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ABSTRACT

With the rapid development of IoT devices, collecting multivariate time series
data has become increasingly convenient. Understanding the causal relation-
ships among different time series variables is critical for validating causal dis-
covery methods and benchmarking their ability to recover ground-truth interac-
tions in controlled synthetic environments. However, existing Granger causality
approaches based on neural networks typically require modeling each time series
variable separately and assume that the influence of historical values decays over
time. These limitations result in complex models and poor performance in dis-
covering causality in time series with long-range dependencies. To address these
drawbacks, this paper proposes a model called DRMLP: Dynamic Regularized
Multi-Layer Perceptron, a Granger causality discovery method capturing peri-
odic temporal dependencies from the input weights of a convolutional network.
The proposed approach employs a dual-branch neural network architecture: a lin-
ear causal discovery network is utilized to extract causal relations from sampled
weight data, while a hierarchical regularization strategy is introduced to optimize
the weights of the convolutional network. This design enhances the accuracy of
causal relation discovery and reduces noise interference, thereby ensuring the tem-
poral consistency of the identified causal structures. Experiments conducted on
simulated datasets and real-world system-generated datasets show that DRMLP
outperforms state-of-the-art baseline methods.

1 INTRODUCTION

The exploration of causal relationships among variables in multidimensional time series data is cru-
cial to accurately predict outcomes and conduct intervention analyzes. For example, in neuroscience,
brain activity propagates across different regions (Vicente et al., 2011), leading to fluctuations in
various indicators as the activity spreads. Understanding the internal structure of the data and their
propagation dynamics is particularly critical for predicting brain activity and informing therapeutic
interventions. During the past few decades, researchers have made significant strides in uncovering
causal relationships (Runge, 2018) from observational time series data (Gerhardus and Runge, 2020;
Tank et al., 2021; Khanna and Tan, 2019; Pamfil et al., 2020) Granger causality analysis (Granger,
1969; Marinazzo et al., 2008) quantifies whether past values of one series help predict the future
values of another.

Granger causality is widely used for time-series analysis and can be estimated via model-based
or non-model-based methods. Classic model-based approaches, such as VAR models (Lütkepohl,
2005), assume linear dynamics and require a predefined maximum lag, which can bias causal as-
sessment. Extensions with sparse penalties (Tank et al., 2021) mitigate this but remain limited by
linear assumptions. Non-model-based methods (Lusch et al., 2016; Vicente et al., 2011; Amblard
and Michel, 2011) relax linearity, enabling nonlinear causal discovery, but often suffer from high
variance and poor scalability in high dimensions (Runge, 2018).

Neural networks have shown strong performance in multivariate time-series forecasting (Yu et al.,
2018; Li et al., 2017), yet their application to causal discovery faces two challenges: (1) joint mod-
eling of many variables leads to excessive parameters and computational cost; and (2) the black-box
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nature of deep models limits interpretability. To address this, Neural Granger Causality (NGC) (Tank
et al., 2021) introduces component-level networks to reduce parameters and improve interpretability.
However, RNNs in NGC capture only overall causal strength and impose restrictive assumptions on
lag effects, limiting robustness across varying temporal dependencies.

To address these challenges, we propose the Dynamic Regularized Granger Causality Learning
model (DRMLP). This model establishes a channel between the recurrent and linear network
through sampling causal graph to assist in lag selection. Furthermore, we design a dynamic input
weight hierarchical penalty strategy to enhance the accuracy of causality discovery across different
lags in the linear network. More specifically, impose hierarchical, lag-aware sparsity on the neural
network first layer via proximal updates, encouraging ’near lag first, far lag if necessary’. The main
contributions of this paper are as follows:

1. A dual-branch neural network architecture: the first branch is a linear causal discovery
network for univariate modeling. It extracts causal relations and applies Gumbel-Softmax
sampling to generate processed time series data, which are then used to optimize the train-
ing of recurrent networks. The second branch is an MLP network equipped with a dynamic
sparsity regularization strategy.

2. A dynamic sparse penalty strategy based on hierarchical group Lasso regularization: en-
abling the model to learn the numerical relationships between different lags and coordinate
the strengths of causal relationships across various lagged variables.

3. For empirical evaluation, we validate the effectiveness of the proposed model on represen-
tative simulated datasets and realistic data systems, achieving excellent results compared
to several advanced Granger causality discovery methods.

2 BACKGROUND AND RELATED WORK

The Granger causality method(Granger, 1969) tests the ability of one time series to predict another,
making it widely applicable in the analysis of causal relationships in time series data. Initially,
Granger causality was assumed to operate within linear models, with causal structures identified
through fitting Vector Autoregression (VAR) models. This concept has since been extended to ac-
commodate nonlinear scenarios(Marinazzo et al., 2008). Furthermore, due to its high compatibility
with deep neural networks, Granger causality research were expanded to analyze more complex
data, facilitating the examination of deeper or confounded causal relationships within time series.

Granger causality analysis can be divided into model-based and non-model-based methods. Most
model-based methods assume linear relationships and utilize autoregressive models(Lozano et al.,
2009b). These methods posit that past values of a series have a linear effect on the future values
of a target series, where non-zero coefficients quantify the magnitude of the Granger causal effect.
Techniques such as Lasso(Tibshirani, 1996) or group Lasso, which induce sparse regularization,
help extend linear Granger causality in autoregressive models to high-dimensional scenarios(Lozano
et al., 2009b;a). However, the assumption of linearity may lead to misunderstandings of actual
nonlinear relationships and could produce inconsistent estimates of underlying structures due to
oversimplification.

Non-model-based methods overcome the limitations of linear assumptions by addressing nonlinear
dependencies between observed variables, making minimal assumptions about potential relation-
ships. Examples include transfer entropy(Vicente et al., 2011) and directed information(Amblard
and Michel, 2011). Results from these methods may have high uncertainty due to degrees of free-
dom and require large amounts of data, making them less suitable for situations with significantly
increased dimensionality(Runge et al., 2012).

Recent advances in deep learning have inspired neural approaches to causal discovery.
DYNOTEARS (Pamfil et al., 2020) extends score-based methods to SVAR models but remains re-
stricted to linear VAR structures. Neural regularization techniques (Wu et al., 2020; Xu et al., 2019)
and pairwise Granger tests (Singh et al., 2022) aim to capture nonlinear dependencies. Further, non-
linear Granger extensions with MLPs and RNNs (Tank et al., 2021) and unified neural frameworks
such as NTiCD (Absar et al., 2023) explore richer dynamics. The CUTS family (Cheng et al., 2023;
2024) introduces alternating discovery–imputation phases and later incorporates graph neural net-
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works for irregular time series. Despite these advances, existing methods often suffer from either
linear assumptions, limited lag modeling, or scalability challenges.

In terms of interpretability, Neural Granger Causality(Tank et al., 2021) employs MLPs and RNNs
to derive interpretable nonlinear Granger causality by analyzing the parameters of neural networks.
The key aspect of obtaining interpretable causality lies in the independent models of univariate
output sequences. Horvath et al.(Sultan et al., 2022) introduced a learning kernel function called
LeKVAR and a mechanism that decoupling time lags and individual time series, achieving delayed
lag selection and causal interpretation, thus providing improved scalability.

3 GRANGER CAUSALITY MODEL

Assume that the variable xt ∈ Rp is a p-dimensional stationary time series, and that the data is
observed over a specific time period 1 ≤ t ≤ T, t ∈ Z . The linear Granger causality of time
series is generally studied using the Vector Autoregressive Model (VAR)(Lütkepohl, 2005). The
true data xt, is considered to be a linear combination of the past K lagged values, as shown in
Equation equation 1.

xt =

K∑
k=1

Akxt−k + et (1)

where K denotes maximum order of time lag. That is, when k > K , xt−k will not affect xt in
any dimension. Ak ∈ Rp×p is a square matrix used to indicate how the values of each dimension
of the sequence affect the value at the current moment when the lag is k. et ∈ Rp is the noise
error. The potential influence of the value at each lag order xt−k on xt is obtained through the Ak

transformation of the value. Then, after performing accumulation and adding noise operations, the
value at the current moment is obtained.

In fields with high-dimensional time series, the data often do not satisfy the linear relationships. The
definition of non-linear Granger causality is defined in Definition 3.

Definition 3. In the multi-dimensional time series x, if for all (x<t1, . . . , x<tp) and x′<tj ̸= x<tj ,
it satisfies

gi (x<t1, . . . , x<tj , . . . , x<tp) = gi (x<t1, . . . , x′<tj , . . . , x<tp) (2)

It is said that there is no Granger causality between variable j and variable i, that is, gi is invariant
with respect to x<tj . If a certain pair of i and j does not satisfy the conditions, it is said that there is
Granger causality between variable j and variable i.

The problem we investigated is to learn a global causal graph G corresponding to the time series
when the input time series is x<tj , using a combined model of linear and recurrent networks.
Where applicable, the global causal graph can be extended to a lagged causal graph G′. The trained
model can subsequently be utilized for time series prediction tasks and the construction of sparse
models.

4 DRMLP

The proposed model consists of two main parts: the linear causal discovery network and the sam-
pling recurrent network.

The linear causal discovery network fits, for each variable, the causal strength of all other vari-
ables’ K-order lagged values in the time series to its current value. The sampling recurrent network
independently samples a causal graph for each variable and generates predictions for the time series.

The training of the model is carried out alternately. For the linear causal discovery network, the
input weights are extracted according to the lag order to form a regularization term. In this process,
we propose a dynamic regularization strategy that enforces sparsity on the weights. The single-
variable causal graph of the target variable is derived from the input weights of the linear network and
subsequently applied to the original sequence data. The recurrent network then iteratively outputs
the prediction error terms. The training objective combines a structured regularization term with
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a prediction fitting term, guiding the model to gradually converge toward accurately capturing the
underlying causal mechanisms, as shown in Figure1.

4.1 LINEAR CAUSAL DISCOVERY NETWORK

In the linear component of our method, a separate network model for each variable is established, as

xti = gi (x<t1, . . . , x<tp) + eti (3)

where xti represents the value of time series xi at time t, and eti denotes the corresponding random
noise at that time. The function gi specifies how the past t values of the multidimensional time series
x are mapped to the individual series i. For each variable in the multidimensional series, the same
MLP is created, and then all networks are combined in parallel to produce the output. We employ
a one-dimensional convolutional network instead of a fully connected linear structure. In the first
layer of MLP, i.e., the input layer, we utilize H convolutional kernels of size p×K, where H is the
configurable number of hidden units, p is the dimension of the input multidimensional time series,
and K is the predetermined maximum possible time lag.

This structure simulates the function gi(·) in equation 3. The network parameters are determined
by the weights W and biases b of each layer, where W = {W 1, . . . ,WL}, b = {b1, . . . , bL} . L
represents the total number of layers. The interpretability of the MLP primarily resides in the input
weights. The weight structure of the input layer is represented as a 3-dimensional tensor of size H×
p×K , denoted as W 1 ∈ RH×p×K . We decompose the input weights into W 1 = {W 11, . . . ,W 1K}
, where W 1k ∈ Rp×H , k = 1, . . . ,K . The rest network weights can be represented as W l ∈
RH×H(l = 2, . . . , L− 1), WL ∈ RH , bl ∈ RH(l = 1, . . . , L− 1) and bL ∈ R . The hidden vector
resulting from the input data at time t can be expressed as

h1
t = σ

(∑K

k=1
W 1kxt−k + b1

)
(4)

where σ is the activation function, such as typical logistic function or ReLU. The hidden vectors in
subsequent layers are denoted as hl

t , and their calculations also utilize the same activation function
σ , as shown in Equation equation 5.

hl
t = σ

(
W lhl−1

t + bl
)

(5)

After passing through L − 1 hidden layers, the output univariate sequence xti is represented as a
linear combination of all units in the final hidden layer, as

xti = WLhL−1
t + bL + eti (6)

where the error term eti is modeled using a zero-mean Gaussian noise distribution.

4.2 SAMPLING-BASED CAUSAL DISCOVERY NETWORK

We apply Bernoulli sampling to the univariate causal graphs extracted from the input weights of
MLP. The sampling process enables us to overlay the causal graphs onto series data, ensuring that
the input data for the LSTM network retains only the information that has a causal impact on the
target variable, while minimizing the influence of other variables. Once the data has been processed,
it is fed into the corresponding LSTM network for computation.

Through the supervisory role of LSTM, the model learns the causal relationships between dimen-
sions of series data from both static sample data and time-dependent data perspectives.

4.2.1 BERNOULLI SAMPLING OF UNIDIMENSIONAL CAUSAL GRAPH

In the MLP network, each univariate network extracts a causal graph denoted as Gi ∈ Rp , where
i = 1, . . . , p . A complete causal graph G can be obtained by concatenating multiple univariate
causal graphs. The elements cij in the causal graph Gi indicate the degree of causal influence that
variable j has on variable i. We optimize Gi using Gumbel-softmax sampling(Zhang and Ghanem,
2018), as

sij =
e(log(cij)+g)/τ

e(log(cij)+g)/τ + e(log(1−cij)+g)/τ
(7)

4
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Figure 1: overall model structure

where g = − log(− log(u)) and u ∼ Uniform(0, 1) . The variable τ represents a temperature
coefficient. A smaller τ value results in sampling that is closer to Bernoulli sampling.

By selecting such a soft sampling approach, after performing the softmax expectation operation,
dimensions with samples close to 1 will retain original series data, preserving their influence on
the target variable. Conversely, dimensions with samples close to 0 will be significantly reduced,
thereby greatly diminishing their impact on the target variable within the LSTM.

Using Gumbel-softmax sampling method allows the sampling operation to backpropagate through
the loss computation, ensuring that the loss information from the LSTM network can be transmitted
back to the input weights of MLP.

4.2.2 CAUSAL GRAPH COVERAGE DATA

After obtaining the univariate causal graph through sampling, we perform a mask operation on the
original series. It involves taking the causal graph vector and performing a dot product with the
original data vector at each time step, resulting in a new set of series data known as the sampled
data, which is the input of LSTM.

During the training process, the closer the sampling results of the causal graph are to the true causal
graph, the more the sampled data will approximate the true set of causal variables for the target
variable, leading the input data to yield predictions that are closest to the original values.

Additionally, the sampling operation introduces a form of ”random perturbation” into the training
process, which helps prevent the network from getting trapped in local solutions formed by spurious
causal relationships. It enhances the robustness of the model, allowing it to generalize better to
unseen data.

4.2.3 LOSS FUNCTION AND DYNAMIC SPARSE REGULARIZATION

The loss function of the model consists of three components: the prediction error from MLP and
LSTM network and a dynamic sparse regularization term for the input weights:

L(W) =

T∑
t=K

(
xit − gi

(
x(t−K):(t−1)

))2
+

T∑
t=K

(
xit − li

(
x(t−K):(t−1)

))
+ λρ

(
W 1

)
(8)

where gi(·) represents the function of MLP for variable i, while li(·) denotes the function of LSTM
for the same variable. The term λρ(·) refers to the regularization with coefficients applied to the
input weights of MLP.
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We adopt a hierarchical group Lasso penalty strategy that updates the regularization coefficients at
fixed frequencies. We set distinct regularization coefficients for different time lags based on the
overall dependency degree of all other variables at specific lags obtained during the training process,
and we add a constant to control the overall regularization effect.

By calculating the F-norm of the input weights along the 0-th and 1-st dimensions and performing
normalization, we obtain the dimension-averaged lag dependency vector λi = (λi1, λi2, . . . , λiK),
where i = 1, . . . , p and k = 1, 2, . . . ,K . λik represents the average dependency degree of variable
i on the values from the past k time points, with the averaging operation executed across all variable
dimensions. The hierarchical adjustment of λi results in the dimension-averaged hierarchical lag
penalty vector. The calculation process is described as

λ′
i =

1

λi
, λ′′

i =
λ′
i

λ′
i1

ri1 = λ′′
i1, rik = λ′′

ik − λ′′
i(k−1), k = 2, · · · ,K

ri = (ri1, · · · , riK)

where λi is the dimension-averaged lag dependency vector, while λ′
i and λ′′

i are intermediate vari-
ables. ri represents the dimension-averaged hierarchical lag penalty vector for variable i. The
regularization ρ(W 1) with the dynamic hierarchical penalty is described as

ρ
(
W 1

)
=

p∑
j=1

K∑
k=1

rik
∥∥W 1k

j , · · · ,W 1K
j

∥∥
F

(9)

where W 1k
j represents the column of input weights corresponding to input variablej at lag k, rik is

the k-th term of ri , and ∥ · ∥F denotes the operation of calculating the F-norm, as illustrated in the
third part of Figure1.

4.2.4 OPTIMIZATION OF LOSS FUNCTION WITH REGULARIZATION

We employ the iterative soft-thresholding shrinkage algorithm (ISTA) (Zhang and Ghanem, 2018)to
optimize the loss function. ISTA is a specific form of the proximal gradient descent algorithm, where
the loss function consists of the mean squared error of the predictions plus a sparse regularization
term with coefficients. This formulation encourages certain rows or columns of the weight matrix to
fall within the threshold range, effectively achieving precise zero values.

When using ISTA for target optimization, we implement a line search approach to ensure that the
loss function converges to a local minimum. The weights are randomly initialized from a standard
normal distribution as W(0) , and the optimization algorithm iteratively updates the weights starting
from W(0) as

W(n+1) = proxd(m)λρ

(
W(n) − d(n)∇L

(
W(n)

))
(10)

where W(n) represents the weights at the n-th iteration step. The step size d(n) for the n-th iteration.
L (W) denotes the prediction error. The operator proxλρ(·) is the proximal operator concerning ρ(·)
and λ.

The dynamic sparse regularization are only applied to the input weights of MLP, while the iteration
step sizes for other layers of MLP and all layers of LSTM are fixed values. The approximate step
size is obtained through a hierarchical weighted soft-thresholding operation on the input weights, as

proxd(m)λρ

(
W 1

:k

)
=

(
1− rkλd

(m)

∥W 1
:k∥F

)
+

W 1
:k (11)

where W 1·
j·k represents the portion of the input weights corresponding to the previous k lags, and rk

is the average hierarchical lag penalty corresponding to each lag order. (θ)+ = max(0, θ). Since F-
norm of the weights yields non-negative values, we only need to consider the case where the weights
fall within the threshold range from positive values.

The approximate step size for the input weights is calculated by iteratively applying the group soft-
thresholding operation to the penalty function across different lag ranges.
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5 EXPERIMENT

We validated the proposed model DRMLP on both simulated datasets and datasets inspired by real-
world scenarios. The results of the causal graph learning were compared with the experimental
results of several mainstream baseline methods to verify the effectiveness of method proposed. Ad-
ditionally, we set different regularization parameters for the model to examine their impact on the
training performance.

5.1 DATASET

VAR data. We generate synthetic multivariate time series from linear vector autoregressive models
V AR(d) with dimensions p = 10 and lengths T ∈ {200, 500, 1000} and consider d = 2, 3 to
construct V AR(2) and V AR(3) datasets for evaluation. (Lütkepohl, 2005)
Lorenz-96 data. We further evaluate our model on the Lorenz-96 benchmark(Lorenz, 1996)., a
nonlinear chaotic dynamical system widely used for time series analysis. We generate multivariate
series with dimension p = 10, forcing constants F ∈ {10, 20}, and sampling rate ∆t = 0.05,
resulting in nonlinear time series with complex temporal dependencies.
DREAM-3. We also validate the proposed model on the real-world inspired time gene expression
dataset DREAM-3(Prill et al., 2010).

5.2 BASELINE

We select the following four mainstream baseline methods for comparison:

1. Neural Granger Causality Method (NGC) (Tank et al., 2021): This method utilizes uti-
lizes a combination of multilayer perceptrons (MLP) and recurrent neural networks (RNN)
with group penalties to infer Granger causality. In our experiments, we employ the MLP
model for the VAR dataset and the RNN model for the Lorenz-96 dataset.

2. PCMCI (Runge et al., 2019): This method employs conditional independence testing to
detect nonlinear Granger causality. It is designed to identify causal relationships in complex
systems.

3. Economy-SRU (Khanna and Tan, 2019): This method uses a component time series fore-
casting model based on Statistical Regression Units (SRU) for nonlinear modeling. By de-
signing a small number of trainable parameters, it enhances the model’s robustness against
overfitting when predicting data.

4. CUTS (Cheng et al., 2023): This method learns causal relationships in data through an
alternating process of causal discovery and latent data prediction. It is capable of simulta-
neously discovering causality and filling in missing values in irregular datasets.

5.3 METRICS

In terms of quantitative evaluation, to verify the accuracy of the learned causal graph in reconstruct-
ing the ground truth, we used the Area Under the Receiver Operating Characteristic Curve (AUROC)
as the evaluation metric.

5.4 EXPERIMENTAL RESULTS AND ANALYSIS

5.4.1 AUROC IN CAUSAL GRAPH LEARNING

As shown in Table1,The method named “DRMLP-s” in the table represents an ablation model that
removes the recurrent network module based on DRMLP. The values presented in Table1 (e.g.,
99.86±0.12) are AUROC values, where the complete value corresponds to “0.9986±0.0012” in dec-
imal form or 98.66% ± 0.12% in percentage form.

The experimental results indicate that the DRMLP method generally achieved the best results on dif-
ferent lengths of VAR data and Lorenz-96 data. Compared to NGC, DRMLP shows an improvement
of approximately 1% to 5% in metrics on longer sequences, which can be attributed to the effect of
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Table 1: Comparison of Models on Different Datasets (Accuracy %)

VAR(2) VAR(3)

Model T=200 T=500 T=1000 T=200 T=500 T=1000

NGC 96.01±2.14 91.98±3.87 98.52±1.31 90.91±4.15 97.53±2.82 98.74±0.98
PCMCI 71.40±4.93 72.30±5.73 72.19±3.25 65.89±5.23 71.30±4.85 71.92±3.61
eSRU 87.74±6.71 89.97±5.72 91.06±4.86 81.25±7.05 86.55±5.48 90.38±2.29
CUTS 98.92±0.84 99.05±1.03 100.00±0.00 98.05±1.64 99.91±0.03 99.99±0.02
DRMLP-s 99.17±0.98 100.00±0.00 100.00±0.00 97.56±2.05 100.00±0.00 100.00±0.00
DRMLP 99.86±0.12 100.00±0.00 100.00±0.00 98.86±1.42 100.00±0.00 100.00±0.00

Lorenz-96 (F=10) Lorenz-96 (F=20)

Model T=200 T=500 T=1000 T=200 T=500 T=1000

NGC 93.88±1.64 98.56±0.51 99.15±0.33 84.35±3.31 92.22±3.72 92.82±2.60
PCMCI 85.95±4.55 91.65±3.54 95.72±2.23 80.87±5.21 86.56±3.18 86.39±2.71
eSRU 87.42±3.98 96.45±3.06 97.51±1.16 90.30±3.63 97.57±1.43 98.43±1.74
CUTS 95.12±1.13 99.64±0.51 100.00±0.00 89.20±0.73 93.36±0.82 97.15±2.94
DRMLP-s 93.63±0.55 98.64±0.86 100.00±0.00 90.51±1.48 95.66±1.62 98.01±1.57
DRMLP 94.91±0.96 100.00±0.00 100.00±0.00 92.00±0.97 95.49±2.30 98.80±0.45

dynamic regularization. The correct selection of lag values allows the model to accurately quan-
tify the dependence of the target variable on the causal variables, thereby precisely excluding the
minor influences of irrelevant variables. In fact, the incorrect causal relationships chosen by NGC
often have only a small weight compared to the correct ones across any lag values, and traditional
regularization methods are not effective in eliminating the influence.

5.4.2 AUROC WITH DIFFERENT DEPENDENCY COEFFICIENTS

The dependency coefficient p of the VAR data represents the number of variables driving each
variable. A p value of 0.2 indicates that the number of causal variables accounts for 20% of the total
number of variables. As the p value increases, the number of interdependent variables increases,
which makes it more complex and challenging for the model to accurately discover the correct
causal graph. We generated three types of VAR(3) data with dependency coefficients of 0.2, 0.3,
and 0.4, and the learning results are presented in Table 2

Table 2: Accuracy (%) under different dependency strengths p

p = 0.2 p = 0.3 p = 0.4

Model T=200 T=500 T=1000 T=200 T=500 T=1000 T=200 T=500 T=1000

NGC 90.91±4.15 97.53±2.82 98.74±0.98 81.18±3.16 90.38±3.91 93.84±3.27 75.85±5.02 82.84±4.55 87.82±3.67
PCMCI 65.89±5.23 71.30±4.85 71.92±3.61 57.52±4.83 54.95±6.50 54.91±5.81 56.49±7.42 51.95±7.75 53.49±7.78
eSRU 81.23±7.16 86.22±5.49 90.10±2.66 70.75±7.33 75.68±6.73 82.26±4.11 63.95±7.48 68.60±5.13 73.99±8.05
CUTS 98.97±1.64 99.91±0.03 99.99±0.02 82.58±4.79 95.33±0.99 94.45±2.28 75.91±6.73 83.43±1.65 92.59±3.31
DRMLP-s 97.56±2.05 100.0±0.00 100.0±0.00 85.64±4.09 99.43±0.75 100.0±0.00 76.06±5.96 91.99±1.38 95.72±0.51
DRMLP 98.86±1.42 100.0±0.00 100.0±0.00 86.57±6.07 90.63±5.08 94.14±5.34 78.67±7.13 85.82±2.27 88.21±6.77

The experimental results indicate that as the dependency coefficient increases, the accuracy de-
creases for all methods. When each variable has only two causal variables, DRMLP can accurately
predict the correct causal graph. For more complex causal graphs, DRMLP still outperforms other
methods. With sequence lengths of 500 and 1000, the ablation model, benefiting from a sufficient
number of training samples, achieved the best results. Meanwhile, the complete model with LSTM
was able to better capture temporal dependencies even with shorter sequence lengths, showing su-
perior performance.
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5.4.3 LAG SELECTION ON VAR(3)

In the simulation of V AR(3) data, each variable depends on its past three lags, with equal causal
coefficients of 0.2. We generate sequences of length T = 1000 for causal graph learning. To
evaluate whether the model can exclude higher-order lags, we set the convolution kernel size to 5.
The comparison baseline is cMLP with hierarchical Lasso, and we illustrate results on the 2-nd and
5-th variables among the 10 dimensions (Figure 3).

Figure 2: Lagged causal graph on VAR(3) of
DRMLP and cMLP with different dynamic reg-
ularization coefficients

Figure 3: Lagged causal graph on VAR(3) of
DRMLP and cMLP

NGC suffers from the rigid hierarchical penalty, which weakens true causal effects and fails to sup-
press irrelevant higher-order lags. In contrast, DRMLP recovers consistent causal strengths across
the first three lags, matching the true V AR(3) mechanism.

5.4.4 LAG SELECTION ON DISTINCT REGULARIZATION COEFFICIENTS

We further test V AR(3) with different dynamic regularization coefficients λ and compare the
learned lagged causal graphs with the ground truth (Figure 2). When λ is appropriate, both NGC and
DRMLP recover the correct structure, while DRMLP assigns lag strengths more reasonably. NGC
tends to overestimate lag orders for small λ and suppress later lags for large λ, whereas DRMLP
remains stable and preserves relative magnitudes. Excessively large λ drives all weights to zero,
highlighting the need for cross-validation to choose λ.

6 CONCLUSION

Granger causality learning method that integrates dynamic hierarchical sparse penalties with linear
and recurrent networks. To enhance interpretability, we used separate linear and recurrent networks
for each variable. The recurrent network extracts temporal dependencies, supervising and refining
causal relationships identified by the linear network. Sparse penalties, based on average dependency
levels at various lags, improve the model’s accuracy in selecting causal relationships. Experimental
results on simulated and gene regulatory network datasets show superior performance and stability,
even under varying sparse penalty parameters. Future work will explore parameter selection without
true causal information and investigate real-world datasets to enhance model generalizability and
causal verification.
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A APPENDIX

A.1 CASE STUDY: DREAM-3

This dataset presents a challenging nonlinear dataset for Granger causality testing. It simulates con-
tinuous gene expression and regulatory dynamics, with multiple hidden factors that are unobserved.
DREAM-3 contains five simulated datasets with different true causal relationships. Each dataset
consists of four segments of data with 10 nodes, each segment having 21 sampling time points.
Different sequences are concatenated to form a total sequence of length 84 for experimentation.

The DREAM-3 dataset is a challenging nonlinear dataset used for rigorously comparing Granger
causality detection methods. It contains three Yeast (Y.) datasets and two E. Coli (E.C.) datasets. In
terms of variable count and underlying structural complexity, these datasets represent a limited data
system, thus posing a significant test for the capabilities of causality learning methods. We applied
DRMLP to learn from these five datasets while using cMLP and cLSTM as comparison models.
Given the short sequence lengths of the DREAM-3 data, we set the maximum lag L to 2 and the
number of hidden layer units to 10 to reduce the model’s size and accelerate the training process.
The same settings were applied to the other methods. The evaluation results across the five time
series datasets are presented in Table 3, with the corresponding ROC curves shown in Figure4.

Table 3: AUROC for DRMLP, cMLP, and cLSTM models on DREAM-3

Model Yeast 1 Yeast 2 Yeast 3 Ecoli 1 Ecoli 2

cMLP 0.5722 0.5629 0.5553 0.5741 0.5855
cLSTM 0.5933 0.5800 0.5525 0.5132 0.5647
DRMLP 0.6568 0.6485 0.6067 0.6236 0.6070

From Table 3, it is evident that DRMLP outperformed both cMLP and cLSTM across all five
datasets. Notably, DREAM-3 with 10 nodes only contains four time series of length 21, result-
ing in a limited number of training samples, which makes it challenging for the models to learn the
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Figure 4: ROC for DRMLP, cMLP, and cLSTM models on DREAM-3

correct causal graph. Consequently, the AUROC values for all models were relatively low. However,
DRMLP achieved a level of 60%. Our method effectively combines the advantages of linear and
recurrent networks, allowing for the efficient reduction of the influence of irrelevant variables during
the execution of sparse penalties, thereby concentrating the weights on the corresponding true causal
variables.

A.2 LLM USAGE

We used large language models (LLMs), specifically OpenAI’s ChatGPT, as a supporting tool in
the preparation of this manuscript. The LLM was employed only for language-related assistance,
including:

• rephrasing and condensing sentences to improve readability,
• translating text between Chinese and English, and
• minor grammar and style corrections.

The LLM was not used for research ideation, theoretical development, experimental design, anal-
ysis, or the creation of novel scientific content. All research contributions, methodology, results,
and interpretations presented in this paper are solely the work of the authors. The authors take full
responsibility for the content of this paper.
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