

A STITCH IN TIME SAVES NINE: PROACTIVE SELF-REFINEMENT FOR LANGUAGE MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ABSTRACT

Recent advances in self-refinement have demonstrated significant potential for improving the outputs of large language models (LLMs) through iterative refinement. However, most existing self-refinement methods rely on a reactive process with a fixed number of iterations, making it difficult to determine the optimal timing and content of refinement based on the evolving generation context. Inspired by the way humans dynamically refine their thoughts during execution, we propose ProActive Self-Refinement (PASR), a novel method that enables LLMs to refine their outputs during the generation process. Unlike methods that regenerate entire responses, **PASR proactively decides whether, when, and how to refine based on the model's internal state and evolving context**. We conduct extensive experiments on a diverse set of 10 tasks to evaluate the effectiveness of PASR. Experimental results show that PASR significantly enhances problem-solving performance. In particular, on Qwen3-8B, PASR reduces average token consumption by 41.6% compared to standard generation, while also achieving an 8.2% improvement in accuracy. Our code and baselines used in the paper are available in the GitHub ¹.

1 INTRODUCTION

Self-refinement, as a fundamental cognitive capacity, is essential for effective problem-solving in humans. It involves actively monitoring one's thought processes, identifying and correcting errors, and iteratively adjusting responses and behaviors (Dewey, 1986; Kuhl & Beckmann, 2012). Its significance in human intelligence highlights a promising direction for developing more autonomous and robust AI agents. Inspired by this powerful cognitive process, recent work has applied the self-refinement to Large Language Models (LLMs).

Existing self-refinement methods for LLMs typically follow **patch-after-failure (post-hoc)** paradigm, where an initial response is generated and then iteratively improved based on feedback through multiple rounds of refinement iterations (Madaan et al., 2023; Welleck et al., 2023; Huang et al., 2024; Ganguli et al., 2023a). Broadly, these methods fall into two categories. The first employs carefully crafted prompts to elicit self-refinement behaviors, often by explicitly instructing it to correct or refine its previous outputs (Ganguli et al., 2023b; Olausson et al., 2024; 2023a). The second leverages Supervised Fine-Tuning (SFT) on synthetic datasets that pair suboptimal responses with improved versions, training the model to refine its outputs automatically (Havrilla et al., 2024; Du et al., 2025). (Tong et al., 2024; Xie et al., 2025; An et al., 2024).

While these post-hoc self-refinement methods have improved performance on various tasks, they remain fundamentally reactive and lack the ability to proactively determine **whether, when and how** to perform refinement. (**Whether:**) these methods are often applied blindly after initial generation, requiring multiple iterations whose optimal number is unclear and usually demands extensive tuning (Du et al., 2025; Madaan et al., 2023). (**When:**) errors arising during initial generation can propagate through subsequent steps (Gan et al., 2025; Bachmann & Nagarajan, 2024), making later correction more difficult. (**How:**) these methods rely heavily on external feedback mechanisms, such as tool-assisted evaluations and auxiliary models (Gou et al., 2024; Xie et al., 2025; Chen et al., 2024), and inappropriate feedback even degrade the performance (Huang et al., 2024).

¹<https://anonymous.4open.science/r/Proactive-Self-Refine-in-LLMs/>

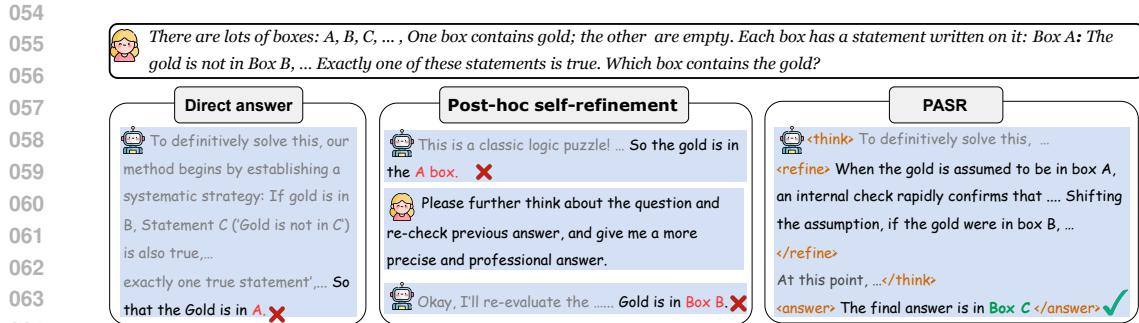


Figure 1: Comparison between the post-hoc refinement method (middle) and our proposed PASR (right). The post-hoc refinement method iteratively refines its initial answer. In contrast, PASR proactively refines its reasoning process during the generation.

It is crucial to equip LLMs with **proactive self-refinement** capabilities during generation, allowing models to autonomously determine the appropriate timing and content for refinement based on the evolving context. While advanced reasoning models like DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1 (Jaech et al., 2024) demonstrate some in-process refinement behaviors, these mechanisms are neither explicitly designed for proactive self-refinement nor systematically evaluated for their impact on output quality. Furthermore, the underlying mechanisms driving these refinements remain unclear, limiting our understanding of how to develop more effective self-refinement capabilities in LLMs.

A straightforward approach for equipping LLMs with proactive self-refinement is training them on demonstrations of adaptive refinement behavior. However, this method faces two significant challenges. First, constructing such demonstration data is non-trivial, as defining the optimal timing for refinement during generation is impractical and distilling it from advanced LLMs is not feasible. Second, merely imitating these demonstrations is insufficient for the model to truly acquire the capability (Kumar et al., 2025; Wang et al., 2025). Models struggle to generalize adaptive self-refinement behavior to unseen tasks, and in some cases, their performance even deteriorates.

Therefore, we propose **ProActive Self-Refinement (PASR)**, a Reinforcement Learning (RL) method that trains LLMs to adaptively refine their outputs during generation. Unlike post-hoc refinement, which is applied after generation based on predefined rules, PASR leverages on-policy rollouts to explore whether, when, and how to refine, conditioned on the task and generation state (Figure 1). In contrast to SFT, RL shapes the model’s behavior through reward signals (Lee et al., 2024; Yuan et al., 2024). A key challenge is defining what counts as an effective refinement. If the rewards are misaligned, the model may either miss important refinement opportunities or make unnecessary modifications to already correct outputs. To address this, we introduce a proxy evaluation strategy that compares refinements against standard outputs, encouraging timely, necessary, and contextually appropriate refinement.

In summary, our main contributions are summarized as follows:

- We formally define proactive self-refinement as a task, allowing models to iteratively decide whether, when, and how to refine.
- We introduce ProActive Self-Refinement (PASR), a reinforcement learning framework that enables LLMs to autonomously refine their outputs during generation.
- We design a comparison-based reward that encourages timely, necessary, and contextually appropriate refinements.
- Extensive experiments show that PASR improves both efficiency and accuracy. Notably, on Qwen3-8B, it reduces token consumption by 41.6% while increasing accuracy by 8.2%, demonstrating the practical effectiveness of proactive self-refinement.

2 METHOD

2.1 TASK FORMULATION

Unlike existing post-hoc refinement methods, our task is that empowers the model to proactive self-refine its generated content during the generation process. We formalize this in-process refinement

108 behavior as follows:

109 **Error Correction.** Fixing factual inaccuracies, logical fallacies, or computational mistakes introduced
110 in earlier outputs.

111 **Information Complement.** Filling in missing yet critical details to ensure completeness and correctness.

112 **Solution Improvement.** Improving the effectiveness and efficiency of the proposed solution by
113 introducing more advanced strategies or refined representations.

114 **Task Alignment.** Re-aligning content with the task goal or user intent when divergence is detected.

115 The model proactively decides whether, when and how to refine previously generated parts of its
116 internal reasoning trace, integrating these updates into its ongoing generation process. This sequential
117 decision-making problem is naturally formulated as a Markov Decision Process (MDP) (Bellman,
118 1957).

119 Formally, given an input query x , the goal is to generate a final response y' . This is achieved through
120 an iterative refinement process that constructs an intermediate generation trace $z = (z_1, z_2, \dots, z_T)$,
121 where T is the total number of generation tokens. At each timestep i (from 1 to T), the model is in
122 the **state** s_i , which is determined by the input x and the trace generated $z_{\{1:i-1\}}$ so far. It then takes
123 an **action** a_i chosen from an action space \mathcal{A} , which consists of two main types of actions: *Content*
124 *Generation* a_{gen} and *Trace Refinement* a_{refine} . The *Content Generation* extends the current line of
125 reasoning. The model produces the next reasoning step and appends it directly to the end of the
126 existing trace, thereby moving the reasoning process forward. The *Trace Refinement* focuses on
127 improving the quality of the already generated trace. Instead of advancing the reasoning, the model
128 inspects previously produced content, identifies potential weaknesses, and generates corrective or
129 explanatory additions to enhance clarity, consistency, or correctness. The sequence of states, actions,
130 and resulting trace segments $((s_1, a_1, z_1), \dots, (s_T, a_T, z_T))$ constitutes an **observation**. The final
131 response y' is derived from the complete trace z . The training objective is to learn the optimal **policy**
132 π that maximizes the expected reward of proactive refinement responses. The reward, denoted as
133 $R_{y'}$, reflects the quality of the response resulting from proactive trace refinement. The objective is
134 formalized as:

$$135 \max_{\pi} \sum_x \mathbb{E}_{y' \sim \pi(\cdot|x)} [R_{y'}] \quad (1)$$

138 2.2 PASR: PROACTIVE SELF-REFINEMENT VIA RL

139 In this work, we employ Group Relative Policy Optimization (GRPO) algorithm, a variant of
140 Proximal Policy Optimization (PPO), specifically designed to stabilize training through group-wise
141 advantage normalization. For each query x , the policy π_{θ} samples a group of candidate responses
142 $G_x = \{(y'_1, R_{y'_1}), \dots, (y'_n, R_{y'_n})\}$. where each pair contains a response and its reward.

143 We normalize the advantage of each response y'_i in group G_x as:

$$144 A_i(y'_i|x) = \frac{R_{y'_i} - \mu_x}{\sigma_x + \xi}, \quad (2)$$

145 where μ_x and σ_x are the mean and standard deviation of rewards in G_x , and ξ is a small constant
146 added for numerical stability to avoid division by zero. The GRPO objective function $J_{\text{GRPO}}(\theta)$ is
147 formulated to balance reward maximization and policy stability, which is defined as:

$$148 J_{\text{GRPO}}(\theta) = \mathbb{E}_G \left[\frac{1}{G} \sum_{i=1}^G A_i(y'_i|x) \cdot \min \left(r_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) \right) - \beta D_{\text{KL}}(\pi_{\theta}(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)) \right] \quad (3)$$

149 where $r_i = \frac{\pi_{\theta}(y'_i|x)}{\pi_{\text{old}}(y'_i|x)}$, π_{old} is the policy before the update. ϵ is a hyperparameter controlling the
150 clipping range, and β weights the KL-divergence penalty. The KL divergence term, $D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) =$
151 $\frac{\pi_{\text{ref}}(y'_i|x)}{\pi_{\theta}(y'_i|x)} - \log \left(\frac{\pi_{\text{ref}}(y'_i|x)}{\pi_{\theta}(y'_i|x)} \right) - 1$, enforces proximity to a reference policy π_{ref} , thus preventing
152 excessive policy shifts and mitigating the risk of over-optimization.

153 **PASR Rollout.** To enable the model to autonomously determine both whether, when and how to
154 perform refinement during the generation process, we first design a structured output format guided
155 by a system prompt. The prompt is shown in Table 6.

162
 163
 164 <think>
 165 Here is the reasoning process ...
 166 <refine>
 167 Error Correction;
 168 Information Complement;
 169 Solution Improvement;
 170 Task Alignment;
 171 </refine>
 172 ... Integrate the refinement and continue reasoning
 173 </think>
 174 <answer> Here is the final answer </answer>
 175
 176
 177

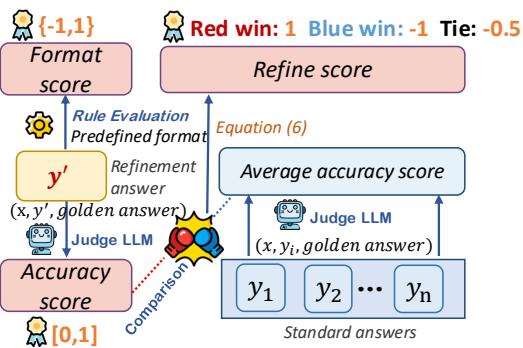


Figure 2: **Left:** Answer format used in PASR. **Right:** Reward design for a generated answer y' during training. The total reward is computed as the sum of the format score, accuracy score, and refinement score, as defined in Equation 7.

The system prompt explicitly instructs the model to structure its output using three specialized tags: `<think>`, `<refine>` and `<answer>`, which denote the reasoning trajectory, refinement segments, and final response, respectively. The `<think>` tag encapsulates the model’s entire reasoning trajectory. Within this reasoning scope, the `<refine>` tag identifies specific segments where the model revises or improves previously generated content. The `<refine>` tag required to be nested within the `<think>` tag, indicating that refinement is an integral part of the model’s reasoning process. After each `<refine>` segment, the model continues reasoning based on the updated content, allowing refinements to directly influence subsequent steps. The model is encouraged to perform recursive refinement, allowing it to invoke the `<refine>` action multiple times during a single generation whenever it deems further improvements beneficial.

The use of these specialized tags enforces a **semantically structured generation process**, guiding the model to clearly distinguish and focus on each phase, including reasoning, refinement, and final response, with each phase serving an explicit functional role. The refinement output format of PASR is illustrated in Figure 2.

2.3 REWARD DESIGN

Rule-based reward mechanisms have demonstrated strong empirical performance and are widely adopted in RL settings (Dao & Vu, 2025; Shao et al., 2024). In our training framework, we employ a hybrid reward scheme that combines rule-based and model-based evaluation to guide both generation and refinement behavior. Specifically, we define three types of rewards: the format reward r_{format} , the accuracy reward r_{acc} and the refinement reward r_{refine} .

Format Reward. This reward evaluates whether the generated output conforms to predefined structural constraints, defined as follows:

Constraint 1 (C1): the output must include both `<think>` and `<answer>` tag pairs; the `<refine>` tag is optional.

Constraint 2 (C2): if the `<refine>` tag appears, it must be properly nested within the `<think>` tag.

Constraint 3 (C3): the relative order of the three tags must be preserved and cannot be rearranged.

Let $C_i(y' \in \{0, 1\})$ indicates whether condition C_i is satisfied for a given output y' . The format reward $r_{\text{format}}(y')$ is then defined as:

$$r_{\text{format}}(y') = 2(C_1(y') C_2(y') C_3(y')) - 1 \quad (4)$$

This formulation assigns a reward of 1 if and only if all constraints are satisfied; otherwise, a penalty of -1 is applied. The strict binary scheme ensures that only fully well-formed outputs are positively reinforced.

Accuracy Reward. It is designed to evaluate the quality and correctness of PASR’s generated answers. As our training tasks are drawn from open-domain question, many are inherently ambiguous

216 or under-specified. Consequently, outputs are diverse and expressed in free-form language, making
 217 rule-based checks or exact string matching ineffective.
 218

219 To address this issue, following prior work (Zheng et al., 2023), we employ an advanced LLM as a
 220 judge model. The evaluation model is prompted with three components: the original question x , the
 221 generated answer y' and the reference answer \hat{y} . It then outputs a continuous score in the range $[0, 1]$,
 222 reflecting the semantic quality and task relevance of the generated response relative to the reference.
 223 Let \mathcal{J} denote the judgment function, the accuracy reward $r_{acc}(y')$ is defined as:

$$224 \quad r_{acc}(y') = \mathcal{J}(x, \hat{y}, y') \quad (5)$$

226 **Refinement Reward.** It is used to assess whether refinement actions of y' are beneficial and timely.
 227 Directly measuring the effectiveness of adaptive self-refinement is challenging, we instead employ
 228 a proxy evaluation strategy that assesses refinement quality by **comparing** the refined response y'
 229 with a set of standard responses y without refinement. Given the stochastic nature of the model's
 230 generation, we sample multiple standard responses to estimate the expected accuracy of the model,
 231 denoted as $\bar{r}_{acc}(y)$. The refinement reward is designed according to the follows principles:

232 **Reward effective refinements.** A positive reward is assigned if the refined response achieves signifi-
 233 cantly higher accuracy than the baseline average.

235 **Penalize harmful refinements.** A negative reward is given if refinement decreases accuracy relative
 236 to the baseline average.

237 **Discourage unnecessary refinements.** If the refined response yields comparable accuracy to the
 238 baseline average, a small penalty is applied to discourage redundant changes.

239 Formally, the refinement reward is defined as:

$$241 \quad r_{refine}(y') = \begin{cases} 1, & r_{acc}(y') > \bar{r}_{acc}(y) + \zeta \\ -1, & r_{acc}(y') < \bar{r}_{acc}(y) - \zeta \\ -0.5, & |r_{acc}(y') - \bar{r}_{acc}(y)| \leq \zeta \end{cases} \quad (6)$$

245 Here, ζ is a tolerance parameter that provides robustness against noise and minor fluctuations. This
 246 formulation encourages the model to refine its output only when the refinement yields a measurable
 247 gain, while penalizing ineffective or unnecessary modifications.

248 **Overall Reward.** The final reward for each response generated by π_θ is computed as the sum of the
 249 three components.

$$250 \quad R_{y'} = r_{format}(y') + r_{acc}(y') + r_{refine}(y') \quad (7)$$

252 Unlike prior approaches that rely solely on binary reward signals, our **fine-grained** reward is designed
 253 to encourage meaningful and constructive refinement while explicitly discouraging both excessive
 254 and insufficient refinement.

255 3 EXPERIMENTS

257 3.1 SETUP

259 **Training Data.** Our training data is derived from the `alpaca_evol_instruct_70k`² dataset, a
 260 general instruction-following corpus. We performed a thorough cleaning and filtering process based
 261 on the following criteria: (1) Removed questions with excessively long ground truth answers to
 262 maintain manageable response lengths. (2) Eliminated noise such as HTML tags, non-alphanumeric
 263 characters, and duplicate entries. (3) Applied frequency-based filtering to exclude rare or long-tail
 264 queries and low-frequency phrases that are unlikely to contribute effectively to the model's refinement
 265 capabilities. After these preprocessing steps, we obtained approximately 40,000 high-quality, open-
 266 domain query-answer pairs for training. We have release the training data in the GitHub.

267 **Benchmarks and Metrics.** We evaluate generalization of PASR across ten datasets covering diverse
 268 tasks. For general knowledge evaluation, we use MMLU (Hendrycks et al., 2021a). DROP (Dua
 269

²https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k

270
271
272
273 Table 1: PASR vs. other baselines. Compared to the base model, PASR achieves an average
274 performance improvement of +4.8 and +8.2 on the two models, respectively.
275
276
277
278
279
280
281
282

Methods	Public	Math			Reasoning		Knowledge		Comp.		Gene.	Sum.	AVG
		GSM8K	MATH	AIME24	ARC	GPQA	Wino	CSQA	Drop	MMLU	Xsum		
Qwen2.5-7B													
Vanilla	-	88.8	68.4	6.7	85.3	25.6	64.7	62.8	78.6	46.0	31.6	55.9	
Self-Refine ⁺ (Madaan et al., 2023)	NIPS'23	89.6	69.4	6.7	89.0	27.7	73.8	67.5	80.2	63.0	56.2	62.3	
Self-Refine(Shinn et al., 2023)	NIPS'23	<u>88.7</u>	68.4	16.7	85.3	25.6	64.1	62.3	78.6	49.0	36.0	57.5	
PTR(Du et al., 2025)	ICLR'25	88.6	61.8	10.0	91.0	<u>27.7</u>	59.0	75.3	<u>75.7</u>	74.0	<u>50.4</u>	61.6	
SCoRe(Kumar et al., 2025)	ICLR'25	82.4	63.2	3.3	67.2	14.5	48.1	46.4	65.8	56.0	35.0	48.2	
STaR(Zelikman et al., 2022)	NIPS'22	83.5	70.8	10.0	<u>88.3</u>	19.3	53.7	19.4	72.2	47.0	32.9	49.7	
ISC(Han et al., 2024)	AAAI'24	56.2	56.6	6.7	<u>67.6</u>	19.4	56.3	50.1	57.8	35.0	31.5	43.7	
RISE(Qu et al., 2024)	NIPS'24	84.9	62.4	<u>13.3</u>	82.9	23.7	60.9	<u>74.5</u>	73.1	45.0	56.6	57.7	
PASR(+prompt)	-	79.0	54.4	6.7	46.8	22.5	34.8	30.3	70.6	34.0	23.1	40.2	
PASR(+IFT)	-	89.2	70.8	3.3	84.6	23.6	<u>62.4</u>	65.4	77.3	51.0	42.0	57.0	
PASR[†]	-	88.8	73.6	10.0	86.6	29.3	57.0	67.0	79.6	75.0	49.9	61.7	
Qwen3-8B													
Vanilla	-	91.3	80.2	13.3	89.0	25.0	64.5	66.3	71.2	72.0	36.3	60.9	
Self-Refine ⁺ (Madaan et al., 2023)	NIPS'23	94.8	84.4	23.3	94.0	43.7	83.0	83.5	85.0	85.0	51.1	72.8	
Self-Refine(Shinn et al., 2023)	NIPS'23	90.5	73.0	10.0	<u>91.3</u>	29.1	<u>76.8</u>	75.8	80.8	<u>73.0</u>	<u>50.2</u>	65.0	
PTR(Du et al., 2025)	ICLR'25	88.7	72.0	6.7	80.9	32.3	66.1	46.4	65.5	53.0	33.7	54.5	
SCoRe(Kumar et al., 2025)	ICLR'25	91.4	81.2	<u>13.3</u>	87.3	36.7	70.7	63.9	78.9	72.0	45.0	64.0	
STaR(Zelikman et al., 2022)	NIPS'22	72.7	55.2	0.0	64.2	26.0	55.3	28.8	49.5	22.0	13.7	38.7	
ISC(Han et al., 2024)	AAAI'24	23.6	57.2	6.7	68.2	29.2	63.5	28.3	42.5	28.0	38.3	38.6	
RISE(Qu et al., 2024)	NIPS'24	92.5	77.4	16.7	88.3	33.3	70.8	37.2	<u>82.4</u>	44.0	49.3	59.2	
PASR(+prompt)	-	60.3	67.8	10.0	57.9	29.4	60.4	74.3	<u>75.1</u>	52.0	26.6	51.4	
PASR(+IFT)	-	<u>91.7</u>	74.6	6.7	73.6	<u>35.1</u>	68.7	29.3	73.5	36.0	36.3	52.6	
PASR[†]	-	94.9	81.4	16.7	92.3	24.5	80.0	79.6	85.3	83.0	53.0	69.1	

[et al., 2019](#)) is included to assess multi-hop and comprehensive reasoning. Mathematical reasoning is evaluated using GSM8K ([Cobbe et al., 2021](#)), MATH ([Hendrycks et al., 2021b](#)), and AIME24 ³. To test complex reasoning abilities, we adapt ARC ⁴ and GPQA ⁵. Winogrande (Wino) ([Sakaguchi et al., 2021](#)) and CommonsenseQA (CSQA) ([Talmor et al., 2019](#)) are used for knowledge-based reasoning. For summarization, we use XSum dataset ⁶. Accuracy is used as the evaluation metric for all datasets except XSum, for which we report similarity scores.

Baselines. We use Qwen2.5-7B ([Qwen et al., 2025](#)) and Qwen3-8B⁷ as the backbone models, and compare PASR against several existing methods designed to induce self-improvement or self-correction abilities in LLMs. The baselines include: (1) **Self-refine** ([Shinn et al., 2023](#)): Prompts a base model to critique and iteratively revise its own responses in a single-turn format. (2) **Self-refine⁺ (with oracle)** ([Madaan et al., 2023](#)): An enhanced version of Self-Refine that uses ground-truth answers as an oracle signal. The model first generates an initial response, then identifies errors by comparing with the ground truth and revises them accordingly. (3) **PTR** ([Du et al., 2025](#)): Constructs a progressive self-refinement dataset and applies instruction tuning to enable multi-turn, answer-level refinement. (4) **SCoRe** ([Kumar et al., 2025](#)): Employs a multi-turn reinforcement learning framework to train LLMs to self-correct without relying on oracle feedback. (5) **STaR** ([Zelikman et al., 2022](#)): Uses few-shot prompting to generate rationales for multiple questions. If the answer is incorrect, the rationale is regenerated using the correct answer. The model is iteratively fine-tuned on rationales that lead to correct outcomes. (6) **ISC** ([Han et al., 2024](#)): Builds a self-correction dataset and applies instruction tuning to train the model’s intrinsic self-correction ability to detect and amend its own errors. (7) **Rise** ([Qu et al., 2024](#)): Creates improvement trajectories showing how a model can refine its own responses under its own distribution, and fine-tunes the model on these recursive rollouts.

Detailed descriptions of the prompts, important parameters and implementation settings for all baselines are shown in the Appendix A.

³<https://huggingface.co/datasets/math-ai/aime24>

⁴https://huggingface.co/datasets/allenai/ai2_arc

⁵<https://huggingface.co/datasets/Idavidrein/gpqa>

⁶<https://huggingface.co/datasets/EdinburghNLP/xsum>

⁷<https://huggingface.co/Qwen/Qwen3-8B>

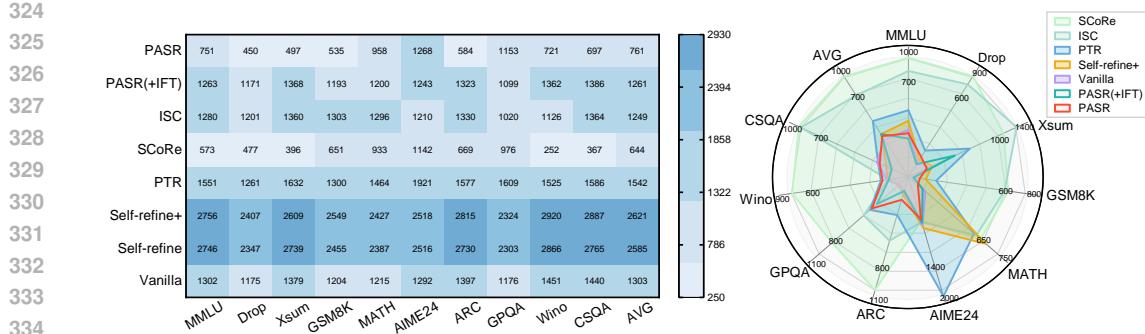


Figure 3: Comparison of average token length across different methods on various tasks. The left figure uses the Qwen3-8B backbone, while the right figure uses Qwen2.5-7B.

3.2 MAIN RESULTS

3.2.1 PERFORMANCE ANALYSIS OF PASR

Unlike prior approaches that perform refinement only after the generation is complete, PASR refines answers adaptively during the generation process. To evaluate its effectiveness, we conduct experiments across a diverse set of tasks, with a focus on generalization capability. For fair comparison, we re-implement representative baselines that are only trained on specific domains under the same training data. The results are shown in Table 1.

PASR consistently outperforms baseline models, with particularly notable gains on more challenging tasks. For example, on the Qwen2.5-7B model evaluated with the MATH dataset, PASR yields a 5.2 improvement in accuracy compared to the standard method. Similarly, on the Qwen3-8B model tested with the Drop dataset, PASR achieves a 14.1 accuracy gain over the standard method. These results suggest that PASR, is capable of dynamically detecting and correcting reasoning errors, leading to effective and domain-agnostic performance gains.

PASR achieves high performance without relying on external feedback or task-specific supervision. We find that only when oracle feedback is available to assist refinement, the self-refine⁺ provides the performance boost. This highlights the limitation of the self-refine structure in effectively improving model performance without external guidance, which is also observed in (Kumar et al., 2025; Qu et al., 2024). However, external supervision signals are often difficult to obtain and introduce additional costs. In contrast, PASR performs self-refinement autonomously, relying solely on intrinsic, self-adaptive decisions made during the generation process.

PASR demonstrates strong generalization capabilities. PASR is trained on general tasks and evaluated on domain-specific datasets to assess its generalization ability. Despite this domain shift, PASR achieves the best average performance compared to other self-refinement methods. While PASR does not always outperform all baselines on every individual dataset. For instance, its performance on Qwen2.5-7B is slightly lower on certain domain-specific tasks. This outcome is expected and understandable. Domain-specific tasks often require specialized knowledge or exhibit distributional characteristics not present in the training data. Moreover, we observe that the effectiveness of PASR can also vary with the underlying model. Compared to the more advanced Qwen3-8B, Qwen2.5-7B appears to exhibit a relatively weaker ability to leverage the learned proactive self-refinement mechanism. This suggests that stronger base models provide are fundamental to proactive self-refinement capability.

3.2.2 EFFICIENCY ANALYSIS OF PASR

PASR optimizes the output quality with minimal additional token overhead. We compare token consumption across different baselines, as illustrated in Figure 3. Compared to standard decoding method, PASR achieves notable accuracy gains with only a slight increase in token usage. This highlights its ability to enhance outputs through targeted, dynamic refinements rather than full rewrites, making it a cost-efficient refinement method. Specifically, on the Qwen2.5-7B, PASR yields

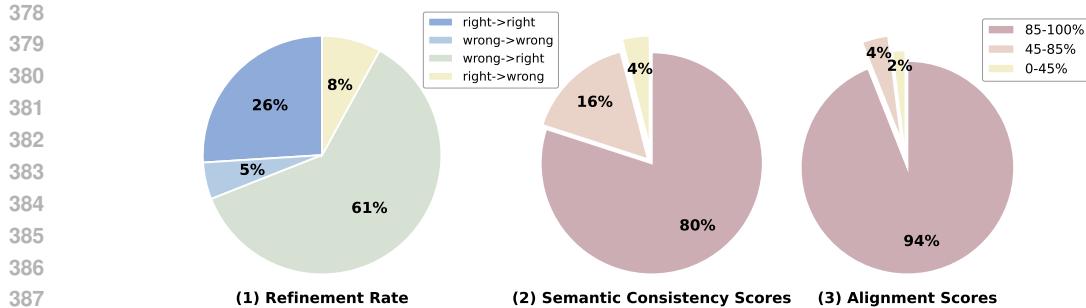


Figure 4: From left to right, the pie charts show: (1) the proportion of answers changed by PASR refinement, (2) the distribution of coherence scores reflecting how well the self-refinement builds upon the initial generation, and, and (3) the distribution of alignment scores measuring the consistency between the refinement process and the final answer. For (2) and (3), each segment represents the proportion of examples falling within a specific score range (e.g., [0–0.45], [0.45–0.85], [0.85–1.0]).

a 4.8 absolute performance improvement with only an 8.4% increase in token consumption compared to standard generation.

Additionally, while PASR and PTR achieve comparable performance on Qwen2.5-7B, PTR incurs significantly higher token costs. The performance gain of PTR mainly stems from the use of high-quality, answer-level refinement data. However, the effectiveness of this data diminishes considerably on Qwen3-8B. However, PTR regenerates entire answers at each refinement step, resulting in substantial token overhead.

3.3 DOES PASR GENUINELY EXHIBIT PROACTIVE REFINEMENT CAPABILITIES DURING GENERATION?

We investigate whether PASR performs proactive refinement during the generation process rather than passively correcting outputs after completion. To validate this, we conduct a quantitative analysis from three complementary perspectives: (1) whether PASR performs refinement at appropriate moments; (2) whether the refinement behavior modifies earlier reasoning steps or simply regenerates content; (3) whether these refinements contribute causally to improving the final output quality. The prompts used in this subsection are shown in Table 7 and 8. The results are shown in the Figure 4.

PASR autonomously determine when to refine. We randomly sample 384 questions, among which 267 are initially answered incorrectly by the base model. PASR does not refine all answers indiscriminately; instead, it selectively triggers refinement. Among the 267 incorrect answers, 235 are revised and corrected by PASR. While many originally correct answers nearly remain unchanged. This indicates that PASR is able to identify and act upon potentially flawed generations when refinement is necessary.

PASR shows high coherence between pre- and post-refinement outputs. We randomly sample 300 answers and employ an independent LLM, Qwen2.5-32B-Instruct, to evaluate their semantic consistency before and after refinement. Each sample is scored multiple times within in [0, 1] to ensure the reliability of the assessment. The results indicate that nearly 80% of samples received a semantic consistency score exceeding 0.9.

PASR’s proactive self-refinement process contributes to the answer correctness. We further analyze the 300 samples mentioned above to evaluate the alignment between the refinement process and the final answer. Over 85% of the samples achieved a alignment score above 0.9, indicating that refinement leads to the quality of outputs.

3.4 WHAT MAKES PASR EFFECTIVE?

Reinforcement learning enables the model to perform proactive self-refinement. In contrast, *prompt-based or supervised signals are insufficient to elicit proactive refinement capabilities*. We explore whether proactive self-refinement can be induced via prompting. The results are shown in Table 1. When the model is explicitly instructed to self-refine during generation via prompt design

(PASR+prompt), we observe a *consistent performance decline* across all tasks, with an average decrease of 16.9 and 9.5 on two backbone models. It indicates that prompt-based guidance alone is insufficient to elicit the model’s adaptive self-refinement capability.

Similarly, we apply instruction-following finetuning (PASR+IFT) to inject this capability. However, the model shows *limited generalization* to unseen tasks. On the Qwen3-8B model, performance drops by 8.3 compared to the base version. These results suggest that proactive self-refinement is not an innate capability and cannot be effectively acquired through SFT.

Comparison-based rewards setting help the model learn to perform effective refinements. We use Qwen2.5-7B as the backbone and evaluate the effectiveness of two alternative reward strategies. The first is *Single-reference comparison (w/o multi-answer)*, computes refinement rewards by comparing the refined output to a *single standard answer*. The second is *Refinement-triggered reward (w/o comparison)*, assigns a coarse positive refinement reward whenever a refinement action is taken, regardless of its necessity or effectiveness. The results are shown in Table 2. This reward strategy offers several key advantages.

First, averaging over multiple standard answers reduces the variance introduced by the randomness of LLM outputs. It provides a more *robust and stable* learning signal for guiding meaningful refinements during training. This strategy enables the model to better recognize when a refinement yields a genuine improvement. Moreover, coarse-grained reward signals are easily exploited by the model, leading to unnecessary refinement in pursuit of high reward (i.e., *reward hacking*). In contrast, our comparison-based signal avoids this by rewarding only measurable improvements, leading to more targeted and meaningful refinements.

4 RELATED WORK

Prompt-based self-refinement. Prior work on self-refinement typically follows a two-stage paradigm. The model first generates an initial response and is then prompted to refine or improve it (Ganguli et al., 2023b). These methods have seen widespread use in complex reasoning tasks, including math (Weng et al., 2023; Wang et al., 2024) and code generation (Olausson et al., 2023b; 2024; 2023a). However, simply prompting a model to refine its own output does not consistently yield better results, and there is little evidence that prompting alone is sufficient for reliable self-improvement(Huang et al., 2024; Tyen et al., 2024). Success in these settings often relies on the availability of ground truth feedback or external supervision, such as explicit information about the error, its location, and an explanation of why it is wrong (Kim et al., 2023; Shinn et al., 2023). Unfortunately, such fine-grained feedback is rarely accessible in practical applications (Gou et al., 2024; Pan et al., 2024). Therefore, some studies utilize stronger models or train auxiliary teacher models to evaluate outputs and provide feedback (Xie et al., 2025; Madaan et al., 2023; Uesato et al., 2023; Welleck et al., 2023). While effective, these approaches usually require task-specific annotations to train the feedback models, which significantly increases the cost and limits scalability across diverse tasks (Du et al., 2025).

Fine-tuning for self-refinement. Another line of work focuses on SFT using synthetic self-refinement data. In these settings, initial answers are generated by one model, while refined answers are produced by a stronger model or taken from oracle answers (Havrilla et al., 2024; Du et al., 2025; Han et al., 2024) (Xie et al., 2025). The resulting pairs of “bad” to “good” answers are used to train models to imitate the refinement process. However, such methods suffer from either distributional mismatch, where the errors in training data do not reflect the mistakes the model makes during inference (Kang et al., 2025), or behavioral collapse, where the model learns a narrow correction pattern that fails to generalize across tasks or domains (Kumar et al., 2025; Qu et al., 2024).

Table 2: PASR performance across datasets under different refinement reward signals. The comparison-based fine-grained reward better guides the model to learn adaptive and meaningful refinements.

Dataset	PASR	w/o multi-answer	w/o comparison
MMLU	75.0	71.0 (-4.0)	53.0 (-22.0)
Drop	79.6	76.7 (-2.9)	78.6 (-1.0)
Xsum	49.9	44.3 (-5.6)	31.9 (-18.0)
GSM8K	88.8	75.7 (-13.1)	86.0 (-2.8)
MATH	73.6	62.2 (-11.4)	62.2 (-11.4)
AIME24	10.0	10.0 (+0.0)	10.0 (+0.0)
ARC	86.6	83.9 (-2.7)	82.9 (-3.7)
GPQA	29.3	28.9 (-0.4)	27.4 (-1.9)
Wino	57.0	53.4 (-3.6)	65.3 (+8.3)
CSQA	67.0	65.9 (-1.1)	64.9 (-2.1)
AVG	61.7	57.2 (-4.5)	56.2 (-5.5)

486 5 CONCLUSION

488 We propose PASR, a novel method that enables large language models to proactively self-refine
 489 their responses during generation. PASR leverages an on-policy reinforcement learning approach
 490 to explore whether, when, and how to perform refinements. We design fine-grained rewards to
 491 encourage effective refinements and penalize incorrect or unnecessary ones. Experiments show that
 492 PASR achieves a strong balance between performance and efficiency. Moreover, even when trained
 493 only on general open-domain data, PASR achieves strong self-refinement across ten diverse tasks,
 494 demonstrating strong generalization not observed in previous work.

495 6 ETHICS STATEMENT

497 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
 498 tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
 499 ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
 500 comes in our research process. No personally identifiable information was used, and no experiments
 501 were conducted that could raise privacy or security concerns. We are committed to maintaining
 502 transparency and integrity throughout the research process.

503 7 REPRODUCIBILITY STATEMENT

505 We have made every effort to ensure that the results presented in this paper are reproducible. All code
 506 and datasets have been made publicly available in an anonymous repository to facilitate replication
 507 and verification. The experimental setup, including training steps, model configurations, and hardware
 508 details, is described in detail in the paper.

509 Additionally, All datasets are publicly available, ensuring consistent and reproducible evaluation
 510 results.

511 We believe these measures will enable other researchers to reproduce our work and further advance
 512 the field.

514 REFERENCES

516 Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
 517 from mistakes makes llm better reasoner, 2024. URL <https://arxiv.org/abs/2310.20689>.

519 Gregor Bachmann and Vaishnav Nagarajan. The pitfalls of next-token prediction, 2024. URL
 520 <https://arxiv.org/abs/2403.06963>.

521 Richard Bellman. A markovian decision process. *Journal of mathematics and mechanics*, pp.
 522 679–684, 1957.

524 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
 525 self-debug. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 526 <https://openreview.net/forum?id=KuPixIqPiq>.

527 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 528 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 529 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

532 Alan Dao and Dinh Bach Vu. Alphamaze: Enhancing large language models’ spatial intelligence via
 533 grp. *arXiv preprint arXiv:2502.14669*, 2025.

534 John Dewey. Experience and education. In *The educational forum*, volume 50, pp. 241–252. Taylor
 535 & Francis, 1986.

537 Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Sirui Xia, Haoran Guo,
 538 Jiaqing Liang, Zulong Chen, et al. Think thrice before you act: Progressive thought refinement
 539 in large language models. In *The Twelfth International Conference on Learning Representations*,
 2025.

540 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
 541 DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
 542 Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of*
 543 *the North American Chapter of the Association for Computational Linguistics: Human Language*
 544 *Technologies, Volume 1 (Long and Short Papers)*, pp. 2368–2378, Minneapolis, Minnesota, June
 545 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL <https://aclanthology.org/N19-1246/>.

546
 547 Zeyu Gan, Yun Liao, and Yong Liu. Rethinking external slow-thinking: From snowball errors to
 548 probability of correct reasoning, 2025. URL <https://arxiv.org/abs/2501.15602>.

549
 550 Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I. Liao, Kamilé Lukošiūtė, Anna Chen,
 551 Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, Dawn Drain, Dustin Li,
 552 Eli Tran-Johnson, Ethan Perez, Jackson Kernion, Jamie Kerr, Jared Mueller, Joshua Landau,
 553 Kamal Ndousse, Karina Nguyen, Liane Lovitt, Michael Sellitto, Nelson Elhage, Noemi Mercado,
 554 Nova DasSarma, Oliver Rausch, Robert Lasenby, Robin Larson, Sam Ringer, Sandipan Kundu,
 555 Saurav Kadavath, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy
 556 Telleen-Lawton, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, Dario
 557 Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Christopher Olah, Jack Clark, Samuel R.
 558 Bowman, and Jared Kaplan. The capacity for moral self-correction in large language models,
 559 2023a. URL <https://arxiv.org/abs/2302.07459>.

560 Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I. Liao, Kamilé Lukošiūtė, Anna Chen,
 561 Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, Dawn Drain, Dustin Li,
 562 Eli Tran-Johnson, Ethan Perez, Jackson Kernion, Jamie Kerr, Jared Mueller, Joshua Landau,
 563 Kamal Ndousse, Karina Nguyen, Liane Lovitt, Michael Sellitto, Nelson Elhage, Noemi Mercado,
 564 Nova DasSarma, Oliver Rausch, Robert Lasenby, Robin Larson, Sam Ringer, Sandipan Kundu,
 565 Saurav Kadavath, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy
 566 Telleen-Lawton, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, Dario
 567 Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Christopher Olah, Jack Clark, Samuel R.
 568 Bowman, and Jared Kaplan. The capacity for moral self-correction in large language models,
 569 2023b. URL <https://arxiv.org/abs/2302.07459>.

570 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 571 CRITIC: Large language models can self-correct with tool-interactive critiquing. In *The Twelfth*
 572 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Sx038qxjek>.

573 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 574 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 575 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

576 Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can
 577 self-correct. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 578 18162–18170, 2024.

579 Alex Havrilla, Sharath Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravynski,
 580 Eric Hambro, and Roberta Raileanu. Glore: when, where, and how to improve llm reasoning via
 581 global and local refinements. In *Proceedings of the 41st International Conference on Machine*
 582 *Learning*, ICML’24. JMLR.org, 2024.

583 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 584 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 585 *Learning Representations*, 2021a. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

586 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 587 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 588 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
 589 *(Round 2)*, 2021b. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

590 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
 591 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth*
 592 *International Conference on Learning Representations*, 2024.

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 596 *arXiv:2412.16720*, 2024.

597
 598 Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning
 599 examples control how language models hallucinate. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 600 (eds.), *Proceedings of the 2025 Conference of the Americas Chapter of the Association for
 601 Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 602 3600–3612, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics.
 603 URL <https://aclanthology.org/2025.nacl-long.183/>.

604 Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
 605 In *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 606 NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

607 Julius Kuhl and Jürgen Beckmann. *Action control: From cognition to behavior*. Springer Science &
 608 Business Media, 2012.

609
 610 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
 611 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
 612 reinforcement learning. In *The Twelfth International Conference on Learning Representations*,
 613 2025.

614 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
 615 Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement
 616 learning from human feedback with AI feedback, 2024. URL <https://openreview.net/forum?id=AAxIs3D2ZZ>.

617
 618 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 619 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 620 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: iterative
 621 refinement with self-feedback. In *Proceedings of the 37th International Conference on Neural
 622 Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

623
 624 Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
 625 Lezama. Demystifying gpt self-repair for code generation. *CoRR*, abs/2306.09896, 2023a. URL
 626 <https://doi.org/10.48550/arXiv.2306.09896>.

627 Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
 628 Lezama. Demystifying gpt self-repair for code generation. *CoRR*, abs/2306.09896, 2023b. URL
 629 <https://doi.org/10.48550/arXiv.2306.09896>.

630
 631 Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
 632 Is self-repair a silver bullet for code generation? In *The Twelfth International Conference on
 633 Learning Representations*, 2024.

634 Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
 635 Automatically correcting large language models: Surveying the landscape of diverse automated
 636 correction strategies. *Transactions of the Association for Computational Linguistics*, 12:484–506,
 637 2024. doi: 10.1162/tacl_a_00660. URL <https://aclanthology.org/2024.tacl-1.27/>.

638
 639 Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
 640 language model agents how to self-improve. In *The Thirty-eighth Annual Conference on Neural
 641 Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=DRC9pZwBwR>.

642 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 643 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 644 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 645 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 646 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 647 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
<https://arxiv.org/abs/2412.15115>.

648 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
 649 sarial winograd schema challenge at scale. *Commun. ACM*, 64(9):99–106, August 2021. ISSN
 650 0001-0782. doi: 10.1145/3474381. URL <https://doi.org/10.1145/3474381>.

651 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 652 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 653 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

654 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 655 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 656 Systems*, 36:8634–8652, 2023.

657 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
 658 answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 659 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the
 660 Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
 661 Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
 662 Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

663 Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can LLMs learn
 664 from previous mistakes? investigating LLMs’ errors to boost for reasoning. In Lun-Wei Ku, Andre
 665 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
 666 for Computational Linguistics (Volume 1: Long Papers)*, pp. 3065–3080, Bangkok, Thailand,
 667 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.169.
 668 URL <https://aclanthology.org/2024.acl-long.169/>.

669 Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find
 670 reasoning errors, but can correct them given the error location. In Lun-Wei Ku, Andre Martins,
 671 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*,
 672 pp. 13894–13908, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
 673 doi: 10.18653/v1/2024.findings-acl.826.

674 Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Yamamoto Siegel, Lisa
 675 Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
 676 process-based and outcome-based feedback, 2023. URL <https://openreview.net/forum?id=MND1kmmNy00>.

677 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 678 Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Lun-
 679 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of
 680 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9426–9439, Bangkok,
 681 Thailand, August 2024.

682 Yubo Wang, Xiang Yue, and Wenhui Chen. Critique fine-tuning: Learning to critique is more effective
 683 than learning to imitate, 2025. URL <https://arxiv.org/abs/2501.17703>.

684 Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
 685 Choi. Generating sequences by learning to self-correct. In *The Eleventh International Conference
 686 on Learning Representations*, 2023. URL <https://openreview.net/forum?id=hH36JeQZDa0>.

687 Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
 688 Jun Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor,
 689 Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics:
 690 EMNLP 2023*, pp. 2550–2575, Singapore, December 2023. Association for Computational Lin-
 691 guistics. doi: 10.18653/v1/2023.findings-emnlp.167. URL [https://aclanthology.org/2023.
 693 findings-emnlp.167/](https://aclanthology.org/2023.

 692 findings-emnlp.167/).

694 Zhihui Xie, Jie Chen, Liyu Chen, Weichao Mao, Jingjing Xu, and Lingpeng Kong. Teaching language
 695 models to critique via reinforcement learning. In *ICLR 2025 Third Workshop on Deep Learning
 696 for Code*, 2025. URL <https://openreview.net/forum?id=CUEq6ZPSp7>.

697 Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan, Kaidong Yu, and Xuelong Li. Improve llm-as-a-
 698 judge ability as a general ability, 2025. URL <https://arxiv.org/abs/2502.11689>.

702 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
703 and Jason E Weston. Self-rewarding language models. In *Forty-first International Conference on*
704 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=0NphYCmgu>.

705 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
706 reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
707 *Advances in Neural Information Processing Systems*, 2022.

708 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
709 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
710 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL <https://arxiv.org/abs/2306.05685>.

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS FOR PASR

Platform. All of our experiments are conducted on workstations equipped with eight NVIDIA A800 PCIe GPUs with 80GB memory, running Ubuntu 20.04.6 LTS and PyTorch 2.0.1. About the training cost, using Qwen2.5-7B as an example, we train PASR with the following setup: 2 GPUs for rollout generation, 1 GPU for policy updates, and 1 GPU for hosting the reference model server. Training for 3,000 steps takes approximately 8 hours in total.

Important Parameters of PASR. The PASR is implemented based on the open-source GitHub repository ⁸. The KL divergence penalty coefficient β is set to 0.04 to balance policy improvement and deviation from the reference policy. The clipping parameter ϵ is set to 0.2. For each group, 8 answers are generated, and the training batch size is set to 2.

Distributed training utilizes the DeepSpeed library with the *AdamW* optimizer and a learning rate of 1e-6. Gradient accumulation occurs over 4 steps, and with a per-GPU batch size of 2, the effective batch size is $8 \times N_{\text{GPUs}}$, where N_{GPUs} denotes the number of GPUs.

Mixed-precision training with BF16 is enabled. Memory optimization employs ZeRO Stage 2, with optimizer state offloading to CPU. Key ZeRO configurations include allgather partitions, an allgather bucket size of 2e8, reduce scatter, and a reduce bucket size of 2e8. Contiguous gradients are enabled, communication overlap is disabled, and 16-bit weights are gathered during model saving. Training loss is logged every 5 steps.

Details on the Judge Model. During training, we employed Qwen2.5-32B-Instruct as the judge model, which has been widely adopted for assessing answer correctness Yu et al. (2025). To ensure reliable and objective evaluation, our prompt design explicitly incorporated three elements: the question, the ground truth, and the model-generated answer. The judge model was instructed to ground its judgment on the provided ground truth rather than on subjective impressions, thereby avoiding inconsistent criteria and yielding more stable evaluations than direct answer-only comparisons. The full evaluation prompts used in both training and testing are shown in Table 6.

To verify the trustworthiness of the judge model, we randomly sampled 50 evaluation cases from the test set and performed manual verification. Each case was independently reviewed by two human annotators, who compared the generated answer against the ground truth. We observed a 91% agreement rate between the judge model’s assessments and human judgments, confirming that the judge model provides consistent and reliable scoring.

For deployment, the judge model runs on four A800 (80GB) GPUs with a batch size of 8, achieving an evaluation speed of approximately 43.27 tokens per second (about 2 seconds per batch).

A.2 IMPLEMENTATION DETAILS FOR BASELINES

We use the LLaMA-Factory framework⁹ to train all baseline methods. The key parameters are shown in the Table 4.

B FURTHER ANALYSIS

B.1 FURTHER PERFORMANCE ANALYSIS OF PASR

As shown in Table 1, PASR improves the average performance of Qwen2.5-7B and Qwen3-8B by 4.8 and 8.2 points, respectively, compared to standard generation across ten benchmarks. We further evaluate PASR on Qwen2.5-14B and DeepSeek-R1-Distill-Llama-8B¹⁰, the results are reported in Table 3.

⁸https://github.com/lsdefine/simple_GRPO

⁹<https://github.com/hiyouga/LLaMA-Factory>

¹⁰<https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B>

810
811 Table 3: PASR vs. other baselines. Compared to the base model, PASR achieves an average performance
812 improvement of 4.9% on Qwen2.5-14B.

813 Methods	814 Public	815 Math			816 Reasoning		817 Knowledge		818 Comp.		819 Gene.		820 Sum.		821 AVG
		822 GSM8K	823 MATH	824 AIME24	825 ARC	826 GPQA	827 Wino	828 CSQA	829 Drop	830 MMLU	831 Xsum	832 	833 	834 	
Qwen2.5-14B															
Vanilla	-	92.9	75.6	20.0	89.0	38.4	81.1	66.4	87.5	57.0	60.5	66.8			
Self-Refine ⁺ (Madaan et al., 2023)	NIPS’23	93.6	78.0	30.0	92.3	46.3	88.1	74.0	92.3	73.0	57.1	72.5			
Self-Refine(Shinn et al., 2023)	NIPS’23	92.3	75.2	20.0	89.0	38.5	80.2	65.7	86.9	57.0	57.2	66.2			
PTR(Du et al., 2025)	ICLR’25	87.6	63.6	10.0	86.6	37.0	84.5	75.3	83.7	54.0	44.3	62.7			
SCoRe(Kumar et al., 2025)	ICLR’25	93.3	78.2	10.0	86.3	44.1	86.8	70.5	84.6	80.0	70.9	70.5			
STA(R(Zelikman et al., 2022)	NIPS’22	87.0	75.4	6.7	87.0	39.2	78.0	70.2	89.5	72.0	63.2	66.8			
ISC(Han et al., 2024)	AAAI’24	88.1	64.0	23.3	77.9	35.2	71.2	62.9	83.7	75.0	46.2	62.8			
PASR(+prompt)	-	88.7	71.6	26.7	78.9	26.3	71.0	68.0	88.5	66.0	17.7	60.3			
PASR(+IFT)	-	75.0	59.4	23.3	86.0	38.4	67.4	69.0	78.9	68.0	61.3	62.7			
PASR†	-	93.6	78.0	30.0	88.8	45.1	86.0	78.3	89.9	74.0	53.2	71.7			
DeepSeek-R1-Distill-Llama-8B															
Vanilla	-	70.7	79.6	50.0	88.0	48.1	79.1	69.9	83.7	65.0	80.4	71.9			
Self-Refine ⁺ (Madaan et al., 2023)	NIPS’23	89.6	91.2	66.7	91.9	60.5	92.4	77.2	90.4	74.0	81.3	79.9			
Self-Refine(Shinn et al., 2023)	NIPS’23	84.1	85.2	40.0	81.9	47.1	72.5	70.2	81.0	69.0	77.1	73.7			
PTR(Du et al., 2025)	ICLR’25	85.4	84.0	30.0	87.6	43.8	78.3	70.0	85.9	67.0	80.0	74.6			
SCoRe(Kumar et al., 2025)	ICLR’25	83.6	85.6	60.0	83.3	48.2	72.0	69.0	81.3	61.0	76.2	72.9			
STA(R(Zelikman et al., 2022)	NIPS’22	84.1	85.0	63.3	82.3	47.6	72.2	70.3	82.2	71.0	76.3	73.4			
ISC(Han et al., 2024)	AAAI’24	83.7	81.8	63.3	81.9	48.0	69.1	68.1	82.9	67.0	76.9	72.0			
PASR(+prompt)	-	77.6	84.2	60.0	82.6	54.0	71.2	68.3	78.5	64.0	79.5	72.0			
PASR(+IFT)	-	82.6	83.8	56.7	82.3	47.2	72.7	69.6	81.0	64.0	75.9	72.7			
PASR	-	88.9	87.0	43.3	87.6	44.7	77.8	70.0	85.0	62.0	78.0	75.6			

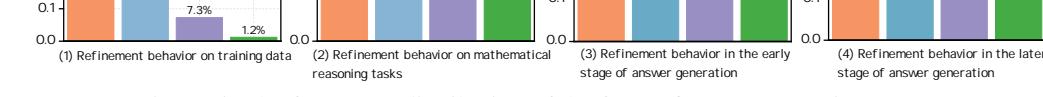


Figure 5: The frequency distribution of the four refinement types in PASR.

PASR exhibits strong generalization and transfers effectively across model families. We observe that PASR consistently surpasses all baselines on two distinct model families, achieving the highest overall accuracy with average gains of 4.9 and 3.7 points over standard generation.

Notably, PASR yields larger gains on models with stronger reasoning capabilities. For example, it boosts the average accuracy of Qwen3-8B by 8.2 points, whereas the improvement on the larger Qwen2.5-14B model is 4.9 points. This pattern suggests that PASR’s effectiveness does not simply scale with model size. Instead, it demonstrates PASR’s intrinsic reasoning ability to generalize across different model families, delivering consistent improvements regardless of model configuration.

B.2 REFINEMENT BEHAVIOR ANALYSIS OF PASR

This experiment aims to investigate how PASR autonomously refines its outputs during generation, including the types of refinement behaviors it exhibits and the factors that limit its effectiveness. Specifically, we analyze both qualitative examples and quantitative statistics of refinement types, and examine failure cases to understand the model’s strengths and inherent constraints.

Refinement behavior examples of PASR. In the Section 2, we define four intended refinement behaviors of PASR, including Error Correction, Information Complement, Solution Improvement, and Task Alignment. While these four categories guide the design of the system prompt during training, PASR is not explicitly instructed to follow a specific type when solving tasks. Instead, the model autonomously decides the appropriate refinement behavior based on the task context. We provide a concrete example for each of the four refinement types to clearly demonstrate how PASR operates. Examples are shown in Table 5.

Statistical analysis of the four refinement types. We sample 2,678 refinement outputs from PASR’s training process and used GPT-4o to classify the type of refinement performed. The prompt used is shown in Table 6 and the results are shown in Figure 5(1). We find that PASR mainly performs

Table 4: Important parameters for each baseline method

Method	Parameters
 PTR	per_device_train_batch_size: 1 gradient_accumulation_steps: 2 learning_rate: 1.0×10^{-5} num_train_epochs: 2 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true Dataset: Public GitHub
 SCoRe	per_device_train_batch_size: 1 gradient_accumulation_steps: 4 learning_rate: 1.0×10^{-5} num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true Dataset: preference pairs from PTR experiment
 STaR	per_device_train_batch_size: 1 gradient_accumulation_steps: 2 learning_rate: 1.0×10^{-5} num_train_epochs: 2 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true Dataset: alpaca_evol_instruct_70k(filtered generated pairs))
 ISC	per_device_train_batch_size: 1 gradient_accumulation_steps: 2 learning_rate: 1.0×10^{-5} num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true Dataset: alpaca_evol_instruct_70k
 RISE	per_device_train_batch_size: 1 gradient_accumulation_steps: 2 learning_rate: 1.0×10^{-5} num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: True Dataset: alpaca_evol_instruct_70k
 PASR(+IFT)	per_device_train_batch_size: 1 gradient_accumulation_steps: 2 learning_rate: 1.0×10^{-5} num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: True Dataset: good refinement paths generated during PASR training

Task Alignment and Information Complement. This pattern is related to the training data, which consists mostly of general instruction-tuning corpora. As a result, the model tends to ensure task compliance and complete missing information during generation, rather than focus on structural changes or post-hoc error correction.

918 Moreover, to validate PASR’s refinement behavior in reasoning tasks, we randomly sampled 300
 919 answers from the math benchmark and analyzed the distribution of the four refinement types. The
 920 results are show in Figure 5 (2). These results indicate that PASR’s behavior distribution varies across
 921 task types: Error Correction and Information Complement are predominant in mathematical reasoning
 922 tasks, whereas Task Alignment and Information Complement are more common in open-ended tasks.
 923

924 We further investigated how PASR’s refinement behavior evolves during the generation process by
 925 dividing each answer into two halves. The results are show in Figure 5 (3) and (4). They show that
 926 Error Correction and Information Complement remain the most frequent behaviors throughout the
 927 generation. Notably, Information Complement becomes more prominent in the later stage, suggesting
 928 that PASR tends to add supplementary information toward the end of reasoning to enhance output
 929 quality.

930 **Error Case Analysis.** We conducted an analysis of PASR’s failure cases to better understand its
 931 limitations. As discussed in Section 3.2.2. Among 267 questions initially answered incorrectly,
 932 PASR successfully corrected 235 through refinement, while 32 questions remained incorrect. Manual
 933 inspection of these 32 cases revealed two main reasons for failure. First, questions beyond knowledge
 934 boundaries. These involved the question outside the model’s existing knowledge, and self-refinement
 935 cannot introduce new information, similar to the limitations of human self-correction. This represents
 936 an inherent limitation of current models rather than a shortcoming of PASR, and identifying such
 937 cases can guide future targeted improvements. Second, limited metacognitive ability of existing
 938 LLMs. The model sometimes fails to accurately recognize or locate its own errors. This restricts the
 939 refinement process, causing it to only partially address or overlook core mistakes.

940 **Summary.** PASR’s refinement behavior is inherently adaptive: the model chooses how and when to
 941 refine outputs based on the specific task, demonstrating the advantage of autonomous, context-aware
 942 refinement. However, self-refinement has intrinsic limitations. It cannot fully correct errors that stem
 943 from gaps in the model’s knowledge or limitations in its reasoning capabilities.

944 B.3 DISCUSSION ON HOW PASR MITIGATES OVER-THINKING.

945 Over-thinking in LLMs often results from redundant or unfocused thought processes, leading to
 946 unnecessarily long outputs. PASR alleviates this issue by enabling the model to perform more tar-
 947 geted and effective self-refinement, which naturally produces shorter and more purposeful responses.
 948 Empirical results support this effect. As shown in Figure 3, PASR generates consistently shorter
 949 outputs compared to other self-refinement methods. This behavior is further encouraged by our
 950 reward function, which reinforces effective refinements, penalizes detrimental ones, and discour-
 951 ages unnecessary refinement actions. Notably, even without explicitly penalizing output length,
 952 PASR achieves more concise reasoning by focusing on meaningful refinements, demonstrating that
 953 enhancing the quality and efficiency of self-refinement can reduce over-thinking.
 954

955 Four Refinement Types of PASR

956 /* Case1: Exmaple of the Error Correction behavior in PASR */

957 Question:

958 In the following sentences, what are the commonly confused words that can be corrected
 959 using Latex and what is the difference between them?
 960

961 Answer:

962 **<think>**First, I need to identify the commonly confused words and then I’ll explain the
 963 differences between them using LaTeX. After that, I’ll provide multiple examples for each
 964 word to show their correct usage. **<refine>Oops! I forgot to specify the words in LaTeX**
 965 **format. Let me fix that.</refine>**
 966

967 (... more reasoning tokens omitted for brevity)
 968

969 **</think>**
 970

972
973
974
975
976
977

<answer>These explanations and examples illustrate the differences between the commonly confused words and demonstrate their correct usage. The words and their differences are clearly indicated using LaTeX, and multiple examples prove the model's understanding and application of the correct usage in context. **</answer>**

/* Case2: Exmaple of the Iormation Complement beha behavior in PASR */

Question:

Can you write a Python script that scrapes data from PubMed related to the relationship between the endocannabinoid system and the immune system?.

Answer:

<think>

To complete this task, I will need to use Python's requests and BeautifulSoup libraries to scrape the data from PubMed.

(... more reasoning tokens omitted for brevity)

Finally, I need to add the necessary error handling to make sure that the script can handle any errors that might occur during the scraping and parsing process.

<refine>I should also add some code to parse the abstract of each article to extract any relevant information related to the endocannabinoid system and the immune system. This will help to further analyze the current state of research on this topic. **</refine>**

</think>

<answer>

Here is the Python code that I have written to complete the task: (...)

Any articles that were not published within the last five years are filtered out. The data is then stored in a CSV file using the csv library.

</answer>

/*Case 3: Exmaple of the Solution Improvement beha behavior in PASR */

Question:

Can you provide an overview of the labor movement using a historical timeline? ...

Answer:

<think>

My initial thought is that we can start by researching the key events in the labor movement's history.

(... more reasoning tokens omitted for brevity) To make it more engaging, I should include

hyperlinks for each event that would lead to a brief description.

<refine>Suggestion to include hyperlinks is a good idea. This would make the timeline more interactive. However, we should also consider adding images or embedded videos relevant to the events for a more visual representation. Let's refine this in our approach.

</refine>

```

1026
1027 </think>
1028 <answer>
1029 ( ... )
1030
1031
1032 </answer>
1033
1034
1035 /*Case4: Exmaple of the Task Alignment beha behavior in PASR */
1036 Question:
1037 Utilizing advanced sentiment analysis in MATLAB, can you determine the nuanced emotional
1038 tone conveyed in this quote and provide further insight into Atticus Finch's complex attitude
1039 towards the Chief Justice and the United States Constitution? ...
1040
1041 Answer:
1042 <think>
1043
1044
1045 ( ... more reasoning tokens omitted for brevity ) Additionally, we should consider the
1046 historical and political context of the quote to better understand Atticus Finch's complex
1047 attitude towards the Chief Justice and the United States Constitution
1048
1049 <refine>The question asks us to delve deeper into the historical and political context of
1050 the novel, particularly in relation to the societal and legal injustices prevalent during
1051 that time period. How does the quote reflect these issues, and what can it tell us about
1052 the societal norms and legal system of the time? </refine>
1053
1054 </think>
1055 <answer>
1056 ( ... )
1057
1058
1059 </answer>
1060
1061
1062
1063
1064

```

All Prompts Used in PASR

/* Prompt Template for PASR */

System:

You are a helpful assistant with self-refinement capability. After the user asks a question, you first think carefully and then give the answer.

The thinking process and answer should be enclosed within <think> </think> and <answer> </answer> tags respectively. Note that you can only use once these four tags.

In the <think> and </think> tag, follow these rules:

Start with an initial thought process on how to approach the question.

when you determine that additional clarification, detail, or improved reasoning is necessary, insert <refine> </refine> tag and then specify what needs to be reconsidered or

1080
 1081 **improved. You can use both tags multiple times.**
 1082 Continue to advance your reasoning after each refinement until you feel there is no more
 1083 room for improvement.
 1084 This is how your full response should be structured:
 1085 <think>Here is your thinking process, when you think you need to reflect, insert <refine>your
 1086 refinement</refine>. Repeat the iterative process as many times as necessary before moving
 1087 to the final answer.</think><answer>Here is an answer at the end of the thinking pro-
 1088 cess.</answer>
 1089
 1090 **/* Prompt Template for ASR evaluation */**
 1091 You are a judge, you will judge the correctness of the answer to the question. Below is a
 1092 question, a ground truth answer, and an answer generated by an AI assistant, please rate the
 1093 AI assistant's answers according to the question on a scale from 0 to 1. Your output is just a
 1094 number in the range from 0 to 1.
 1095
 1096
 1097 ### Question:
 1098 {Question}
 1099
 1100
 1101 ### Ground Truth:
 1102 {Ground Truth}
 1103
 1104
 1105 ### Answer:
 1106 {Answer}
 1107 **/* Prompt for Evaluating the Refinement Behavior of PASR */**
 1108 You are a judge of content refinements. I will give you a sentence that may contain one or
 1109 more <refine>...</refine> sections. Each <refine> section shows a refinement made by a
 1110 model.
 1111 Step 1: Analyze each <refine> section one by one.
 1112 - For each <refine>, classify it into exactly one of the following types:
 1113 1. Error Correction: fixes factual, logical, or calculation mistakes.
 1114 2. Information Complement: adds missing important details to make content complete and
 1115 correct.
 1116 3. Solution Improvement: improves the effectiveness or efficiency of the solution.
 1117 4. Task Alignment: adjusts the content to better match the task goal or user intent.
 1118 - Output only the category name for each <refine>, in order, one per line.
 1119
 1120
 1121 Step 2: After all refinements are labeled, create a JSON summary of counts for each type.
 1122 Example format:
 1123 {
 1124 "Error Correction": 0,
 1125 "Information Complement": 0,
 1126 "Solution Improvement": 0,
 1127 "Task Alignment": 0
 1128 }
 1129
 1130
 1131
 1132
 1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

Rules:

- Do not add any explanations, only output the category names first, then the final JSON summary.
- Use the exact category names above.

Here is the sentence: {sentence_with_refinement}

/* Evaluation Prompt Template for Summary Questions */

Now, I want to test an AI assistant's ability to summary. Below is a text (Question), a ground truth summary (Ground Truth Answer), and an answer (Answer) generated by an AI assistant. Please rate the AI assistant's answers according to the ground truth answer. Please score answers according to how relevant they are to the text and ground truth summary. Your output is from 0 to 1, which 0 is not similar at all, 1 is basically error free.

Question:

Ground Truth:Ground Truth

Answer:Answer

/* Evaluation Prompt Template for Multiple-Choice Questions */

Now, I want to test an AI assistant's ability to answer questions. Below is a multi-choice question, a ground truth answer (one of the option), and an answer generated by an AI assistant. Please rate the AI assistant's answers according to the question and the ground truth answer. If you think the answer is correct, your output is 1; otherwise, your output is 0. Your output is just 0 or 1.

Question:

Ground Truth:Ground Truth

Answer:Answer

/* Evaluation Prompt Template Open Questions */

Now, I want to test an AI assistant's ability to answer questions. Below is a open question, a ground truth answer, and an answer generated by an AI assistant. Please rate the AI assistant's answers according to the ground truth answer. If you think the answer is correct, your output is 1; otherwise, your output is 0. Your output is just 0 or 1.

Question:Question Ground Truth:Ground Truth Answer:Answer

/* Prompt Template for Refinement with Oracle (Math Questions) */

There might be an error in the solution above because of lack of understanding of the question. Please correct the error, if any, and rewrite the solution. Only output the final solution! At the end of the Solution, when you give your final answer, write it in the form Final Answer: The final answer is \boxed{answer}. I hope it is correct.

previous solution:Initial answer

/* Prompt Template for Refinement without Oracle (Open Questions) */

There is an error in the previous solution. Please review each step to identify the mistake, and then provide a corrected version of the solution.

```

1188
1189     ### previous solution:Initial answer
1190
1191 /* Prompt Template for Refinement without Oracle */
1192 Please review each step of the previous solution to identify any potential errors. If you find
1193 any issues, provide a revised and corrected version of the solution. If there are no issues,
1194 simply respond with: I believe the above solution is correct.
1195
1196     ### previous solution:Initial answer
1197
1198 /* Standard Prompt for MMLU */
1199 Here is a multiple-choice question, which from a dataset tests knowledge across 57 diverse
1200 fields such as elementary mathematics, history, computer science, and law. please think step
1201 by step and give me your final answer.
1202
1203
1204 /* Standard Prompt for Drop */
1205 Here is a passage and a question, which requires discrete reasoning over the provided text.
1206 Please think step by step and give me your final answer.
1207
1208
1209 /* Standard Prompt for Xsum */
1210 Here is a passage. please summarize this passage.
1211
1212
1213 /* Standard Prompt Template for Math (GSM8K, MATH, AIME24) */
1214 Here is a problem. please think step by step and give me your final answer.
1215
1216
1217 /* Standard Prompt for ARC */
1218 Here is a multiple-choice question, which from a collection of questions for the science exam.
1219 Please think step by step and give me your final answer.
1220
1221
1222 /* Standard Prompt for Wino */
1223 Here is a question provides two options. Please think step by step and select the correct
1224 answer based on the semantics of the sentence.
1225
1226
1227 /* Standard Prompt for CommonsenseQA */
1228 Here is multiple-choice about commonsense. Please think step by step and give me your final
1229 answer.
1230
1231
1232

```

Prompt for Evaluating the Reasonableness of the Refinement Process

```

1233
1234     # Role
1235     You are an AI Analyzer specializing in assessing the quality of refinement thinking.
1236
1237     # Task
1238     Your task is to evaluate the “reasonableness” of the refinement part within a given response.
1239     This response typically contains two parts: an initial thought or response (pre-refinement),
1240     and a part where the user reflects on that initial thought (post-refinement).
1241

```

1242
 1243 # Definition of “Reasonableness”
 1244 “Reasonableness” here has a specific meaning: it measures the **coherence and consistency**
 1245 **between the pre-refinement and post-refinement thought processes.**
 1246 You need to determine:
 1247 1. Is the refinement **based on** the preceding thought content?
 1248 2. Does the refinement process **logically follow** from the previous thinking? Or, if the
 1249 refinement leads to a **shift in perspective**, is this shift explained or internally logical and
 1250 understandable?
 1251 3. Does the conclusion or state after refinement form an understandable and **coherent**
 1252 **thought trajectory** with the pre-refinement state?
 1253
 1254
 1255
 1256 **Crucially:** You are **not** evaluating the depth of the refinement itself, nor the correctness of
 1257 the final answer. You are evaluating **only** whether the **act of refinement** is **coherent and**
 1258 **consistent** with the preceding thought content.
 1259
 1260 # Evaluation Criteria & Score
 1261 Please provide a floating-point score between **0.0 and 1.0** based on the following criteria:
 1262 * **0.0:** Completely unreasonable. The refinement is entirely unrelated to the previous thinking,
 1263 or contradicts it without any explanation. The thought process is broken or disconnected.
 1264 * **0.5:** Partially reasonable. The refinement has some connection to the previous thinking, but
 1265 the link is weak, the logical chain is unclear, or a shift in perspective seems somewhat abrupt
 1266 but has a faintly traceable thread.
 1267 * **1.0:** Highly reasonable. The refinement is clearly built upon the previous thinking, the logic
 1268 is coherent, and even if perspectives shift, the reasons and process are clear, demonstrating
 1269 high consistency in the thought trajectory.
 1270
 1271
 1272
 1273 # Output Requirements
 1274 * **Strictly output only a single number**, which must be a floating-point number between 0.0
 1275 and 1.0.
 1276 * **Do not include any** explanations, justifications, text descriptions, units, or any other extra
 1277 characters.
 1278
 1279
 1280 # Response Text to Evaluate
 1281
 1282

1283 Box 8: Prompt for Evaluating the Consistency between the Refinement and the Final Answer
 1284

1285 # Role
 1286 You are an AI Analyzer specializing in evaluating thought coherence.
 1287
 1288 # Task
 1289 Your task is to evaluate the consistency between a given "Thought Process" (which may
 1290 include refinement) and the final "Answer".
 1291
 1292 # Definition of "Consistency"
 1293 "Consistency" here measures: **The degree to which the final answer is a direct, relevant,**
 1294 **and logical product of the thought process.**
 1295 You need to determine:

1296
 1297 1. Does the final answer directly address or resolve the problems, dilemmas, or goals
 1298 explored in the thought process?
 1299 2. Is the final answer logically aligned with the thought process, including insights or
 1300 conclusions derived from refinement?
 1301 3. Are the key information, reasoning steps, or refinements from the thought process reflected
 1302 or applied in the final answer?
 1303
 1304
 1305 **Focus:** You are **not** evaluating the quality of the thought process itself, nor the correctness
 1306 or merit of the answer itself. You are evaluating **only the degree of relevance and logical**
 1307 **connection between the thought process and its final answer.**
 1308
 1309 # Evaluation Criteria & Score
 1310 Please provide a floating-point score between **0.0 and 1.0** based on the following criteria:
 1311 * **0.0:** Completely inconsistent/irrelevant. The final answer has little to no relation to the
 1312 thought process, appears out of nowhere, or completely ignores the reasoning path.
 1313 * **0.5:** Partially consistent/relevant. The final answer has some connection to the thought
 1314 process, but might only address parts of it, the logical link might be weak, or the answer,
 1315 while related, doesn't seem like the most direct conclusion from the process.
 1316 * **1.0:** Highly consistent/relevant. The final answer clearly, directly, and logically stems from
 1317 the provided thought process, serving as its definite conclusion or solution.
 1318
 1319
 1320 # Output Requirements
 1321 * **Strictly output only a single number**, which must be a floating-point number between 0.0
 1322 and 1.0.
 1323 * **Do not include any** explanations, justifications, text descriptions, units, or any other extra
 1324 characters.
 1325
 1326
 1327 # Response Text to Evaluate
 1328 <think> </think> is thinking process, <answer> </answer> is final answer.
 1329
 1330
 1331

C LLM USAGE

1332
 1333 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 1334 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 1335 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 1336 grammar checking, and enhancing the overall flow of the text.
 1337 It is important to note that the LLM was not involved in the ideation, research methodology, or
 1338 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 1339 the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
 1340 the paper, with no involvement in the scientific content or data analysis.
 1341 The authors take full responsibility for the content of the manuscript, including any text generated or
 1342 polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
 1343 does not contribute to plagiarism or scientific misconduct.
 1344
 1345