

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DESCENT-NET: LEARNING DESCENT DIRECTIONS FOR CONSTRAINED OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning approaches, known for their ability to model complex relationships and fast execution, are increasingly being applied to solve large optimization problems. However, existing methods often face challenges in simultaneously ensuring feasibility and achieving an optimal objective value. To address this issue, we propose Descent-Net, a neural network designed to learn an effective descent direction from a feasible solution. By updating the solution along this learned direction, Descent-Net improves the objective value while preserving feasibility. Our method demonstrates strong performance on both synthetic optimization tasks and the real-world AC optimal power flow problem.

1 INTRODUCTION

Constrained optimization problems are ubiquitous in practical applications. While traditional optimization algorithms (Luenberger et al., 1984; Nocedal & Wright, 1999) offer strong theoretical guarantees, their computational efficiency often falls short when applied to modern large-scale problems. As a result, there is increasing interest in leveraging neural network-based methods to tackle constrained optimization tasks. In recent years, many emerging works have proposed end-to-end frameworks for solving constrained optimization problems, including Donti et al. (2017); Amos & Kolter (2017); Zhang & Ghanem (2018); Agrawal et al. (2019); Geng et al. (2020), etc.

This research direction falls under the broader framework of Learning to Optimize (L2O)(Bengio et al., 2021; Chen et al., 2022), which aims to leverage deep learning to improve the efficiency and scalability of optimization algorithms. Unlike traditional methods that rely on handcrafted update rules, L2O methods attempt to automatically learn optimization behaviors through data-driven approaches. However, most existing works consider unconstrained optimization problems. This motivates the development of more flexible frameworks that can incorporate feasibility into the learning dynamics while remaining scalable to large or structured problems.

In this work, we propose Descent-Net, a neural network architecture that takes as input the gradients of both the objective and constraint functions at a given feasible point. The network is trained to predict an effective descent direction and an appropriate step size, enabling objective improvement while maintaining feasibility. Initialized from feasible solutions obtained by methods such as DC3 (Donti et al., 2021), H-proj (Liang et al., 2024), etc., our method typically converges to a near-optimal solution in just a few update steps.

Our main contributions are summarized as follows:

- We design a new exact penalty subproblem that generates feasible descent directions for **linearly constrained optimization problems**, forming the foundation of our approach with theoretical convergence guarantees.
- We propose a neural network architecture, **Descent-Net**, which unrolls a projected subgradient method to solve the proposed subproblem. The network iteratively refines feasible solutions by learning effective descent directions at each step.
- We demonstrate the effectiveness of our approach through experiments on quadratic programs (QP) and a simple nonconvex variant of QP, both of which involve linear constraints. To further illustrate the applicability of Descent-Net beyond the linear setting, we also

054
055 evaluate it on the nonlinear AC optimal power flow problem. Across all experiments, our
056 method consistently achieves solutions with relative errors on the order of 10^{-4} .
057

058 2 RELATED WORK

059 **Classical methods for constrained optimization.** Classical approaches to constrained optimization-
060 including projected gradient descent, feasible direction methods (Zoutendijk, 1960; Topkis &
061 Veinott, 1967), and primal-dual algorithms (Luenberger et al., 1984; Nocedal & Wright, 1999; Boyd
062 et al., 2011), have been extensively studied and widely applied. These methods typically offer con-
063 vergence guarantees under suitable assumptions, but often suffer from high iteration complexity and
064 significant computational cost.
065

066 **Learning to optimize (L2O).** L2O seeks to replace hand-crafted optimization routines with learn-
067 able architectures that generalize across problem instances. Broadly speaking, L2O methods can
068 be classified into model-free and model-based approaches (Chen et al., 2022). Model-free meth-
069 ods, such as those based on recurrent neural networks (e.g., LSTM) (Graves, 2014; Andrychowicz
070 et al., 2016), aim to learn update rules directly from data. Model-based methods, on the other hand,
071 incorporate algorithmic structure into the design of the network. Notable examples include LISTA
072 (Chen et al., 2018b), unrolled manifold optimization algorithms (Gao et al., 2022). However, most
073 existing L2O methods focus on unconstrained or simple constrained problems and fail to guarantee
074 feasibility when applied to general constrained settings.
075

076 To address this, recent works incorporate constrained optimization structures into neural networks
077 via projection layers (Yang et al., 2020; Liang et al., 2024) or differentiable optimization modules
078 (Amos & Kolter, 2017; Agrawal et al., 2019; Bolte et al., 2021). However, these methods typically
079 suffer from scalability and the need to solve nested optimization problems during training. Some
080 approaches target special cases, such as linear constraints (Wang et al., 2023), but their applicabil-
081 ity to more general problems remains limited. An alternative line of work draws inspiration from
082 primal-dual methods, leading to neural architectures based on ADMM (Xie et al., 2019) and PDHG
083 (Li et al., 2024). Such methods are usually evaluated by the KKT error, where feasibility and ob-
084 jective optimality are of the same order of magnitude, which makes them less suitable for scenarios
085 requiring strict constraint satisfaction. Recent efforts have attempted to address this by designing
086 networks that explicitly return feasible points (Donti et al., 2021; Wu et al., 2025); however, such
087 methods still fall short of reaching near-optimal solutions in practice.
088

089 **Implicit layers.** A growing body of work explores the use of implicit neural architectures, includ-
090 ing optimization layers (Amos & Kolter, 2017), neural ordinary differential equations (ODEs) (Chen
091 et al., 2018a), and deep equilibrium models (DEQs) (Bai et al., 2019). These models define network
092 outputs via the solution of fixed-point or optimization problems, allowing compact yet highly ex-
093 pressive representations. Despite their potential, these approaches often incur high computational
094 costs during both forward and backward passes. In the context of constrained optimization, addi-
095 tional challenges arise when estimating gradients of projection operators, particularly in the pres-
096 ence of complex or nonconvex constraints. Approximate techniques such as gradient perturbation
097 or stochastic sampling (Pogančić et al., 2019; Berthet et al., 2020) have been proposed, but typically
098 come at the expense of increased variance and computational overhead.
099

100 3 PROBLEM SETUP

101 For any given data $x \in \mathbb{R}^d$, we solve the following constrained optimization problem
102

$$\min_{y \in \mathbb{R}^n} f_x(y), \quad \text{s.t.} \quad y \in \mathcal{C} := \{y \mid g_x(y) \leq 0, h_x(y) = 0\}, \quad (1)$$

103 where f , g , and h are smooth (but not necessarily convex) functions that may depend on the input
104 data x . We assume there are m equality constraints and l inequality constraints:
105

$$\begin{aligned} h_x(y) &= [h_{x,1}(y), h_{x,2}(y), \dots, h_{x,m}(y)]^T = 0, \\ g_x(y) &= [g_{x,1}(y), g_{x,2}(y), \dots, g_{x,l}(y)]^T \leq 0, \end{aligned}$$

106 where $h_{x,i} : \mathbb{R}^n \rightarrow \mathbb{R}$ and $g_{x,j} : \mathbb{R}^n \rightarrow \mathbb{R}$ for all $i = 1, \dots, m$ and $j = 1, \dots, l$. We have the
107 following common assumptions for this problem.
108

108 **Assumption 1.** The feasible set \mathcal{C} is non-empty and closed; the sub-level set $\{y \in \mathcal{C} \mid f_x(y) \leq f_x(y_0)\}$ is bounded.
 109
 110

111 **Assumption 2.** We assume that at any feasible point y , the gradients of the equality constraints,
 112 $\nabla h_i(y)$, for $i = 1, 2, \dots, m$, are linearly independent.
 113

114 We also assume that the Linear Independence Constraint Qualification (LICQ) holds, which guarantees that the Karush–Kuhn–Tucker (KKT) conditions are necessary for local optimality.
 115

116 **Assumption 3 (LICQ).** Let $y^* \in \mathcal{C}$ be a local optimal point of problem (1). We assume that the set
 117 of active constraint gradients at y^* ,

118 $\{\nabla h_i(y^*)\}_{i=1}^m \cup \{\nabla g_j(y^*)\}_{j \in \mathcal{A}(y^*)}$, where $\mathcal{A}(y^*) := \{j \in \{1, \dots, l\} \mid g_j(y^*) = 0\}$,
 119 is linearly independent.
 120

121 The notation \mathcal{A} denotes the *active set*¹, i.e., the set of inequality constraints that are satisfied with
 122 equality.
 123

124 **Assumption 4.** Let $\mathcal{X} \subseteq \mathbb{R}^p$ be a compact set and assume that all training and test parameters
 125 satisfy $x \in \mathcal{X}$. For each $x \in \mathcal{X}$, consider the feasible set \mathcal{C} . We assume that:

126 1. **(Uniform boundedness of feasible sets)** There exists a compact set $Y \subseteq \mathbb{R}^n$ such that

$$127 \quad \mathcal{C} \subseteq Y \quad \text{for all } x \in \mathcal{X}.$$

128 2. **(Smoothness and uniform gradient bound)** The functions f_x, h_x, g_x are continuously differentiable in y , and the maps

$$129 \quad (x, y) \mapsto \nabla_y f_x(y) \quad \text{and} \quad (x, y) \mapsto \nabla_y g_x(y)$$

130 are continuous on $\mathcal{X} \times Y$. Then, by compactness, there exist constants $L_f > 0$ and $L_g > 0$
 131 such that

$$132 \quad \|\nabla_y f_x(y)\|_2 \leq L_f \quad \text{and} \quad \|\nabla_y g_x(y)\|_2 \leq L_g \quad \text{for all } x \in \mathcal{X}, y \in \mathcal{C}.$$

133 This assumption is reasonable. In practical training, the dataset is always finite, so there must exist
 134 a corresponding upper bound.
 135

136 **Assumption 5.** There exists a constant $\delta > 0$ such that for every $x \in \mathcal{X}$ and every feasible point
 137 $y \in \mathcal{C}$,

$$138 \quad \min_{j: g_{x,j}(y) < 0} (-g_{x,j}(y)) \geq \delta_g,$$

139 with the convention that the minimum over an empty index set is $+\infty$ (i.e., when all inequality
 140 constraints are active).

141 In fact, this assumption is not very strong. In practical calculations, we can set δ_g as an extremely
 142 small value (e.g. 1e-5) and consider a constraint as active when $0 \leq -g_{x,j} < \delta_g$.
 143

144 3.1 FEASIBLE DIRECTIONS METHOD

145 The method of feasible directions (MFD) was originally developed by Zoutendijk in the 1960s
 146 (Zoutendijk, 1960). However, a well-known drawback of MFD is that it may fail to converge due
 147 to the so-called jamming phenomenon. To address this issue, various fundamental modifications
 148 and extensions of MFD have since been proposed and studied (Zoutendijk, 1960; Topkis & Veinott,
 149 1967; Pironneau & Polak, 1973; Luenberger et al., 1984). In this section, we briefly review the
 150 framework of MFD under the assumption that the constraints $h_x(y)$ and $g_x(y)$ are linear.
 151

152 Based on the first-order approximation of the constraint functions, it can be inferred that, to maintain
 153 the feasibility of the solution, a suitable descent direction d at the current iterate y should satisfy the
 154 following conditions:
 155

$$156 \quad \langle d, \nabla h_{x,i}(y) \rangle = 0, \quad \text{for } i = 1, \dots, m, \quad (2)$$

$$157 \quad \langle d, \nabla g_{x,j}(y) \rangle \leq 0, \quad \text{for } j \in \mathcal{A} = \{1 \leq j \leq l : g_{x,j}(y) = 0\},$$

158 where $\nabla h_{x,i}$ denotes the gradient of the equality constraints, and $\nabla g_{x,j}$ corresponds to the inequality
 159 constraints.
 160

161 ¹This is distinct from the standard definition of the active set, which typically includes the indices corresponding to the equality constraints.

162 **Zoutendijk Direction-Finding Subproblem(Zoutendijk, 1960)** The Zoutendijk method computes a search direction $d \in \mathbb{R}^n$ at a feasible point y by solving the following linear program:
 163
 164

$$\begin{aligned} 165 \quad & \min_{d \in \mathbb{R}^n} \nabla f_x(y)^\top d \\ 166 \quad & \text{s.t. } \nabla h_x(y)^\top d = 0, \quad \nabla g_{x,j}(y)^\top d \leq 0, \quad j \in \mathcal{A}, \quad \|d\|_\infty \leq 1. \\ 167 \end{aligned} \tag{MFD}$$

168 Here, $\nabla h_x(y)^\top \in \mathbb{R}^{m \times n}$ denotes the Jacobian matrix of the equality constraints.
 169

170 The first constraint ensures that the direction is tangent to the equality constraint, while the second
 171 maintains feasibility with respect to the active inequalities. The infinity norm constraint serves to
 172 normalize the direction and keep the subproblem bounded.

173 The step size is then chosen as the largest feasible value such that $y + \alpha d$ remains in the feasible set:
 174

$$\bar{\alpha} = \max\{\alpha \in (0, 1) \mid y + \alpha d \in \mathcal{C}\}.$$

175 However, when the iterate approaches the boundary of the feasible region, the step size $\bar{\alpha}$ may
 176 become arbitrarily small, potentially causing convergence issues (Topkis & Veinott, 1967).
 177

178 **Topkis–Veinott Uniformly Feasible Direction Subproblem (Topkis & Veinott, 1967)** To re-
 179 solve this issue, Topkis and Veinott proposed a uniformly feasible direction (UFD) formulation:
 180

$$\begin{aligned} 181 \quad & \min_{d \in \mathbb{R}^n} \nabla f_x(y)^\top d \\ 182 \quad & \text{s.t. } \nabla h_x(y)^\top d = 0, \quad \nabla g_{x,j}(y)^\top d \leq -M \cdot g_{x,j}(y), \quad j = 1, \dots, l, \\ 183 \quad & \sum_{i=1}^n |d_i| = 1. \\ 184 \end{aligned} \tag{UFD}$$

185 The main difference lies in the fact that all inequality constraints are considered, and a constant
 186 $M > 0$ is introduced. Notably, setting $M = \infty$ recovers the original formulation in (MFD). This
 187 modification ensures that the computed direction d satisfies
 188

$$g_{x,j}(y + \alpha d) \leq 0, \quad \text{for all } j, \quad \text{as long as } \alpha \leq \frac{1}{M},$$

189 thus providing a uniform lower bound on feasible step sizes and overcoming the stalling issues of
 190 the original method. It can be shown that the direction obtained from (UFD) is a feasible descent
 191 direction. Moreover, under the Assumption 3, any accumulation point of the iterates generated by
 192 this method (Zoutendijk, 1960; Faigle et al., 2013) satisfies the KKT conditions.
 193

194 4 ALGORITHM

195 4.1 REFORMULATION OF UFD SUBPROBLEM

196 Our goal is to design a learning-to-optimize (L2O) algorithm for solving the structured problem
 197 described above. However, both the Zoutendijk and Topkis–Veinott methods require solving con-
 198 strained subproblems at each iteration, which are not suitable for direct embedding into neural net-
 199 works. To address this, we reformulate the subproblem by exact penalty method. This enables us to
 200 implement the solver as an unrolled optimization process of projected subgradient method, forming
 201 the basis of our L2O algorithm. In the following, we describe the reformulated subproblem and the
 202 corresponding L2O architecture.
 203

204 Motivated by (MFD), we first formulate the following penalized subproblem:
 205

$$206 \quad \min_d \nabla f_x(y)^\top d + \sum_{j=1}^l c_j \max(\langle d, \nabla g_{x,j}(y) \rangle, -M g_{x,j}(y)), \quad \text{s.t. } d \in \mathcal{D}, \tag{3}$$

207 where $\mathcal{D} = \{d : \|d\|_2 \leq 1 \text{ and } \langle d, \nabla h_{x,i}(y) \rangle = 0, \forall i = 1, \dots, m\}$, $c_j > 0$ and $M > 0$ are the
 208 regularization parameters. The hinge penalty is exact if the parameter c_j is large enough. We have
 209 the following result. The proof can be found in Appendix.
 210

216 **Lemma 1** (Exact hinge penalty). *Given any feasible point $y \in \mathcal{C}$, denote $c_{\min} := \min_j c_j$. If we*
 217 *have*

$$218 \quad 219 \quad c_{\min} > \frac{L_f}{M\delta_g}, \quad (4)$$

220 *where c_{\min} is selected independently of x , then every global minimizer of (3) is optimal for the*
 221 *following L_2 -norm UFD subproblem*

$$222 \quad \begin{aligned} 223 \quad \min_{\|d\|_2 \leq 1} \quad & \nabla f_x(y)^\top d \\ 224 \quad \text{s.t.} \quad & \nabla h_x(y)^\top d = 0, \quad \nabla g_{x,j}(y)^\top d \leq -M \cdot g_{x,j}(y), \quad j = 1, \dots, l. \end{aligned} \quad (\text{UFD-L2})$$

226 A specific choice of c_j that satisfies (4) is

$$228 \quad 229 \quad c_j = \frac{\|\nabla f_x(y)\|_2}{\epsilon - \frac{1}{2}Mg_{x,j}(y)}, \quad j = 1, \dots, l. \quad (5)$$

230 The constant $\epsilon > 0$ is a small positive number added to ensure numerical stability during the cal-
 231 culations. Intuitively, when $g_{x,j}(y)$ is close to zero, which indicates that the point y lies near the
 232 boundary of the j -th inequality constraint, the corresponding weight c_j should be larger, as such
 233 constraints are more likely to be violated in subsequent updates. By assigning higher weights
 234 to these near-active constraints, the network is encouraged to prioritize directions d that satisfy
 235 $\langle d, \nabla g_{x,j}(y) \rangle \leq -Mg_{x,j}(y)$, which helps prevent constraint violations. We remark there are many
 236 possible surrogates for c_j , e.g., $c_j = \exp(-\delta g_{x,j}(y))$ or the softmax function.

237 **Proposition 1.** *Let $H \in \mathbb{R}^{n \times m}$ denote the matrix formed by the gradients of the equality constraints*

$$238 \quad H = [\nabla h_{x,1}(y) \quad \dots \quad \nabla h_{x,m}(y)].$$

240 *Then, under Assumption 2, the expression for the projection onto \mathcal{D} is given by*

$$241 \quad 242 \quad \mathcal{P}(d) = \begin{cases} \hat{d}, & \text{if } \|\hat{d}\|_2 \leq 1, \\ \hat{d}/\|\hat{d}\|_2, & \text{otherwise,} \end{cases} \quad \text{where } \hat{d} = d - H(H^\top H)^{-1}H^\top d. \quad (6)$$

244 Consequently, the procedure of the projected (sub)gradient method for solving this problem is as
 245 follows:

$$246 \quad d_{k+1} = \mathcal{P}(d_k - \gamma_k \mathbf{u}_k), \quad (7)$$

247 where $\gamma_k > 0$ is the step size and \mathcal{P} is the projection operator defined in (6). Let $\mathbf{1}_{\{\cdot\}}$ denotes the
 248 indicator function, the subgradient term \mathbf{u}_k is given by

$$249 \quad 250 \quad \mathbf{u}_k = \nabla f_x(y) + \sum_{j=1}^l c_j \mathbf{1}_{\{\langle d^k, \nabla g_{x,j}(y) \rangle \geq -Mg_{x,j}(y)\}} \nabla g_{x,j}(y). \quad (8)$$

253 Note that in many practical problems, the matrix H is fixed across instances or does not change
 254 frequently. In such cases, the projection in (6) can be precomputed, making the computational cost
 255 manageable. Examples include decision-focused learning setups, where the equality constraints
 256 remain constant across instances (Tan et al., 2020). In other problems, the equality constraints
 257 are simple, allowing the projection to be computed efficiently; for instance, in classical portfolio
 258 optimization (Fabozzi et al., 2008), the budget constraint enables a straightforward projection.

259 4.2 DESIGN OF DESCENT MODULE

261 Directly solving problem (3) using the projected (sub)gradient method usually results in slow con-
 262 vergence, due to the use of diminishing step size. To address this, we propose Descent-Module,
 263 which is designed by unrolling the projected (sub)gradient algorithm. In our proposed network
 264 architecture, each layer takes the form of one iteration of the projected (sub)gradient method,
 265

$$266 \quad d_{k+1} = \mathcal{P}(d_k - \gamma_k T^k(\mathbf{u}_k)). \quad (9)$$

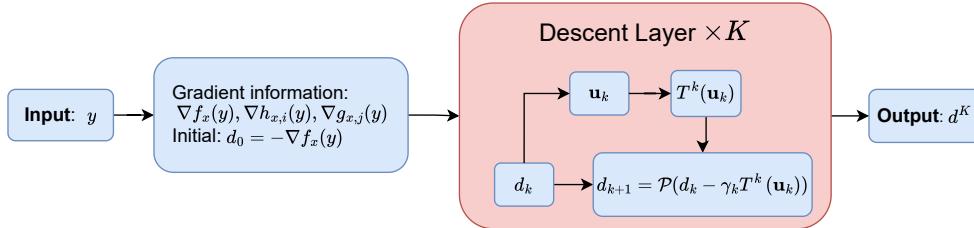
267 The key difference is that we apply learnable modules T^k to the subgradient term \mathbf{u}_k , and the
 268 definition of T^k is given as follows:

$$269 \quad T^k(\mathbf{u}_k) = \mathbf{V}^k \text{ReLU}(\mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k) + \mathbf{b}_2^k, \quad (10)$$

270 where $\mathbf{W}^k \in \mathbb{R}^{q \times n}$, $\mathbf{V}^k \in \mathbb{R}^{n \times q}$ and $\mathbf{b}_1^k \in \mathbb{R}^q$, $\mathbf{b}_2^k \in \mathbb{R}^n$ are the weight matrix and bias that we
 271 need to learn and $\text{ReLU}(x) = \max(x, 0)$. The design of the operator T follows the work in Wu
 272 et al. (2024), where the authors theoretically demonstrate that such a network architecture possesses
 273 strong universal approximation capabilities.

274 The step size γ_k is also set as a learnable parameter, which avoids the need for manual tuning, and
 275 we provide in Appendix A.8 the learned values of γ_k across different layers in our experiments.

277 The architectures of the Descent Module are illustrated in Figure 1. Each Descent Module consists
 278 of K Descent Layers sharing the same architecture and the input to the first layer is chosen as
 279 $d_0 = -\nabla f_x(y)$.



289 Figure 1: Overall structure of the Descent Module
 290

291 We have the following theorem, and its proof is provided in the appendix.

292 **Theorem 4.1.** *Let d^* be the optimal solution of Problem (3). For any $\varepsilon > 0$, there exists a K_ε -layer
 293 Descent-Module with a specific parameter assignment [independent of \$x\$](#) , whose output d satisfies
 294 $|g(d) - g(d^*)| < \varepsilon$. Moreover, the number of layers satisfies $K_\varepsilon \leq \frac{C}{\varepsilon^2}$ for some constant $C > 0$.*

296 4.3 STEP SIZE

298 After obtaining the descent direction d from the Descent module, we still need to determine a suitable
 299 step size. [We assume that all constraints are linear](#). Since the Descent module contains the
 300 projection operator \mathcal{P} , the final descent direction d produced by Descent module is orthogonal to
 301 the gradients of the equality constraints. Therefore, updating along d will not violate the equality
 302 constraints.

303 We only need to ensure that the step size is not too large to violate the inequality constraints. [For
 304 each linear inequality constraint \$g_{x,j}\$, we have:](#)

$$305 \quad g_{x,j}(y + \alpha d) = g_{x,j}(y) + \alpha \cdot \langle d, \nabla g_{x,j}(y) \rangle.$$

306 If $\langle d, \nabla g_{x,j}(y) \rangle > 0$, updating the solution along d will increase $g_{x,j}$. To preserve the feasibility of
 307 the inequality constraint, i.e., $g_{x,j}(y + \alpha d) \leq 0$, the step size α must satisfy

$$309 \quad \alpha \leq \frac{-g_{x,j}(y)}{\langle d, \nabla g_{x,j}(y) \rangle}.$$

311 Therefore, the maximum allowable step size is given by

$$313 \quad \alpha_{\max} = \min_{j \in \mathcal{I}} \frac{-g_{x,j}(y)}{\langle d, \nabla g_{x,j}(y) \rangle}, \quad \text{where } \mathcal{I} = \{j \mid \langle d, \nabla g_{x,j}(y) \rangle > 0\}. \quad (11)$$

315 To guarantee a sufficient decrease of the objective value, the step size α should also satisfy $f_x(y +$
 316 $\alpha d) < f_x(y)$. To obtain a sufficient decrease in the objective value, we introduce a learnable
 317 parameter $\beta \in \mathbb{R}$ and use the sigmoid function $\sigma(\cdot)$ to map it into $(0, 1)$. We then use this factor to
 318 scale α_{\max} , and the final update rule for y is

$$319 \quad y^{\text{new}} = y^{\text{old}} + \sigma(\beta) \alpha_{\max} \cdot d. \quad (12)$$

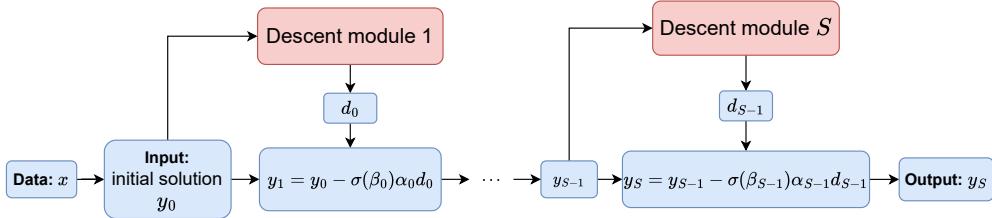
321 In addition, if the descent direction d obtained from the Descent-Net is the optimal solution of
 322 Problem (3), Lemma 1 ensures that a fixed step size of $\alpha = 1/M$ is feasible. However, we found
 323 that such a fixed step size does not perform well in practice, and in the appendix A.6 we provide a
 comparison of different step-size selection strategies.

324 4.4 DESCENT-NET
325

326 Our Descent-Net consists of S Descent Modules. The input of the network is an initial feasible
327 solution y_0 of Problem (1). At each stage, the s -th module takes the gradient information at the
328 current iterate y_s and outputs a descent direction d_s , which is then used to update the solution to y_{s+1}
329 according to the update rule (12). By repeatedly updating the solution in this manner, the network
330 finally produces a high-accuracy feasible solution y_S . The overall procedure of the proposed method
331 is summarized in Algorithm 1.

332 **Algorithm 1** Descent-Net

334 1: **Input:** initial feasible point $y_0 \in \mathcal{C}$, S modules and K layers in each module.
335 2: **Learnable parameters:** $\Theta := \{\mathbf{V}^k, \mathbf{W}^k, \mathbf{b}_1^k, \mathbf{b}_2^k, \gamma_k\}_{k=0,1,\dots,K-1}$ and $\{\beta_s\}_{s=0,\dots,S-1}$.
336 3: **for** $s = 0, 1, \dots, S - 1$ **do**
337 4: $d_0 = -\nabla f_x(y_s)$
338 5: **for** $k = 0, \dots, K - 1$ **do**
339 6: $\mathbf{u}_k = \nabla f_x(y_s) + \sum_{j=1}^l c_j \mathbf{1}_{\{\langle d_k, \nabla g_j(y_s) \rangle \geq -M g_{x,j}(y)\}} \nabla g_j(y_s)$
340 7: $d_{k+1} = \mathcal{P}(d_k - \gamma_k T^k(\mathbf{u}_k))$, where \mathcal{P} is defined in (6) and T^k is defined in (10) with
341 parameters $\{\mathbf{V}^k, \mathbf{W}^k, \mathbf{b}_1^k, \mathbf{b}_2^k\}$
342 8: **end for**
343 9: $y_{s+1} = y_s + \sigma(\beta_s) \cdot \alpha_s d_K$ as defined by (12), where α_s is obtained by (11).
344 10: **end for**
345 11: Train the parameters with loss: $\ell_p(y) = f_x(y) + \lambda_g \|\text{ReLU}(g_x(y))\|_1 + \lambda_h \|h_x(y)\|_1$
346 12: **Output:** y_S .

357 Figure 2: Architecture of the entire network.
358

360 **Theorem 4.2** (global convergence of the Descent-Net). *Suppose the Assumptions 1, 2, 3 hold. In
361 addition, assume that h_x, g_x are linear. Then there exists K_ε -layer Descent-Module with a specific
362 parameter assignment **independent of x** and $S > 0$ such that the Descent-Net generates a KKT
363 conditions of the problem (1).*

364 The proof of the above theorem is given in Appendix. Although we assume linear constraints to
365 establish the convergence guarantees, the proposed algorithm remains applicable in practice to prob-
366 lems with nonlinear constraints. Further improvements for handling general nonlinear constraints
367 are left for future work.

368
369 5 EXPERIMENT
370

371 We evaluate our Descent-Net on three types of problems: convex quadratic programs, a simple class
372 of non-convex optimization problems, and the AC optimal power flow (ACOPF) problem, with
373 detailed experimental settings provided in Appendix A.2.

374 5.1 BASELINES AND EVALUATION CRITERIA
375

376 We compare our method against several benchmarks, including:

- **Optimizer:** Traditional numerical solvers, including `OSQP` (Stellato et al., 2020) and `qpth` (Amos & Kolter, 2017) for convex QPs, `IPOPT` (Wächter & Biegler, 2006) and `Knitro` (Byrd et al., 2006) for general nonlinear programs, and the `PYPOWER` solver (a Python port of `MATPOWER` (Zimmerman et al., 2005)) for ACOPF.
- **DC3**(Donti et al., 2021): The full DC3 framework that combines both completion and correction operators.
- **Projection method:**Trains an MLP and projects its output onto the feasible set. For problems with linear constraints (convex QP and simple non-convex cases), the projection is solved using OptNet (Amos & Kolter, 2017). For the ACOPF problem, the projection follows the differentiable solver of Chen et al. (2021).
- **Warm start:** The infeasible NN prediction is directly used as the warm-start for the optimizer of Chen et al. (2021), following the warm-starting schemes of Diehl (2019) and Baker (2019).
- **CBWF**(Wu et al., 2025): Inspired by the classical active set method, this approach explores the boundaries around inequality constraints and updates the initial solution to obtain a better objective value.

The performance of all methods is assessed according to the following criteria:

- **Feasibility:** measured by the average constraint violation of both equality and inequality constraints, i.e., $\frac{1}{m} \sum_{i=1}^m |h_{x,i}(y)|$ and $\frac{1}{l} \sum_{j=1}^l \text{ReLU}(g_{x,j}(y))$.
- **Optimality:** measured by the average relative and absolute errors (in the ℓ_1 norm) for both the solution and the objective value, where the optimal solution is approximated by optimizer.
- **Efficiency:** the computational time. It is worth noting that `OSQP`, `IPOPT`, `Knitro`, and `PYPOWER` only support sequential solving. For these solvers, we report the average runtime per instance to approximate full parallelization, while for other methods the runtime is measured with all test instances solved in parallel. For CBWF and Descent, the reported runtime includes both the time to obtain the initial solution and the time spent on refining the solution.

5.2 CONVEX QUADRATIC PROGRAMS

We first consider convex QPs with quadratic objectives and linear constraints:

$$\min_{y \in \mathbb{R}^n} \frac{1}{2} y^T Q y + p^T y, \quad \text{s.t. } Ay = x, \quad Gy \leq h, \quad (13)$$

where $Q \in \mathbb{R}^{n \times n} \succeq 0$, $p \in \mathbb{R}^n$, $A \in \mathbb{R}^{n_{eq} \times n}$, $G \in \mathbb{R}^{n_{ineq} \times n}$, and $h \in \mathbb{R}^{n_{ineq}}$ are fixed. The input $x \in \mathbb{R}^{n_{eq}}$ varies across problem instances, and the goal is to approximate the optimal y given x .

We generated 10,000 examples of x , and the experiment results are reported in Table 1. The initial solutions use those from DC3, and the final solutions produced by Descent-Net achieve a relative objective error of 2.6×10^{-4} . Moreover, Descent solves the instances about 58 times faster than the QP solver `qpth`. Note that the runtime reported for `OSQP` and `Knitro` corresponds to the average time per instance, as it only supports sequential solving, and is therefore less efficient than Descent-Net.

In addition, to further illustrate the effectiveness of Descent-Module, we examine the error between the descent direction d and the optimal solution of its corresponding subproblem (3). The experimental results are provided in appendix A.7. We also compare Descent-Module with the original projected subgradient method, and the results are reported in appendix A.9. Furthermore, we include additional experiments on more QP instances in appendix A.4 and appendix A.5.

5.3 SIMPLE NON-CONVEX OPTIMIZATION

We now examine a simple non-convex adaptation of the quadratic program

$$\min_{y \in \mathbb{R}^n} \frac{1}{2} y^T Q y + p^T \sin(y), \quad \text{s.t. } Ay = x, \quad Gy \leq h, \quad (14)$$

432 Table 1: Results on the convex QP task evaluated on the test set with 833 samples.
433

434 Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
435 Knitro	0.0000	0.0000	0	0	0.0255
436 OSQP	0.0000	0.0000	7.9×10^{-4}	6.8×10^{-6}	0.0055
437 qpth	0.0000	0.0000	8.0×10^{-4}	6.8×10^{-6}	0.7540
438 DC3	0.0000	0.0000	1.9×10^{-1}	1.1×10^{-1}	0.0038
439 Projection method	0.0000	0.0000	3.2×10^{-2}	8.4×10^{-4}	0.2124
440 CBWF	0.0000	0.0000	2.1×10^{-1}	6.6×10^{-2}	0.0366
441 DC3 + Descent (Ours)	0.0000	0.0000	1.2×10^{-2}	2.6×10^{-4}	0.0130

444 where $\sin(y)$ represents the component-wise application of the sine function to the vector y . Compared to problem (13), the only difference is that y in the objective function is replaced with $\sin(y)$,
445 which makes the problem non-convex.
446

447 The experimental results are presented in Table 2. The initial solutions use those from DC3, and the
448 final solutions produced by Descent-Net achieve a relative objective error of 3.1×10^{-4} . Moreover,
449 Descent-Net solves the instances approximately 10 times faster than the solver IPOPT.
450

451 Table 2: Results on the simple non-convex task evaluated on the test set with 833 samples.
452

453 Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
454 IPOPT	0.0000	0.0000	0	0	0.1493
455 DC3	0.0000	0.0000	2.2×10^{-1}	8.2×10^{-2}	0.0041
456 Projection method	0.0000	0.0000	5.4×10^{-2}	1.8×10^{-3}	0.2472
457 CBWF	0.0000	0.0000	2.6×10^{-1}	5.5×10^{-2}	0.0364
458 DC3 + Descent (Ours)	0.0000	0.0000	1.7×10^{-2}	3.1×10^{-4}	0.0144

460 5.4 ACOPF

461 The objective of the AC optimal power flow (AC-OPF) problem is to determine the optimal power
462 generation that balances supply and demand while satisfying both physical laws and operational
463 constraints of the network. A compact formulation of the AC-OPF problem is as follows:
464

$$\begin{aligned}
 & \min_{p_g \in \mathbb{R}^n, q_g \in \mathbb{R}^n, v \in \mathbb{C}^n} \quad p_g^\top Q p_g + b^\top p_g \\
 & \text{s.t.} \quad p_g^{\min} \leq p_g \leq p_g^{\max}, \quad q_g^{\min} \leq q_g \leq q_g^{\max}, \quad v_m^{\min} \leq |v| \leq v_m^{\max}, \\
 & \quad v_a^{\min} \leq \angle v_i - \angle v_j \leq v_a^{\max}, \quad |v_i(\bar{v}_i - \bar{v}_j) \bar{w}_{ij}| \leq S_{ij}^{\max}, \\
 & \quad (p_g - p_d) + (q_g - q_d)i = \text{diag}(v) \bar{W} \bar{v}.
 \end{aligned} \tag{15}$$

465 Here, $p_d, q_d \in \mathbb{R}^n$ denote the active and reactive power demands, and $p_g, q_g \in \mathbb{R}^n$ are the cor-
466 responding power generations. The complex bus voltage is represented by $v \in \mathbb{C}^n$. The nodal
467 admittance matrix $W \in \mathbb{C}^{n \times n}$ encodes the network topology.
468

469 Since the equality constraints in this problem are nonlinear, a first-order approximation is not very
470 accurate. As a result, even if the descent direction d is orthogonal to the gradients of all equality
471 constraints, the updated point may still fail to satisfy them. To address this issue, we adopt an
472 equation completion approach, and the details are provided in the appendix A.10.
473

474 We conduct experiments on two ACOPF problem instances of different scales. Besides D-Proj
475 (i.e., DC3), we use H-Proj (Liang et al., 2024) as another initialization strategy, and denote the
476 corresponding solutions by y^D and y^H .
477

478 D-Proj originally reduces violations of inequality constraints by performing a gradient descent step
479 on the ℓ_2 norm of constraint violations. In our experiments, we found that this gradient step is
480 time-consuming and, in practice, often unnecessary. Therefore, we introduce an improved variant of
481

D-Proj by removing the gradient-descent step. This modification significantly reduces the computational time while maintaining comparable satisfaction of the inequality constraints. The optimized initialization obtained using this approach is denoted by y^{D^*} .

The results in Table 3 indicate that Descent-Net produces solutions with relative objective errors on the order of 10^{-4} across all cases. The relative error of the solution obtained by Descent-Net decreases only marginally compared to the initial point, which may be due to the non-convex nature of the ACOPF problem. Note that the runtime of PYPOWER is the average per instance since it solves sequentially, while Descent-Net solves instances in parallel, providing much higher efficiency.

Table 3: Results on the ACOPF task evaluated on the test set with 1024 samples.

30-bus system: $n_{\text{eq}} = 60, n_{\text{ineq}} = 84$					
Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
PYPOWER	0.0000	0.0000	0	0	0.5729
Projection method	0.0000	0.0000	5.6×10^{-3}	1.7×10^{-2}	0.0397
Warm start	0.0000	0.0000	5.5×10^{-3}	1.7×10^{-2}	0.0393
D-Proj	0.0000	0.0000	5.9×10^{-3}	1.9×10^{-2}	0.2442
H-Proj	0.0000	0.0000	5.8×10^{-3}	1.7×10^{-2}	0.2865
Descent ($y_0 = y^D$)	0.0000	0.0000	4.2×10^{-3}	3.6×10^{-4}	0.2619
Descent ($y_0 = y^H$)	0.0000	0.0000	3.5×10^{-3}	3.3×10^{-4}	0.3039
Descent ($y_0 = y^{D^*}$)	0.0000	0.0000	3.6×10^{-3}	2.8×10^{-4}	0.0434
118-bus system: $n_{\text{eq}} = 236, n_{\text{ineq}} = 452$					
Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
PYPOWER	0.0000	0.0000	0	0	1.2539
Projection method	0.0000	0.0000	1.5×10^{-2}	2.4×10^{-3}	0.3040
Warm start	0.0000	0.0000	9.3×10^{-3}	1.8×10^{-3}	0.3137
D-Proj	0.0000	0.0000	1.3×10^{-2}	2.4×10^{-3}	0.7542
H-Proj	0.0000	0.0000	1.4×10^{-2}	3.1×10^{-3}	0.6682
Descent ($y_0 = y^D$)	0.0000	0.0000	1.2×10^{-2}	2.5×10^{-4}	0.9480
Descent ($y_0 = y^H$)	0.0000	0.0000	1.4×10^{-2}	7.2×10^{-4}	0.8637
Descent ($y_0 = y^{D^*}$)	0.0000	0.0000	2.2×10^{-3}	3.0×10^{-4}	0.1622

6 FUTURE WORK

This work also points to several directions for further development. First, our theoretical results are established under the assumption of linear constraints. In the ACOPF experiments, the constraints are nonlinear, and although the method demonstrates strong empirical performance, extending the theoretical analysis to nonlinear or nonconvex settings represents an important direction for future work.

Second, to further demonstrate the advantages of our method, future work needs to validate it on problems of even larger scale than those considered here. However, obtaining feasible initial solutions for such instances is often challenging.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter. Differentiable convex optimization layers. *Advances in neural information processing systems*, 32, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In *International conference on machine learning*, pp. 136–145. PMLR, 2017.

540 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
 541 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
 542 descent. *Advances in neural information processing systems*, 29, 2016.

543 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in Neural
 544 Information Processing Systems*, 32, 2019.

545 Kyri Baker. Learning warm-start points for ac optimal power flow. In *2019 IEEE 29th International
 546 Workshop on Machine Learning for Signal Processing (MLSP)*, pp. 1–6. IEEE, 2019.

547 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
 548 mization: a methodological tour d’horizon. *European Journal of Operational Research*, 290(2):
 549 405–421, 2021.

550 Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
 551 Bach. Learning with differentiable perturbed optimizers. *Advances in neural information process-
 552 ing systems*, 33:9508–9519, 2020.

553 Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentia-
 554 tion for machine-learning and optimization. *Advances in neural information processing systems*, 34:
 555 13537–13549, 2021.

556 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
 557 tion and statistical learning via the alternating direction method of multipliers. *Foundations and
 558 Trends® in Machine learning*, 3(1):1–122, 2011.

559 Richard H Byrd, Jorge Nocedal, and Richard A Waltz. Knitro: An integrated package for nonlinear
 560 optimization. In *Large-scale nonlinear optimization*, pp. 35–59. Springer, 2006.

561 Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy
 562 feasibility constraints through differentiable projection for energy optimization. In *Proceedings
 563 of the Twelfth ACM International Conference on Future Energy Systems*, pp. 199–210, 2021.

564 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 565 differential equations. *Advances in neural information processing systems*, 31, 2018a.

566 Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
 567 Wotao Yin. Learning to optimize: A primer and a benchmark. *Journal of Machine Learning
 568 Research*, 23(189):1–59, 2022.

569 Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
 570 unfolded ista and its practical weights and thresholds. *Advances in Neural Information Processing
 571 Systems*, 31, 2018b.

572 Frederik Diehl. Warm-starting ac optimal power flow with graph neural networks. In *33rd Confer-
 573 ence on Neural Information Processing Systems (NeurIPS 2019)*, pp. 1–6, 2019.

574 Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
 575 optimization. *Advances in neural information processing systems*, 30, 2017.

576 Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
 577 hard constraints. In *International Conference on Learning Representations*, 2021.

578 Frank J Fabozzi, Harry M Markowitz, and Francis Gupta. Portfolio selection. *Handbook of finance*,
 579 2:3–13, 2008.

580 Ulrich Faigle, Walter Kern, and Georg Still. *Algorithmic principles of mathematical programming*,
 581 volume 24. Springer Science & Business Media, 2013.

582 Zhi Gao, Yuwei Wu, Xiaomeng Fan, Mehrtash Harandi, and Yunde Jia. Learning to optimize on
 583 riemannian manifolds. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):
 584 5935–5952, 2022.

585 Zhenglin Geng, Daniel Johnson, and Ronald Fedkiw. Coercing machine learning to output physi-
 586 cally accurate results. *Journal of Computational Physics*, 406:109099, 2020.

594 Alex Graves. Generating sequences with recurrent neural networks, 2014.
 595

596 Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Haitao Mao, Qian Chen, Yao Ma, Akang
 597 Wang, Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale
 598 linear programming. In *Proceedings of the 41st International Conference on Machine Learning*,
 599 pp. 29164–29180, 2024.

600 Enming Liang, Minghua Chen, and Steven H Low. Homeomorphic projection to ensure neural-
 601 network solution feasibility for constrained optimization. *Journal of Machine Learning Research*,
 602 25(329):1–55, 2024.

603 David G Luenberger, Yinyu Ye, et al. *Linear and nonlinear programming*, volume 2. Springer,
 604 1984.

605 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 1999.

606 O Pironneau and E Polak. Rate of convergence of a class of methods of feasible directions. *SIAM*
 607 *Journal on Numerical Analysis*, 10(1):161–174, 1973.

608 Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolínek. Differ-
 609 entiation of blackbox combinatorial solvers. In *International Conference on Learning Represen-
 610 tations*, 2019.

611 Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An
 612 operator splitting solver for quadratic programs. *Mathematical Programming Computation*, 12
 613 (4):637–672, 2020.

614 Yingcong Tan, Daria Terekhov, and Andrew Delong. Learning linear programs from optimal deci-
 615 sions. *Advances in Neural Information Processing Systems*, 33:19738–19749, 2020.

616 Donald M Topkis and Arthur F Veinott, Jr. On the convergence of some feasible direction algorithms
 617 for nonlinear programming. *SIAM Journal on Control*, 5(2):268–279, 1967.

618 Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search
 619 algorithm for large-scale nonlinear programming. *Mathematical programming*, 106:25–57, 2006.

620 Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, and Junchi Yan. Lin-
 621 satnet: the positive linear satisfiability neural networks. In *International Conference on Machine
 622 Learning*, pp. 36605–36625. PMLR, 2023.

623 Shuang Wu, Shixiang Chen, Li Shen, Lefei Zhang, and Dacheng Tao. Constraint boundary wander-
 624 ing framework: Enhancing constrained optimization with deep neural networks. *IEEE Transac-
 625 tions on Pattern Analysis and Machine Intelligence*, 2025.

626 Zhoutong Wu, Mingqing Xiao, Cong Fang, and Zhouchen Lin. Designing universally-
 627 approximating deep neural networks: A first-order optimization approach. *IEEE Transactions
 628 on Pattern Analysis and Machine Intelligence*, 2024.

629 Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin. Differentiable lin-
 630 earized admm. In *International Conference on Machine Learning*, pp. 6902–6911. PMLR, 2019.

631 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
 632 constrained policy optimization. In *International Conference on Learning Representations*, 2020.

633 Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
 634 image compressive sensing. In *Proceedings of the IEEE conference on computer vision and
 635 pattern recognition*, pp. 1828–1837, 2018.

636 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
 637 training: A theoretical justification for adaptivity. *arXiv preprint arXiv:1905.11881*, 2019.

638 Ray D Zimmerman, Carlos E Murillo-Sánchez, and Deqiang Gan. A matlab power system simula-
 639 tion package, 2005.

640 G Zoutendijk. *Methods of feasible directions*, volume 960. Elsevier, Amsterdam, 1960.

648 **A APPENDIX**649 **A.1 USE OF LARGE LANGUAGE MODELS**

650 In preparing this manuscript, we used the large language model ChatGPT (GPT-5-mini) to assist
 651 with aspects of writing, including phrasing, grammar, and overall clarity of exposition. All scientific
 652 content, results, and interpretations are the original work of the authors. The use of ChatGPT was
 653 limited to writing assistance and did not influence the technical contributions or experimental results.
 654

655 **A.2 EXPERIMENT SETTING**

656 For the convex QPs and the simple non-convex problems, the parameters are generated as follows.
 657 The matrix Q is diagonal with entries sampled i.i.d. from the uniform distribution on $[0, 1]$, while
 658 the entries of A and G are sampled i.i.d. from $N(0, 1)$. For each instance, the components of x are
 659 drawn i.i.d. from the uniform distribution on $[-1, 1]$. To ensure that the generated problem has a
 660 feasible solution, we set $h_i = \sum_j |(GA^\dagger)_{ij}|$, where A^\dagger denotes the Moore Penrose pseudoinverse
 661 of A . For the ACOPF experiments, we adopt the datasets provided in (Liang et al., 2024).
 662

663 We summarize the hyperparameters used in our experiments in Table 4. Below we briefly describe
 664 several important parameters:
 665

- 666 • S : the number of update steps performed in our Descent Net.
- 667 • K : determines the number of layers within each Descent module, controlling the expressive
 668 power of the network.
- 669 • λ_h : the penalty factor for equality constraint violations.
- 670 • λ_g : the penalty factor for inequality constraint violations.
- 671 • q : the hidden dimension of operator T , which specifies the capacity of feature transforma-
 672 tion inside each descent step.
- 673 • M, ϵ : parameters in c_j , which is defined in (5).

674 **Table 4: Hyperparameters used in different experiments**

675 Hyperparameter	676 QP	677 Non-convex	678 ACOPF node=30	679 ACOPF node=118
680 Train size	681 9167	682 9167	683 8976	684 18976
685 Test size	686 833	687 833	688 1024	689 1024
690 Batch size	691 64	692 64	693 512	694 512
695 Epochs	696 150	697 150	698 300	699 300
700 Learning rate lr	701 0.001	702 0.001	703 0.01	704 0.01
705 S	706 6	707 6	708 3	709 3
710 K	711 3	712 3	713 3	714 3
715 λ_h	716 5	717 5	718 5	719 5
720 λ_g	721 5	722 5	723 5	724 5
725 q	726 300	727 300	728 120	729 1080
730 M	731 1	732 1	733 1	734 1
735 ϵ	736 0.0005	737 0.0005	738 0.0001	739 0.0001

740 For the parameters in the Descent module, we employ the Adam optimizer with an initial learning
 741 rate of lr , and reduce the learning rate by a factor of 0.1 at epochs 50, 100, and 150. The step-size
 742 adjustment parameter β is updated separately using the SGD optimizer with a fixed learning rate
 743 of 0.01. In the ACOPF experiments, the gradient norm is clipped at a threshold of 1 to stabilize
 744 training, inspired by Zhang et al. (2019).
 745

746 **A.3 EFFECT OF LAYER NUMBER K AND DESCENT STEPS S**

747 We conducted experiments on the convex quadratic program (13) to evaluate the performance of
 748 Descent-Modules with different numbers of layers K . The results are shown in Table 5. It can be
 749

seen that increasing K leads to a slight improvement in performance, but the gains are not significant. Considering computational efficiency, we ultimately choose $K = 3$ as the number of layers.

Table 5: Performance of Descent-Module with varying K

Layer	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.
$K = 1$	0.0000	0.0000	9.8×10^{-2}	2.2×10^{-2}
$K = 2$	0.0000	0.0000	9.3×10^{-2}	1.8×10^{-2}
$K = 3$	0.0000	0.0000	9.2×10^{-2}	1.7×10^{-2}
$K = 4$	0.0000	0.0000	8.9×10^{-2}	1.7×10^{-2}

With K fixed at 3, we further examined the effect of different Descent steps S , as summarized in Table 6. When the number of update steps is 1, Descent-Net already achieves a solution with a relative error on the order of 10^{-2} . Increasing the steps to 3 reduces the error to the 10^{-3} level, and further increasing to 6 reduces it to the 10^{-4} level.

Table 6: Performance of Descent-Net with varying S

Descent Step	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.
$S = 1$	0.0000	0.0000	8.9×10^{-2}	1.7×10^{-2}
$S = 2$	0.0000	0.0000	6.0×10^{-2}	1.1×10^{-2}
$S = 3$	0.0000	0.0000	3.5×10^{-2}	3.4×10^{-3}
$S = 4$	0.0000	0.0000	2.4×10^{-2}	1.6×10^{-3}
$S = 5$	0.0000	0.0000	2.6×10^{-2}	2.0×10^{-3}
$S = 6$	0.0000	0.0000	1.4×10^{-2}	4.5×10^{-4}

A.4 ADDITIONAL EXPERIMENTS ON QUADRATIC PROGRAMS

We further evaluate the robustness and scalability of our method on more general quadratic programs. In particular, we modify the generation of the matrix Q : instead of using a diagonal structure, we replace it with a dense positive semidefinite matrix constructed as $Q = R^\top R$, where R contains i.i.d. Gaussian entries. This removes the sparsity advantage typically leveraged by classical trust-region solvers and leads to substantially more challenging QP instances. The results are summarized in Table 7.

Table 7: Results on the convex QP task evaluated on the test set with 833 samples.

Method	Max eq.	Max ineq.	sol. rel.err.	obj. rel.err.	Time (s)
Knitro	0.0000	0.0000	0	0	0.0224
osqp	0.0000	0.0000	1.5×10^{-3}	1.8×10^{-5}	0.8020
qpth	0.0000	0.0000	1.5×10^{-3}	1.8×10^{-5}	0.0035
DC3	0.0000	0.0000	5.2×10^{-1}	5.0×10^{-1}	0.0041
Descent	0.0000	0.0000	2.1×10^{-2}	9.3×10^{-4}	0.0131

Descent-Net continues to produce high-quality solutions under this more general setting, demonstrating that its effectiveness is not tied to diagonal or otherwise simplified structures.

A.5 SCALABILITY EVALUATION ON PORTFOLIO OPTIMIZATION

A widely applicable instance of quadratic programming in real-world settings is the mean-variance portfolio optimization problem. The objective is to minimize portfolio risk while satisfying practical portfolio allocation constraints:

$$\min_{\mathbf{w}} \mathbf{w}^\top \Sigma \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \mathbf{1} = 1, \mathbf{w}^\top \boldsymbol{\mu} \geq R, \mathbf{w} \geq 0, \quad (16)$$

756 where w denotes asset weights, Σ is the covariance matrix, μ is the expected return vector, and R is
 757 the minimum return requirement.
 758

759 We conduct portfolio optimization experiments with $n = 100$, $n = 800$, and $n = 4000$ assets
 760 to evaluate both the practical effectiveness and scalability of our method. For each problem size,
 761 we generate 10,000 synthetic benchmark instances. To emulate a market environment where asset
 762 co-movements evolve slowly, the covariance matrix is fixed across all instances and constructed as
 763 $\Sigma = A^\top A$, where entries of A are sampled i.i.d. from a standard normal distribution. The expected
 764 return vectors μ are independently sampled from a uniform distribution over $[0, 1]$, modeling varying
 765 market conditions.
 766

767 The return thresholds differ between training and testing. For training, each R is drawn indepen-
 768 dently from a uniform distribution over $[0.05, 0.4]$. For testing, R values are generated as a linearly
 769 spaced sequence over the same interval. We use a 9:1 train-test split.
 770

771 The network contains a single hidden layer. Its width is set to 8 times the number of assets for the
 772 $n = 100$ experiment (i.e., 800), and 1.5 times the number of assets for the $n = 800$ and $n = 4000$
 773 experiments (i.e., 1200 and 6000, respectively). The initial solution is refined using $S = 3$ descent
 774 updates for $n = 100$ and $S = 2$ descent updates for $n = 800$ and $n = 4000$. Both the Descent
 775 module and the step size β are trained using Adam. The initial learning rates are 1×10^{-3} for the
 776 Descent module, and 0.1, 0.1, and 0.01 for β in the $n = 100$, $n = 800$, and $n = 4000$ experiments,
 777 respectively. Learning rates are decayed by a factor of 0.1 at epochs 100, 150, and 200 over a total
 778 of 300 epochs. All instances are initialized using the equal-weighted portfolio $w_i = 1/n$.
 779

780 We compare Descent-Net with `osqp`, a widely used and highly optimized QP solver, as well as DC3
 781 (Donti et al., 2021). All experiments were conducted on a server equipped with two AMD EPYC
 782 9754 CPUs (128 cores each, 3.1 GHz) and an NVIDIA RTX 5090 GPU. The combined numerical
 783 results for all problem sizes are shown below.
 784

785 Table 8: Test-set portfolio optimization results for $n = 100$ (batch size 512), $n = 800$ (batch size
 786 100), and $n = 4000$ (batch size 10) assets
 787

$n = 100$	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
osqp	0.0000	0.0000	0	0	0.0015
DC3	0.0000	0.0000	2.8	5.4×10^1	0.0125
Descent-Net	0.0000	0.0000	1.4×10^{-4}	4.9×10^{-6}	0.0019
$n = 800$	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
osqp	0.0000	0.0000	0	0	0.0207
Descent-Net	0.0000	0.0000	9.3×10^{-4}	7.3×10^{-6}	0.0019
$n = 4000$	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
osqp	0.0000	0.0000	0	0	0.6024
Descent-Net	0.0000	0.0000	1.6×10^{-4}	1.2×10^{-6}	0.0044

798 We find that DC3 fails to produce feasible solutions for $n = 800$ and $n = 4000$ because its training
 799 diverges. This is likely due to DC3’s reliance on gradient steps, which are used to enforce inequality
 800 constraints, but whose step sizes and momentum decay parameters are difficult to tune for large-
 801 scale settings. In contrast, Descent-Net remains accurate and highly efficient across all problem
 802 sizes.
 803

804 The `osqp` times report the average runtime for a single instance, whereas the Descent-Net times
 805 correspond to the average runtime for a batch of instances. As shown, Descent-Net achieves lower
 806 runtimes while maintaining objective errors on the order of 10^{-6} , demonstrating strong scalability
 807 to problems with thousands of variables.
 808

809 A.6 STEP SIZE SELECTION STRATEGIES

810 We compare the effectiveness of three different step size selection strategies:
 811

810 • A fixed step size $\alpha = 1/M$;
 811 • The maximum feasible step size α_{\max} that ensures feasibility;
 812 • A learnable scale factor $\sigma(\beta)$ applied to α_{\max} .

813
 814 We perform comparative experiments on the convex quadratic program (13), evaluating three meth-
 815 ods based on the feasibility and optimality of their solutions after a fixed number of update steps
 816 $S = 6$. The corresponding results are presented in Table 9. As shown, both the fixed step size $1/M$
 817 and the maximum feasible step size α_{\max} perform worse than our final choice $\alpha = \sigma(\beta)\alpha_{\max}$. The
 818 limitation of $1/M$ lies in its lack of flexibility, as a fixed step size cannot adapt to the varying land-
 819 scape of the problem. And $\sigma(\beta)\alpha_{\max}$ outperforms α_{\max} because the learnable parameter β captures
 820 useful information that enables a more appropriate scaling of the maximum step size.
 821

822 Table 9: Comparison of different step size selection strategies
 823

Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.
$1/M$	0.0000	0.0000	9.0×10^{-2}	1.2×10^{-2}
α_{\max}	0.0000	0.0000	1.1×10^{-1}	3.3×10^{-2}
$\sigma(\beta)\alpha_{\max}$	0.0000	0.0000	1.4×10^{-2}	4.5×10^{-4}

830
 831 A.7 SUBPROBLEM
 832

833 In our method, each descent direction d_s is obtained by solving a subproblem (3). To assess the abil-
 834 ity of the Descent-Net to solve this subproblem, we measure the relative error of the subproblem’s
 835 objective value between each layer’s output d_k and the corresponding optimal solution.

836 We conduct experiments on the convex QP task. For simplicity, we set $S = 1$, performing only a
 837 single update, and fix the number of Descent-Net layers to $K = 3$. We then evaluate the trained
 838 network, with the results reported in Table 10. As shown, the objective value of the subproblem
 839 (Descent value) decreases progressively across layers, and by the final layer (layer 3), the relative
 840 error in the objective value has already been reduced to 0.001, demonstrating the efficiency of the
 841 Descent-Net in solving the subproblem.

842 Table 10: Effectiveness of Descent-Net in solving subproblem
 843

Layer	Descent Value	Relative Error
0	1740.4817	2.6463
1	505.2591	0.0585
2	478.2721	0.0020
3	477.7893	0.0010

850
 851 A.8 LEARNABLE γ IN DESCENT-NET
 852

853 We recorded the values of the learnable parameter γ in each layer of the S Descent Modules of the
 854 trained Descent-Net. For both QP and Nonconvex problems, γ is initialized to 0.1, while for the
 855 ACOPF problem it is initialized to 1. The results are presented in Table 11 and Table 12. These
 856 results indicate that the network is able to adjust γ dynamically across layers. In many cases, the
 857 values of γ tend to decrease with the layer depth, which is consistent with the requirement of dimin-
 858 ishing step sizes for convergence in subgradient methods.

859
 860 A.9 COMPARISON WITH PGM (PROJECTED SUBGRADIENT METHOD)
 861

862 We compare Descent-Net with the original PGM. Specifically, we remove the operator T^k in
 863 Descent-Net so that each layer reduces to (7). We still treat the step size γ_k as a learnable parameter
 and train this degenerated network in the same manner as Descent-Net.

864
865
866
867
868
869
870

871 Table 11: Values of γ in Descent-Net across steps for QP and Nonconvex problems

QP						
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
γ_1	5.25×10^{-3}	9.25×10^{-3}	1.02×10^{-2}	9.20×10^{-3}	3.34×10^{-2}	6.59×10^{-2}
γ_2	1.67×10^{-2}	2.90×10^{-2}	9.14×10^{-3}	8.12×10^{-3}	5.44×10^{-3}	2.64×10^{-3}
γ_3	6.48×10^{-2}	3.61×10^{-2}	7.65×10^{-3}	3.12×10^{-3}	1.50×10^{-3}	1.09×10^{-3}

Nonconvex						
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
γ_1	6.35×10^{-3}	9.47×10^{-3}	7.48×10^{-3}	1.35×10^{-2}	3.66×10^{-2}	9.13×10^{-2}
γ_2	2.81×10^{-2}	2.47×10^{-3}	2.90×10^{-3}	4.60×10^{-3}	3.56×10^{-3}	3.44×10^{-3}
γ_3	9.23×10^{-2}	3.09×10^{-2}	3.50×10^{-3}	2.96×10^{-3}	1.21×10^{-3}	1.18×10^{-3}

885
886
887
888
889
890
891
892
893
894
895
896
897

898 Table 12: Values of γ in Descent-Net across steps for ACOPF problems
899

node = 30, H-Proj			node = 30, D-Proj			
	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
γ_1	1.00	1.00	1.00	γ_1	1.00	1.00
γ_2	0.99	1.01	0.99	γ_2	0.99	0.99
γ_3	1.10	0.01	0.84	γ_3	1.42	0.20

node = 118, H-Proj			node = 118, D-Proj			
	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3
γ_1	1.00	1.00	1.00	γ_1	1.00	1.00
γ_2	1.00	1.00	1.00	γ_2	1.00	1.00
γ_3	1.07	1.06	1.10	γ_3	1.29	1.03

912
913
914
915
916
917

We evaluate the performance under different numbers of iterations K , with the results reported in Table 13. We observe that PGM is inefficient, as the relative error in the objective value compared to the initial solution decreases very little with increasing iterations. This is likely due to the difficulty of selecting an appropriate step size for PGM. In contrast, the Descent-Net achieves strong solution quality with only three layers, which also leads to a significant advantage in computational efficiency.

Table 13: Comparison of Descent-Net and PGM on the convex QP task.

Method	ineq. vio.	eq. vio.	sol. rel. err.	obj. rel. err.	Time (s)
PGM ($K = 10$)	0.0000	0.0000	1.9×10^{-1}	1.1×10^{-1}	0.0270
PGM ($K = 20$)	0.0000	0.0000	1.9×10^{-1}	1.1×10^{-1}	0.0501
PGM ($K = 50$)	0.0000	0.0000	1.9×10^{-1}	1.1×10^{-1}	0.1119
Descent ($K = 3$)	0.0000	0.0000	1.4×10^{-2}	4.5×10^{-4}	0.0152

A.10 DESCENT UPDATES IN THE ACOPF PROBLEM

In the ACOPF problem, given $(n - m)$ entries of a feasible point $y \in \mathbb{R}^n$, the remaining m entries are, in general, determined by the m equality constraints $h_x(y) = 0$.

Following the method in Donti et al. (2021); Liang et al. (2024); Wu et al. (2025), we assume the existence of a function $\varphi_x : \mathbb{R}^{n-m} \rightarrow \mathbb{R}^m$ such that $h_x([z, \varphi_x(z)]) = 0$. This allows us to eliminate the equality constraints and reformulate the problem in terms of the partial variable z . We can then perform descent direction updates on z , where the optimization problem involves only the inequality constraints:

$$\min_{z \in \mathbb{R}^{n-m}} \tilde{f}_x(z), \quad \text{s.t.} \quad \tilde{g}_x(z) \leq 0, \quad (17)$$

where $\tilde{f}_x(z) = f_x([z^T, \varphi_x(z)^T]^T)$ and $\tilde{g}_x(z) = g_x([z^T, \varphi_x(z)^T]^T)$.

Using the chain rule, we can compute the derivative of φ_x with respect to z , even without an explicit expression of φ_x :

$$\begin{aligned} 0 &= \frac{d}{dz} h_x(\varphi_x(z)) = \frac{\partial h_x}{\partial z} + \frac{\partial h_x}{\partial \varphi_x(z)} \frac{\partial \varphi_x(z)}{\partial z} \\ &= J_{:,0:m}^h + J_{:,m:n}^h \frac{\partial \varphi_x(z)}{\partial z}, \\ \Rightarrow \quad \frac{\partial \varphi_x(z)}{\partial z} &= -(J_{:,m:n}^h)^{-1} J_{:,0:m}^h. \end{aligned}$$

Here, $J^h \in \mathbb{R}^{m \times n}$ denotes the Jacobian matrix of the equality constraints $h_x(y)$ with respect to y . The notation $J_{:,0:m}^h$ and $J_{:,m:n}^h$ represents the submatrices corresponding to the partial derivatives with respect to z and $\varphi_x(z)$, respectively.

From this result, we can further obtain the gradients of the objective and inequality constraints with respect to z . These gradient informations are then passed to the Descent-Net, which outputs the descent direction d_z for the partial variable z .

In order to obtain the complete descent direction $d = [d_z, d_\varphi]$ for y , we also need the expression of d_φ . To ensure that the equality constraints remain satisfied, we require the following

$$\begin{aligned} h(z + \alpha d_z, \varphi(z) + \alpha d_\varphi) &\approx h(z, \varphi(z)) + \alpha J^h \begin{bmatrix} d_z \\ d_\varphi \end{bmatrix} \\ &= h(z, \varphi(z)) + \alpha (J_{:,0:m}^h d_z + J_{:,m:n}^h d_\varphi) = 0, \end{aligned}$$

where $\alpha > 0$ is the step size. Hence, we obtain

$$d_\varphi = -(J_{:,m:n}^h)^{-1} J_{:,0:m}^h d_z - (J_{:,m:n}^h)^{-1} \frac{h(z, \varphi(z))}{\alpha}.$$

972 A.11 PROOF OF PROPOSITION 1
973974 *Proof.* Given any vector $d \in \mathbb{R}^n$, we aim to compute its projection onto \mathcal{D} , i.e., solve the following
975 problem:

976
$$\min_{d' \in \mathbb{R}^n} \frac{1}{2} \|d' - d\|_2^2 \quad \text{s.t.} \quad \|d'\|_2 \leq 1, \quad H^\top d' = 0.$$

977

978 Without loss of generality, we assume that the Linear Independence Constraint Qualification (LICQ)
979 holds. Otherwise, the projection reduces to the origin $d' = 0$. Now we derive the KKT conditions
980 for this problem from the Lagrangian
981

982
$$\mathcal{L}(d', \lambda, \mu) = \frac{1}{2} \|d' - d\|_2^2 + \lambda^\top H^\top d' + \mu(\|d'\|_2^2 - 1),$$

983

984 where $\lambda \in \mathbb{R}^{n-m}$ and $\mu \geq 0$ are the Lagrange multipliers.
985986 Taking the gradient with respect to d' and setting it to zero gives:
987

988
$$d' - d + H\lambda + 2\mu d' = 0 \quad \Rightarrow \quad (1 + 2\mu)d' + H\lambda = d.$$

989

990 Since $H^\top d' = 0$, we have
991

992
$$H^\top H\lambda = (1 + 2\mu)H^\top d' + H^\top H\lambda = H^\top d \quad \Rightarrow \quad \lambda = (H^\top H)^{-1}H^\top.$$

993

994 We consider two cases:
995996 **Case 1:** If $\mu = 0$, then the projection is
997

998
$$d' = d - H\lambda = d - H(H^\top H)^{-1}H^\top d = \hat{d}.$$

999

1000 **Case 2:** If $\mu > 0$, then we have $\|d'\| = 1$ and
1001

1002
$$(1 + 2\mu)^2 = (1 + 2\mu)^2(d')^\top d' = (d - H\lambda)^\top(d - H\lambda) = \hat{d}^\top \hat{d} = \|\hat{d}\|^2.$$

1003

1004 Hence, the projection is:
1005

1006
$$d' = \frac{1}{1 + 2\mu} (d - H(H^\top H)^{-1}H^\top d) = \frac{1}{\|\hat{d}\|} \hat{d}.$$

1007

□

1008 A.12 PROOF OF THEOREM 4.1
10091010 The following result is standard for projected subgradient method for solving convex problems.
10111012 **Lemma 2.** For any $\varepsilon > 0$, there exists a constant $C > 0$ such that if we set $K = \frac{C}{\varepsilon^2}$ and choose the
1013 step size in (7) as $\gamma_k = \frac{1}{\sqrt{K}}$, then
1014

1015
$$\min_{1 \leq k \leq K} g(d_k) - g(d^*) \leq \varepsilon,$$

1016

1017 where d^* denotes the optimal solution of Problem (3).
10181019 *Proof.* Let $\mathbf{u}_k = \nabla f_x(y) + \sum_{j=1}^l c_j \mathbf{1}_{\{\langle d^k, \nabla g_{x,j}(y) \rangle \geq -M g_{x,j}(y)\}} \nabla g_{x,j}(y)$, and define $G =$
1020 $\|\nabla f_x(y)\| + \sum_{j=1}^l c_j \|\nabla g_{x,j}(y)\| < \infty$. Then it follows that $\|\mathbf{u}_k\|^2 \leq G^2$ for all k .
10211022 By the non-expansiveness (contractive property) of the projection operator, we have:
1023

1024
$$\begin{aligned} \|d_{k+1} - d^*\|^2 &= \|\mathcal{P}(\tilde{d}_{k+1}) - \mathcal{P}(d^*)\|^2 \\ &\leq \|\tilde{d}_{k+1} - d^*\|^2 \\ &= \|d_k - \gamma_k \mathbf{u}_k - d^*\|^2 \\ &= \|d_k - d^*\|^2 - 2\gamma_k \langle \mathbf{u}_k, d_k - d^* \rangle + \gamma_k^2 \|\mathbf{u}_k\|^2. \end{aligned}$$

1025

1026 Moreover, since $\mathbf{u}_k \in \partial g(d_k)$ and g is convex, we have
 1027

$$1028 \quad g(d_k) - g(d^*) \leq \langle \mathbf{u}_k, d_k - d^* \rangle.$$

1029 Substituting this into the previous inequality gives:
 1030

$$1031 \quad \|d_{k+1} - d^*\|^2 \leq \|d_k - d^*\|^2 - 2\gamma_k(g(d_k) - g(d^*)) + \gamma_k^2\|\mathbf{u}_k\|^2$$

$$1032 \quad \leq \|d_k - d^*\|^2 - 2\gamma_k(g(d_k) - g(d^*)) + \gamma_k^2 G^2.$$

1034 Rearranging and summing both sides from $k = 1$ to K , we get
 1035

$$1036 \quad \sum_{k=1}^K \gamma_k(g(d_k) - g(d^*)) \leq \frac{1}{2} \left(\|d_1 - d^*\|^2 - \|d_{K+1} - d^*\|^2 + G^2 \sum_{k=1}^K \gamma_k^2 \right)$$

$$1039 \quad \leq \frac{1}{2}(\|d_1 - d^*\|^2 + G^2),$$

1041 we let $C = \sqrt{(\|d_1 - d^*\|^2 + G^2)/2}$.
 1042

1043 On the other hand, we have

$$1044 \quad \sum_{k=1}^K \gamma_k(g(d_k) - g(d^*)) = \frac{1}{\sqrt{K}} \sum_{k=1}^K (g(d_k) - g(d^*))$$

$$1047 \quad \geq \frac{1}{\sqrt{K}} \sum_{k=1}^K \left(\min_{1 \leq k \leq K} g(d_k) - g(d^*) \right)$$

$$1050 \quad = \sqrt{K} \left(\min_{1 \leq k \leq K} g(d_k) - g(d^*) \right).$$

1053 Combining both inequalities, we obtain:

$$1054 \quad \min_{1 \leq k \leq K} g(d_k) - g(d^*) \leq \frac{1}{\sqrt{K}} \cdot \frac{1}{2} (\|d_1 - d^*\|^2 + G^2) = \frac{\varepsilon}{\sqrt{C}} \cdot \sqrt{C} = \varepsilon.$$

1057 \square

1058 **Lemma 3.** Given the sequence of iterates $\{d_1^{proj}, \dots, d_K^{proj}\}$ generated by the projected gradient
 1059 method (7) with initial input d_0 , there exists a K -layer Descent-Net with a specific parameter as-
 1060 signment that, starting from the same initial input d_0 , it produces the same iterative sequence, i.e.,
 1061 $d_k = d_k^{proj}$ for all $1 \leq k \leq K$.
 1062

1063 *Proof.* It suffices to show that there exists a set of parameters such that $T^k(\mathbf{u}_k) = \gamma_k \mathbf{u}_k$ for all
 1064 $1 \leq k \leq K$, where \mathbf{u}_k is defined in (8).

1065 Let $\mathbf{W}^k \in \mathbb{R}^{q \times n}$ be a full column rank matrix, so its left pseudo-inverse $(\mathbf{W}^k)^\dagger \in \mathbb{R}^{n \times q}$ exists and
 1066 satisfies $(\mathbf{W}^k)^\dagger \mathbf{W}^k = I_n$.

1068 By assumption (4) and the definition of \mathbf{u}_k , we have

$$1069 \quad \|\mathbf{u}_k\|_2 \leq \|\nabla f_x(y)\|_2 + \sum_{j=1}^l |c_j| \cdot \sqrt{n} \cdot \|\nabla g_{x,j}(y)\|$$

$$1073 \quad \leq \|\nabla f_x(y)\|_2 + \max_j(c_j) \cdot \sqrt{n} \cdot \|\nabla g_x(y)\|_1$$

$$1074 \quad \leq \|\nabla f_x(y)\|_2 + \max_j(c_j) \cdot n \cdot \|\nabla g_x(y)\|_2$$

$$1076 \quad \leq L_f + \max_j(c_j) \cdot n \cdot L_g$$

1078 In the derivation of the third inequality, we used the equivalent norm theorem. Then we have

$$1079 \quad \|\mathbf{W}^k \mathbf{u}_k\|_1 \leq \sqrt{n} \|\mathbf{W}^k \mathbf{u}_k\|_2 \leq \sqrt{n} \|\mathbf{W}^k\|_2 \|\mathbf{u}_k\|_2 \leq \sqrt{n} \|\mathbf{W}^k\|_2 (L_f + \max_j(c_j) \cdot n \cdot L_g)$$

1080 Let $L = \sqrt{n} \|\mathbf{W}^k\|_2 (L_f + \max_j(c_j) \cdot n \cdot L_g)$. Define the bias vector as $\mathbf{b}_1^k = L \cdot \mathbf{1}_q$, where $\mathbf{1}_q$
 1081 denotes the q -dimensional vector with all entries equal to one. Then we have

$$1082 \text{ReLU}(\mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k) = \mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k,$$

1084 since each coordinate of $\mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k$ is positive.

1085 Now, let the second layer weight be $\mathbf{V}^k = \gamma_k(\mathbf{W}^k)^\dagger$, and the second bias be $\mathbf{b}_2^k = -\gamma_k(\mathbf{W}^k)^\dagger \mathbf{b}_1^k$.
 1086 Then we have:

$$1088 T^k(\mathbf{u}_k) = \mathbf{V}^k \cdot \text{ReLU}(\mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k) + \mathbf{b}_2^k = \gamma_k(\mathbf{W}^k)^\dagger(\mathbf{W}^k \mathbf{u}_k + \mathbf{b}_1^k) - \gamma_k(\mathbf{W}^k)^\dagger \mathbf{b}_1^k = \gamma_k \mathbf{u}_k.$$

1089 This completes the proof. \square

1091 We now proceed to prove Theorem 4.1. First, by Lemma 2, we know that for any $\varepsilon > 0$, by
 1092 choosing an appropriate step size, there exists an iteration sequence $\{d_k^{\text{proj}}\}_{k=1}^K$ generated by the
 1093 projected subgradient method such that

$$1095 \left| \min_{1 \leq k \leq K} g(d_k^{\text{proj}}) - g(d^*) \right| < \varepsilon.$$

1097 Let $K_\varepsilon = \operatorname{argmin}_{1 \leq k \leq K} g(d_k^{\text{proj}})$, then we have $K_\varepsilon \leq K = C/\varepsilon^2$ and

$$1099 |g(d_{K_\varepsilon}^{\text{proj}}) - g(d^*)| < \varepsilon.$$

1100 Moreover, by Lemma 3, we know that there exists there exists a K_ε layer Descent-Net such that the
 1101 output of each layer exactly matches the corresponding iterate sequence $\{d_k^{\text{proj}}\}_{k=1}^{K_\varepsilon}$. In particular,
 1102 we have

$$1103 d_{K_\varepsilon} = d_{K_\varepsilon}^{\text{proj}}$$

1104 Therefore,

$$1105 \|g(d_{K_\varepsilon}) - g(d^*)\| < \varepsilon,$$

1107 which is exactly the desired result.

1108 A.13 PROOF OF LEMMA 1

1110 To prove Lemma 1, for convenience, we have the following new notations.

- 1112 • Gradient of the linearized objective: $p := \nabla f_x(y) \in \mathbb{R}^n$.
- 1113 • Active-constraint data (for $j = 1, \dots, l$): $a_j := \nabla g_{x,j}(y) \in \mathbb{R}^n$ and $b_j := -M g_j(y)$.
- 1114 • Linear-equality matrix: $E := \nabla h_x(y)^\top \in \mathbb{R}^{m \times n}$. Write $P := I - E^\top (E E^\top)^{-1} E$ for the
 1115 orthogonal projector onto $\ker(E)$.
- 1116 • Search set (unit Euclidean ball in the null-space of E):

$$1118 \mathcal{D} := \{d \in \mathbb{R}^n \mid Ed = 0, \|d\|_2 \leq 1\}.$$

- 1119 • Feasible set of Topkis–Veinott UFD sub-problem with l_2 norm constraint:

$$1121 F := \{d \in \mathcal{D} \mid \langle a_j, d \rangle \leq b_j, j = 1, \dots, l\}.$$

1123 Using these notations, problem (3) can be written as

$$1125 \min_{d \in \mathcal{D}} \Phi(d) := \langle p, d \rangle + \sum_{j=1}^l c_j \max\{\langle a_j, d \rangle, b_j\}, \quad c_j > 0. \quad (\text{Pen})$$

1128 We will it is equivalent to the following constrained problem with appropriate c_j :

$$1130 \min_{d \in F} \langle p, d \rangle. \quad (\text{UFD-L2})$$

1132 We now prove Lemma 1 in the main context. With our new notation, we rewrite it as the following
 1133 lemma.

1134
1135**Lemma 4** (Exact hinge penalty on an ℓ_2 -ball). *Let $c_{\min} = \min_j c_j$. If we have*1136
1137

$$c_{\min} > \frac{L_f}{M\delta_g}, \quad (18)$$

1138
1139*then every global minimizer of (Pen) is feasible for problem (UFD-L2), hence*1140
1141

$$\arg \min_{d \in F} \langle p, d \rangle = \arg \min_{d \in \mathcal{D}} \Phi(d).$$

1142

Proof. Let1143
1144

$$\tilde{L} := \|\nabla f_x(y)\|_2, \quad b_{\min} := \min_{j: b_j > 0} b_j.$$

1145

By assumption (4) and (5), we have $\tilde{L} \leq L_f$, $b_{\min} \geq M\delta_g$. Hence1146
1147
1148

$$c_{\min} > \frac{L_f}{M\delta_g} \geq \frac{\tilde{L}}{b_{\min}}$$

1149
1150
1151Suppose $d \in \mathcal{D}$ is the optimal point of problem (Pen), but $d \notin F$. Define the violation vector $r(d) := ([\langle a_1, d \rangle - b_1]_+, \dots, [\langle a_l, d \rangle - b_l]_+) \in \mathbb{R}_{\geq 0}^l$. Let $V(d) := \{j \mid r_j(d) > 0\}$ be the index set of violated constraints.1152
1153If $r(d) = 0$ then $d \in F$. Otherwise put1154
1155

$$\alpha(d) := \min_{j \in V(d)} \frac{b_j}{\langle a_j, d \rangle} \in (0, 1), \quad \hat{d} := \alpha(d) d.$$

1156
1157
1158Since $Ed = 0$ and $\alpha(d) \leq 1$, one has $\hat{d} \in \mathcal{D}$. Moreover, for every j , $\langle a_j, \hat{d} \rangle = \alpha(d) \langle a_j, d \rangle \leq b_j$, so $\hat{d} \in F$.1159
1160Pick $\bar{j} \in V(d)$ that attains the minimum in $\alpha(d)$ and set $\delta := r_{\bar{j}}(d) = \langle a_{\bar{j}}, d \rangle - b_{\bar{j}} > 0$. Then1161
1162

$$1 - \alpha(d) = 1 - \frac{b_{\bar{j}}}{\langle a_{\bar{j}}, d \rangle} = \frac{\delta}{\langle a_{\bar{j}}, d \rangle} \leq \frac{\delta}{b_{\bar{j}}} \leq \frac{\delta}{b_{\min}},$$

1163
1164where we use $\langle a_{\bar{j}}, d \rangle > b_{\bar{j}}$. Because $\|d\|_2 \leq 1$, we obtain1165
1166
1167

$$\|d - \hat{d}\|_2 = (1 - \alpha(d))\|d\|_2 \leq \frac{\delta}{b_{\min}}.$$

1168
1169First, the linear part is \tilde{L} -Lipschitz on \mathcal{D} :1170
1171

$$|\langle p, d \rangle - \langle p, \hat{d} \rangle| \leq \tilde{L}\|d - \hat{d}\|_2 \leq \frac{\tilde{L}}{b_{\min}} \delta.$$

1172
1173Next, because $\hat{d} \in F$ we have $\max\{\langle a_j, \hat{d} \rangle, b_j\} = b_j$ for every j , whereas for d 1174
1175

$$\max\{\langle a_j, d \rangle, b_j\} - b_j = [\langle a_j, d \rangle - b_j]_+ = r_j(d).$$

1176
1177
1178

Hence

$$\Phi(d) - \Phi(\hat{d}) = (\langle p, d \rangle - \langle p, \hat{d} \rangle) + \sum_{j \in V(d)} c_j r_j(d).$$

1179
1180
1181The second term is bounded below by $c_{\min} \sum_{j \in V(d)} r_j(d) \geq c_{\min} \delta$, so using the Lipschitz bound,1182
1183

$$\Phi(d) - \Phi(\hat{d}) \geq \left(c_{\min} - \frac{\tilde{L}}{b_{\min}}\right) \delta.$$

1184
1185By definition, the coefficient of δ is positive, hence $\Phi(d) > \Phi(\hat{d})$ for $\hat{d} \in \mathcal{D}$, which contradicts with the optimality. Therefore all global minimizers of (Pen) lie in F .1186
1187On F the penalty term vanishes, i.e. $\Phi(d) = \langle p, d \rangle + \sum_j c_j b_j$. Thus (UFD-L2) and (Pen) share the same minimizers and their optimal values differ only by the constant $\sum_j c_j b_j$. \square

1188 A.14 PROOF OF THEOREM 4.2
11891190 **Definition 1** (Fritz–John point). *Let $y \in \mathbb{R}^n$ be a feasible point for the problem*

1191
$$\min f(y) \quad \text{s.t.} \quad h_i(y) = 0, \quad g_j(y) \leq 0.$$

1192

1193 *Then y is called a Fritz–John point if there exist multipliers $\lambda_0 \geq 0, \lambda_j \geq 0$ for $j = 1, \dots, l$, and*
1194 *$\mu_i \in \mathbb{R}$ for $i = 1, \dots, m$, not all zero, such that*
1195

1196
$$\lambda_0 \nabla f(y) + \sum_{j=1}^l \lambda_j \nabla g_j(y) + \sum_{i=1}^m \mu_i \nabla h_i(y) = 0,$$

1197
1198
$$\lambda_j \cdot g_j(y) = 0, \quad j = 1, \dots, l.$$

1199

1200 **Definition 2** (KKT point). *A feasible point $y \in \mathbb{R}^n$ is called a Karush–Kuhn–Tucker (KKT) point*
1201 *if there exist multipliers $\lambda_j \geq 0$ and $\mu_i \in \mathbb{R}$ such that*
1202

1203
$$\nabla f(y) + \sum_{j=1}^l \lambda_j \nabla g_j(y) + \sum_{i=1}^m \mu_i \nabla h_i(y) = 0,$$

1204
1205
$$\lambda_j \cdot g_j(y) = 0, \quad j = 1, \dots, l.$$

1206
1207

1208 If the LICQ condition holds at \bar{y} , then the Fritz–John point is also a KKT point.
12091210 **Lemma 5** (Farkas Lemma with equality constraints). *Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times n}$, and $b \in \mathbb{R}^m$.*
12111212 *Then exactly one of the following two systems has a solution:*1213 (a) *There exists $x \in \mathbb{R}^n$ such that*

1214
$$Ax < b, \quad Bx = 0.$$

1215 (b) *There exists $(\lambda, \mu) \in \mathbb{R}^m \times \mathbb{R}^p$, not both zero, such that*

1216
$$\lambda \geq 0, \quad A^\top \lambda + B^\top \mu = 0, \quad \lambda^\top b \leq 0.$$

1217
1218

1219 *Moreover, both systems cannot be simultaneously feasible.*
12201221 We show that the problem (UFD-L2) has negative value if y is not a Fritz–John point.
12221223 **Lemma 6** (Descent direction under failure of Fritz–John). *Let $\bar{y} \in \mathcal{C}$ be a feasible point. Suppose*
1224 *that the set of vectors*

1225
$$\left\{ v = \lambda_0 \nabla f_x(\bar{y}) + \sum_{j=1}^l \lambda_j \nabla g_j(\bar{y}) + \sum_{i=1}^m \mu_i \nabla h_i(\bar{y}) \mid \lambda_0 \geq 0, \lambda_j \geq 0, (\lambda, \mu) \neq 0, \lambda_j g_j(\bar{y}) = 0 \right\}$$

1226
1227

1228 *does not contain the zero vector. That is, \bar{y} is not a Fritz–John point.*
12291230 *Then there exists a vector $d \in \mathbb{R}^n$ such that:*
1231

- $\nabla h_x(\bar{y})^\top d = 0$,
- $\nabla f_x(\bar{y})^\top d < 0$,
- $\nabla g_j(\bar{y})^\top d < -M g_j(\bar{y})$ for all $j = 1, \dots, l$,
- $\|d\|_2 \leq 1$.

1239 *Proof.* Let $H := [\nabla h_1(\bar{y}), \dots, \nabla h_m(\bar{y})] \in \mathbb{R}^{n \times m}$, and define the subspace of directions satisfying
1240 the linearised equality constraints:
1241

$$\mathcal{T} := \{d \in \mathbb{R}^n \mid H^\top d = 0\}.$$

1242 Let $A \in \mathbb{R}^{(l+1) \times n}$ be the matrix whose rows are:
 1243

$$1244 \quad 1245 \quad 1246 \quad 1247 \quad 1248 \quad A := \begin{bmatrix} \nabla f_x(\bar{y})^\top \\ \nabla g_1(\bar{y})^\top \\ \vdots \\ \nabla g_l(\bar{y})^\top \end{bmatrix}, \quad b := \begin{bmatrix} 0 \\ -Mg_1(\bar{y}) \\ \vdots \\ -Mg_l(\bar{y}) \end{bmatrix}.$$

1249 Then we consider the system:
 1250

$$1251 \quad Ad < b, \quad \text{subject to } H^\top d = 0.$$

1253 Since \bar{y} is not a Fritz–John point, the system of equalities

$$1254 \quad 1255 \quad \lambda_0 \nabla f_x(\bar{y}) + \sum_j \lambda_j \nabla g_j(\bar{y}) + \sum_i \mu_i \nabla h_i(\bar{y}) = 0 \quad \text{with } \lambda_0 \geq 0, \lambda_j \geq 0, \mu_i \text{ not all zero,}$$

1257 has no solution satisfying the complementarity condition $\lambda_j g_j(\bar{y}) = 0$.

1258 Therefore, by the Farkas Lemma 5, the dual system:

$$1260 \quad \text{find } d \in \mathcal{T} \text{ such that } Ad < b$$

1261 is feasible.
 1262

1263 Because A, b are fixed and $b_j = -Mg_j(\bar{y}) \geq 0$, which is finite for all $j = 1, \dots, l$, and \mathcal{T} is a linear
 1264 subspace, the feasible set is convex and open in \mathcal{T} . We can scale d such that $\|d\|_2 \leq 1$.

1265 Hence, such a direction d exists satisfying the claimed conditions. \square
 1266

1267 By Lemma (1) and Theorem 4.1, if the following algorithm—based on the subprob-
 1268 lem (Pen)—converges subsequently to a KKT point, then there exist constants $S > 0$ and $K > 0$,
 1269 and certain network parameters $\Theta := \{\mathbf{V}^k, \mathbf{W}^k, \mathbf{b}_1^k, \mathbf{b}_2^k\}_{k=0,1,\dots,K-1}$ and $\{\beta_s\}_{s=0,\dots,S-1}$, such
 1270 that **Descent-Net** returns a KKT point of the original problem (1). We therefore begin by proving
 1271 the convergence of the algorithm stated below.

1272 **Algorithm (UFD–penalty method).** Given a feasible starting point $y_0 \in \mathcal{C}$, repeat for $k =$
 1273 $0, 1, \dots$

- 1274 1. With the condition (4) holds, solve the sub–problem (Pen) at the current iterate y_k and
 1275 obtain a minimizer d_k .
- 1276 2. Update $y_{k+1} = y_k + \alpha_k d_k$, where $\alpha_k := \arg \min_\alpha \{f_x(y_k + \alpha d_k) \mid \alpha \in (0, 1/M]\}$,
 1277 (Lemma 1 implies $y_{k+1} \in \mathcal{C}$)

1278 We have the following result, which is similar to the Topkis–Veinott method Zoutendijk (1960);
 1279 Faigle et al. (2013).

1280 **Theorem A.1** (global convergence of the UFD– L_2 method). *Suppose the Assumption 1 2 and 3
 1281 hold. Furthermore, we assume that the gradient $\nabla f_x(y)$ is L –Lipschitz continuous, and h_x, g_x
 1282 are linear. Then every accumulation point \bar{y} of the sequence $\{y_k\}$ generated by the UFD–penalty
 1283 algorithm satisfies the KKT conditions of the problem (1).*

1284 *Proof.* **(i) Feasibility and boundedness.** Lemma 4 shows that every d_k satisfies $\nabla g_j(y_k)^\top d_k \leq$
 1285 $-Mg_j(y_k)$, hence $g_j(y_{k+1}) = g_j(y_k) + \alpha \nabla g_j(y_k)^\top d_k \leq 0$, where $\alpha \in (0, 1/M]$. Equality
 1286 constraints are preserved by $\nabla h_x(y_k)^\top d_k = 0$, so $y_{k+1} \in \mathcal{C}$. Because $\{y \in \mathcal{C} \mid f_x(y) \leq f_x(y_0)\}$ is
 1287 bounded, $\{y_k\}$ is bounded and admits convergent subsequences.

1288 **Step (ii): every accumulation point is a Fritz–John point.**

1289 Let \bar{y} be an accumulation point of $\{y_k\}$, extracted from a subsequence $\{y_{k_s}\}$. Suppose, for contra-
 1290 diction, that \bar{y} is not a Fritz–John point.

1296 Then, by Lemma 6, there exist $z < 0$ and a direction $d \in \mathbb{R}^n$ satisfying:

$$1298 \quad \|d\|_2 \leq 1, \quad \nabla h_x(\bar{y})^\top d = 0, \quad \nabla f_x(\bar{y})^\top d < z < 0, \quad \nabla g_j(\bar{y})^\top d < -Mg_j(\bar{y}) + z.$$

1300 Since f_x , g_j , and all gradients are continuous, and $y_{k_s} \rightarrow \bar{y}$, there exists $\varepsilon > 0$ and $\delta > 0$ such that
1301 for all s sufficiently large (i.e., $\|y_{k_s} - \bar{y}\| < \delta$):

$$\begin{aligned} 1302 \quad & \nabla f_x(y_{k_s})^\top d < z + \varepsilon, \\ 1303 \quad & \nabla g_j(y_{k_s})^\top d < -Mg_j(y_{k_s}) + \varepsilon, \\ 1304 \quad & \nabla h_x(y_{k_s})^\top d < \varepsilon. \\ 1305 \end{aligned}$$

1307 Fix $\varepsilon := |z|/3 > 0$. Then for large s , we obtain:

$$\begin{aligned} 1309 \quad & \nabla f_x(y_{k_s})^\top d < z + \varepsilon =: \hat{z} < 0, \\ 1310 \quad & \nabla g_j(y_{k_s})^\top d < -Mg_j(y_{k_s}) + \varepsilon, \\ 1311 \quad & \nabla h_x(y_{k_s})^\top d < \varepsilon. \\ 1312 \end{aligned}$$

1313 Now consider the solution d_{k_s} of the UFD subproblem (UFD-L2) at y_{k_s} , which satisfies:

$$1315 \quad \|d_{k_s}\|_2 \leq 1, \quad \nabla h_x(y_{k_s})^\top d_{k_s} = 0, \quad \nabla g_j(y_{k_s})^\top d_{k_s} \leq -Mg_j(y_{k_s}).$$

1317 Since d is a feasible direction and $\nabla f_x(y_{k_s})^\top d < \hat{z} < 0$, it follows that the optimal value $z_s :=$
1318 $\nabla f_x(y_{k_s})^\top d_{k_s}$ must also satisfy:

$$1319 \quad z_s < \hat{z} < 0.$$

1320 Thus, for all large s , we have:

$$1322 \quad \nabla f_x(y_{k_s})^\top d_{k_s} = z_s < 0, \quad \nabla g_j(y_{k_s})^\top d_{k_s} < 0, \quad \nabla h_x(y_{k_s})^\top d_{k_s} = 0.$$

1324 Now define $y_{k_{s+1}} := y_{k_s} + td_{k_s}$, where $t > 0$ is small. Since d_{k_s} satisfies the linearized equality
1325 constraints exactly and inequality constraints strictly, Taylor expansion gives:

$$\begin{aligned} 1327 \quad & f_x(y_{k_s} + td_{k_s}) = f_x(y_{k_s}) + t\nabla f_x(y_{k_s})^\top d_{k_s} + o(t) < f_x(y_{k_s}) + tz_s/2, \\ 1328 \quad & g_j(y_{k_s} + td_{k_s}) = g_j(y_{k_s}) + t\nabla g_j(y_{k_s})^\top d_{k_s} + o(t) < 0, \\ 1329 \quad & h_i(y_{k_s} + td_{k_s}) = h_i(y_{k_s}) + t\nabla h_i(y_{k_s})^\top d_{k_s} = 0. \\ 1330 \end{aligned}$$

1331 Therefore, for sufficiently small $t > 0$, the updated point $y_{k_{s+1}} := y_{k_s} + td_{k_s}$ remains feasible and
1332 decreases the objective value.

1334 **Contradiction conclusion.**

1336 This contradicts the assumption that $\{f_x(y_k)\}$ converges to a finite value (since it would go to $-\infty$).
1337 Hence, our assumption must be false: every limit point \bar{y} must satisfy the Fritz–John condition.

1338 **(iii) LICQ \Rightarrow KKT.** Under LICQ the Fritz–John multipliers have $\lambda_0 > 0$, so the KKT system holds
1339 at \bar{y} . \square

1341
1342
1343
1344
1345
1346
1347
1348
1349