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Abstract

The way how recurrently connected networks of spiking neurons in the brain acquire pow-
erful information processing capabilities through learning has remained a mystery. This lack
of understanding is linked to a lack of learning algorithms for recurrent networks of spiking
neurons (RSNNs) that are both functionally powerful and can be implemented by known bi-
ological mechanisms. Since RSNNs are simultaneously a primary target for implementations
of brain-inspired circuits in neuromorphic hardware, this lack of algorithmic insight also hin-
ders technological progress in that area. The gold standard for learning in recurrent neural
networks in machine learning is back-propagation through time (BPTT), which implements
stochastic gradient descent with regard to a given loss function. But BPTT is unrealistic
from a biological perspective, since it requires a transmission of error signals backwards in
time and in space, i.e., from post- to presynaptic neurons. We show that an online merging of
locally available information during a computation with suitable top-down learning signals in
real-time provides highly capable approximations to BPTT. For tasks where information on
errors arises only late during a network computation, we enrich locally available information
through feedforward eligibility traces of synapses that can easily be computed in an online
manner. The resulting new generation of learning algorithms for recurrent neural networks
provides a new understanding of network learning in the brain that can be tested experimen-
tally. In addition, these algorithms provide efficient methods for on-chip training of RSNNs
in neuromorphic hardware.

We changed in this version 2 of the paper the name of the new learning algorithms to
e-prop, corrected minor errors, added details – especially for resulting new rules for synaptic
plasticity, edited the notation, and included new results for TIMIT.

Introduction

A characteristic property of networks of neurons in the brain is that they are recurrently
connected:

”
the brain is essentially a multitude of superimposed and ever-growing loops

between the input from the environment and the brain’s outputs“ (Buzsaki, 2006). In fact,
already (Lorente de Nó, 1938) had proposed that synaptic loops were the basic circuits of the
central nervous system, and a large body of experimental work supports this view (Kandel
et al., 2000). Recurrent loops of synaptic connections occur both locally within a lamina of a
cortical microcircuit, between their laminae, between patches of neural tissue within the same
brain area, and between different brain areas. Hence the architecture of neural networks in
the brain is fundamentally different from that of feedforward deep neural network models that
have gained high attention because of their astounding capability in machine learning (LeCun
et al., 2015).
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Recurrently connected neural networks tend to provide functionally superior neural net-
work architectures for tasks that involve a temporal dimension, such as video prediction,
gesture recognition, speech recognition, or motor control. Since the brain has to solve similar
tasks, and even transforms image recognition into a temporal task via eye-movements, there
is a clear functional reason why the brain employs recurrently connected neural networks. In
addition, recurrent networks enable the brain to engage memory on several temporal scales,
and to represent and continuously update internal states as well as goals. Furthermore the
brain is a powerful prediction machine that learns through self-supervised learning to predict
the consequences of its actions and of external events. In fact, predictions provide the brain
with a powerful strategy for compensating the relative slowness of its sensory feedback.

The computational function of recurrently connected neural networks in the brain arises
from a combination of nature and nurture that has remained opaque. In particular, it has
remained a mystery how recurrent networks of spiking neurons (RSNNs) can learn. Recurrent
networks of artificial neurons are commonly trained in machine learning through BPTT.
BPTT can not only be used to implement supervised learning, but – with a suitably defined
loss function E – self-supervised, unsupervised and reward based learning. Unfortunately
BPTT requires a physically unrealistic propagation of error signals backwards in time. This
feature also thwarts an efficient implementation in neuromorphic hardware. It even hinders an
efficient implementation of BP or BPTT on GPUs and other standard computing hardware:

”
backpropagation results in locking – the weights of a network module can only be updated

after a full forward propagation of data, followed by loss evaluation, and then finally after
waiting for the backpropagation of error gradients“ (Czarnecki et al., 2017). Locking is an
issue of particular relevance for applications of BPTT to recurrent neural networks, since this
amounts to applications of backpropagation to the unrolled recurrent network, which easily
becomes several thousands of layers deep.

We show that BPTT can be represented by a sum of products based on a new factorization
or errors gradients with regards to the synaptic weights θji. The error gradient is represented
here as a sum over t of an eligibility trace etji until time t - which is independent from error
signals - and a learning signal Ltj that reaches this synapse at time t, see equation (1). This
can be interpreted as on online merging for every time step t of eligibility traces and learning
signals. Because of the prominent role which forward propagation of eligibility traces play in
the resulting approximations to BPTT we refer to these new algorithms as e-prop.

The key problem for achieving good learning results with eligibility traces is the online
production of suitable learning signals that gate the update of the synaptic weight at time t.
In order to achieve the full learning power of BPTT, this learning signal would still have to
be complex and questionable from a biological perspective. But several biologically plausible
approximations of such online learning signals turn out to work surprisingly well, especially
for tasks that recurrent networks of neurons in the brain need to solve.

There exists an abundance of experimental data on learning- or error signals in the brain.
A rich literature documents the error-related negativity (ERN) that is recorded by EEG-
electrodes from the human brain. The ERN has the form of a sharp negative-going deflection
that accompanies behavioral errors, for example in motor control. Remarkable is that the
ERN appears very fast, even before direct evidence of a behavioral error becomes accessible
through sensory feedback (see e.g. Fig. 4 in (MacLean et al., 2015)), suggesting that it employs
an internal error prediction network. Furthermore the amplitude of the ERN correlates with
improved performance on subsequent trials ((Gehring et al., 1993), see also the review in
(Buzzell et al., 2017)). These results suggest that the ERN is in fact a signal that gates
learning. The data of (Buzzell et al., 2017) also shows that the ERN is generated by a
distributed system of brain areas, in which posterior cingulate cortex, dorsal anterior cingulate,
and parietal cortex assume dominant roles from early stages of development on. Furthermore,
error-related activity from additional brain areas – insula, orbitofrontal cortex, and inferior
frontal gyrus – increases with age. These experimental data suggest that error signals in the
human brain are partially innate, but are complemented and refined during development.

The precise way how these error signals gate synaptic plasticity in the brain is unknown.
One conjectured mechanism involves top-down disinhibition of dendrites and neurons, e.g. by
activating VIP-interneurons in layer 1, which inhibit somatostatin-positive (SOM+) inhibitory
neurons. Hence the activation of VIP neurons temporarily removes the inhibitory lock which
SOM+ neurons hold on activity and plasticity in distal dendrites of pyramidal cells (Pi et al.,
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2013). Another pathway for top-down regulation of synaptic plasticity involves cholinergic
activation of astrocytes (Sugihara et al., 2016). Furthermore the cerebellum is known to
play a prominent role in the processing of error signals and gating plasticity (D’Angelo et al.,
2016) Most importantly, the neuromodulator dopamine plays an essential role in the control of
learning, in particular also for learning of motor skills (Hosp et al., 2011). Experimental data
verify that neuromodulators interact with local eligibility traces in gating synaptic plasticity,
see (Gerstner et al., 2018) for a review. Of interest for the context of this paper is also the
recent discovery that dopaminergic neurons in the mid-brain do not emit a uniform global
signal, but rather a multitude of spatially organized signals for different populations of neurons
(Engelhard et al., 2018). This distributed architecture of the error-monitoring system in the
brain is consistent with the assumption that local populations of neurons receive different
learning signals that have been shaped during evolution and development.

Error signals in the brain are from the functional perspective reminiscent of error signals
that have turned out to alleviate the need for backprogation of error signals in feedforward
neural networks. A particularly interesting version of such signals is called broadcast align-
ment (BA) in (Samadi et al., 2017) and direct feedback alignment in (Nøkland, 2016). These
error signals are sent directly from the output stage of the network to each layer of the feed-
forward network. If one applies this broadcast alignment idea to the unrolled feedforward
version of a recurrent network, one still runs into the problem that an error broadcast to an
earlier time-slice or layer would have to go backwards in time. We present a simple method
where this can be avoided, which we call e-prop 1.

Besides BA we explore in this paper two other methods for generating learning signals
that provide – in combination with eligibility traces – powerful alternatives to BPTT. In e-
prop 2 we apply the Learning-to-Learn (L2L) framework to train separate neural networks
– called error modules – to produce suitable learning signals for large families of learning
tasks. But in contrast to the L2L approach of (Wang et al., 2016) and (Duan et al., 2016)
we allow the recurrent neural network to modify its synaptic weights for learning a particular
task. Only the synaptic weights within the error module are determined on the larger time
scale of the outer loop of L2L (see the scheme in Figure 3). We show that this approach
opens new doors for learning in recurrent networks of spiking neurons, enabling for example
one-shot learning of pattern generation. Our third method, e-prop 3, employs the synthetic
gradient approach of (Jaderberg et al., 2016) and (Czarnecki et al., 2017). We show that
eligibility traces substantially enhance the power of synthetic gradients, surpassing in some
cases even the performance of full BPTT for artificial neural networks. Altogether the e-prop
approach suggests that a rich reservoir of algorithmic improvements of network learning waits
to be discovered, where one employs dedicated modules and processes for generating learning
signals that enable learning without backpropagated error signals. In addition this research
is likely to throw light on the functional role of the complex distributed architecture of brain
areas that are involved in the generation of learning signals in the brain.

These e-prop algorithms have an attractive feature from the theoretical perspective: They
can be viewed – and analyzed – as approximations to a theoretically ideal: stochastic gradient
descent, or BPTT. E-prop algorithms are also of particular interest from the perspective
of understanding learning in RSNNs of the brain. They tend to provide better learning
performance for RSNNs than previously known methods. In addition, in contrast to most of
the previously used methods, they do not require biologically unrealistic ingredients. In fact,
it turns out that network learning with e-prop provides a novel understanding of refined STDP
rules (Clopath et al., 2010) from a network learning perspective, that had been proposed in
order to fit detailed experimental data on local synaptic plasticity mechanisms (Ngezahayo
et al., 2000; Sjöström et al., 2001; Nevian and Sakmann, 2006).

In addition, e-prop provides a promising new approach for implementing on-chip learning
in RSNNs that are implemented in neuromorphic hardware, such as Brainscales (Schemmel
et al., 2010), SpiNNaker (Furber et al., 2014) and Loihi (Davies et al., 2018). Backprop-
agation of error signals in time as well as locking are formidable obstacles for an efficient
implementation of BPTT on a neuromorphic chip. These obstacles are alleviated by the
e-prop method.

Synaptic plasticity algorithms involving eligibility traces and gating factors have been
reviewed for reinforcement learning in (Frémaux and Gerstner, 2016), see (Gerstner et al.,
2018) for their relationships to data. We re-define eligibility traces for the different context
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of gradient descent learning. Eligibility traces are used in classical reinforcement learning
theory (Sutton and Barto, 1998) to relate the (recent) history of network activity to later
rewards. This reinforcement learning theory inspired our approach on a conceptual level, but
the details of the mathematical analysis become quite different, since we address a different
problem: how to approximate error gradients in recurrent neural networks.

We will derive in the first section of Results the basic factorization equation (1) that
underlies our e-prop approach. We then discuss applications of e-prop 1 to RSNNs with a
simple BA-like learning signal. In the subsequent section we will show how an application
of L2L in e-prop 2 can improve the learning capability of RSNNs. Finally, we show in the
last subsection on e-prop 3 that adding eligibility traces to the synthetic gradient approach
of (Jaderberg et al., 2016) and (Czarnecki et al., 2017) improves learning also for recurrent
networks of artificial neurons.

Results

Network models The learning rules that we describe can be applied to a variety of re-
current neural network models: Standard RSNNs consisting of leaky integrate-and-fire (LIF)
neurons, LSNNs (Long short term memory Spiking Neural Networks) that also contain adap-
tive spiking neurons (Bellec et al., 2018b), and networks of LSTM (long short-term memory)
units (Hochreiter and Schmidhuber, 1997). LSNN were introduced to capture parts of the
function of LSTM network in biologically motivated neural network models. In order to elu-
cidate the link to biology, we focus in the first two variants of e-prop on the LIF neuron
model (see Figures 1, 2 and 3). The LIF model is a simplified model of biological neurons:
each neuron integrates incoming currents into its membrane potential, and as soon as the
membrane potential crosses a threshold from below, the neuron “spikes” and a current is sent
to subsequent neurons. Mathematically, the membrane potential is a leaky integrator of a
weighted sum of the input currents, and the spike is a binary variable that becomes non-zero
when a spike occurs (see equation (20) and (21) in Methods). To enrich the temporal pro-
cessing capability of the network (see Figure 2), a portion of the neurons in an LSNN have
adaptive firing thresholds. The dynamics of the adaptive thresholds is defined in equation
(26) in Methods. We also applied a third variant of e-prop 3 to LSTM networks to show that
e-prop algorithms can be competitive on machine learning benchmarks (see Figure 4).

To describe the common core of these e-prop algorithms, all network models are subsumed
under a general formalism. We assume that each neuron j is at time t in an internal state
stj ∈ Rd and emits an observable state ztj . We also assume that stj depends on the other neurons
only through the vector zt−1 of observable states of all neurons in the network. Then, the
network dynamics takes for some functions M and f the form: stj = M(st−1

j , zt−1,xt,θ)

and ztj = f(stj), where θ is the vector of model parameters (in the models considered here,
synaptic weights). For instance for LIF neurons with adaptive thresholds, the internal state
stj of neuron j is a vector of size d = 2 formed by the membrane voltage and the adaptive
firing threshold, and the observable state ztj ∈ {0, 1} indicates whether the neuron spikes at
time t. The definition of the functions M and f defining the neuron dynamics for this model
are given by equations (20),(21) and (26) in Methods and illustrated in Figure 5.

Mathematical framework for e-prop algorithms The fundamental mathematical
law that enables the e-prop approach is that the gradients of BPTT can be factorized as a
sum of products between learning signals Ltj and eligibility traces etji. We subsume here under
the term eligibility trace that information which is locally available at a synapse and does
not depend on network performance. The online learning signals Ltj are provided externally
and could for example quantify how spiking at the current time influences current and future
errors. The general goal is to approximate the gradients of the network error function E
with respect to the model parameters θji. If the error function E depends exclusively on
the network spikes E(z1, . . . , zT ), the fundamental observation for e-prop is that the gradient
with respect to the weights can be factorized as follows (see Methods for a proof):

dE

dθji
=
∑
t

Ltj e
t
ji . (1)
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Figure 1: Scheme and performance of e-prop 1 a) Learning architecture for e-prop 1. The
error module at the top sends online error signals with random weights to the network that learns.
b) Temporal dynamics of information flows in BPTT and e-prop algorithms. The propagation
of error signals backwards in time of BPTT is replaced in e-prop algorithms by an additional
computation that runs forward in time: the computation of eligibility traces. c) Evaluation of
e-prop 1 for a classical benchmark task for learning in recurrent SNNs: Learning to generate
a target pattern, extended here to the challenge to simultaneously learn to generate 3 different
patterns, which makes credit assignment for errors more difficult. d) Mean squared error of several
learning algorithms for this task. “Clopath rule” denotes a replacement of the resulting synaptic
plasticity rule of e-prop 1 by the rule proposed in (Clopath et al., 2010) based on experimental
data. e) Evolution of the mean squared error during learning.
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We refer to Ltj and etji as the learning signals and eligibility traces respectively, see below

for a definition. Note that we use distinct notation for the partial derivative ∂E(z1,...,zT )
∂z1

, which
is the derivative of the mathematical function E with respect to its first variable z1, and the
total derivative dE(z1,...,zT )

dz1
which also takes into account how E depends on z1 indirectly

through the other variables z1, . . . , zT . The essential term for gradient descent learning is
the total derivative dE

dθji
. It has usually been computed with BPTT (Werbos, 1990) or RTRL

(Williams and Zipser, 1989).

Eligibility traces The intuition for eligibility traces is that a synapse remembers some of
its activation history while ignoring inter neuron dependencies. Since the network dynamics
is formalized through the equation stj = M(st−1

j , zt−1,xt,θ), the internal neuron dynamics

isolated from the rest of the network is described by Dt−1
j = ∂M

∂st−1
j

(st−1
j , zt−1,xt,θ) ∈ Rd×d

(recall that d, is the dimension of internal state of a single neuron; d = 1 or 2 in this
paper). Considering the partial derivative of the state with respect to the synaptic weight
∂M
∂θji

(st−1
j , zt−1,xt,θ) ∈ Rd (written

∂stj
∂θji

for simplicity), we formalize the mechanism that

retains information about the previous activity at the synapse i→ j by the eligibility vector
εtji ∈ Rd defined with the following iterative formula:

εtji = Dt−1
j · εt−1

ji +
∂stj
∂θji

, (2)

where · is the dot product. Finally, this lead to the eligibility trace which is the scalar product

between this vector and the derivative ∂f
∂stj

(stj) (denoted
∂ztj
∂stj

for simplicity) which captures

how the existence of a spike ztj depends on the neuron state stj :

etji =
∂ztj
∂stj
· εtji . (3)

In practice for LIF neurons the derivative
∂ztj
∂stj

is ill-defined due to the discontinuous nature

of spiking neurons. As done in (Bellec et al., 2018b) for BPTT, this derivative is replaced
in simulations by a simple nonlinear function of the membrane voltage htj that we call the
pseudo-derivative (see Methods for details). The resulting eligibility traces etji for LIF neurons
are the product of a the post synaptic pseudo derivative htj with the trace ẑti of the presynpatic
spikes (see equation (22) in Methods). For adaptive neurons in LSNNs and for LSTM units
the computation of eligibility traces becomes less trivial, see equations (27) and (28). But
they can still be computed in an online manner forward in time, along with the network
computation. We show later that the additional term arising for LSNNs in the presence of
threshold adaptation holds a crucial role when working memory has to be engaged in the
tasks to be learnt.

Note that in RTRL for networks of rate-based (sigmoidal) neurons (Williams and Zipser,
1989), the error gradients are computed forward in time by multiplying the full Jacobian J

of the network dynamics with the tensor
dstk
dθji

that computes the dependency of the state

variables with respect to the parameters:
dstk
dθji

=
∑
k′ Jtkk′ ·

dst−1
k′
dθji

+
∂stk
∂θji

(see equation

(12) in (Williams and Zipser, 1989)). Denoting with n the number of neurons, this requires
O(n4) multiplications, which is computationally prohibitive in simulations, whereas BPTT or
network simulation requires only O(n2) multiplications. In e-prop, the eligibility traces are

n × n matrices which is one order smaller than the tensor
dstk
dθji

, also Dt
j are d × d matrices

which are restrictions of the full Jacobian J to the neuron specific dynamics. As a consequence,
only O(n2) multiplications are required in the forward propagation of eligibility traces, their
computation is not more costly than BPTT or simply simulating the network.

Theoretically ideal learning signals To satisfy equation (1), the learning signals
Ltj ∈ Rd can be defined by the following formula:

Ltj
def
=

dE

dztj
. (4)
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Recall that dE
dztj

is a total derivative and quantifies how much a current change of spiking

activity might influence future errors. As a consequence, a direct computation of the term
Ltj needs to back-propagate gradients from the future as in BPTT. However we show that

e-prop tends to work well if the ideal term Ltj is replaced by an online approximation L̂tj . In
the following three sections we consider three concrete approximation methods, that define
three variants of e-prop. If not clearly stated otherwise, all the resulting gradient estimations
described below can be computed online and depend only on quantities accessible within the
neuron j or the synapse i→ j at the current time t.

Synaptic plasticity rules that emerge from this approach The learning algo-
rithms e-prop 1 and e-prop 2 that will be discussed in the following are for networks of spiking
neurons. Resulting local learning rules are very similar to previously proposed and experi-
mentally supported synaptic plasticity rules. They have the general form (learning signal)
× (postsynaptic term) × (presynaptic term) as previously proposed 3-factor learning rules
(Frémaux and Gerstner, 2016; Gerstner et al., 2018). The general form is given in equation
(23), where htj denotes a postsynaptic term and the last factor ẑt−1

i denotes the presynaptic
term (22). These last two terms are similar to the corresponding terms in the plasticity rule
of (Clopath et al., 2010). It is shown in Figure 1d that one gets very similar results if one
replaces the rule (24) that emerges from our approach by the Clopath rule.

The version (5) of this plasticity rule for e-prop 1 contains the specific learning signal that
arises in broadcast alignment as first factor. For synaptic plasticity of adapting neurons in
LSNNs the last term, the eligibility trace, becomes a bit more complex because it accumulates
information over a longer time span, see equation (28). The resulting synaptic plasticity rules
for LSTM networks are given by equation (38).

E-prop 1 : Learning signals that arise from broadcast alignment

A breakthrough result for learning in feedforward deep neural networks was the discovery that
a substantial portion of the learning power of backprop can be captured if the backpropagation
of error signals through chains of layers is replaced by layer specific direct error broadcasts,
that consists of a random weighted sum of the errors that are caused by the network outputs;
typically in the last layer of the network (Samadi et al., 2017; Nøkland, 2016). This heuristic
can in principle also be applied to the unrolled version of a recurrent neural network, yielding
a different error broadcast for each layer of the unrolled network, or equivalently, for each
time-slice of the computation in the recurrent network. This heuristic would suggest to send
to each time slice error broadcasts that employ different random weight matrices. We found
that the best results can be achieved if one chooses the same random projection of output
errors for each time slice (see Figure 1d and e).

Definition of e-prop 1 : E-prop 1 defines a learning signal that only considers the
instantaneous error of network outputs and ignores the influence of the current activity on
future errors. As justified in Methods, this means that the approximation of the learning
signal L̂tj is defined by replacing the total error derivative dE

dztj
with the partial derivative

∂E
∂ztj

. Crucially, this replacement makes it possible to compute the learning signal in real-

time, whereas the total derivative needs information about future errors which should be
back-propagated through time for an exact computation.

To exhibit an equation that summarizes the resulting weight update, we consider a network
of LIF neurons and output neurons formalized by k leaky readout neurons ytk with decay
constant κ. If E is defined as the squared error between the readouts ytk and their targets
y∗,tk , and the weight updates are implemented with gradient descent and learning rate η, this
yields (the proof and more general formula (45) are given in Methods):

∆θrec
ji = η

∑
t

(∑
k

θout
kj (y∗,tk − y

t
k)
)∑
t′≤t

κt−t
′
ht
′
j ẑ

t′−1
i , (5)

where ht
′
j is a function of the post-synaptic membrane voltage (the pseudo-derivative, see

Methods) and ẑt
′
i is a trace of preceding pre-synaptic spikes with a decay constant α. This

is a three-factor learning rule of a type that is commonly used to model experimental data
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(Gerstner et al., 2018). However a less common feature is that, instead of a single global error
signal, learning signals are neuron-specific weighted sums of different signed error signals
arising from different output neurons k. For a more complex neuron model such as LIF with
adaptive thresholds, which are decisive for tasks involving working memory (Bellec et al.,
2018b), the eligibility traces are given in equation (28) and the learning rule in equation (45).

To model biology, a natural assumption is that synaptic connections to and from readout
neurons are realized through different neurons. Therefore it is hard to conceive that the
feedback weights are exactly symmetric to the readout weights, as required for gradient descent
according to equation (5) that follows from the theory. Broadcast alignment (Lillicrap et al.,
2016) suggests the replacement of θout

kj by a random feedback matrix. We make the same
choice to define a learning rule (49) with mild assumptions: the learning signal is a neuron-
specific random projection of signed error signals y∗,tk − y

t
k. Hence we replaced the weights

θout
kj with random feedback weights denoted Brandom

jk . Other authors (Zenke and Ganguli,
2018; Kaiser et al., 2018) have derived learning rules similar to (49) for feedforward networks
of spiking neurons but not for recurrent ones. We test the learning performance of e-prop 1
for two generic computational tasks for recurrent neural networks: generation of a temporal
pattern, and storing selected information in working memory.

Pattern generation task 1.1 Pattern generation is an important component of motor
systems. We asked whether the simple learning setup of e-prop 1 endows RSNNs with the
capability to learn to generate patterns in a supervised manner.

Task: To this end, we considered a pattern generation task which is an extension of the
task used in (Nicola and Clopath, 2017). In this task, the network should autonomously
generate a three-dimensional target signal for 1 s. Each dimension of the target signal is
given by the sum of four sinusoids with random phases and amplitudes. Similar to (Nicola
and Clopath, 2017), the network received a clock input that indicates the current phase of
the pattern (see Methods).

Implementation: The network consisted of 600 recurrently connected LIF neurons. All
neurons in this RSNN projected to three linear readout neurons. All input, recurrent and
output weights were plastic, see Figure 1a. A single learning trial, consisted of a 1 s simulation
where the network produced a three-dimensional output pattern and gradients were computed
using e-prop 1. Network weights were updated after each learning trial (see Methods for
details).

Performance: Figure 1c shows the spiking activity of a randomly chosen subset of 20 of
600 neurons in the RSNN along with the output of the three readout neurons after application
of e-prop 1 for 1, 100 and 500 seconds, respectively. In this representative example, the
network achieved a very good fit to the target signal (normalized mean squared error 0.01).
Panel d shows the averaged mean squared errors (mse) for several variants of e-prop 1 and a
few other learning methods.

As an attempt to bridge a gap between phenomenological measurements of synaptic plas-
ticity and functional learning models, we addressed the question whether a synaptic plasticity
rule that was fitted to data in (Clopath et al., 2010) could reproduce the function of the sec-
ond and third factors in equation (5). These two terms (ẑt−1

i and htj) couple the presynaptic
and postsynaptic activity in a multiplicative manner. In the model of long term potentiation
fitted to data by (Clopath et al., 2010), the presynaptic term is identical but the postsynaptic
term includes an additional non-linear factor depending on a filtered version of the membrane
voltage. We found that a replacement of the plasticity rule of e-prop 1 by the Clopath rule
had little impact on the result, as shown in Figure 1d under the name “Clopath rule” (see
equation (57) in Methods for a precise definition of this learning rule). We also asked whether
these pre- and postsynaptic factors could be simplified further. When replacing the trace ẑt−1

i

and htj by the binary variable zt−1
i , this just caused an increase of the mse from 0.011 to 0.026.

In comparison, when the network has no recurrent connections or when the learning signal is
replaced by a uniform global learning signal (Bjk = 1√

n
with n the number of neurons) the

mse increased by one order of magnitude to 0.259 and 0.485, respectively. This indicated the
importance of diverse learning signals and recurrent connections in this task.

Panel e shows that a straightforward application of BA to the unrolled RSNNs, with
new random matrices for error broadcast at every ms, or every 20 ms, worked less well or
converged slower. Finally, while e-prop 1 managed to solve the task very well (Figure 1d),
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Figure 2: Testing e-prop 1 on the store-recall and speech recognition tasks. a) The store-
recall task requires to store the value 0 or 1 that is currently provided by other input neurons
when a STORE command is given, and to recall it when a RECALL command is given. It is
solved with e-prop 1 for an LSNN. b) Information content of eligibility traces (estimated via a
linear classifier) about the bit that was to be stored during store-recall task. c) Training LSNNs
with e-prop 1 to solve the speech reccognition task on TIMIT dataset. e-prop 1s indicates the
case when the feedback weights are exactly symmetric to the readout weights.

BPTT achieved an even lower mean squared error (black line in Figure 1e).

Store-recall task 1.2 Many learning tasks for brains involve some form of working mem-
ory. We therefore took a simple working memory task and asked whether e-prop 1 enables
an LSNN to learn this task, in spite of a substantial delay between the network decision to
store information and the time when the network output makes an error.

Task: The network received a sequence of binary values encoded by alternating activity
of two groups of input neurons (“Value 0” and “Value 1” in Figure 2a, top). In addition, it
received command inputs, STORE and RECALL, encoded likewise by dedicated groups of
input neurons. The task for the network was to output upon a RECALL command the value
that was present in the input at the time of the most recent STORE command. In other
words, the network had to store a bit (at a STORE command) and recall it at a RECALL
command. After a STORE, a RECALL instructions was given during each subsequent time
period of length D = 200 ms with probability pcommand = 1

6
. This resulted in an expected

delay of D
pcommand

= 1.2 s between STORE and RECALL instruction. The next STORE
appeared in each subsequent period of length D with probability pcommand. We considered
the task as solved when the misclassification rate on the validation set reached a value below
5%.

Implementation: We used a recurrent LSNN network consisting of 10 standard LIF
neurons and 10 LIF neurons with adaptive thresholds. The input neurons marked in blue
and red at the top of Figure 2a produced Poisson spike trains with time varying rates. An
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input bit to the network was encoded by spiking activity at 50 Hz in the corresponding
input channels for a time period of D = 200 ms. STORE and RECALL instructions were
analogously encoded through firing of populations of other Poisson input neurons at 50 Hz.
Otherwise input neurons were silent. The four groups of input channels consisted of 25 neurons
each. During a recall cue, two readouts are competing to report the network output. The
readout with highest mean activation ytk during the recall period determines which bit value
is reported. To train the network, the error function E is defined as the cross entropy between
the target bit values and the softmax of the readout activations (see Methods for details).
Importantly, an error signal is provided only during the duration of a RECALL command
and informs about the desired change of output in that delayed time period. The network
was trained with e-prop 1. Parameters were updated every 2.4 s during training.

Performance: Figure 2a shows a network trained with e-prop 1 that stores and recalls
a bit accurately. This network reached a misclassification rate on separate validation runs
below 5% in 50 iterations on average with e-prop 1. For comparison, the same accuracy was
reached within 28 iterations on average with full BPTT. We found that adaptive neurons are
essential for these learning procedures to succeed: A network of 20 non-adapting LIF neurons
could not solve this task, even if it was trained with BPTT.

It might appear surprising that e-prop 1 is able to train an LSNN for this task, since the
learning signal is only non-zero during a RECALL command. This appears to be problematic,
because in order to reduce errors the network has to learn to handle information from the input
stream in a suitable manner during a much earlier time window: during a STORE command,
that appeared on average 1200 ms earlier. We hypothesized that this was made possible
because eligibility traces can hold information during this delay. In this way a learning signal
could contribute to the modification of the weight of a synapse that had been activated much
earlier, for example during a STORE command. According to the theory (equation (28) in
the methods), eligibility traces of adapting neurons decay with a time constant comparable
to that of the threshold adaptation. To verify experimentally that this mechanism makes
it possible to hold the relevant information, we first verified that the same LSNN network

failed at learning the task when eligibility traces are truncated by setting εtji = ∂st

∂θji
. Second,

we quantified the amount of information about the bit to be stored that is contained in the
true eligibility traces. This information was estimated via the decoding accuracy of linear
classifiers, and the results are reported in Figure 2b. While the neuron adaptation time
constants were set to 1.2 s, we found that the decoding accuracy quickly rises above chance
even for much longer delays. After 200 training iterations, the relevant bit can be decoded
up to 4 s after the store signal arrived with high accuracy (> 90% of the trials).

Altogether the results in Figure 1 and 2 suggest that e-prop 1 enables RSNNs to learn
the most fundamental tasks which RSNNs have to carry out in the brain: to generate desired
temporal patterns and to carry out computations that involve a working memory. Pattern
generation tasks were also used for testing the performance of FORCE training for RSNNs in
(Nicola and Clopath, 2017). While FORCE training has not been argued to be biologically
plausible because of the use of a non-local plasticity rule and the restriction of plasticity
to readout neurons, e-prop 1 only engages mechanisms that are viewed to be biologically
plausible. Hence it provides a concrete hypothesis how recurrent networks of neurons in the
brain can learn to solve the most fundamental tasks which such networks are conjectured to
carry out. More generally, we conjecture that e-prop 1 can solve all learning tasks that have
been demonstrated to be solvable by FORCE training. However we do not want to claim
that e-prop 1 can solve all learning tasks for RSNNs that can be solved by BPTT according
to (Bellec et al., 2018b). But the power of e-prop algorithms can be substantially enhanced
by using more sophisticated learning signals than just random linear combinations of signed
errors as in broadcast alignment. Several neural systems in the brain receive raw error signals
from the periphery and output highly processed learning cues for individual brain areas and
populations of neurons. We propose that such neural systems have been refined by evolution
and development to produce learning signals that enable more powerful versions of e-prop
algorithms, such as the ones that we will discuss in the following.

For implementations of e-prop algorithms in neuromorphic hardware – in order to enable
efficient on-chip learning of practically relevant tasks – another reservoir of mechanisms be-
comes of interest that also can make use of concrete aspects of specific neuromorphic hardware.
For example, in order to approximate the performance of BPTT for training LSNNs for speech
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recognition, a test on the popular benchmark dataset TIMIT suggests that the accuracy of
e-prop 1 (0.629) can be brought closer to that achieved by BPTT (0.671; see (Bellec et al.,
2018b)) by simply using the current values of readout weights, rather than random weights,
for broadcasting current error signals (we label this e-prop 1 version e-prop 1s). This yields
an accuracy of 0.651. As a baseline for recurrent spiking neural networks we include a result
for randomly initialized LSNN where only the readout weights are optimized (see Figure 2c
readout plasticity only, accuracy 0.529). For comparison, the best result achieved by recurrent
artificial neural networks (consisting of the most complex form of LSTM units) after extensive
hyperparameter search was 0.704 (Greff et al., 2017).

E-prop 2 : Refined learning signals that emerge from L2L

The construction and proper distribution of learning signals appears to be highly sophisticated
in the brain. Numerous areas in the human brain appear to be involved in the production of
the error-related negativity and the emission of neuromodulatory signals (see the references
given in the Introduction). A closer experimental analysis suggests diversity and target-
specificity even for a single neuromodulator (Engelhard et al., 2018). Hence it is fair to
assume that the construction and distribution of error signals in the brain has been optimized
through evolutionary processes, through development, and prior learning. A simple approach
for capturing possible consequences of such an optimization in a model is to apply L2L to a
suitable family of learning tasks. The outer loop of L2L models opaque optimization processes
that shape the distribution of error signals in the brain on the functional level. We implement
this optimization by an application of BPTT to a separate error module in the outer loop
of L2L. Since this outer loop is not meant to model an online learning process, we are not
concerned here by the backpropagation through time that is required in the outer loop. In
fact, one can expect that similar results can be achieved through an application of gradient-
free optimization methods in the outer loop, but at a higher computational cost for the
implementation.

It is argued in (Brea and Gerstner, 2016) that one-shot learning is one of two really
important learning capabilities of the brain that are not yet satisfactorily explained by current
models in computational neuroscience. We show here that e-prop 2 explains how RSNNs
can learn a new movement trajectory in a single trial. Simultaneously we show that given
movement trajectories of an end-effector of an arm model can be learnt without requiring an
explicitly learnt or constructed inverse model. Instead, a suitably trained error module can
acquire the capability to produce learning signals for the RSNN so that the RSNN learns
via e-prop to minimize deviations of the end-effector from the target trajectory in Euclidean
space, rather than errors in “muscle space”, i.e., in terms of the joint angles that are controlled
by the RSNN.

Definition of e-prop 2 : The main characteristic of e-prop 2 is that the learning signals
L̂tj are produced by a trained error module, which is modeled as a recurrent network of spiking
neurons with synaptic weights Ψ. It receives the input xt, the spiking activity in the network
zt and target signals y∗,t. Note that the target signal is not necessarily the target output of
the network, but can be more generally a target state vector of some controlled system.

We employ the concept of Learning-to-Learn (L2L) to enable the network with its adjacent
error module to solve a family F of one-shot learning tasks, i.e. each task C of the family
F requires the network to learn a movement from a single demonstration. The L2L setup
introduces a nested optimization procedure that consists of two loops: An inner loop and
an outer loop as illustrated in Figure 3a. In the inner loop we consider a particular task
C, entailing a training trial and a testing trial. During the training trial, the network has
synaptic weights θinit, it receives an input it has never seen and generates a tentative output.
After a single weight update using e-prop 2, the network starts the testing trial with new
weights θtest,C . It receives the same input for a second time and its performance is evaluated
using the cost function LC(θtest,C). In the outer loop we optimize θinit and the error module
parameters Ψ in order to minimize the cost LC over many task instances C from the family
F . Formally, the optimization problem solved by the outer loop is written as:
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Figure 3: Scheme and performance of e-prop 2 a) Learning-to-Learn (LTL) scheme.
b) Learning architecture for e-prop 2. In this demo the angular velocities of the joints were
controlled by a recurrent network of spiking neurons (RSNN). A separate error module was op-
timized in the outer loop of L2L to produce suitable learning signals. c) Randomly generated
target movements y∗,t (example shown) had to be reproduced by the tip of an arm with two
joints. d) Demonstration of one-shot learning for a randomly sampled target movement. During
the training trial the error module sends learning signals (bottom row) to the network. After a
single weight update the target movement can be reproduced in a test trial with high precision.
e) One-shot learning performance improved during the course of outer loop optimization. Two
error module implementations were compared.
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min
Ψ,θinit

EC∼F [LC(θtest,C)] (6)

s.t.: (θtest,C)ji = (θinit)ji − η
∑
t L̂

t
j e

t
ji (7)

(L̂tj and etji are obtained during the training

trial for task C using Ψ and θinit),

where η represents a fixed learning rate.

One-shot learning task 2.1 It is likely that prior optimization processes on much slower
time scales, such as evolution and development, have prepared many species of animals to
learn new motor skills much faster than shown in Figure 1d. Humans and other species can
learn a new movement by observing just one or a few examples. Therefore we restricted the
learning process here to a single trial (one-shot learning, or imitation learning).

Another challenge for motor learning arises from the fact that motor commands Φ̇t have to
be given in “muscle space” (joint angle movements), whereas the observed resulting movement
yt is given in Euclidean space. Hence an inverse model is usually assumed to be needed to
infer joint angle movements that can reduce the observed error. We show here that an explicit
inverse model is not needed, since its function can be integrated into the learning signals from
the error module of e-prop 2.

Task: Each task C in the family F consisted of learning a randomly generated target
movement y∗,t of the tip of a two joint arm as shown in Figure 3c. The task was divided into
a training and a testing trial, with a single weight update in between according to equation (7).

Implementation: An RSNN, consisting of 400 recurrently connected LIF neurons, learnt
to generate the required motor commands, represented as the angular velocities of the joints
Φ̇t = (φ̇t1, φ̇

t
2), in order to produce the target movement. The full architecture of the learning

system is displayed in Figure 3b. The error module consisted of 300 LIF neurons, which were
also recurrently connected. The input xt to the network was the same across all trials and
was given by a clock-like signal. The input to the error module contained a copy of xt, the
spiking activity zt of the main network, as well as the target movement y∗,t in Euclidean
space. Importantly, the error module had no access to actual errors of the produced motor
commands. For outer loop optimization we viewed the learning process as a dynamical system
for which we applied BPTT. Gradients were computed using batches of different tasks to
approximate the expectation in the outer loop objective.

Performance: After sufficiently long training in the outer loop of L2L, we tested the
learning capabilities of e-prop 2 on a random target movement, and show in Figure 3d training
and testing trial in the left and right column respectively. In fact, after the error module had
sent learning signals to the network during the training trial, it was usually more silent during
testing, since the reproduced movement was already accurate. Therefore, the network was
endowed with one-shot learning capabilities by e-prop 2, after initial weights θinit and the
error module parameters Ψ had been optimized in the outer loop.

Figure 3e summarizes the mean squared error between the target y∗,t and actual movement
yt in the testing trial (blue curve). The red curve reports the same for a linear error module.
The error is reported for different stages of the outer loop optimization.

We considered also the case when one uses instead of the eligibility trace as defined in
equation (23) just a truncated one, given by etji = htjz

t−1
i , and found this variation to exhibit

similar performance on this task (not shown). The learning performance converged to a mean
squared error of 0.005 on testing trials averaged over different tasks.

Altogether we have shown that e-prop 2 enables one-shot learning of pattern generation
by an RSNN. This is apparently the first time that one-shot learning of pattern generation has
been demonstrated for an RSNN. In addition, we have shown that the learning architecture
for e-prop 2 supports a novel solution to motor learning, where no separate construction or
learning of an inverse model is required. More precisely, the error module can be trained to
produce learning signals that enable motor learning without the presence of an inverse model.
It will be interesting to see whether there are biological data that support this simplified
architecture. Another interesting feature of the resulting paradigm for motor learning is
that the considered tasks can be accomplished without sensory feedback about the actual
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trajectory of the arm movement. Instead the error module just receives efferent copies of the
spiking activity of the main network, and hence implicitly also of its motor commands.

E-prop 3 : Producing learning signals through synthetic gradi-
ents

We show here that the use of biologically inspired eligibility traces also improves some state-
of-the-art algorithms in machine learning, specifically the synthetic gradient approach for
learning in feedforward and recurrent (artificial) neural networks (Jaderberg et al., 2016) and
(Czarnecki et al., 2017). Synthetic gradients provide variants of backprop and BPTT that tend
to run more efficiently because they avoid that synaptic weights can only be updated after a
full network simulation followed by a full backpropagation of error gradients (

”
locking“). We

show here that the performance of synthetic gradient methods for recurrent neural networks
significantly increases when they are combined with eligibility traces. The combination of
these two approaches is in a sense quite natural, since synthetic gradients can be seen as online
learning signals for e-prop. In comparison with e-prop 2, one does not need to consider here a
whole family of learning tasks for L2L and a computationally intensive outer loop. Hence the
production of learning signals via synthetic gradient approaches tends to be computationally
more efficient. So far it also yields better results in applications to difficult tasks for recurrent
artificial neural networks. In principle it is conceivable that biological learning systems also
follow a strategy whereby learning signals for different temporal phases of a learning process
are aligned among each other through some separate process. This is the idea of synthetic
gradients.

Definition of e-prop 3 : When BPTT is used for tasks that involve long time series, the
algorithm is often truncated to shorter intervals of length ∆t, and the parameters are updated
after the processing of each interval. This variant of BPTT is called truncated BPTT. We
show a schematic of the computation performed on the interval {t−∆t, . . . , t} in the first panel
of Figure 4b. Reducing the length ∆t of the interval has two benefits: firstly, the parameter
updates are more frequent; and secondly, it requires less memory storage because all inputs
xt
′

and network states st
′
j for t′ ∈ {t − ∆t, . . . , t} need to be stored temporarily for back-

propagating gradients. The drawback is that the error gradients become more approximative,
in particular, the relationship between error and network computation happening outside of
this interval cannot be captured by the truncated error gradients. As illustrated in the last
panel of Figure 4b, e-prop 3 uses the same truncation scheme but alleviates the drawback
of truncated BPTT in two ways: it uses eligibility traces to include information about the
network history before t − ∆t, and an error module that predicts errors after t. Thanks to
eligibility traces, all input and recurrent activity patterns that happened before t −∆t have
left a footprint that can be combined with the learning signals Lt

′
j with t′ ∈ {t −∆t, . . . , t}.

Each of these learning signals summarizes the neuron influence on the next errors, but due
to the truncation, errors performed outside of the current interval cannot trivially be taken
into account. In e-prop 3, the error module computes learning signals Lt

′
j that anticipate the

predictable components of the future errors.
E-prop 3 combines eligibility traces and learning signals to compute error gradients accord-

ing to equation (1), rather than equation (13) that is canonically used to compute gradients
for BPTT. To compute these gradients when processing the interval {t−∆t, . . . , t}, the eligi-
bility traces and learning signals are computed solely from data available within that interval,
without requiring the rest of the data. The eligibility traces are computed in the forward
direction according to equations (2) and (3). For the learning signals Lt

′
j , the difficulty is to

estimate the gradients dE

dzt
′

j

for t′ between t − ∆t and t. These gradients are computed by

back-propagation from t′ = t back to t′ = t−∆t+ 1 with the two recursive formulas:

dE

dst
′
j

=
dE

dzt
′
j

∂zt
′
j

∂st
′
j

+
dE

dst
′+1
j

∂st
′+1
j

∂st
′
j

(8)

dE

dzt
′
j

=
∂E

∂zt
′
j

+
∑
i

dE

dst
′+1
i

∂st
′+1
i

∂zt
′
j

, (9)

which are derived by application of the chain rule at the nodes stj and ztj of the computational
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Figure 4: Scheme and performance of e-prop 3 a) Learning architecture for e-prop 3. The
error module is implemented through synthetic gradients. b) Scheme of learning rules used in
panels e-h. ∆t is the number of time steps through which the gradients are allowed to flow
for truncated BPTT or for the computation of synthetic gradients. c,e,g) Copy-repeat task:
(c) example trial, (e) performance of different algorithms for the copy-repeat task, (g) Learning
progress for 3 different algorithms. This task was used as a benchmark in (Jaderberg et al., 2016)
and (Graves et al., 2014). d,f,h) Word prediction task: (d) example of sequence, (f) performance
summary for different learning rules, (h) learning progression. An epoch denotes a single pass
through the complete dataset.
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graph represented in Figures 5 (
∂st+1

i

∂ztj
is a notation short-cut for ∂M

∂ztj
(sti, z

t,xt,θ), and i range

over all neurons to which neuron j is synaptically connected). This leaves open the choice
of the boundary condition dE

dst+1
j

that initiates the back-propagation of these gradients at the

end of the interval {t−∆t, . . . , t}. In most implementations of truncated BPTT, one chooses
dE

dst+1
j

= 0, as if the simulation would terminate after time t. We use instead a feed-forward

neural network SG parametrized by Ψ that outputs a boundary condition SGj associated with
each neuron j: dE

dst+1
j

= SGj(z
t,Ψ). This strategy was proposed by (Jaderberg et al., 2016)

under the name “synthetic gradients”. The synthetic gradients are combined with the error
gradients computed within the interval {t−∆t, . . . , t} to define the learning signals. Hence,
we also see SG as a key component of the an error module in analogy with those of e-prop 1
and 2.

To train SG, back-ups of the gradients dE

dst+1
j

are estimated from the boundary conditions

at the end of the next interval {t, . . . , t+ ∆t}. In a similar way as value functions are approx-
imated in reinforcement learning, these more informed gradient estimates are used as targets
to improve the synthetic gradients SG(zt,Ψ). This is done in e-prop 3 by computing simulta-

neously the gradients dE′

dθ
and dE′

dΨ
of an error function E′ that combines the error function E,

the boundary condition, and the mean squared error between the synthetic gradient and its
targeted back-up (see Algorithm 1 in Methods for details). These gradients are approximated
to update the network parameters with any variant of stochastic gradient descent.

It was already discussed that the factorization (1) used in e-prop is equivalent to BPTT,
and that both compute the error gradients dE

dθji
. In the subsection dedicated to e-prop 3

of Methods, we formalize the algorithm when the simulation is truncated into intervals of
length ∆t. We then show under the assumption that the synthetic gradients are optimal,
i.e. SGj(z

t,Ψ) = dE

dst+1
j

, that both truncated BPTT and e-prop 3 compute the correct error

gradients dE
dθji

. However, this assumption is rarely satisfied in simulations, firstly because the

parameters Ψ may not converge instantaneously to some optimum; and even then, there could
be unpredictable components of the future errors that cannot be estimated correctly. Hence, a
more accurate model is to assume that the synthetic gradients SGj(z

t,Ψ) are noisy estimators
of dE

dst+1
j

. Under this weaker assumption it turns out that e-prop 3 produces estimators of

the error gradients d̂E
dθji

eprop

that are better than those produced with truncated BPTT with

synthetic gradients d̂E
dθji

SG

. Formally, this result can be summarized as:

E

[(
dE

dθji
− d̂E

dθji

eprop)2]
≤ E

( dE

dθji
− d̂E

dθji

SG)2
 , (10)

where the E is the stochastic expectation. The proof of this result will be published in a later
version of the paper. To summarize the proof, we compare in detail the terms computed with
e-prop 3 and BPTT. The derivation reveals that both algorithms compute a common term

that combines partial derivatives ∂st

∂θji
with errors, E(zt

′
) with t and t′ being accessible within

the interval {t − ∆t, . . . , t}. The difference between the two algorithms is that truncated

BPTT combines all the partial derivatives ∂st

∂θji
with synthetic gradients that predict future

errors. Instead, the e-prop algorithm holds these partial derivatives in eligibility traces to
combine them later with a better informed learning signals that do not suffer from the noisy
approximations of the synthetic gradients.

Copy-repeat task 3.1 The copy-repeat task was introduced in (Graves et al., 2014)
to measure how well artificial neural networks can learn to memorize and process complex
patterns. It was also used in (Jaderberg et al., 2016) to compare learning algorithms for
recurrent neural networks with truncated error propagation.

Task: The task is illustrated in Figure 4c. It requires to read a sequence of 8-bit char-
acters followed by a “stop” character and a character that encodes the requested number of
repetitions. In the subsequent time steps the network is trained to repeat the given pattern
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as many times as requested, followed by a final “stop” character. We used the same curricu-
lum of increased task complexity as defined in (Jaderberg et al., 2016), where the authors
benchmarked variants of truncated BPTT and synthetic gradients: the pattern length and the
number of repetitions increase alternatively each time the network solves the task (the task is
considered solved when the average error is below 0.15 bits per sequence). The performance
of the learning algorithms are therefore measured by the length of the largest sequence for
which the network could solve the task.

Implementation: The recurrent network consisted of 256 LSTM units. The component
SG of the error module was a feedfoward network with one hidden layer of 512 rectified linear
units (the output layer of the synthetic gradient did not have non-linear activation functions).
The network states were reset to zero at the beginning of each sequence and the mean error
and the error gradients were averaged over a batch of 256 independent sequences. Importantly,
we used for all training algorithms a fixed truncation length ∆t = 4, with the exception of a
strong baseline BPTT for which the gradients were not truncated.

Results: The activity and output of a trained LSTM solving the task is displayed in
Figure 4c. The performance of various learning algorithms is summarized in Figure 4e and
g. Truncated BPTT alone solves the task for sequences of 15 characters, and 19 characters
when enhanced with synthetic gradients. With a different implementation of the task and
algorithm, (Jaderberg et al., 2016) reported that sequences of 39 characters could be handled
with synthetic gradients. When BPTT is replaced by e-prop and uses eligibility traces, the
network learnt to solve the task for sequences of length 41 when the synthetic gradients were
set to zero (this algorithm is referred as “truncated BPTT + eligibility traces” in Figure 4e and
f). The full e-prop 3 algorithm that includes eligibility traces and synthetic gradients solved
the task for sequences of 74 characters. This is an improvement over e-prop 1 that handles
sequences of 28 characters, even if the readout weights are not replaced by random error
broadcasts. All these results were achieved with a truncation length ∆t = 4. In contrast when
applying full back-propagation through the whole sequence, we reached only 39 characters.

Word prediction task 3.2 We also considered a word-level prediction task in a corpus
of articles extracted from the Wall Street Journal, provided by the so-called Penn Treebank
dataset. As opposed to the previous copy-repeat task, this is a practically relevant task. It
has been standardized to provide a reproducible benchmark task. Here, we used the same
implementation and baseline performance as provided freely by the Tensorflow tutorial on
recurrent neural networks∗.

Task: As indicated in Figure 4d, the network reads the whole corpus word after word. At
each time step, the network has to read a word and predict the following one. The training,
validation and test sets consist of texts of 929k, 73k, and 82k words. The sentences are kept
in a logical order such that the context of dozens of words matters to accurately predict the
following ones. The vocabulary of the dataset is restricted to the 10k most frequent words,
and the words outside of this vocabulary are replaced with a special unknown word token.

Implementation: For all algorithms, the parameters were kept identical to those defined
in the Tensorflow tutorial, with two exceptions: firstly, the networks had a single layer of
200 LSTM units instead of two to simplify the implementation, and because the second did
not seem to improve performance with this configuration; secondly, the truncation length was
reduced from ∆t = 20 to ∆t = 4 for synthetic gradients and e-prop 3 to measure how our
algorithms compensate for it. The synthetic gradients are computed by a one hidden layer
of 400 rectified linear units. For a detailed description of model and a list of parameters we
refer to the methods.

Results: The error is measured for this task by the word-level perplexity, which is the
exponential of the mean cross-entropy loss. Figure 4e and f summarize our results. After
reduction to a single layer, the baseline perplexity of the model provided in the Tensorflow
tutorial for BPTT was 113 with a truncation length ∆t = 20. Full BPTT is not practical in
this case because the data consists of one extremely long sequence of words. In contrast, in a
perplexity increased to 121 when the same model was also trained with BPTT, but a shorter
truncation length ∆t = 4. The model performance improved back to 118 with synthetic
gradients, and to 116 with eligibility traces. Applying the e-prop 1 algorithm with the true
readout weights as error broadcasts resulted in a perplexity of 115. When combining both

∗https://www.tensorflow.org/tutorials/sequences/recurrent

17



eligibility traces and synthetic gradients in e-prop 3, the performance improved further and
we achieved a perplexity of 113.

To further investigate the relevance of eligibility traces for e-prop 3 we considered the case
where the eligibility trace were truncated. Instead of using the eligibility trace vectors as

defined in equation (37) we used εtji =
∂stj
∂θji

. This variation of e-prop 3 lead to significantly

degraded performance and resulted in test perplexity of 122.67 (not shown).
All together Figure 4e and f show that eligibility traces improve truncated BPTT more

than synthetic gradients. Furthermore, if eligibility traces are combined with synthetic gradi-
ents in e-prop 3, one arrives at an algorithm that outperforms full BPTT for the copy-repeat
task, and matches the performance of BPTT (∆t = 20) for the Penn Treebank word prediction
task.

Discussion

The functionally most powerful learning method for recurrent neural nets, an approximation of
gradient descent for a loss function via BPTT, requires propagation of error signals backwards
in time. Hence this method does not reveal how recurrent networks of neurons in the brain
learn. In addition, propagation of error signals backwards in time requires costly work-
arounds in software implementations, and it does not provide an attractive blueprint for the
design of learning algorithms in neuromorphic hardware. We have shown that a replacement
of the propagation of error signals backwards in time in favor of a propagation of the local
activation histories of synapses – called eligibility traces – forward in time allows us to capture
with physically and biologically realistic mechanisms a large portion of the functional benefits
of BPTT. We are referring to to this new approach to gradient descent learning in recurrent
neural networks as e-prop. In contrast to many other approaches for learning in recurrent
networks of spiking neurons it can be based on a rigorous mathematical theory.

We have presented a few variations of e-prop where eligibility traces are combined with
different types of top-down learning signals that are generated and transmitted in real-time. In
e-prop 1 we combine eligibility traces with a variation of broadcast alignment (Samadi et al.,
2017) or direct feedback alignment (Nøkland, 2016). We first evaluated the performance of e-
prop 1 on a task that has become a standard for the evaluation of the FORCE learning method
for recurrent networks of spiking neurons (Nicola and Clopath, 2017) and related earlier work
on artificial neural networks: supervised learning of generating a temporal pattern. In order to
make the task more interesting we considered a task where 3 independent temporal patterns
have to be generated simultaneously by the same RSNN. Here it is not enough to transmit a
single error variable to the network, so that broadcasting of errors for different dimensions of
the network output to the network becomes less trivial. We found (see Figure 1) that a random
weight matrix for the distribution of error signals works well, as in the case of feedforward
networks (Samadi et al., 2017), (Nøkland, 2016). But surprisingly, the results were best when
this matrix was fixed, or rarely changed, whereas a direct application of broadcast alignment
to an unrolled recurrent network suggests that a different random matrix should be used for
every time slice.

In order to challenge the capability of e-prop 1 to deal also with cases where error signals
arise only at the very end of a computation in a recurrent network, we considered a store-recall
task, where the network has to learn what information it should store –and maintain until
it is needed later. We found (see Figure 2) that this task can also be learnt with e-prop 1,
and verified that the eligibility traces of the network were able to bridge the delay. We used
here an LSNN (Bellec et al., 2018b) that includes a model of a slower process in biological
neurons: neuronal adaptation. We also compared the performance of e-prop 1 with BPTT
for a more demanding task: the speech recognition benchmark task TIMIT. We found that
e-prop 1 approximates also here the performance of BPTT quite well.

Altogether we have the impression that e-prop 1 can solve all learning tasks for RSNNs that
the FORCE method can solve, and many more demanding tasks. Since the FORCE method
is not argued to be biologically realistic, whereas e-prop 1 only relies on biologically realistic
mechanisms, this throws new light on the understanding of learning in recurrent networks
of neurons in the brain. An additional new twist is that e-prop 1 engages also plasticity of
synaptic connections within a recurrent network, rather than only synaptic connections to a
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postulated readout neuron as in the FORCE method. Hence we can now analyze how network
configurations and motifs that emerge in recurrent neural network models through learning
(possibly including in e-prop biologically inspired rewiring mechanisms as in (Bellec et al.,
2018a)) relate to experimental data.

In the analysis of e-prop 2 we moved to a minimal model that captures salient aspects of
the organization of learning in the brain, where dedicated brain areas process error signals and
generate suitably modified gating signals for plasticity in different populations of neurons. We
considered in this minimal model just a single RSNN (termed error module) for generating
learning signals. But obviously this minimal model opens the door to the analysis of more
complex learning architectures –as they are found in the brain– from a functional perspective.
We found that a straightforward application of the Learning-to-Learn (L2L) paradigm, where
the error module is optimized on a slower time scale for its task, significantly boosts the
learning capability of an RSNN. Concretely, we found that it endows the RSNN with one-
shot learning capability (see Figure 3), hence with a characteristic advantage of learning in
the human brain (Brea and Gerstner, 2016), (Lake et al., 2017). In addition the model of
Figure 3 suggests a new way of thinking about motor learning. It is shown that no separate
inverse model is needed to learn motor control. Furthermore in the case that we considered,
not even sensory feedback from the environment is needed.

Finally we arrived at an example where biologically inspired ideas and mechanisms, in this
case eligibility traces, can enhance state-of-the-art methods in machine learning. Concretely,
we have shown in Figure 4 that adding eligibility traces to the synthetic gradient methods
of (Jaderberg et al., 2016) and (Czarnecki et al., 2017) for training artificial recurrent neural
networks significantly enhances the performance of synthetic gradient algorithms. In fact, the
resulting algorithm e-prop 3 was found to supercede the performance of full BPTT in one
case and rival BPTT with ∆t = 20 in another.

A remarkable feature of e-prop is that the resulting local learning rules (24) are very
similar to previously proposed rules for synaptic plasticity that were fitted to experimental
data (Clopath et al., 2010). In fact, we have shown in Figure 1d that the theory-derived local
plasticity rule for e-prop 1 can be replaced by the Clopath rule with little loss in performance.
On a more general level, the importance of eligibility traces for network learning that our re-
sults suggest provides concrete hypotheses for the functional role of a multitude of processes
on the molecular level in neurons and synapses, including metabotropic receptors. Many of
these processes are known to store information about multiple aspects of the recent history.
The e-prop approach suggests that these processes, in combination with a sufficiently sophis-
ticated production of learning signals by dedicated brain structures, can practically replace
the physically impossible backpropagation of error signals backwards in time of theoretically
optimal BPTT.

An essential prediction of e-prop for synaptic plasticity rules is that learning signals can
switch the sign of synaptic plasticity, i.e., between LTP and LTD or between STDP and anti-
STDP. Such switching of the sign of plasticity via disinhibition had been found in synapses
from the cortex to the striatum (Paille et al., 2013), see (Perrin and Venance, 2019) for a
recent review. Further brain mechanisms for switching the sign of plasticity through 3rd
factors had been reported in (Chen et al., 2014; Cui et al., 2016; Foncelle et al., 2018).

A key challenge for neuromorphic engineering is to design a new generation of comput-
ing hardware that enables energy efficient implementations of major types of networks and
learning algorithms that have driven recent progress in machine learning and learning-driven
AI (see e.g. (Barrett et al., 2018)). Recurrent neural networks are an essential component of
many of these networks, and hence learning algorithms are needed for this type of networks
that can be efficiently implemented in neuromorphic hardware. In addition, neuromorphic im-
plementations of recurrent neural networks – rather than deep feedforward networks—promise
larger efficiency gains because hardware neurons can be re-used during a computation. Re-
cently developed diffusive memristors (Wang et al., 2018) would facilitate an efficient local
computation of eligibility traces with new materials. In addition, new 3-terminal memristive
synapses (Yang et al., 2017) are likely to support an efficient combination of local eligibility
traces with top-down error signals in the hardware. Thus e-prop provides attractive functional
goals for novel materials in neuromorphic hardware.
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Methods

General network model: Our proposed learning algorithms for recurrent neural net-
works can be applied to a large class of spiking and non-spiking neural network models. We
assume that the state at time t of each neuron j in the network can be described by an internal
state vector stj ∈ Rd and an observable state ztj . The internal state includes internal variables
of the neuron such as its activation or membrane potential. The observable state is given by
the output of the neuron (analog output for ANNs and spiking output for SNNs). The dy-
namics of a neuron’s discrete-time state evolution is described by two functions M(s, z,x,θ)
and f(s), where s is an internal state vector, z is a vector of the observable network state (i.e.,
outputs of all neurons in the network), x is the vector of inputs to the network, and θ denotes
the vector of network parameters (i.e., synaptic weights). In particular, for each neuron j
the function M maps from the current network state observable to that neuron to its next
internal state, and f maps from its internal state to its observable state (neuron output):

stj = M(st−1
j , zt−1,xt,θ), (11)

ztj = f(stj), (12)

where zt (xt) denotes the vector of observable states of all network (input) neurons at time
t. A third function E defines the error of the network within some time interval 0, . . . , T . It
is assumed to depend only on the observable states E(z1, . . . , zT ).

We explicitly distinguish betweens partial derivative and total derivatives in our notation.
We write ∂M

∂s
(s∗, z∗,x∗,θ) to denote the partial derivative of the function M with respect to

s, applied to particular arguments s∗, z∗,x∗,θ. To simplify notation, we define the shortcuts
∂stj

∂st−1
j

def
= ∂M

∂s
(st−1
j , zt−1,xt,θ),

∂stj
∂θji

def
= ∂M

∂θji
(st−1
j , zt−1,xt,θ), and

∂ztj
∂stj

def
= ∂f

∂s
(stj).

To emphasize that
∂stj

∂st−1
j

is a matrix of shape d×d, and because it has an important role in

the following derivation and in definition of eligibility traces, we also use the further notation

Dt
j =

∂st+1
j

∂stj
. Note that we write gradients as row vectors and states as column vectors.

Proof of factorization (equation (1)): We provide here the proof for equation (1),
i.e., we show that the total derivative of the error function E with respect to the parameters
θ can be written as a product of learning signals Ltj and eligibility traces etji. First, recall
that in BPTT the error gradient is decomposed as (see equation (12) in Werbos (1990)):

dE

dθji
=
∑
t

dE

dstj
·
∂stj
∂θji

, (13)

where dE
dstj

is the total derivative of the error E with respect to the neuron states stj at time

step t. dE
dstj

can be expressed recursively as a function of the same derivative at the next time

step dE

dst+1
j

by applying the chain rule at the node stj of the computational graph shown in

Figure 5c:

dE

dstj
=

dE

dztj

∂ztj
∂stj

+
dE

dst+1
j

∂st+1
j

∂stj
(14)

= Ltj
∂ztj
∂stj

+
dE

dst+1
j

Dt
j , (15)

where we defined the learning signal for neuron j at time t as Ltj
def
= dE

dztj
. The resulting

recursive expansion ends at the last time step T , i.e., dE

dsT+1
j

= 0. If one substitutes the
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Figure 5: Computational graph a) Assumed mathematical dependencies between neuron states
stj , neuron outputs zt, network inputs xt, and the network error E through the mathematical
functions f(·), M(·) and E(·) represented by coloured arrows. b) The dependencies involved in
the computation of the eligibility traces etji are shown in blue. c) The dependencies involved in
the computation of the learning signal Lt

j are shown in green.
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recursive formula (15) into the definition of the error gradients (13), one gets:

dE

dθji
=

∑
t

(
Ltj
∂ztj
∂stj

+
dE

dst+1
j

Dt
j

)
·
∂stj
∂θji

(16)

=
∑
t

(
Ltj
∂ztj
∂stj

+
(
Lt+1
j

∂zt+1
j

∂st+1
j

+ (· · · )Dt+1
j

)
Dt
j

)
·
∂stj
∂θji

. (17)

The following equation is the main equation for understanding the transformation from BPTT
into e-prop. The key idea is to collect all terms which are multiplied with the learning signal
Lt
′
j at a given time t′. These are only terms that concern events in the computation of neuron

j at time t′, and these do not depend on future errors or variables. Hence one can collect
them conceptually into an internal eligibility trace etji for neuron j which can be computed
autonomously within neuron j in an online manner.

To this end, we write the term in parentheses in equation (17) into a second sum indexed
by t′ and exchange the summation indices to pull out the learning signal Ltj . This expresses
the error gradient as a sum of learning signals Ltj multiplied by some factor indexed by ji,
which implicitly defines what we call eligibility traces and eligibility vectors:

dE

dθji
=

∑
t

∑
t′≥t

Lt
′
j

∂zt
′
j

∂st
′
j

Dt′−1
j · · ·Dt

j ·
∂stj
∂θji

(18)

=
∑
t′

Lt
′
j

∂zt
′
j

∂st
′
j

∑
t≤t′

Dt′−1
j · · ·Dt

j ·
∂stj
∂θji︸ ︷︷ ︸

def
= εt

′
ji

. (19)

Here, we use the identity matrix for the Dt−1
j · · ·Dt

j where t′ − 1 < t . Finally, seeing that

the eligibility vectors εt
′
ji can also be computed recursively as in equation (2), it proves the

equation (1), given the definition of eligibility traces and learning signals in (3) and (4).

Leaky integrate-and-fire neuron model: We define here the leaky integrate-and-
fire (LIF) spiking neuron model, and exhibit the update rules that result from e-prop for
this model. We consider LIF neurons simulated in discrete time. In this case the internal
state stj is one dimensional and contains only the membrane voltage vtj . The observable state
ztj ∈ {0, 1} is binary, indicating a spike (ztj = 1) or no spike (ztj = 0) at time t. The dynamics
of the LIF model is defined by the equations:

vt+1
j = αvtj +

∑
i 6=j

θrec
ji z

t
i +

∑
i

θin
jix

t
i − ztjvth (20)

ztj = H

(
vtj − vth

vth

)
, (21)

where xti = 1 indicates a spike from the input neuron i at time step t (xti = 0 otherwise),
θrec
ji (θin

ji) is the synaptic weight from network (input) neuron i to neuron j, and H denotes

the Heaviside step function. The decay factor α is given by e−δt/τm , where δt is the discrete
time step (1 ms in our simulations) and τm is the membrane time constant. Due to the term
−ztjvth in equation (20), the neurons membrane voltage is reset to a lower value after an
output spike.

Eligibility traces and error gradients: Considering the LIF model defined above,
we derive the resulting eligibility traces and error gradients. By definition of the model in

equation (20), we have Dt
j =

∂vt+1
j

∂vtj
= α and

∂vtj
∂θji

= zt−1
i . Therefore, using the definition of

eligibility vectors in equation (2), one obtains a simple geometric series and one can write:

εt+1
ji =

∑
t′≤t

αt−t
′
zt
′
i

def
= ẑti , (22)

and the eligibility traces are written:

et+1
ji = htj ẑ

t
i . (23)
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In other words, the eligibility vector is one dimensional and depends only on the presy-
naptic neuron i and in fact, corresponds to the filtered presynaptic spike train. To exhibit
resulting the eligibility trace defined by equation (3), this requires to compute the derivative
∂ztj
∂vtj

, which is ill-defined in the case of LIF neurons because it requires the derivative of the

discontinuous function H. As shown in (Bellec et al., 2018b), we can alleviate this by using

a pseudo-derivative htj in place of
∂ztj
∂vtj

, given by htj = γmax

(
0, 1− | v

t
j−vth
vth

|
)

where γ = 0.3

is a constant called dampening factor. The gradient of the error with respect to a recurrent
weight θrec

ji thus takes on the following form, reminiscent of spike-timing dependent plasticity:

dE

dθrec
ji

=
∑
t

dE

dztj
htj ẑ

t−1
i . (24)

A similar derivation leads to the gradient of the input weights. In fact, one just needs to
substitute recurrent spikes zti by input spikes xti. The gradient with respect to the output
weights does not depend on the neuron model and is therefore detailed another paragraph
(see equation (48)).

Until now refractory periods were not modeled to simplify the derivation. To introduce a
simple model of refractory periods that is compliant with the theory, one can further assume
that ztj and

∂zj
∂sj

are fixed to 0 for a short refractory period after each spike of neuron j.

Outside of the refractory period the neuron dynamics are otherwise unchanged.

Leaky integrate-and-fire neurons with threshold adaptation: We derive the
learning rule defined by e-prop for a LIF neuron model with an adaptive threshold. For
this model, the internal state is given by a two-dimensional vector stj := (vtj , a

t
j)
T , where vtj

denotes the membrane voltage as in the LIF model, and atj is a threshold adaptation variable.
As for the LIF model above, the voltage dynamics is defined by equation (20). The spiking
threshold Atj at time t is given by

Atj = vth + βatj , (25)

where vth denotes the baseline-threshold. Output spikes are generated when the membrane

voltage crosses the adaptive threshold ztj = H

(
vtj−A

t
j

vth

)
, and the threshold adaptation evolves

according to

at+1
j = ρatj +H

(
vtj −Atj
vth

)
. (26)

The decay factor ρ is given by e−δt/τa , where δt is the discrete time step (1 ms in our
simulations) and τa is the adaptation time constant. In other words, the neuron’s threshold is
increased with every output spike and decreases exponentially back to the baseline threshold.

Eligibility traces: Because of the extended state, we obtain one two-dimensional eligi-
bility vector per synaptic weight: εtji := (εtji,v, ε

t
ji,a)T and the matrix Dt

j is a 2 × 2 matrix.

On its diagonal one finds the terms
∂vt+1

j

∂vtj
= α and

∂at+1
j

∂atj
= ρ− htjβ.

Above and below the diagonal, one finds respectively
∂vt+1

j

∂atj
= 0,

∂at+1
j

∂vtj
= htj . One can

finally compute the eligibility traces using its definition in equation (3). The component of
the eligibility vector associated with the voltage remains the same as in the LIF case and
only depends on the presynaptic neuron: εtji,v = ẑt−1

i . For the component associated with
the adaptive threshold we find the following recursive update:

εt+1
ji,a = htj ẑ

t−1
i + (ρ− htjβ)εtji,a , (27)

and this results in an eligibility trace of the form:

et+1
ji = htj

(
ẑt−1
i − βεtji,a

)
. (28)
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This results in the following equation for the gradient of recurrent weights:

dE

dθrec
ji

=
∑
t

dE

dztj
htj

(
ẑt−1
i − βεtji,a

)
. (29)

The eligibility trace for input weights is again obtained by replacing recurrent spikes zti with
input spikes xti.

Artificial neuron models: The dynamics of recurrent artificial neural networks is usu-
ally given by stj = αst−1

j +
∑
i θ

rec
ji z

t−1
i +

∑
i θ

in
jix

t
j with ztj = σ(stj), where σ : R→ R is some

activation function (often a sigmoidal function in RNNs). We call the first term the leak term
in analogy with LIF models. For α = 0 this term disappears, leading to the arguably most
basic RNN model. If α = 1, it models a recurrent version of residual networks.

Eligibility traces: For such model, one finds that Dt
j = α and the eligibility traces are

equal to etji = htj ẑ
t−1
i with ẑti

def
=
∑
t′≤t z

t′
i α

t−t′ . The resulting e-prop update is written as

follows (with σ′ the derivative of the activation function):

dE

dθrec
ji

=
∑
t

dE

dztj
σ′(stj)ẑ

t−1
i . (30)

Although simple, this derivation provides insight in the relation between BPTT and e-prop.
If the neuron model does not have neuron specific dynamics α = 0, the factorization of e-prop
is obsolete in the sense that the eligibility trace does not propagate any information from a
time step to the next Dt

j = 0. Thus, one sees that e-prop is most beneficial for models with
rich internal neural dynamics.

LSTM: For LSTM units, (Hochreiter and Schmidhuber, 1997) the internal state of the unit
is the content of the memory cell and is denoted by ctj , the observable state is denoted by
htj . One defines the network dynamics that involves the usual input, forget and output gates
(denoted by itj , f

t
j , and ℴtj) and the cell state candidate c̃tj as follows (we ignore biases for

simplicity):

itj = σ
(∑

i

θrec,i
ji ht−1

i +
∑
i

θin,i
ji xti

)
(31)

ftj = σ
(∑

i

θrec,f
ji ht−1

i +
∑
i

θin,f
ji xti

)
(32)

ℴtj = σ
(∑

i

θrec,ℴ
ji ht−1

i +
∑
i

θin,ℴ
ji xti

)
(33)

c̃tj = tanh
(∑

i

θrec,c
ji ht−1

i +
∑
i

θin,c
ji xti

)
. (34)

Using those intermediate variables as notation short-cuts, one can now write the update of
the states of LSTM units in a form that we can relate to e-prop:

ctj = M(ct−1
j ,ht−1,θ) = ftjc

t−1
j + itj c̃

t
j (35)

htj = f(ctj ,h
t−1,θ) = ℴtjc

t
j . (36)

Eligibility traces: There is one difference between LSTMs and the previous neuron
models used for e-prop: the function f depends now on the previous observable state ht and
the parameters through the output gate ℴtj . However the derivation of the gradients dE

dθji
in

the paragraph “Proof of factorization” is still valid for deriving the gradients with respect to
the parameters of the input gate, forget gate and cell state candidate. For these parameters

we apply the general theory as follows. We compute Dt
j =

∂ct+1
j

∂ctj
= ftj and for each variable

θA,Bji with A being either “in” or “rec” and B being i,f, or c, we compute a set of eligibility

traces. If we take the example the recurrent weights for the input gate θrec,i
ji , the eligibility

vectors are updated according to:

εrec,i,t
ji = ft−1

j εrec,i,t−1
ji + c̃tji

t
j(1− itj)h

t
i , (37)
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the eligibility traces are then written:

erec,i,t
ji = ℴtjε

rec,i,t
ji , (38)

and the gradients are of the form

dE

dθrec,i
ji

=
∑
t

dE

dhtj
ℴtjε

rec,i,t
ji . (39)

For the parameters θrec,ℴ
ji of the output gate which take part in the function f , we need to

derive the gradients in a different manner. As we still assume that E(h1, . . . ,hT ) depends on
the observable state only, we can follow the derivation of BPTT with a formula analogous to
(13). This results in a gradient expression involving local terms and the same learning signal

as used for other parameters. Writing ∂f

∂θ
rec,ℴ
ji

as
∂htj

∂θ
rec,ℴ
ji

the gradient update for the output

gate takes the form:

dE

dθrec,ℴ
ji

=
∑
t

dE

dhtj

∂htj
∂θrec,ℴ
ji

=
∑
t

dE

dhtj
ctjℴ

t
j(1− ℴtj)h

t−1
i . (40)

E-prop 1

E-prop 1 follows the general e-prop framework and applies to all the models above. Its speci-
ficity is the choice of learning signal. In this first variant, we make two approximations: future
errors are ignored so that one can compute the learning signal in real-time, and learning signals
are fed back with random connections. The specific realizations of the two approximations
are discussed independently in the following and implementation details are provided.

Ignoring future errors: The first approximation is to focus on the error at the present
time t and ignore dependencies on future errors in the computation of the total derivative

dE
dztj

. Using the chain rule, this total derivative expands as dE
dztj

= ∂E
∂ztj

+ dE

dst+1
j

∂st+1
j

∂ztj
, and

neglecting future errors means that we ignore the second term of this sum. As a result the
total derivative dE

dztj
is replaced by the partial derivative ∂E

∂ztj
in equation (4).

Synaptic weight updates under e-prop 1 : Usually, the output of an RNN is given by
the output of a set of readout neurons which receive input from network neurons, weighted
by synaptic weights θout

kj . In the case of an RSNN, in order to be able to generate non-
spiking outputs, readouts are modeled as leaky artificial neurons. More precisely, the output
of readout k at time t is given by

ytk = κyt−1
k +

∑
j

θout
kj z

t
j + bout

k , (41)

where κ ∈ [0, 1] defines the leak and bout
k denotes the readout bias. The leak factor κ is given

by e−δt/τout , where δt is the discrete time step and τout is the membrane time constant). In
the following derivation of weight updates under e-prop 1, we assume such readout neurons.
Additionally, we assume that the error function is given by the mean squared error E =
1
2

∑
t,k(ytk− y∗,tk )2 with y∗,tk being the target output at time t (see the following paragraph on

“classification” when the cross entropy error is considered).
In this case, the partial derivative ∂E

∂zti
has the form:

∂E

∂ztj
= θout

kj

∑
t′≥t

(yt
′
k − y∗,t

′

k )κt
′−t. (42)

This seemingly poses a problem for a biologically plausible learning rule, because the partial
derivative is a weighted sum over the future. This issue can however easily be solved as we
show below. Using equation (1) for the particular case of e-prop 1, we insert ∂E

∂ztj
in-place of
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the total derivative dE
dztj

which leads to an estimation d̂E
dθji

of the true gradient given by:

d̂E

dθji
=

∑
t

∂E

∂ztj
etji (43)

=
∑
k,t

θout
kj

∑
t′≥t

(ytk − y∗,tk )κt
′−tetji (44)

=
∑
k,t′

θout
kj (yt

′
k − y∗,t

′

k )
∑
t≤t′

κt
′−tetji , (45)

where we inverted sum indices in the last line. The second sum indexed by t is now over
previous events that can be computed in real time, it computes a filtered copy of the eligibility
trace etji. With this additional filtering of the eligibility trace with a time constant equal to
that of the temporal averaging of the readout neuron, we see that e-prop 1 takes into account
the latency between an event at time t′ and its impact of later errors at time t within the
averaging time window of the readout. However, note that this time constant is a few tens of
milliseconds in our experiments which is negligible in comparison to the decay of the eligibility
traces of adaptive neurons which are one to two orders of magnitude larger (see Figure 2).

Equation (45) holds for any neuron model. In the case of LIF neurons, the eligibility traces
are given by equation (23), and one obtains the final expression of the error gradients after
substituting these expressions in (45). Implementing weight updates with gradient descent
and learning rate η, the updates of the recurrent weights are given by

∆θrec
ji = η

∑
t

(∑
k

θout
kj (y∗,tk − y

t
k)
)∑
t′≤t

κt−t
′
ht
′
j ẑ

t′−1
i . (46)

When the neurons are equipped with adaptive thresholds as in LSNNs, one replaces the
eligibility traces with their corresponding definitions. It results that an additional term εtji,a
as defined in equation (27) is introduced in the weight update:

∆θrec
ji = η

∑
t

(∑
k

θout
kj (y∗,tk − y

t
k)
)∑
t′≤t

κt−t
′
ht
′
j

(
ẑt
′−1
i − βεt

′
ji,a

)
. (47)

Both equations (46) and (47) can be derived similarly for the input weights θin
ji , and it results

in the same learning rule with the only difference that ẑt
′−1
i is replaced by a trace of the

spikes xti of input neuron i. For the output connections the gradient dE
dθout

kj
can be derived as

for isolated linear readout neurons and it does not need to rely on the theory of e-prop. The
resulting weight update is:

∆θout
kj = η

∑
t

(y∗,tk − y
t
k)
∑
t′≤t

κt−t
′
zt
′
j . (48)

Random feed-back matrices: According to equations (46) and (47), the signed error
signal from readout k communicated to neuron j has to be weighted with θout

kj . That is, the
synaptic efficacies of the feedback synapses have to equal those of the feed-forward synapses.
This general property of backpropagation-based algorithms is a problematic assumption for
biological circuits. It has been shown however in (Samadi et al., 2017; Nøkland, 2016) that for
many tasks, an approximation where the feedback weights are chosen randomly works well.
We adopt this approximation in e-prop 1. Therefore we replace in equations (46) and (47)
the weights θout

kj by fixed random values Brandom
jk . For a LIF neuron the learning rule (46)

becomes with random feedback weights:

∆θrec
ji = η

∑
t

(∑
k

Brandom
jk (y∗,tk − y

t
k)
)∑
t′≤t

κt−t
′
ht
′
j ẑ

t′−1
i . (49)

For an adaptive LIF neuron the learning rule (47) becomes with random feed-back weights:

∆θrec
ji = η

∑
t

(∑
k

Brandom
jk (y∗,tk − y

t
k)
)∑
t′≤t

κt−t
′
ht
′
j

(
ẑt
′−1
i − βεt

′
ji,a

)
. (50)
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Synaptic weight updates under e-prop 1 for classification: For the classification
tasks solved with e-prop 1, we consider one readout neuron ytk per output class, and the
network output at time t corresponds to the readout with highest voltage. To train the
recurrent networks in this setup, we replace the mean squared error by the the cross entropy
error E = −

∑
t,k π

∗,t
k log πtk where the target categories are provided in the form of a one-hot-

encoded vector π∗,tk . On the other hand, the output class distribution predicted by the network
is given as πtk = softmax(ytk) = exp(ytk)/

∑
k′ exp(ytk′). To derive the modified learning rule

that results from this error function E, we replace ∂E
∂zi

of equation (42) with the corresponding
gradient:

∂E

∂ztj
= θout

kj

∑
t′≥t

(πt
′
k − π∗,t

′

k )κt
′−t. (51)

Following otherwise the same derivation as previously it results that the weight update of
e-prop 1 previously written in equation (49) becomes for a LIF neuron:

∆θrec
ji = η

∑
t

(∑
k

Brandom
jk (π∗,tk − π

t
k)
)∑
t′≤t

κt−t
′
ht
′
j ẑ

t′−1
i . (52)

Similarly, for the weight update of the output connections, the only difference between the
update rules for regression and classification is that the output ytk and the target y∗,tk are
respectively replaced by πtk and π∗,tk :

∆θout
kj = η

∑
t

(π∗,tk − π
t
k)
∑
t′≤t

κt−t
′
zt
′
j . (53)

Firing rate regularization: To ensure that the network computes with low firing rates,
we add a regularization term Ereg to the error function E. This regularization term has the
form:

Ereg =
∑
j

(
fav
j − f target)2 , (54)

where f target is a target firing rate and fav
j = δt

ntrialsT

∑
t,k z

t
j is the firing rate of neuron j

averaged over the T time steps and the ntrials trials separating each weight update. To com-
pute the weight update that implements this regularization, we follow a similar derivation as
detailed previously for the mean square error. Instead of equation (42), the partial derivative
has now the form:

∂Ereg

∂ztj
=

δt

ntrialsT

(
fav
j − f target) . (55)

Inserting this expression into the equation (43), and choosing the special case of a LIF neurons,
it results that the weight update that implements the regularization is written:

∆θrec
ji = η

∑
t

δt

ntrialsT

(
f target − fav

j

)
htj ẑ

t−1
i . (56)

The same learning rule is also applied to the input weights ∆θin
ji . This weight update is

performed simultaneously with the weight update exhibited in equation (49) which optimizes
the main error function E. For other neuron models such as adaptive LIF neurons, the
equation (56) has to be updated accordingly to the appropriate definition of the eligibility
traces.

Details to simulations for E-prop 1

General simulation and neuron parameters: In all simulations of this article, net-
works were simulated in discrete time with a simulation time step of 1 ms. Synapses had
a uniform transmission delay of 1 ms. Synaptic weights of spiking neural networks were
initialized as in (Bellec et al., 2018b).

Implementation of the optimization algorithm: A dampening factor of γ = 0.3
for the pseudo-derivative of the spiking function was used in all simulations of this article. The
weights were kept constant for nbatch independent trials (specified for individual simulations
below), and the gradients were cumulated additively. After collecting the gradients, the
weights were updated using the Adam algorithm (Kingma and Ba, 2014). For all simulations
of e-prop 1, the gradients were computed according to equation (45).
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Integration of the “Clopath rule” in e-prop 1 : We replaced the presynpatic and
postsynaptic factors of equation (23) with the model of long term potentiation defined in
Clopath et al. (2010) and fitted to data in the same paper. The learning rule referred as
“Clopath rule” in our experiments differ from e-prop 1 by the replacement of the pseudo
derivative htj by another non linear function of the post synpatic voltage. In comparison to
equation (24) the computation of the error gradient becomes:

dE

dθrec
ji

=
∑
t

dE

dztj
[vtj − v+

th]+[v̂tj − v−th]+ẑt−1
i , (57)

where v̂tj is an exponential trace of the post synaptic membrane potential with time constant
10 ms and [·]+ is the rectified linear function. The time constant of v̂tj was chosen to match
their data. The thresholds v−th and v+

th were vth
4

and 0 respectively. All other implementation
details remained otherwise unchanged between the default implementation of eprop 1 and
this variant of the algorithm.

Pattern generation task 1.1: The three target sequences had a duration of 1000 ms
and were given by the sum of four sinusoids for each sequence with fixed frequencies of 1 Hz,
2 Hz, 3 Hz, and 5 Hz. The amplitude of each sinusoidal component was drawn from a uniform
distribution over the interval [0.5, 2]. Each component was also randomly phase-shifted with
a phase sampled uniformly in the interval [0, 2π).

The network consisted of 600 all-to-all recurrently connected LIF neurons (no adaptive
thresholds). The neurons had a membrane time constant of τm = 20 ms and a refractory
period of 5 ms. The firing threshold was set to vth = 0.61. The network outputs were provided
by the membrane potential of three readout neurons with a time constant τout = 20 ms. The
network received input from 20 input neurons, divided into 5 groups, which indicated the
current phase of the target sequence similar to (Nicola and Clopath, 2017). Neurons in group
i ∈ {0, 4} produced 100 Hz regular spike trains during the time interval [200 · i, 200 · i+ 200)
ms and were silent at other times.

A single learning trial consisted of a simulation of the network for 1000 ms, i.e., the time
to produce the target pattern at the output. The input, recurrent, and output weights of the
network were trained for 1000 iterations with the Adam algorithm, a learning rate of 0.003
and the default hyperparameters (Kingma and Ba, 2014). After every 100 iterations, the
learning rate was decayed with a multiplicative factor of 0.7. A batch size of a single trial
was used for training. To avoid an implausibly high firing rate, a regularization term was
added to the loss function, that keeps the neurons closer to a target firing rate of 10 Hz. The
regularization loss was given by the mean squared error (mse) between the mean firing rate
of all neurons over a batch and the target rate. This loss was multiplied with the factor 0.5
and added with the target-mse to obtain the total loss to be optimized.

The comparison algorithms in Figure 1d,e were implemented as follows. When training
with e-prop 1, the random feedback weights Brandom were generated from a Gaussian dis-
tribution with mean 0 and variance 1

n
, where n is the number of network neurons. For the

performance of the global error signal, e-prop 1 was used, but the random feedback matrix
was replaced by a matrix where all entries had the value 1√

n
. As a second baseline a network

without recurrent connections was trained with e-prop 1 (“No rec. conn.” in panel d). We
further considered variants of e-prop 1 where we sampled independent feedback matrices for
every 1 or 20 ms window (“1 ms” and “20 ms” in panels d and e). Note that the same sequence
of feedback matrices had to be used in every learning trials. We also compared to BPTT,
where the Adam algorithm was used with the same meta-parameters as used for e-prop 1.

Store-recall task 1.2: The store-recall task is described in Results. Each learning trial
consisted of a 2400 ms network simulation. We used a recurrent LSNN network consisting
of 10 standard LIF neurons and 10 LIF neurons with adaptive thresholds. All neurons had
a membrane time constant of τm = 20 ms and a baseline threshold of vth = 0.5. Adaptive
neurons had a threshold increase constant of β = 0.03 and a threshold adaptation time
constant of τa = 1200 ms. A refractory period of 5 ms was used. The input, recurrent
and output weights of the network were trained with a learning rate of 0.01 and the Adam
algorithm the default hyperparameters (Kingma and Ba, 2014). Training was stopped when
a misclassification rate below 0.05 was reached. After 100 iterations, the learning rate was
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decayed with a multiplicative factor of 0.3. The distribution of the random feedback weights
Brandom was generated from normal distribution with mean 0 and variance 1

n
, where n is the

number of recurrent neurons. A batch size of 128 trials was used.
In Figure 2b, we quantified the information content of eligibility traces at training iteration

25, 75, and 200 in this task. After the predefined number of training iterations, we performed
test simulations where we provided only a store command to the network and simulated the
network up to 6000 ms after this store. A linear classifier (one for a time window of 100 ms,
at every multiple of 50 ms) was then trained to predict the stored bit from the value of the
eligibility traces at that time. For this purpose we used logistic regression with a squared
regularizer on the weights. We used 150 different simulations to train the classifiers and
evaluated the decoding accuracy, as shown in Figure 2b, on 50 separate simulations.

Speech recognition task 1.3: We followed the same task setup as in (Greff et al., 2017;
Graves and Schmidhuber, 2005). The TIMIT dataset was split according to Halberstadt
(Glass et al., 1999) into a training, validation, and test set with 3696, 400, and 192 sequences
respectively. The networks received preprocessed audio at the input. Preprocessing of audio
input consisted of the following steps: computation of 13 Mel Frequency Cepstral Coefficients
(MFCCs) with frame size 10 ms on input window of 25 ms, computation of the first and the
second derivatives of MFCCs, concatenation of all computed factors to 39 input channels.
Input channels were mapped to the range [0, 1] according to the minumum/maximum values
in the training set. These continuous values were used directly as inputs xti in equation (20).

To tackle this rather demanding benchmark task, we used a bi-directional network architec-
ture (Graves and Schmidhuber, 2005), that is, the standard LSNN network was appended by
a second network which recieved the input sequence in reverse order. A bi-directional LSNN
(300 LIF neurons and 100 adaptive LIF neurons per direction) was trained with different
training algorithms. Unlike in task 1.1, the random feedback weights Brandom were generated
with a variance of 1 instead of 1

n
as we observed that it resulted in better performances for

this task.
With LSNNs we first ran a simple 8 point grid search over the firing threshold hyperpa-

rameter vth. The best performing value for threshold was then used to produce the LSNN
results (see Figure 2c). For the strong baseline we include the result of LSTMs applied to
the same task (Greff et al., 2017), where the hyperparameters were optimized using random
search for 200 trials over the following hyperparameters: number of LSTM blocks per hidden
layer, learning rate, momentum, momentum type, gradient clipping, and standard deviation
of Gaussian input noise. In (Greff et al., 2017) the mean test accuracy of 10% best performing
hyperparameter settings (out of 200) is 0.704.

Every input step which represents the 10 ms preprocessed audio frame is fed to the LSNN
network for 5 consecutive 1 ms steps. All neurons had a membrane time constant of τm = 20
ms and a refractory period of 2 ms. Adaptive neurons had β = 1.8 and an adaptation time
constant of τa = 200 ms. We used 61 readout neurons, one for each class of the TIMIT dataset.
A softmax was applied to their output, which was used to compute the cross entropy error
against the target label. Networks were trained using Adam with the default hyperparameters
(Kingma and Ba, 2014) except εAdam = 10−5. The learning rate was fixed to 0.01 during
training. We used a batch size of 32 and the membrane time constant of the output neurons
was 3 ms. Regularizaion of the network firing activity was applied as in Task 1.1.

E-prop 2

In e-prop 2, the learning signals are computed in a separate error module. In order to dis-
tinguish the error module from the main network, we define a separate internal state vector
for each neuron j in the error module σtj and network dynamics σtj = Me(σ

t−1
j , ζt−1, ξt,Ψ)

for it. Here, ζt−1 is the vector of neuron outputs in the error module at time t, and synaptic
weights are denoted by Ψ. The inputs to the error module are written as: ξt = (xt,zt,y∗,t)
with y∗,t denoting the target signal for the network at time t. Note that the target signal
is not necessarily the target output of the network, but can be more generally a target state
vector of some controlled system. For example, the target signal in task 2.1 is the target
position of the tip of an arm at time t, while the outputs of the network define the angular
velocities of arm joints.
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The error module produces at each time t a learning signal L̂tj for each neuron j of the
network, which were computed according to:

L̂tj = αeL̂
t−1
j +

∑
i

Ψjioutζti , (58)

where the constant αe defines the decay of the resulting learning signal, e.g. the concentration
of a neuromodulator.

Synaptic weight updates under e-prop 2: The task of the error module is to compute
approximations to the true learning in equation (4). Therefore, in comparison to equation (23),

we obtain an estimation of the true error gradients dE
dθrecji

given as d̂E
dθrecji

=
∑
t L̂

t
jh
t
j ẑ
t−1
i , which

in turn leads to an update rule for the synaptic weights using a fixed learning rate η:

∆θrec
ji = −η

∑
t

L̂tjh
t
j ẑ
t−1
i (59)

Similarly, the update rule for input weights is obtained by replacing ẑt−1
i in favor of x̂t−1

i .
In the experiments regarding e-prop 2, input and recurrent weights were updated a single

time in the inner loop of L2L according to θtest = θinit + ∆θ, whereas output weights were
kept constant.

Target movement task 2.1: In this task, the two network outputs are interpreted
as angular velocities φ̇1 and φ̇2 and are applied to the joints of a simple arm model. The
configuration of the arm model at time t is described by the angles φt1 and φt2 of the two joints
measured against the horizontal and the first leg of the arm respectively, see Figure 3c. For
given angles, the position yt = (xt, yt) of the tip of the arm in Euclidean space is given by
xt = l cos(φt1) + l cos(φt1 + φt2) and yt = l sin(φt1) + l sin(φt1 + φt2). Angles were computed by

discrete integration over time: φti =
∑
t′≤t φ̇

t′
i δt + φ0

i using a δt = 1 ms. The initial values

were set to φ0
1 = 0 and φ0

2 = π
2

.
Feasible target movements y∗,t of duration 500 ms were generated randomly by sampling

the generating angular velocities Φ̇∗,t = (φ̇∗,t1 , φ̇∗,t2 ). Each of the target angular velocities
exhibitted a common form

φ̇∗,ti =
∑
m

Sim sin

(
2πωim

t

T
+ δim

)
def
=
∑
m

qtim , (60)

where the number of components m was set to 5, Sim was sampled uniformly in [0, 30],
ωim was sampled uniformly in [0.3, 1] and δim was sampled uniformly in [0, 2π]. After this
sampling, every component qt2,m in φ̇∗,t2 was rescaled to satisfy maxt(q

t
2,m)−mint(q

t
2,m) = 20.

In addition, we considered constraints on the angles of the joints: φ1 ∈ [−π
2
, π

2
] and φ2 ∈ [0, π].

If violated, the respective motor commands φ̇∗,ti were rescaled to match the constraints.
A clock-like input signal was implemented as in task 1.1 by 20 input neurons, that fired

in groups in 5 successive time steps with a length of 100 ms at a rate of 100 Hz.
Outer loop optimization: The procedure described above defines an infinitely large

familiy of tasks, each task of the family being one particular target movement. We optimized
the parameters of the error module as well as the initial parameters of the learning network in
an outer-loop optimization procedure. The learning cost LC for tasks C in the above defined
family of tasks was defined as

LC(θtest,C) =
∑
t

((
yt(θtest,C)− y∗,t

)2
+
(

Φ̇t(θtest,C)− Φ̇∗,t
)2
)

+ λEreg (61)

to measure how well the target movement was reproduced. We then optimized the expected
cost over the family of learning task using BPTT. In addition, a regularization term for firing
rates as defined in equation (54) was introduced with λ = 0.25. Gradients were computed over
batches of 200 different tasks to empirically estimate the learning cost across the family of
tasks: EC∼F [LC(θtest,C)] ≈ 1

200

∑200
i=1 LCi(θtest,Ci). We used the Adam algorithm (Kingma

and Ba, 2014) with a learning rate of 0.0015. The learning rate decayed after every 300 steps
by a factor of 0.95.

30



Model parameters: The learning network consisted of 400 LIF neurons according to
the model stated in equation (20) and (21), with a membrane time constant of 20 ms and a
threshold of vth = 0.4. The motor commands φ̇tj predicted by the network were given by the
output of readout neurons with a membrane time constant of 20 ms. The target firing rate
in the regularizer was set to f target = 20 Hz.

The error module was implemented as a recurrently connected network of 300 LIF neurons,
which had the same membrane decay as the learning network. The neurons in the error
module were set to have a threshold of vth = 0.4. Readout neurons of the error module had
a membrane time constant of 20 ms. Finally, the weight update with e-prop according to
equation (7) used a learning rate of η = 10−4. The target firing rate in the regularizer was
set to f target = 10 Hz.

Both the learning network as well as the error module used a refractory period of 5 ms.
Linear error module: The alternative implementation of a linear error module was

implemented as a linear mapping of inputs formerly received by the spiking implementation
of the error module. Prior to the linear mapping, we applied a filter to the spiking quantities
xt, zt such that x̂t =

∑
t′≤t α

t−t′
e xt and similarly for ẑt. Then, the learning signal from the

linear error module was given as: L̂tj =
∑
i Φxjix̂

t
i +

∑
i Φzjiẑ

t
i +

∑
i Φyjiy

∗,t
i

E-prop 3

We first describe e-prop 3 in theoretical terms when the simulation duration is split into inter-
vals of length ∆t and show two mathematical properties of the algorithm: first, it computes
the correct error gradients if the synthetic gradients are ideal; and second, when the synthetic
gradients are imperfect, the estimated gradients are a better approximation of the true error
gradient in comparison to BPTT. In subsequent paragraphs we discuss details of the imple-
mentation of e-prop 3, the computation of the synthetic gradients and hyperparameters used
in tasks 3.1 and 3.2.

Notation and review of truncated BPTT: We consider the true error gradient dE
dθji

to be the error gradient computed over the full simulation ranging from time t = 1 to time T .
Truncated BPTT computes an approximation of this gradient. In this paragraph, we identify
the approximations induced by truncated BPTT.

In truncated BPTT, the network simulation is divided into K successive intervals of
length ∆t each. For simplicity we assume that T is a multiple of ∆t, such that K = T/∆t
is an integer. Using the shorthand notation tm = m∆t, the simulation intervals are thus
{1, . . . , t1}, {t1 + 1, . . . , t2}, . . . , {tK−1 + 1, . . . , tK}. To simplify the theory we assume that
updates are implemented after the processing of all these intervals (i.e., after time T ).

For each interval {tm−1 + 1, . . . , tm}, the simulation is initialized with the network state

stm−1 . Then, the observable states zt
′

and hidden states st
′

are computed for t′ ∈ {tm−1 +
1, . . . , tm}. It is common to use for the overall error E(z1, . . . , zT ) an error function that is
given by the sum of errors in each individual time step. Hence the error can be written as a
sum of errors Em(ztm−1+1, . . . , ztm) in the intervals:

E(z1, . . . , zT ) =

K∑
m=1

Em(ztm−1+1, . . . , ztm) . (62)

For each such interval, after network simulation until tm (the forward pass), the gradients
dEm

dst
′

j

are propagated backward from t′ = tm to t′ = tm−1 + 1 (the backward pass). The

contribution to the error gradient for some paramter θji in the interval is then given by
(compare to equation (13))

gtrunc
m,ji =

tm∑
t′=tm−1+1

dEm

dst
′
j

·
∂st
′
j

∂θji
. (63)

The overall gradient dE
dθji

is then approximated by the sum of the gradients in the intervals:

gtrunc
1,ji + gtrunc

2,ji + · · ·+ gtrunc
K,ji .
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This approximation is in general not equal to the true error gradient dE
dθji

, as it disregards

the contributions of network outputs within one interval on errors that occur in a later interval.
Synthetic gradients: To correct for the truncated gradient, one can provide a suit-

able boundary condition at the end of each interval that supplements the missing gradient.
The optimal boundary condition cannot be computed in an online manner since it depends
on future activities and future errors that are not yet available. In truncated BPTT, one
chooses dE

ds
tm+1
j

= 0 at the end of an interval {tm−1 + 1, . . . , tm}, which is exact only if the

simulation terminates at time tm or if future errors do not depend on network states of this
interval. The role of synthetic gradients is to correct this approximation by providing a black
box boundary condition SGj(z

tm ,Ψ), where SGj is a parameterized function of the network
output with parameters Ψ. SGj should approximate the optimal boundary condition, i.e.,
SGj(z

tm ,Ψ) ≈ dE

ds
tm+1
j

.

We denote the approximate gradient that includes the boundary condition given by syn-
thetic gradients by dE

dstj
. This gradient is given by

dEm
dstj

=
dEm
dstj

+ ηSG
∑
l

SGl(z
tm ,Ψ)

dstm+1
l

dstj
. (64)

We will continue our theoretical analysis with a factor ηSG = 1 (as suggested in Jaderberg
et al. (2016), we set ηSG to 0.1 in simulations to stabilize learning). We define gSG

m,ji as the
corrected version of gtrunc

m,ji that incorporates the new boundary condition. We finally define
the estimator of the error gradient with synthetic gradients as:

d̂E

dθji

SG

= gSG
1,ji + gSG

2.ji + · · ·+ gSG
K,ji. (65)

The synthetic gradient approximation is refined by minimizing the mean squared error be-

tween the synthetic gradient approximation SGj(z
tm ,Ψ) and the gradient

dEm+1

ds
tm+1
j

, which is

computed in the interval tm+1 to tm+1 and includes the next boundary condition SGl(z
tm+1):

ESG

(
ztm ,

dEm+1

dstm+1
j

,Ψ

)
=

∑
j

1

2

∥∥∥∥∥SGj(ztm ,Ψ)− dEm+1

dstm+1
j

∥∥∥∥∥
2

. (66)

Correctness of synthetic gradients: We consider Ψ∗ to be optimal synthetic gradient
parameters if the synthetic gradient loss in equation (66) is always zero. In this case, all syn-
thetic gradients SG(ztm ,Ψ∗) exactly match dE

ds
tm+1
j

, and the computed approximation exactly

matches the true gradient. This analysis assumes the existence of the optimal parameters Ψ∗

and the convergence of the optimization algorithm to the optimal parameters. This is not
necessarily true in practice. For an analysis of the convergence of the optimization of the
synthetic gradient loss we refer to (Czarnecki et al., 2017).

Proof of correctness of e-prop 3 with truncated time intervals: Similarly to
the justification above for synthetic gradients, we show now that the error gradients dE

dθji
can

be estimated with e-prop 3 when the gradients are computed over truncated intervals.
Instead of using the factorization of the error gradients as in BPTT (equation (13)), e-prop

3 uses equation (1). The approximate gradient that is computed by e-prop 3 with respect to
neuron outputs is given analogously to equation (64)

dEm
dztj

=
dEm
dztj

+
∑
l

SGl(z
tm ,Ψ)

dstm+1
l

dztj
. (67)

We are defining the learning signal as in equation (4), but now using the enhanced estimate
of the derivative of the interval error:

L
t
m,j =

dEm
dztj

dztj
dstj

. (68)
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This learning signal is computed recursively using equation (14) within an interval. At the
upper boundaries tm of the intervals, the boundary condition is computed via synthetic gra-
dients.

Analogous to gSG
m,ji, we define the gradient approximation of e-prop 3 ge−prop

m,ji as the cor-

rected version of gtrunc
m,ji that incorporates the boundary condition for interval {tm−1+1, . . . , tm}

via synthetic gradients. This gradient approximation is given by

ge−prop
m,ji =

tm∑
t=tm−1+1

L
t
m,j · εtji . (69)

Considering the sum of terms ge−prop
m,ji associated with each interval, we write the estimator of

the true error gradient computed with e-prop 3 as:

d̂E

dθji

e−prop

= ge−prop
1,ji + ge−prop

2,ji + · · ·+ ge−prop
K,ji . (70)

Assuming now that this boundary condition is provided by an error module computing the
synthetic gradients SG with optimal parameters Ψ∗. As explained above, it follows that all
SGl(z

tm ,Ψ∗) computes exactly dE

ds
tm+1
l

which is true independently of the usage of BPTT or

e-prop 3. In the later case, it follows that dEm

dztj
is correctly computing dE

dztj
and hence, L

t
m,j

is equal to the true learning signal Ltj . Looking back at equation (1), it follows that the
estimator defined at equation (70) is equal to the true gradient if the parameters of the error
module are optimal.

Optimization of the synthetic gradient parameters Ψ: We define here the algo-
rithm used to optimize the synthetic gradients parameters Ψ and the network parameters θ.
Using the same truncation scheme as described previously, we recall that the loss function
Em formalizes the loss function on interval m denoted Em with the modification that it takes
into account the boundary condition defined by the synthetic gradients. We then consider the
loss E′ as the sum of the term Em and the synthetic gradient loss ESG. The final algorithm
is summarized by the pseudo-code given in Algorithm 1. Note that this algorithm is slightly
different from the one used originally by Jaderberg et al. (2016). Our version requires one
extra pair of forward and backward passes on each truncated interval but we found it easier
to implement.

1 for m ∈ {1, . . . ,K} do
2 Simulate the network over the interval {tm−1 + 1, . . . , tm} to compute the network

states stj

3 Backpropagate gradients on the interval {tm−1 + 1, . . . , tm} to compute dEm

dθ using the

boundary condition provided by SGl(z
tm ,Ψ). Store stmj and εtmji to be used as initial

states in the next interval.
4 Simulate the network over the interval {tm + 1, . . . , tm+1} to compute the network

states stj

5 Backpropagate gradients on the interval {tm + 1, . . . , tm+1} to obtain dEm+1

dstm+1
j

and

compute dESG

dθ , dESG

dΨ ,

6 Update the parameters Ψ and θ using d(Em+ESG)
dθ and dESG

dΨ with any variant of
stochastic gradient descent

7 end
Algorithm 1: Pseudo code to describe the algorithm used to trained simultaneously the network
parameters θ and the synthetic gradients Ψ in both e-prop 3 and BPTT with synthetic gradients.

Copy-repeat task 3.1: Each sequence of the input of the copy repeat task consists of
the “8-bit” pattern of length npattern encoded by 8 binary inputs, a stop character encoded by
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a 9th binary input channel, and a number of repetitions nrepetitions encoded using a one hot
encoding over the 9 input channels. While the input is provided, no output target is defined.
After that the input becomes silent and the output target is defined by the nrepetitions copies of
the input followed by a stop character. As for the input, the output pattern is encoded with the
first 8 output channels and the 9-th channel is used for the stop character. Denoting the target
output b∗,tk of the channel k at time t and defining σ(ytk) as the output of the network with
ytk a weighted sum of the observable states ztj and σ the sigmoid function, the loss function is
defined by the binary cross-entropy loss: E = −

∑
t,k(1−b∗,tk ) log2 σ(ytk)+b∗,tk log2

(
1− σ(ytj)

)
.

The sum is running over the time steps where the output is specified.
We follow the curriculum of Jaderberg et al. (2016) to increase gradually the complexity

of the task: when the error E averaged over a batch of 256 sequences is below 0.15 bits per
sequences, npattern or nrepetitions are incremented by one. When the experiments begins,
we initialize npattern and nrepetitions to one. After the first threshold crossing npattern is
incremented, then the increments are alternating between npattern and nrepetitions.

For each batch of 256 sequences, the parameters are updated every ∆t = 4 time steps
when the simulation duration in truncated as in BPTT. The parameter updates are applied
with Adam, using learning rate 0.0001 and the default hyperparameters suggested by Kingma
and Ba (2014).

Word prediction task 3.2: Training was performed for 20 epochs, where one epoch
denotes a single pass through the complete dataset. All learning rules used gradient descent
to minimize loss with initial learning rate of 1 which was decayed after every epoch with factor
0.5, starting with epoch 5. Mini-batch consisted of 20 sequences of length ∆t. Sequence of
sentences in Penn Treebank dataset are connected and coherent, so the network state was
reset only after every epoch. Equally the eligibility traces are set to zero at the beginning of
every epoch.
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Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. Neuron, 32(6):1149–1164.

Sugihara, H., Chen, N., and Sur, M. (2016). Cell-specific modulation of plasticity and cortical
state by cholinergic inputs to the visual cortex. Journal of Physiology, 110(1-2):37–43.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, volume 135.
MIT press Cambridge.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763.

Wang, Z., Joshi, S., Savel’ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu, S.,
Zhuo, Y., et al. (2018). Fully memristive neural networks for pattern classification with
unsupervised learning. Nature Electronics, 1(2):137.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280.

Yang, Y., Yin, M., Yu, Z., Wang, Z., Zhang, T., Cai, Y., Lu, W. D., and Huang, R. (2017).
Multifunctional nanoionic devices enabling simultaneous heterosynaptic plasticity and effi-
cient in-memory boolean logic. Advanced Electronic Materials, 3(7):1700032.

Zenke, F. and Ganguli, S. (2018). Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541.

37


