η and λ are
given, as shown in Figure 3b, the mean of the best test Top-1 accuracy of larger λ is significantly
higher than smaller λ.

5 CONCLUSION

Our theoretical analysis reveals that traditional weight decay (i) holds a delay defect, which leads to
opposing penalties in certain steps, and (ii) distorts the distribution of features where the related layer
cooperates with a non-linear activation function.
To avoid delay defects, we suggest RWD that decays both the weights and the gradients at each time
step. Then, we introduce a PWD based on RWD to mitigate the feature distortion by advancing the
decay step ahead of the update function. Finally, we propose LPWD to combine layer-wise weight

8



Under review as a conference paper at ICLR 2024

decay rate strategy to customize decay rate based on layer index from the perspective of feature
pyramid.
Extensive experiments on various datasets using different models and optimizers demonstrate that
LPWD (i) shows strong robustness towards decay rate, (ii) significantly improves the generalization
performance compared to other methods across various conditions.

REFERENCES

Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong. Long-tailed recognition via
weight balancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6897–6907, 2022.

Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin,
and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmentations. Information, 11
(2), 2020. ISSN 2078-2489. doi: 10.3390/info11020125. URL https://www.mdpi.com/
2078-2489/11/2/125.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. Ieee, 2009.

Tolga Ergen, Halil Ibrahim Gulluk, Jonathan Lacotte, and Mert Pilanci. Globally optimal training of
neural networks with threshold activation functions. ArXiv Preprint ArXiv:2303.03382, 2023.

David John Finney. Probit analysis; a statistical treatment of the sigmoid response curve. 1947.

Alex Graves. Practical variational inference for neural networks. Advances in Neural Information
Processing Systems, 24, 2011.

Stephen Hanson and Lorien Pratt. Comparing biases for minimal network construction with back-
propagation. Advances in Neural Information Processing Systems, 1, 1988.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). ArXiv Preprint
ArXiv:1606.08415, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ArXiv Preprint
ArXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
Neural Information Processing Systems, 4, 1991.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ArXiv Preprint
ArXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. ArXiv Preprint ArXiv:1412.6614, 2014.

9

https://www.mdpi.com/2078-2489/11/2/125
https://www.mdpi.com/2078-2489/11/2/125


Under review as a conference paper at ICLR 2024

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Computa-
tional Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115:211–252, 2015.

Pierre Stock, Benjamin Graham, Rémi Gribonval, and Hervé Jégou. Equi-normalization of neural
networks. ArXiv Preprint ArXiv:1902.10416, 2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Zeke Xie, Issei Sato, and Masashi Sugiyama. Understanding and scheduling weight decay. ArXiv
Preprint ArXiv:2011.11152, 2020.

Dong Zhang, Hanwang Zhang, Jinhui Tang, Meng Wang, Xiansheng Hua, and Qianru Sun. Feature
pyramid transformer. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXVIII 16, pp. 323–339. Springer, 2020.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. ArXiv Preprint ArXiv:1810.12281, 2018.

10

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Findings
	Delay Defect
	Weight Decay Potentially Impairs Performance

	Methods
	Real-time Weight Decay (RWD)
	Pre-weight Decay (PWD)
	Layer-wise Pre-weight Decay (LPWD)

	Empirical Validation
	opposing penalties raised by Delay Defect
	Zero-shot weight decay
	Comparison of LPWD with other methods
	Examining LPWD under strong penalty
	Exploring LPWD at different model scales
	Ablation study

	Conclusion

