

000 DRMLP: DYNAMIC REGULARIZED MULTI-LAYER 001 PERCEPTRON FOR NEURAL GRANGER CAUSALITY 002 DISCOVERY WITH ADAPTIVE TEMPORAL PENALTIES 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 With the rapid development of IoT devices, collecting multivariate time series
013 data has become increasingly convenient. Understanding the causal relationships
014 among different time series variables is critical for validating causal discovery
015 methods and benchmarking their ability to recover ground-truth interactions
016 in controlled synthetic environments. However, existing Granger causality
017 approaches based on neural networks typically require modeling each time series
018 variable separately and assume that the influence of historical values decays over
019 time. These limitations result in complex models and poor performance in dis-
020 covering causality in time series with long-range dependencies. To address these
021 drawbacks, this paper proposes a model called DRMLP: Dynamic Regularized
022 Multi-Layer Perceptron, a Granger causality discovery method capturing peri-
023 odic temporal dependencies from the input weights of a convolutional network.
024 The proposed approach employs a dual-branch neural network architecture: a lin-
025 ear causal discovery network is utilized to extract causal relations from sampled
026 weight data, while a hierarchical regularization strategy is introduced to optimize
027 the weights of the convolutional network. This design enhances the accuracy of
028 causal relation discovery and reduces noise interference, thereby ensuring the tem-
029 poral consistency of the identified causal structures. Experiments conducted on
030 simulated datasets and real-world system-generated datasets show that DRMLP
031 outperforms state-of-the-art baseline methods.
032

033 1 INTRODUCTION 034

035 The exploration of causal relationships among variables in multidimensional time series data is cru-
036 cial to accurately predict outcomes and conduct intervention analyzes. For example, in neuroscience,
037 brain activity propagates across different regions (Vicente et al., 2011), leading to fluctuations in
038 various indicators as the activity spreads. Understanding the internal structure of the data and their
039 propagation dynamics is particularly critical for predicting brain activity and informing therapeutic
040 interventions. During the past few decades, researchers have made significant strides in uncovering
041 causal relationships (Runge, 2018) from observational time series data (Gerhardus and Runge, 2020;
042 Tank et al., 2021; Khanna and Tan, 2019; Pamfil et al., 2020) Granger causality analysis (Granger,
043 1969; Marinazzo et al., 2008) quantifies whether past values of one series help predict the future
044 values of another.

045 Granger causality is widely used for time-series analysis and can be estimated via model-based
046 or non-model-based methods. Classic model-based approaches, such as VAR models (Lütkepohl,
047 2005), assume linear dynamics and require a predefined maximum lag, which can bias causal as-
048 sessment. Extensions with sparse penalties (Tank et al., 2021) mitigate this but remain limited by
049 linear assumptions. Non-model-based methods (Lusch et al., 2016; Vicente et al., 2011; Amblard
050 and Michel, 2011) relax linearity, enabling nonlinear causal discovery, but often suffer from high
051 variance and poor scalability in high dimensions (Runge, 2018).

052 Neural networks have shown strong performance in multivariate time-series forecasting (Yu et al.,
053 2018; Li et al., 2017), yet their application to causal discovery faces two challenges: (1) joint mod-
eling of many variables leads to excessive parameters and computational cost; and (2) the black-box

054 nature of deep models limits interpretability. To address this, Neural Granger Causality (NGC) (Tank
 055 et al., 2021) introduces component-level networks to reduce parameters and improve interpretability.
 056 However, RNNs in NGC capture only overall causal strength and impose restrictive assumptions on
 057 lag effects, limiting robustness across varying temporal dependencies.

058 To address these challenges, we propose the Dynamic Regularized Granger Causality Learning
 059 model (DRMLP). This model establishes a channel between the recurrent and linear network
 060 through sampling causal graph to assist in lag selection. Furthermore, we design a dynamic input
 061 weight hierarchical penalty strategy to enhance the accuracy of causality discovery across different
 062 lags in the linear network. More specifically, impose hierarchical, lag-aware sparsity on the neural
 063 network first layer via proximal updates, encouraging 'near lag first, far lag if necessary'. The main
 064 contributions of this paper are as follows:

- 066 1. A dual-branch neural network architecture: the first branch is a linear causal discovery
 067 network for univariate modeling. It extracts causal relations and applies Gumbel-Softmax
 068 sampling to generate processed time series data, which are then used to optimize the training
 069 of recurrent networks. The second branch is an MLP network equipped with a dynamic
 070 sparsity regularization strategy.
- 071 2. A dynamic sparse penalty strategy based on hierarchical group Lasso regularization: en-
 072 abling the model to learn the numerical relationships between different lags and coordinate
 073 the strengths of causal relationships across various lagged variables.
- 074 3. For empirical evaluation, we validate the effectiveness of the proposed model on repres-
 075 entative simulated datasets and realistic data systems, achieving excellent results compared
 076 to several advanced Granger causality discovery methods.

078 2 BACKGROUND AND RELATED WORK

080 The Granger causality method(Granger, 1969) tests the ability of one time series to predict another,
 081 making it widely applicable in the analysis of causal relationships in time series data. Initially,
 082 Granger causality was assumed to operate within linear models, with causal structures identified
 083 through fitting Vector Autoregression (VAR) models. This concept has since been extended to ac-
 084 commodate nonlinear scenarios(Marinazzo et al., 2008). Furthermore, due to its high compatibility
 085 with deep neural networks, Granger causality research were expanded to analyze more complex
 086 data, facilitating the examination of deeper or confounded causal relationships within time series.

087 Granger causality analysis can be divided into model-based and non-model-based methods. Most
 088 model-based methods assume linear relationships and utilize autoregressive models(Lozano et al.,
 089 2009b). These methods posit that past values of a series have a linear effect on the future values
 090 of a target series, where non-zero coefficients quantify the magnitude of the Granger causal effect.
 091 Techniques such as Lasso(Tibshirani, 1996) or group Lasso, which induce sparse regularization,
 092 help extend linear Granger causality in autoregressive models to high-dimensional scenarios(Lozano
 093 et al., 2009b;a). However, the assumption of linearity may lead to misunderstandings of actual
 094 nonlinear relationships and could produce inconsistent estimates of underlying structures due to
 095 oversimplification.

096 Non-model-based methods overcome the limitations of linear assumptions by addressing nonlinear
 097 dependencies between observed variables, making minimal assumptions about potential rela-
 098 tionships. Examples include transfer entropy(Vicente et al., 2011) and directed information(Amblard
 099 and Michel, 2011). Results from these methods may have high uncertainty due to degrees of free-
 100 dom and require large amounts of data, making them less suitable for situations with significantly
 101 increased dimensionality(Runge et al., 2012).

102 Recent advances in deep learning have inspired neural approaches to causal discovery.
 103 DYNOTEARs (Pamfil et al., 2020) extends score-based methods to SVAR models but remains re-
 104 stricted to linear VAR structures. Neural regularization techniques (Wu et al., 2020; Xu et al., 2019)
 105 and pairwise Granger tests (Singh et al., 2022) aim to capture nonlinear dependencies. Further, non-
 106 linear Granger extensions with MLPs and RNNs (Tank et al., 2021) and unified neural frameworks
 107 such as NTiCD (Absar et al., 2023) explore richer dynamics. The CUTS family (Cheng et al., 2023;
 2024) introduces alternating discovery–imputation phases and later incorporates graph neural net-

108 works for irregular time series. Despite these advances, existing methods often suffer from either
 109 linear assumptions, limited lag modeling, or scalability challenges.
 110

111 In terms of interpretability, Neural Granger Causality(Tank et al., 2021) employs MLPs and RNNs
 112 to derive interpretable nonlinear Granger causality by analyzing the parameters of neural networks.
 113 The key aspect of obtaining interpretable causality lies in the independent models of univariate
 114 output sequences. Horvath et al.(Sultan et al., 2022) introduced a learning kernel function called
 115 LeKVAR and a mechanism that decoupling time lags and individual time series, achieving delayed
 116 lag selection and causal interpretation, thus providing improved scalability.
 117

3 GRANGER CAUSALITY MODEL

120 Assume that the variable $x_t \in \mathbb{R}^p$ is a p-dimensional stationary time series, and that the data is
 121 observed over a specific time period $1 \leq t \leq T, t \in \mathbb{Z}$. The linear Granger causality of time
 122 series is generally studied using the Vector Autoregressive Model (VAR)(Lütkepohl, 2005). The
 123 true data x_t , is considered to be a linear combination of the past K lagged values, as shown in
 124 Equation equation 1.

$$x_t = \sum_{k=1}^K A_k x_{t-k} + e_t \quad (1)$$

125 where K denotes maximum order of time lag. That is, when $k > K$, x_{t-k} will not affect x_t in
 126 any dimension. $A_k \in \mathbb{R}^{p \times p}$ is a square matrix used to indicate how the values of each dimension
 127 of the sequence affect the value at the current moment when the lag is k . $e_t \in \mathbb{R}^p$ is the noise
 128 error. The potential influence of the value at each lag order x_{t-k} on x_t is obtained through the A_k
 129 transformation of the value. Then, after performing accumulation and adding noise operations, the
 130 value at the current moment is obtained.
 131

132 In fields with high-dimensional time series, the data often do not satisfy the linear relationships. The
 133 definition of non-linear Granger causality is defined in Definition 3.
 134

135 **Definition 3.** In the multi-dimensional time series x , if for all $(x_{<t_1}, \dots, x_{<t_p})$ and $x'_{<t_j} \neq x_{<t_j}$,
 136 it satisfies

$$g_i(x_{<t_1}, \dots, x_{<t_j}, \dots, x_{<t_p}) = g_i(x_{<t_1}, \dots, x'_{<t_j}, \dots, x_{<t_p}) \quad (2)$$

137 It is said that there is no Granger causality between variable j and variable i , that is, g_i is invariant
 138 with respect to $x_{<t_j}$. If a certain pair of i and j does not satisfy the conditions, it is said that there is
 139 Granger causality between variable j and variable i .
 140

141 The problem we investigated is to learn a global causal graph G corresponding to the time series
 142 when the input time series is $x_{<t_j}$, using a combined model of linear and recurrent networks.
 143 Where applicable, the global causal graph can be extended to a lagged causal graph G' . The trained
 144 model can subsequently be utilized for time series prediction tasks and the construction of sparse
 145 models.
 146

4 DRMLP

147 The proposed model consists of two main parts: the linear causal discovery network and the sam-
 148 pling recurrent network.
 149

150 The linear causal discovery network fits, for each variable, the causal strength of all other vari-
 151 ables' K -order lagged values in the time series to its current value. The sampling recurrent network
 152 independently samples a causal graph for each variable and generates predictions for the time series.
 153

154 The training of the model is carried out alternately. For the linear causal discovery network, the
 155 input weights are extracted according to the lag order to form a regularization term. In this process,
 156 we propose a dynamic regularization strategy that enforces sparsity on the weights. The single-
 157 variable causal graph of the target variable is derived from the input weights of the linear network and
 158 subsequently applied to the original sequence data. The recurrent network then iteratively outputs
 159 the prediction error terms. The training objective combines a structured regularization term with
 160

162 a prediction fitting term, guiding the model to gradually converge toward accurately capturing the
 163 underlying causal mechanisms, as shown in Figure1.
 164

165 4.1 LINEAR CAUSAL DISCOVERY NETWORK 166

167 In the linear component of our method, a separate network model for each variable is established, as
 168

$$169 \quad x_{ti} = g_i(x_{<t1}, \dots, x_{<tp}) + e_{ti} \quad (3)$$

170 where x_{ti} represents the value of time series x_i at time t , and e_{ti} denotes the corresponding random
 171 noise at that time. The function g_i specifies how the past t values of the multidimensional time series
 172 x are mapped to the individual series i . For each variable in the multidimensional series, the same
 173 MLP is created, and then all networks are combined in parallel to produce the output. We employ
 174 a one-dimensional convolutional network instead of a fully connected linear structure. In the first
 175 layer of MLP, i.e., the input layer, we utilize H convolutional kernels of size $p \times K$, where H is the
 176 configurable number of hidden units, p is the dimension of the input multidimensional time series,
 177 and K is the predetermined maximum possible time lag.
 178

179 This structure simulates the function $g_i(\cdot)$ in equation 3. The network parameters are determined
 180 by the weights \mathbf{W} and biases \mathbf{b} of each layer, where $\mathbf{W} = \{W^1, \dots, W^L\}$, $\mathbf{b} = \{b^1, \dots, b^L\}$. L
 181 represents the total number of layers. The interpretability of the MLP primarily resides in the input
 182 weights. The weight structure of the input layer is represented as a 3-dimensional tensor of size $H \times$
 183 $p \times K$, denoted as $W^1 \in \mathbb{R}^{H \times p \times K}$. We decompose the input weights into $W^1 = \{W^{11}, \dots, W^{1K}\}$
 184 , where $W^{1k} \in \mathbb{R}^{p \times H}$, $k = 1, \dots, K$. The rest network weights can be represented as $W^l \in$
 185 $\mathbb{R}^{H \times H}$ ($l = 2, \dots, L-1$), $W^L \in \mathbb{R}^H$, $b^l \in \mathbb{R}^H$ ($l = 1, \dots, L-1$) and $b^L \in \mathbb{R}$. The hidden vector
 186 resulting from the input data at time t can be expressed as
 187

$$188 \quad h_t^1 = \sigma \left(\sum_{k=1}^K W^{1k} x_{t-k} + b^1 \right) \quad (4)$$

189 where σ is the activation function, such as typical logistic function or ReLU. The hidden vectors in
 190 subsequent layers are denoted as h_t^l , and their calculations also utilize the same activation function
 191 σ , as shown in Equation equation 5.
 192

$$193 \quad h_t^l = \sigma (W^l h_t^{l-1} + b^l) \quad (5)$$

194 After passing through $L-1$ hidden layers, the output univariate sequence x_{ti} is represented as a
 195 linear combination of all units in the final hidden layer, as
 196

$$197 \quad x_{ti} = W^L h_t^{L-1} + b^L + e_{ti} \quad (6)$$

198 where the error term e_{ti} is modeled using a zero-mean Gaussian noise distribution.
 199

200 4.2 SAMPLING-BASED CAUSAL DISCOVERY NETWORK 201

202 We apply Bernoulli sampling to the univariate causal graphs extracted from the input weights of
 203 MLP. The sampling process enables us to overlay the causal graphs onto series data, ensuring that
 204 the input data for the LSTM network retains only the information that has a causal impact on the
 205 target variable, while minimizing the influence of other variables. Once the data has been processed,
 206 it is fed into the corresponding LSTM network for computation.
 207

208 Through the supervisory role of LSTM, the model learns the causal relationships between dimensions
 209 of series data from both static sample data and time-dependent data perspectives.
 210

211 4.2.1 BERNOUlli SAMPLING OF UNIDIMENSIONAL CAUSAL GRAPH 212

213 In the MLP network, each univariate network extracts a causal graph denoted as $G_i \in \mathbb{R}^p$, where
 214 $i = 1, \dots, p$. A complete causal graph G can be obtained by concatenating multiple univariate
 215 causal graphs. The elements c_{ij} in the causal graph G_i indicate the degree of causal influence that
 216 variable j has on variable i . We optimize G_i using Gumbel-softmax sampling(Zhang and Ghanem,
 217 2018), as
 218

$$219 \quad s_{ij} = \frac{e^{(\log(c_{ij})+g)/\tau}}{e^{(\log(c_{ij})+g)/\tau} + e^{(\log(1-c_{ij})+g)/\tau}} \quad (7)$$

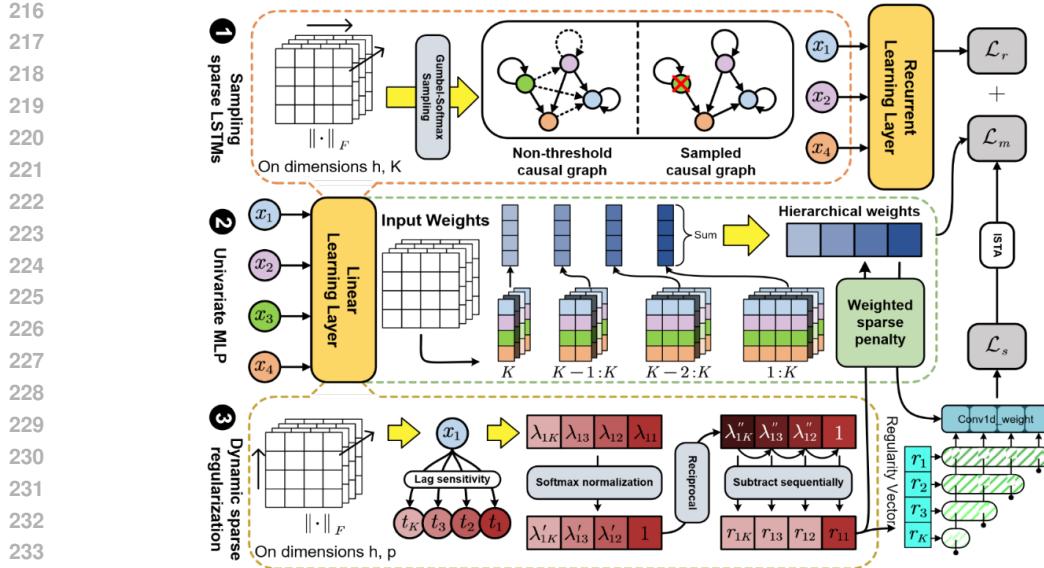


Figure 1: overall model structure

where $g = -\log(-\log(u))$ and $u \sim \text{Uniform}(0, 1)$. The variable τ represents a temperature coefficient. A smaller τ value results in sampling that is closer to Bernoulli sampling.

By selecting such a soft sampling approach, after performing the softmax expectation operation, dimensions with samples close to 1 will retain original series data, preserving their influence on the target variable. Conversely, dimensions with samples close to 0 will be significantly reduced, thereby greatly diminishing their impact on the target variable within the LSTM.

Using Gumbel-softmax sampling method allows the sampling operation to backpropagate through the loss computation, ensuring that the loss information from the LSTM network can be transmitted back to the input weights of MLP.

4.2.2 CAUSAL GRAPH COVERAGE DATA

After obtaining the univariate causal graph through sampling, we perform a mask operation on the original series. It involves taking the causal graph vector and performing a dot product with the original data vector at each time step, resulting in a new set of series data known as the sampled data, which is the input of LSTM.

During the training process, the closer the sampling results of the causal graph are to the true causal graph, the more the sampled data will approximate the true set of causal variables for the target variable, leading the input data to yield predictions that are closest to the original values.

Additionally, the sampling operation introduces a form of "random perturbation" into the training process, which helps prevent the network from getting trapped in local solutions formed by spurious causal relationships. It enhances the robustness of the model, allowing it to generalize better to unseen data.

4.2.3 LOSS FUNCTION AND DYNAMIC SPARSE REGULARIZATION

The loss function of the model consists of three components: the prediction error from MLP and LSTM network and a dynamic sparse regularization term for the input weights:

$$\mathcal{L}(\mathbf{W}) = \sum_{t=K}^T (x_{it} - g_i(x_{(t-K):(t-1)}))^2 + \sum_{t=K}^T (x_{it} - l_i(x_{(t-K):(t-1)})) + \lambda \rho(W^1) \quad (8)$$

where $g_i(\cdot)$ represents the function of MLP for variable i , while $l_i(\cdot)$ denotes the function of LSTM for the same variable. The term $\lambda \rho(\cdot)$ refers to the regularization with coefficients applied to the input weights of MLP.

We adopt a hierarchical group Lasso penalty strategy that updates the regularization coefficients at fixed frequencies. We set distinct regularization coefficients for different time lags based on the overall dependency degree of all other variables at specific lags obtained during the training process, and we add a constant to control the overall regularization effect.

By calculating the F-norm of the input weights along the 0-th and 1-st dimensions and performing normalization, we obtain the dimension-averaged lag dependency vector $\lambda_i = (\lambda_{i1}, \lambda_{i2}, \dots, \lambda_{iK})$, where $i = 1, \dots, p$ and $k = 1, 2, \dots, K$. λ_{ik} represents the average dependency degree of variable i on the values from the past k time points, with the averaging operation executed across all variable dimensions. The hierarchical adjustment of λ_i results in the dimension-averaged hierarchical lag penalty vector. The calculation process is described as

$$\lambda'_i = \frac{1}{\lambda_i}, \quad \lambda''_i = \frac{\lambda'_i}{\lambda'_{i1}}$$

$$r_{i1} = \lambda''_{i1}, \quad r_{ik} = \lambda''_{ik} - \lambda''_{i(k-1)}, \quad k = 2, \dots, K$$

$$\mathbf{r}_i = (r_{i1}, \dots, r_{iK})$$

where λ_i is the dimension-averaged lag dependency vector, while λ'_i and λ''_i are intermediate variables. \mathbf{r}_i represents the dimension-averaged hierarchical lag penalty vector for variable i . The regularization $\rho(W^1)$ with the dynamic hierarchical penalty is described as

$$\rho(W^1) = \sum_{j=1}^p \sum_{k=1}^K r_{ik} \|W_j^{1k}, \dots, W_j^{1K}\|_F \quad (9)$$

where W_j^{1k} represents the column of input weights corresponding to input variable j at lag k , r_{ik} is the k -th term of \mathbf{r}_i , and $\|\cdot\|_F$ denotes the operation of calculating the F-norm, as illustrated in the third part of Figure1.

4.2.4 OPTIMIZATION OF LOSS FUNCTION WITH REGULARIZATION

We employ the iterative soft-thresholding shrinkage algorithm (ISTA) (Zhang and Ghanem, 2018) to optimize the loss function. ISTA is a specific form of the proximal gradient descent algorithm, where the loss function consists of the mean squared error of the predictions plus a sparse regularization term with coefficients. This formulation encourages certain rows or columns of the weight matrix to fall within the threshold range, effectively achieving precise zero values.

When using ISTA for target optimization, we implement a line search approach to ensure that the loss function converges to a local minimum. The weights are randomly initialized from a standard normal distribution as $\mathbf{W}^{(0)}$, and the optimization algorithm iteratively updates the weights starting from $\mathbf{W}^{(0)}$ as

$$\mathbf{W}^{(n+1)} = \text{prox}_{d^{(n)} \lambda \rho} (\mathbf{W}^{(n)} - d^{(n)} \nabla \mathcal{L} (\mathbf{W}^{(n)})) \quad (10)$$

where $\mathbf{W}^{(n)}$ represents the weights at the n -th iteration step. The step size $d^{(n)}$ for the n -th iteration. $\mathcal{L}(\mathbf{W})$ denotes the prediction error. The operator $\text{prox}_{\lambda \rho}(\cdot)$ is the proximal operator concerning $\rho(\cdot)$ and λ .

The dynamic sparse regularization are only applied to the input weights of MLP, while the iteration step sizes for other layers of MLP and all layers of LSTM are fixed values. The approximate step size is obtained through a hierarchical weighted soft-thresholding operation on the input weights, as

$$\text{prox}_{d^{(m)} \lambda \rho} (W_{:k}^1) = \left(1 - \frac{r_k \lambda d^{(m)}}{\|W_{:k}^1\|_F} \right)_+ W_{:k}^1 \quad (11)$$

where $W_{:k}^1$ represents the portion of the input weights corresponding to the previous k lags, and r_k is the average hierarchical lag penalty corresponding to each lag order. $(\theta)_+ = \max(0, \theta)$. Since F-norm of the weights yields non-negative values, we only need to consider the case where the weights fall within the threshold range from positive values.

The approximate step size for the input weights is calculated by iteratively applying the group soft-thresholding operation to the penalty function across different lag ranges.

324

5 EXPERIMENT

325
 326 We validated the proposed model DRMLP on both simulated datasets and datasets inspired by real-
 327 world scenarios. The results of the causal graph learning were compared with the experimental
 328 results of several mainstream baseline methods to verify the effectiveness of method proposed. Ad-
 329 ditionally, we set different regularization parameters for the model to examine their impact on the
 330 training performance.

331
 332

5.1 DATASET

333
 334 **VAR data.** We generate synthetic multivariate time series from linear vector autoregressive models
 335 $VAR(d)$ with dimensions $p = 10$ and lengths $T \in \{200, 500, 1000\}$ and consider $d = 2, 3$ to
 336 construct $VAR(2)$ and $VAR(3)$ datasets for evaluation. (Lütkepohl, 2005)

337 **Lorenz-96 data.** We further evaluate our model on the Lorenz-96 benchmark(Lorenz, 1996),, a
 338 nonlinear chaotic dynamical system widely used for time series analysis. We generate multivariate
 339 series with dimension $p = 10$, forcing constants $F \in \{10, 20\}$, and sampling rate $\Delta t = 0.05$,
 340 resulting in nonlinear time series with complex temporal dependencies.

341 **DREAM-3.** We also validate the proposed model on the real-world inspired time gene expression
 342 dataset DREAM-3(Prill et al., 2010).

343
 344

5.2 BASELINE

345 We select the following four mainstream baseline methods for comparison:

- 347 1. **Neural Granger Causality Method (NGC)** (Tank et al., 2021): This method utilizes util-
 348 izes a combination of multilayer perceptrons (MLP) and recurrent neural networks (RNN)
 349 with group penalties to infer Granger causality. In our experiments, we employ the MLP
 350 model for the VAR dataset and the RNN model for the Lorenz-96 dataset.
- 351 2. **PCMCI** (Runge et al., 2019): This method employs conditional independence testing to
 352 detect nonlinear Granger causality. It is designed to identify causal relationships in complex
 353 systems.
- 354 3. **Economy-SRU** (Khanna and Tan, 2019): This method uses a component time series fore-
 355 casting model based on Statistical Regression Units (SRU) for nonlinear modeling. By de-
 356 signing a small number of trainable parameters, it enhances the model’s robustness against
 357 overfitting when predicting data.
- 358 4. **CUTS** (Cheng et al., 2023): This method learns causal relationships in data through an
 359 alternating process of causal discovery and latent data prediction. It is capable of simulta-
 360 neously discovering causality and filling in missing values in irregular datasets.

362
 363

5.3 METRICS

364 In terms of quantitative evaluation, to verify the accuracy of the learned causal graph in reconstruc-
 365 ing the ground truth, we used the Area Under the Receiver Operating Characteristic Curve (AUROC)
 366 as the evaluation metric.

367
 368

5.4 EXPERIMENTAL RESULTS AND ANALYSIS

369
 370

5.4.1 AUROC IN CAUSAL GRAPH LEARNING

371 As shown in Table1,The method named “DRMLP-s” in the table represents an ablation model that
 372 removes the recurrent network module based on DRMLP. The values presented in Table1 (e.g.,
 373 99.86 ± 0.12) are AUROC values, where the complete value corresponds to “ 0.9986 ± 0.0012 ” in dec-
 374 imal form or $98.66\% \pm 0.12\%$ in percentage form.

375 The experimental results indicate that the DRMLP method generally achieved the best results on dif-
 376 ferent lengths of VAR data and Lorenz-96 data. Compared to NGC, DRMLP shows an improvement
 377 of approximately 1% to 5% in metrics on longer sequences, which can be attributed to the effect of

Table 1: Comparison of Models on Different Datasets (Accuracy %)

Model	VAR(2)			VAR(3)		
	T=200	T=500	T=1000	T=200	T=500	T=1000
NGC	96.01±2.14	91.98±3.87	98.52±1.31	90.91±4.15	97.53±2.82	98.74±0.98
PCMCI	71.40±4.93	72.30±5.73	72.19±3.25	65.89±5.23	71.30±4.85	71.92±3.61
eSRU	87.74±6.71	89.97±5.72	91.06±4.86	81.25±7.05	86.55±5.48	90.38±2.29
CUTS	98.92±0.84	99.05±1.03	100.00±0.00	98.05±1.64	99.91±0.03	99.99±0.02
DRMLP-s	99.17±0.98	100.00±0.00	100.00±0.00	97.56±2.05	100.00±0.00	100.00±0.00
DRMLP	99.86±0.12	100.00±0.00	100.00±0.00	98.86±1.42	100.00±0.00	100.00±0.00

Model	Lorenz-96 (F=10)			Lorenz-96 (F=20)		
	T=200	T=500	T=1000	T=200	T=500	T=1000
NGC	93.88±1.64	98.56±0.51	99.15±0.33	84.35±3.31	92.22±3.72	92.82±2.60
PCMCI	85.95±4.55	91.65±3.54	95.72±2.23	80.87±5.21	86.56±3.18	86.39±2.71
eSRU	87.42±3.98	96.45±3.06	97.51±1.16	90.30±3.63	97.57±1.43	98.43±1.74
CUTS	95.12±1.13	99.64±0.51	100.00±0.00	89.20±0.73	93.36±0.82	97.15±2.94
DRMLP-s	93.63±0.55	98.64±0.86	100.00±0.00	90.51±1.48	95.66±1.62	98.01±1.57
DRMLP	94.91±0.96	100.00±0.00	100.00±0.00	92.00±0.97	95.49±2.30	98.80±0.45

dynamic regularization. The correct selection of lag values allows the model to accurately quantify the dependence of the target variable on the causal variables, thereby precisely excluding the minor influences of irrelevant variables. In fact, the incorrect causal relationships chosen by NGC often have only a small weight compared to the correct ones across any lag values, and traditional regularization methods are not effective in eliminating the influence.

5.4.2 AUROC WITH DIFFERENT DEPENDENCY COEFFICIENTS

The dependency coefficient p of the VAR data represents the number of variables driving each variable. A p value of 0.2 indicates that the number of causal variables accounts for 20% of the total number of variables. As the p value increases, the number of interdependent variables increases, which makes it more complex and challenging for the model to accurately discover the correct causal graph. We generated three types of VAR(3) data with dependency coefficients of 0.2, 0.3, and 0.4, and the learning results are presented in Table 2

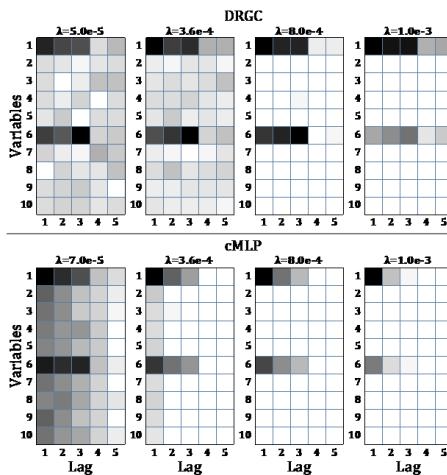
Table 2: Accuracy (%) under different dependency strengths p

Model	p = 0.2			p = 0.3			p = 0.4		
	T=200	T=500	T=1000	T=200	T=500	T=1000	T=200	T=500	T=1000
NGC	90.91±4.15	97.53±2.82	98.74±0.98	81.18±3.16	90.38±3.91	93.84±3.27	75.85±5.02	82.84±4.55	87.82±3.67
PCMCI	65.89±5.23	71.30±4.85	71.92±3.61	57.52±4.83	54.95±6.50	54.91±5.81	56.49±7.42	51.95±7.75	53.49±7.78
eSRU	81.23±7.16	86.22±5.49	90.10±2.66	70.75±7.33	75.68±6.73	82.26±4.11	63.95±7.48	68.60±5.13	73.99±8.05
CUTS	98.97±1.64	99.91±0.03	99.99±0.02	82.58±4.79	95.33±0.99	94.45±2.28	75.91±6.73	83.43±1.65	92.59±3.31
DRMLP-s	97.56±2.05	100.0±0.00	100.0±0.00	85.64±4.09	99.43±0.75	100.0±0.00	76.06±5.96	91.19±1.38	95.72±0.51
DRMLP	98.86±1.42	100.0±0.00	100.0±0.00	86.57±6.07	90.63±5.08	94.14±5.34	78.67±7.13	85.82±2.27	88.21±6.77

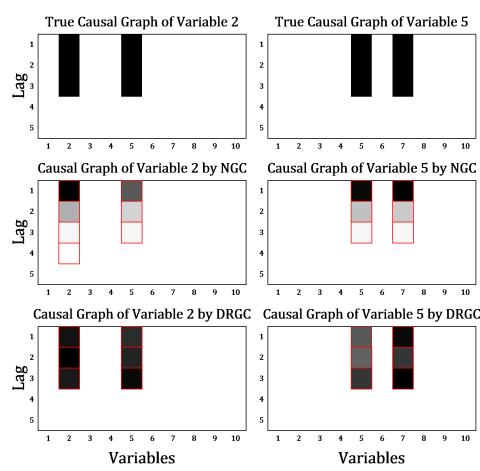
The experimental results indicate that as the dependency coefficient increases, the accuracy decreases for all methods. When each variable has only two causal variables, DRMLP can accurately predict the correct causal graph. For more complex causal graphs, DRMLP still outperforms other methods. With sequence lengths of 500 and 1000, the ablation model, benefiting from a sufficient number of training samples, achieved the best results. Meanwhile, the complete model with LSTM was able to better capture temporal dependencies even with shorter sequence lengths, showing superior performance.

432 5.4.3 LAG SELECTION ON VAR(3)
433

434 In the simulation of $VAR(3)$ data, each variable depends on its past three lags, with equal causal
435 coefficients of 0.2. We generate sequences of length $T = 1000$ for causal graph learning. To
436 evaluate whether the model can exclude higher-order lags, we set the convolution kernel size to 5.
437 The comparison baseline is cMLP with hierarchical Lasso, and we illustrate results on the 2-nd and
438 5-th variables among the 10 dimensions (Figure 3).



455
456 Figure 2: Lagged causal graph on $VAR(3)$ of
457 DRMLP and cMLP with different dynamic reg-
458 ularization coefficients



455 Figure 3: Lagged causal graph on $VAR(3)$ of
456 DRMLP and cMLP

459 NGC suffers from the rigid hierarchical penalty, which weakens true causal effects and fails to sup-
460 press irrelevant higher-order lags. In contrast, DRMLP recovers consistent causal strengths across
461 the first three lags, matching the true $VAR(3)$ mechanism.

463 5.4.4 LAG SELECTION ON DISTINCT REGULARIZATION COEFFICIENTS
464

465 We further test $VAR(3)$ with different dynamic regularization coefficients λ and compare the
466 learned lagged causal graphs with the ground truth (Figure 2). When λ is appropriate, both NGC and
467 DRMLP recover the correct structure, while DRMLP assigns lag strengths more reasonably. NGC
468 tends to overestimate lag orders for small λ and suppress later lags for large λ , whereas DRMLP
469 remains stable and preserves relative magnitudes. Excessively large λ drives all weights to zero,
470 highlighting the need for cross-validation to choose λ .

471 6 CONCLUSION
472

473 Granger causality learning method that integrates dynamic hierarchical sparse penalties with linear
474 and recurrent networks. To enhance interpretability, we used separate linear and recurrent networks
475 for each variable. The recurrent network extracts temporal dependencies, supervising and refining
476 causal relationships identified by the linear network. Sparse penalties, based on average dependency
477 levels at various lags, improve the model’s accuracy in selecting causal relationships. Experimental
478 results on simulated and gene regulatory network datasets show superior performance and stability,
479 even under varying sparse penalty parameters. Future work will explore parameter selection without
480 true causal information and investigate real-world datasets to enhance model generalizability and
481 causal verification.

483 REFERENCES
484

485 Saima Absar, Yongkai Wu, and Lu Zhang. 2023. Neural time-invariant causal discovery from time
series data. In *2023 International Joint Conference on Neural Networks (IJCNN)*. IEEE, 1–8.

486 Pierre-Olivier Amblard and Olivier JJ Michel. 2011. On directed information theory and Granger
 487 causality graphs. *Journal of computational neuroscience* 30, 1 (2011), 7–16.
 488

489 Yuxiao Cheng, Lianglong Li, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He, and Qionghai Dai.
 490 2024. CUTS+: High-dimensional causal discovery from irregular time-series. In *Proceedings of
 491 the AAAI Conference on Artificial Intelligence*, Vol. 38. 11525–11533.

492 Yuxiao Cheng, Runzhao Yang, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He, and Qiong-
 493 hai Dai. 2023. Cuts: Neural causal discovery from irregular time-series data. *arXiv preprint
 494 arXiv:2302.07458* (2023).

495 Andreas Gerhardus and Jakob Runge. 2020. High-recall causal discovery for autocorrelated time
 496 series with latent confounders. *Advances in neural information processing systems* 33 (2020),
 497 12615–12625.

498

499 Clive WJ Granger. 1969. Investigating causal relations by econometric models and cross-spectral
 500 methods. *Econometrica: journal of the Econometric Society* (1969), 424–438.

501 Saurabh Khanna and Vincent YF Tan. 2019. Economy statistical recurrent units for inferring non-
 502 linear granger causality. *arXiv preprint arXiv:1911.09879* (2019).

503

504 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolutional recurrent neural
 505 network: Data-driven traffic forecasting. *arXiv preprint arXiv:1707.01926* (2017).

506

507 Edward N Lorenz. 1996. Predictability: A problem partly solved. In *Proc. Seminar on predictability*,
 508 Vol. 1. Reading, 1–18.

509

510 Aurélie C Lozano, Naoki Abe, Yan Liu, and Saharon Rosset. 2009a. Grouped graphical Granger
 511 modeling for gene expression regulatory networks discovery. *Bioinformatics* 25, 12 (2009), i110–
 512 i118.

513

514 Aurelie C Lozano, Naoki Abe, Yan Liu, and Saharon Rosset. 2009b. Grouped graphical Granger
 515 modeling methods for temporal causal modeling. In *Proceedings of the 15th ACM SIGKDD in-
 516 ternational conference on Knowledge discovery and data mining*. 577–586.

517

518 Bethany Lusch, Pedro D Maia, and J Nathan Kutz. 2016. Inferring connectivity in networked dy-
 519 namical systems: Challenges using Granger causality. *Physical Review E* 94, 3 (2016), 032220.

520

521 Helmut Lütkepohl. 2005. *New introduction to multiple time series analysis*. Springer Science &
 522 Business Media.

523

524 Daniele Marinazzo, Mario Pellicoro, and Sebastiano Stramaglia. 2008. Kernel-Granger causality
 525 and the analysis of dynamical networks. *Physical Review E—Statistical, Nonlinear, and Soft
 526 Matter Physics* 77, 5 (2008), 056215.

527

528 Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
 529 gatzis, Paul Beaumont, and Bryon Aragam. 2020. Dynotears: Structure learning from time-series
 530 data. In *International Conference on Artificial Intelligence and Statistics*. Pmlr, 1595–1605.

531

532 Robert J Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K Sorger, Leonidas G Alexopoulos,
 533 Xiaowei Xue, Neil D Clarke, Gregoire Altan-Bonnet, and Gustavo Stolovitzky. 2010. Towards a
 534 rigorous assessment of systems biology models: the DREAM3 challenges. *PloS one* 5, 2 (2010),
 535 e9202.

536

537 Jakob Runge. 2018. Causal network reconstruction from time series: From theoretical assumptions
 538 to practical estimation. *Chaos: An Interdisciplinary Journal of Nonlinear Science* 28, 7 (2018).

539

540 Jakob Runge, Jobst Heitzig, Vladimir Petoukhov, and Jürgen Kurths. 2012. Escaping the curse of
 541 dimensionality in estimating multivariate transfer entropy. *Physical review letters* 108, 25 (2012),
 542 258701.

543

544 Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. De-
 545 tecting and quantifying causal associations in large nonlinear time series datasets. *Science ad-
 546 vances* 5, 11 (2019), eaau4996.

540 Rohit Singh, Alexander P Wu, and Bonnie Berger. 2022. Granger causal inference on DAGs identifies genomic loci regulating transcription. *arXiv preprint arXiv:2210.10168* (2022).

541

542

543 Malik Shahid Sultan, Samuel Horvath, and Hernando Ombao. 2022. Granger Causality using Neural Networks. *arXiv preprint arXiv:2208.03703* (2022).

544

545 Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B Fox. 2021. Neural granger causality. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44, 8 (2021), 4267–4279.

546

547

548 Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B: Statistical Methodology* 58, 1 (1996), 267–288.

549

550 Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. 2011. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. *Journal of computational neuroscience* 30, 1 (2011), 45–67.

551

552

553 Tailin Wu, Thomas Breuel, Michael Skuwersky, and Jan Kautz. 2020. Discovering nonlinear relations with minimum predictive information regularization. *arXiv preprint arXiv:2001.01885* (2020).

554

555

556 Chenxiao Xu, Hao Huang, and Shinjae Yoo. 2019. Scalable causal graph learning through a deep neural network. In *Proceedings of the 28th ACM international conference on information and knowledge management*. 1853–1862.

557

558

559

560 Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. 2018. Long-term forecasting using tensor-train rnns. (2018).

561

562 Jian Zhang and Bernard Ghanem. 2018. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In *Proceedings of the IEEE conference on computer vision and pattern recognition*. 1828–1837.

563

564

565

566

567 A APPENDIX

568 A.1 CASE STUDY: DREAM-3

569 This dataset presents a challenging nonlinear dataset for Granger causality testing. It simulates continuous gene expression and regulatory dynamics, with multiple hidden factors that are unobserved. DREAM-3 contains five simulated datasets with different true causal relationships. Each dataset consists of four segments of data with 10 nodes, each segment having 21 sampling time points. Different sequences are concatenated to form a total sequence of length 84 for experimentation.

570 The DREAM-3 dataset is a challenging nonlinear dataset used for rigorously comparing Granger causality detection methods. It contains three Yeast (Y.) datasets and two E. Coli (E.C.) datasets. In terms of variable count and underlying structural complexity, these datasets represent a limited data system, thus posing a significant test for the capabilities of causality learning methods. We applied DRMLP to learn from these five datasets while using cMLP and cLSTM as comparison models. Given the short sequence lengths of the DREAM-3 data, we set the maximum lag L to 2 and the number of hidden layer units to 10 to reduce the model’s size and accelerate the training process. The same settings were applied to the other methods. The evaluation results across the five time series datasets are presented in Table 3, with the corresponding ROC curves shown in Figure4.

585 Table 3: AUROC for DRMLP, cMLP, and cLSTM models on DREAM-3

586 Model	587 Yeast 1	588 Yeast 2	589 Yeast 3	590 Ecoli 1	591 Ecoli 2
cMLP	0.5722	0.5629	0.5553	0.5741	0.5855
cLSTM	0.5933	0.5800	0.5525	0.5132	0.5647
DRMLP	0.6568	0.6485	0.6067	0.6236	0.6070

592 From Table 3, it is evident that DRMLP outperformed both cMLP and cLSTM across all five 593 datasets. Notably, DREAM-3 with 10 nodes only contains four time series of length 21, resulting in a limited number of training samples, which makes it challenging for the models to learn the

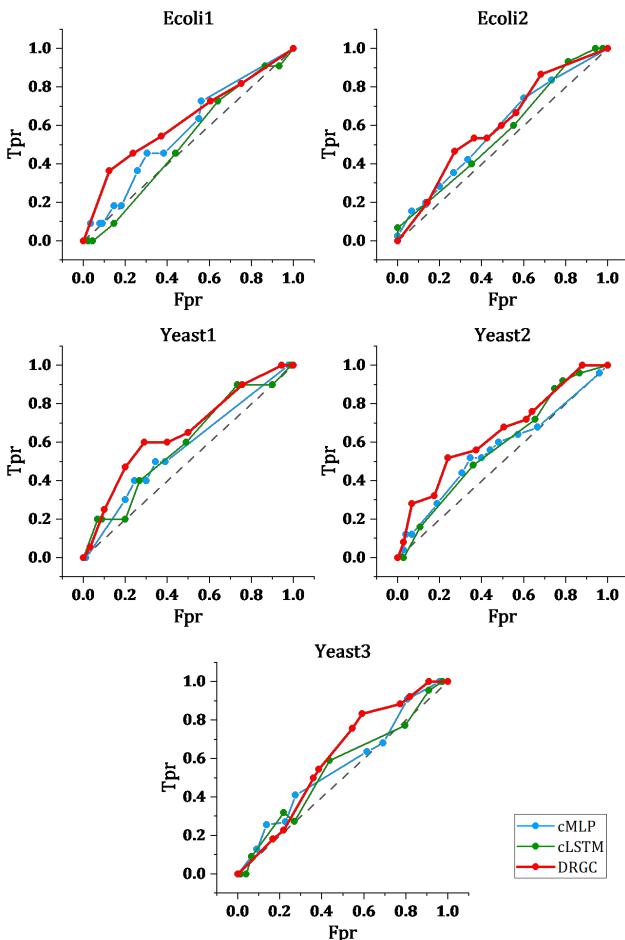


Figure 4: ROC for DRMLP, cMLP, and cLSTM models on DREAM-3

correct causal graph. Consequently, the AUROC values for all models were relatively low. However, DRMLP achieved a level of 60%. Our method effectively combines the advantages of linear and recurrent networks, allowing for the efficient reduction of the influence of irrelevant variables during the execution of sparse penalties, thereby concentrating the weights on the corresponding true causal variables.

A.2 LLM USAGE

We used large language models (LLMs), specifically OpenAI’s ChatGPT, as a supporting tool in the preparation of this manuscript. The LLM was employed **only for language-related assistance**, including:

- rephrasing and condensing sentences to improve readability,
- translating text between Chinese and English, and
- minor grammar and style corrections.

The LLM was **not used** for research ideation, theoretical development, experimental design, analysis, or the creation of novel scientific content. All research contributions, methodology, results, and interpretations presented in this paper are solely the work of the authors. The authors take full responsibility for the content of this paper.