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ABSTRACT

Deep learning approaches, known for their ability to model complex relationships
and fast execution, are increasingly being applied to solve large optimization prob-
lems. However, existing methods often face challenges in simultaneously ensur-
ing feasibility and achieving an optimal objective value. To address this issue,
we propose Descent-Net, a neural network designed to learn an effective descent
direction from a feasible solution. By updating the solution along this learned
direction, Descent-Net improves the objective value while preserving feasibility.
Our method demonstrates strong performance on both synthetic optimization tasks
and the real-world AC optimal power flow problem.

1 INTRODUCTION

Constrained optimization problems are ubiquitous in practical applications. While traditional op-
timization algorithms (Luenberger et al., 1984; Nocedal & Wright, 1999) offer strong theoretical
guarantees, their computational efficiency often falls short when applied to modern large-scale prob-
lems. As a result, there is increasing interest in leveraging neural network-based methods to tackle
constrained optimization tasks. In recent years, many emerging works have proposed end-to-end
frameworks for solving constrained optimization problems, including Donti et al. (2017); Amos &
Kolter (2017); Zhang & Ghanem (2018); Agrawal et al. (2019); Geng et al. (2020), etc.

This research direction falls under the broader framework of Learning to Optimize (L2O)(Bengio
et al., 2021; Chen et al., 2022), which aims to leverage deep learning to improve the efficiency
and scalability of optimization algorithms. Unlike traditional methods that rely on handcrafted up-
date rules, L2O methods attempt to automatically learn optimization behaviors through data-driven
approaches. However, most existing works consider unconstrained optimization problems. This mo-
tivates the development of more flexible frameworks that can incorporate feasibility into the learning
dynamics while remaining scalable to large or structured problems.

In this work, we propose Descent-Net, a neural network architecture that takes as input the gradi-
ents of both the objective and constraint functions at a given feasible point. The network is trained
to predict an effective descent direction and an appropriate step size, enabling objective improve-
ment while maintaining feasibility. Initialized from feasible solutions obtained by methods such
as DC3 (Donti et al., 2021), H-proj (Liang et al., 2024), etc., our method typically converges to a
near-optimal solution in just a few update steps.

Our main contributions are summarized as follows:

• We design a new exact penalty subproblem that generates feasible descent directions for
linearly constrained optimization problems, forming the foundation of our approach with
theoretical convergence guarantees.

• We propose a neural network architecture, Descent-Net, which unrolls a projected subgra-
dient method to solve the proposed subproblem. The network iteratively refines feasible
solutions by learning effective descent directions at each step.

• We demonstrate the effectiveness of our approach through experiments on quadratic pro-
grams (QP) and a simple nonconvex variant of QP, both of which involve linear constraints.
To further illustrate the applicability of Descent-Net beyond the linear setting, we also
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evaluate it on the nonlinear AC optimal power flow problem. Across all experiments, our
method consistently achieves solutions with relative errors on the order of 10−4.

2 RELATED WORK

Classical methods for constrained optimization. Classical approaches to constrained optimiza-
tion, including projected gradient descent, feasible direction methods (Zoutendijk, 1960; Topkis &
Veinott, 1967), and primal-dual algorithms (Luenberger et al., 1984; Nocedal & Wright, 1999; Boyd
et al., 2011), have been extensively studied and widely applied. These methods typically offer con-
vergence guarantees under suitable assumptions, but often suffer from high iteration complexity and
significant computational cost.

Learning to optimize (L2O). L2O seeks to replace hand-crafted optimization routines with learn-
able architectures that generalize across problem instances. Broadly speaking, L2O methods can
be classified into model-free and model-based approaches (Chen et al., 2022). Model-free meth-
ods, such as those based on recurrent neural networks (e.g., LSTM) (Graves, 2014; Andrychowicz
et al., 2016), aim to learn update rules directly from data. Model-based methods, on the other hand,
incorporate algorithmic structure into the design of the network. Notable examples include LISTA
(Chen et al., 2018b), unrolled manifold optimization algorithms (Gao et al., 2022). However, most
existing L2O methods focus on unconstrained or simple constrained problems and fail to guarantee
feasibility when applied to general constrained settings.

To address this, recent works incorporate constrained optimization structures into neural networks
via projection layers (Yang et al., 2020; Liang et al., 2024) or differentiable optimization modules
(Amos & Kolter, 2017; Agrawal et al., 2019; Bolte et al., 2021). However, these methods typically
suffer from scalability and the need to solve nested optimization problems during training. Some
approaches target special cases, such as linear constraints (Wang et al., 2023), but their applicabil-
ity to more general problems remains limited. An alternative line of work draws inspiration from
primal-dual methods, leading to neural architectures based on ADMM (Xie et al., 2019) and PDHG
(Li et al., 2024). Such methods are usually evaluated by the KKT error, where feasibility and ob-
jective optimality are of the same order of magnitude, which makes them less suitable for scenarios
requiring strict constraint satisfaction. Recent efforts have attempted to address this by designing
networks that explicitly return feasible points (Donti et al., 2021; Wu et al., 2025); however, such
methods still fall short of reaching near-optimal solutions in practice.

Implicit layers. A growing body of work explores the use of implicit neural architectures, includ-
ing optimization layers (Amos & Kolter, 2017), neural ordinary differential equations (ODEs) (Chen
et al., 2018a), and deep equilibrium models (DEQs) (Bai et al., 2019). These models define network
outputs via the solution of fixed-point or optimization problems, allowing compact yet highly ex-
pressive representations. Despite their potential, these approaches often incur high computational
costs during both forward and backward passes. In the context of constrained optimization, addi-
tional challenges arise when estimating gradients of projection operators, particularly in the pres-
ence of complex or nonconvex constraints. Approximate techniques such as gradient perturbation
or stochastic sampling (Pogančić et al., 2019; Berthet et al., 2020) have been proposed, but typically
come at the expense of increased variance and computational overhead.

3 PROBLEM SETUP

For any given data x ∈ Rd, we solve the following constrained optimization problem

min
y∈Rn

fx(y), s.t. y ∈ C := {y | gx(y) ≤ 0, hx(y) = 0}, (1)

where f, g, and h are smooth (but not necessarily convex) functions that may depend on the input
data x. We assume there are m equality constraints and l inequality constraints:

hx(y) = [hx,1(y), hx,2(y), . . . , hx,m(y)]T = 0,

gx(y) = [gx,1(y), gx,2(y), . . . , gx,l(y)]
T ≤ 0,

where hx,i : Rn → R and gx,j : Rn → R for all i = 1, . . . ,m and j = 1, . . . , l. We have the
following common assumptions for this problem.
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Assumption 1. The feasible set C is non-empty and closed; the sub-level set {y ∈ C | fx(y) ≤
fx(y0)} is bounded.
Assumption 2. We assume that at any feasible point y, the gradients of the equality constraints,
∇hi(y), for i = 1, 2, . . . ,m, are linearly independent.

We also assume that the Linear Independence Constraint Qualification (LICQ) holds, which guar-
antees that the Karush–Kuhn–Tucker (KKT) conditions are necessary for local optimality.
Assumption 3 (LICQ). Let y∗ ∈ C be a local optimal point of problem (1). We assume that the set
of active constraint gradients at y∗,

{∇hi(y
∗)}mi=1 ∪ {∇gj(y

∗)}j∈A(y∗) , where A(y∗) := {j ∈ {1, . . . , l} | gj(y∗) = 0},
is linearly independent.

The notation A denotes the active set1, i.e., the set of inequality constraints that are satisfied with
equality.
Assumption 4. Let X ⊆ Rp be a compact set and assume that all training and test parameters
satisfy x ∈ X . For each x ∈ X , consider the feasible set C. We assume that:

1. (Uniform boundedness of feasible sets) There exists a compact set Y ⊆ Rn such that
C ⊆ Y for all x ∈ X .

2. (Smoothness and uniform gradient bound) The functions fx, hx, gx are continuously dif-
ferentiable in y, and the maps

(x, y) 7→ ∇yfx(y) and (x, y) 7→ ∇ygx(y)

are continuous on X ×Y . Then, by compactness, there exist constants Lf > 0 and Lg > 0
such that

∥∇yfx(y)∥2 ≤ Lf and ∥∇ygx(y)∥2 ≤ Lg for all x ∈ X , y ∈ C.

This assumption is reasonable. In practical training, the dataset is always finite, so there must exist
a corresponding upper bound.
Assumption 5. There exists a constant δ > 0 such that for every x ∈ X and every feasible point
y ∈ C,

min
j:gx,j(y)<0

(−gx,j(y)) ≥ δg,

with the convention that the minimum over an empty index set is +∞ (i.e., when all inequality
constraints are active).

In fact, this assumption is not very strong. In practical calculations, we can set δg as an extremely
small value (e.g. 1e-5) and consider a constraint as active when 0 ≤ −gx,j < δg .

3.1 FEASIBLE DIRECTIONS METHOD

The method of feasible directions (MFD) was originally developed by Zoutendijk in the 1960s
(Zoutendijk, 1960). However, a well-known drawback of MFD is that it may fail to converge due
to the so-called jamming phenomenon. To address this issue, various fundamental modifications
and extensions of MFD have since been proposed and studied (Zoutendijk, 1960; Topkis & Veinott,
1967; Pironneau & Polak, 1973; Luenberger et al., 1984). In this section, we briefly review the
framework of MFD under the assumption that the constraints hx(y) and gx(y) are linear.

Based on the first-order approximation of the constraint functions, it can be inferred that, to maintain
the feasibility of the solution, a suitable descent direction d at the current iterate y should satisfy the
following conditions:

⟨d,∇hx,i(y)⟩ = 0, for i = 1, . . . ,m,

⟨d,∇gx,j(y)⟩ ≤ 0, for j ∈ A = {1 ≤ j ≤ l : gx,j(y) = 0}, (2)

where ∇hx,i denotes the gradient of the equality constraints, and ∇gx,j corresponds to the inequality
constraints.

1This is distinct from the standard definition of the active set, which typically includes the indices corre-
sponding to the equality constraints.
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Zoutendijk Direction-Finding Subproblem(Zoutendijk, 1960) The Zoutendijk method com-
putes a search direction d ∈ Rn at a feasible point y by solving the following linear program:

min
d∈Rn

∇fx(y)
⊤d

s.t. ∇hx(y)
⊤d = 0, ∇gx,j(y)

⊤d ≤ 0, j ∈ A, ∥d∥∞ ≤ 1.
(MFD)

Here, ∇hx(y)
⊤ ∈ Rm×n denotes the Jacobian matrix of the equality constraints.

The first constraint ensures that the direction is tangent to the equality constraint, while the second
maintains feasibility with respect to the active inequalities. The infinity norm constraint serves to
normalize the direction and keep the subproblem bounded.

The step size is then chosen as the largest feasible value such that y+αd remains in the feasible set:

ᾱ = max{α ∈ (0, 1] | y + αd ∈ C}.

However, when the iterate approaches the boundary of the feasible region, the step size ᾱ may
become arbitrarily small, potentially causing convergence issues (Topkis & Veinott, 1967).

Topkis–Veinott Uniformly Feasible Direction Subproblem (Topkis & Veinott, 1967) To re-
solve this issue, Topkis and Veinott proposed a uniformly feasible direction (UFD) formulation:

min
d∈Rn

∇fx(y)
⊤d

s.t. ∇hx(y)
⊤d = 0, ∇gx,j(y)

⊤d ≤ −M · gx,j(y), j = 1, . . . , l,
n∑

i=1

|di| = 1.

(UFD)

The main difference lies in the fact that all inequality constraints are considered, and a constant
M > 0 is introduced. Notably, setting M = ∞ recovers the original formulation in (MFD). This
modification ensures that the computed direction d satisfies

gx,j(y + αd) ≤ 0, for all j, as long as α ≤ 1

M
,

thus providing a uniform lower bound on feasible step sizes and overcoming the stalling issues of
the original method. It can be shown that the direction obtained from (UFD) is a feasible descent
direction. Moreover, under the Assumption 3, any accumulation point of the iterates generated by
this method (Zoutendijk, 1960; Faigle et al., 2013) satisfies the KKT conditions.

4 ALGORITHM

4.1 REFORMULATION OF UFD SUBPROBLEM

Our goal is to design a learning-to-optimize (L2O) algorithm for solving the structured problem
described above. However, both the Zoutendijk and Topkis–Veinott methods require solving con-
strained subproblems at each iteration, which are not suitable for direct embedding into neural net-
works. To address this, we reformulate the subproblem by exact penalty method. This enables us to
implement the solver as an unrolled optimization process of projected subgradient method, forming
the basis of our L2O algorithm. In the following, we describe the reformulated subproblem and the
corresponding L2O architecture.

Motivated by (MFD), we first formulate the following penalized subproblem:

min
d

∇fx(y)
⊤d+

l∑
j=1

cj max (⟨d,∇gx,j(y)⟩,−Mgx,j(y)) , s.t. d ∈ D, (3)

where D = {d : ∥d∥2 ≤ 1 and ⟨d,∇hx,i(y)⟩ = 0, ∀i = 1, . . . ,m}, cj > 0 and M > 0 are the
regularization parameters. The hinge penalty is exact if the parameter cj is large enough. We have
the following result. The proof can be found in Appendix.
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Lemma 1 (Exact hinge penalty). Given any feasible point y ∈ C, denote cmin := minj cj . If we
have

cmin >
Lf

Mδg
, (4)

where cmin is selected independently of x, then every global minimizer of (3) is optimal for the
following L2-norm UFD subproblem

min
∥d∥2≤1

∇fx(y)
⊤d

s.t. ∇hx(y)
⊤d = 0, ∇gx,j(y)

⊤d ≤ −M · gx,j(y), j = 1, . . . , l.
(UFD-L2)

A specific choice of cj that satisfies (4) is

cj =
∥∇fx(y)∥2

ϵ− 1
2Mgx,j(y)

, j = 1, . . . , l. (5)

The constant ϵ > 0 is a small positive number added to ensure numerical stability during the cal-
culations. Intuitively, when gx,j(y) is close to zero, which indicates that the point y lies near the
boundary of the j-th inequality constraint, the corresponding weight cj should be larger, as such
constraints are more likely to be violated in subsequent updates. By assigning higher weights
to these near-active constraints, the network is encouraged to prioritize directions d that satisfy
⟨d,∇gx,j(y)⟩ ≤ −Mgx,j(y), which helps prevent constraint violations. We remark there are many
possible surrogates for cj , e.g., cj = exp(−δgx,j(y)) or the softmax function.
Proposition 1. Let H ∈ Rn×m denote the matrix formed by the gradients of the equality constraints

H = [∇hx,1(y) · · · ∇hx,m(y)] .

Then, under Assumption 2, the expression for the projection onto D is given by

P(d) =

{
d̂, if ∥d̂∥2 ≤ 1,

d̂/∥d̂∥2, otherwise,
where d̂ = d−H(H⊤H)−1H⊤d. (6)

Consequently, the procedure of the projected (sub)gradient method for solving this problem is as
follows:

dk+1 = P
(
dk − γkuk

)
, (7)

where γk > 0 is the step size and P is the projection operator defined in (6). Let 1{·} denotes the
indicator function, the subgradient term uk is given by

uk = ∇fx(y) +

l∑
j=1

cj1{⟨dk,∇gx,j(y)⟩≥−Mgx,j(y)}∇gx,j(y). (8)

Note that in many practical problems, the matrix H is fixed across instances or does not change
frequently. In such cases, the projection in (6) can be precomputed, making the computational cost
manageable. Examples include decision-focused learning setups, where the equality constraints
remain constant across instances (Tan et al., 2020). In other problems, the equality constraints
are simple, allowing the projection to be computed efficiently; for instance, in classical portfolio
optimization(Fabozzi et al., 2008), the budget constraint enables a straightforward projection.

4.2 DESIGN OF DESCENT MODULE

Directly solving problem (3) using the projected (sub)gradient method usually results in slow con-
vergence, due to the use of diminishing step size. To address this, we propose Descent-Module,
which is designed by unrolling the projected (sub)gradient algorithm. In our proposed network
architecture, each layer takes the form of one iteration of the projected (sub)gradient method,

dk+1 = P
(
dk − γkT

k(uk)
)
. (9)

The key difference is that we apply learnable modules T k to the subgradient term uk, and the
definition of T k is given as follows:

T k(uk) = VkReLU
(
Wkuk + bk

1

)
+ bk

2 , (10)

5
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where Wk ∈ Rq×n,Vk ∈ Rn×q and bk
1 ∈ Rq,bk

2 ∈ Rn are the weight matrix and bias that we
need to learn and ReLU(x) = max(x, 0). The design of the operator T follows the work in Wu
et al. (2024), where the authors theoretically demonstrate that such a network architecture possesses
strong universal approximation capabilities.

The step size γk is also set as a learnable parameter, which avoids the need for manual tuning, and
we provide in Appendix A.8 the learned values of γk across different layers in our experiments.

The architectures of the Descent Module are illustrated in Figure 1. Each Descent Module consists
of K Descent Layers sharing the same architecture and the input to the first layer is chosen as
d0 = −∇fx(y).

Input:  
Gradient information:
 
Initial: 

Output: 

Descent Layer 

Figure 1: Overall structure of the Descent Module

We have the following theorem, and its proof is provided in the appendix.
Theorem 4.1. Let d∗ be the optimal solution of Problem (3). For any ε > 0, there exists a Kε-layer
Descent-Module with a specific parameter assignment independent of x, whose output d satisfies
|g(d)− g(d∗)| < ε. Moreover, the number of layers satisfies Kε ≤ C

ε2 for some constant C > 0.

4.3 STEP SIZE

After obtaining the descent direction d from the Descent module, we still need to determine a suit-
able step size. We assume that all constraints are linear. Since the Descent module contains the
projection operator P , the final descent direction d produced by Descent module is orthogonal to
the gradients of the equality constraints. Therefore, updating along d will not violate the equality
constraints.

We only need to ensure that the step size is not too large to violate the inequality constraints. For
each linear inequality constraint gx,j , we have:

gx,j(y + αd) = gx,j(y) + α · ⟨d,∇gx,j(y)⟩.
If ⟨d,∇gx,j(y)⟩ > 0, updating the solution along d will increase gx,j . To preserve the feasibility of
the inequality constraint, i.e., gx,j(y + αd) ≤ 0, the step size α must satisfy

α ≤ −gx,j(y)

⟨d,∇gx,j(y)⟩
.

Therefore, the maximum allowable step size is given by

αmax = min
j∈I

−gx,j(y)

⟨d,∇gx,j(y)⟩
, where I = {j | ⟨d,∇gx,j(y)⟩ > 0}. (11)

To guarantee a sufficient decrease of the objective value, the step size α should also satisfy fx(y +
αd) < fx(y). To obtain a sufficient decrease in the objective value, we introduce a learnable
parameter β ∈ R and use the sigmoid function σ(·) to map it into (0, 1). We then use this factor to
scale αmax, and the final update rule for y is

ynew = yold + σ(β)αmax · d. (12)

In addition, if the descent direction d obtained from the Descent-Net is the optimal solution of
Problem (3), Lemma 1 ensures that a fixed step size of α = 1/M is feasible. However, we found
that such a fixed step size does not perform well in practice, and in the appendix A.6 we provide a
comparison of different step-size selection strategies.

6
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4.4 DESCENT-NET

Our Descent-Net consists of S Descent Modules. The input of the network is an initial feasible
solution y0 of Problem (1). At each stage, the s-th module takes the gradient information at the
current iterate ys and outputs a descent direction ds, which is then used to update the solution to ys+1

according to the update rule (12). By repeatedly updating the solution in this manner, the network
finally produces a high-accuracy feasible solution yS . The overall procedure of the proposed method
is summarized in Algorithm 1.

Algorithm 1 Descent-Net

1: Input: initial feasible point y0 ∈ C, S modules and K layers in each module.
2: Learnable parameters: Θ := {Vk,Wk,bk

1 ,b
k
2 , γk}k=0,1,...,K−1 and {βs}s=0,...,S−1.

3: for s = 0, 1, . . . , S − 1 do
4: d0 = −∇fx(ys)
5: for k = 0, . . . ,K − 1 do
6: uk = ∇fx(ys) +

∑l
j=1 cj1{⟨dk,∇gj(ys)⟩≥−Mgx,j(y)}∇gj(ys)

7: dk+1 = P
(
dk − γkT

k(uk)
)
, where P is defined in (6) and T k is defined in (10) with

parameters {Vk,Wk,bk
1 ,b

k
2}

8: end for
9: ys+1 = ys + σ(βs) · αsdK as defined by (12), where αs is obtained by (11).

10: end for
11: Train the parameters with loss: ℓp(y) = fx(y) + λg∥ReLU(gx(y))∥1 + λh∥hx(y)∥1
12: Output: yS .

Data: 
Input:

initial solution

Descent module 1 Descent module 

Output: 

Figure 2: Architecture of the entire network.

Theorem 4.2 (global convergence of the Descent-Net). Suppose the Assumptions 1, 2, 3 hold. In
addition, assume that hx, gx are linear. Then there exists Kε-layer Descent-Module with a specific
parameter assignment independent of x and S > 0 such that the Descent-Net generates a KKT
conditions of the problem (1).

The proof of the above theorem is given in Appendix. Although we assume linear constraints to
establish the convergence guarantees, the proposed algorithm remains applicable in practice to prob-
lems with nonlinear constraints. Further improvements for handling general nonlinear constraints
are left for future work.

5 EXPERIMENT

We evaluate our Descent-Net on three types of problems: convex quadratic programs, a simple class
of non-convex optimization problems, and the AC optimal power flow (ACOPF) problem, with
detailed experimental settings provided in Appendix A.2.

5.1 BASELINES AND EVALUATION CRITERIA

We compare our method against several benchmarks, including:

7
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• Optimizer: Traditional numerical solvers, including OSQP (Stellato et al., 2020) and qpth
(Amos & Kolter, 2017) for convex QPs, IPOPT (Wächter & Biegler, 2006) and Knitro
(Byrd et al., 2006) for general nonlinear programs, and the PYPOWER solver (a Python port
of MATPOWER (Zimmerman et al., 2005)) for ACOPF.

• DC3(Donti et al., 2021): The full DC3 framework that combines both completion and
correction operators.

• Projection method:Trains an MLP and projects its output onto the feasible set. For prob-
lems with linear constraints (convex QP and simple non-convex cases), the projection is
solved using OptNet (Amos & Kolter, 2017). For the ACOPF problem, the projection
follows the differentiable solver of Chen et al. (2021).

• Warm start: The infeasible NN prediction is directly used as the warm-start for the op-
timizer of Chen et al. (2021), following the warm-starting schemes of Diehl (2019) and
Baker (2019).

• CBWF(Wu et al., 2025): Inspired by the classical active set method, this approach explores
the boundaries around inequality constraints and updates the initial solution to obtain a
better objective value.

The performance of all methods is assessed according to the following criteria:

• Feasibility: measured by the average constraint violation of both equality and inequality
constraints, i.e., 1

m

∑m
i=1|hx,i(y)| and 1

l

∑l
j=1 ReLU (gx,j(y)).

• Optimality: measured by the average relative and absolute errors (in the ℓ1 norm) for
both the solution and the objective value, where the optimal solution is approximated by
optimizer.

• Efficiency: the computational time. It is worth noting that OSQP, IPOPT, Knitro, and
PYPOWER only support sequential solving. For these solvers, we report the average runtime
per instance to approximate full parallelization, while for other methods the runtime is
measured with all test instances solved in parallel. For CBWF and Descent, the reported
runtime includes both the time to obtain the initial solution and the time spent on refining
the solution.

5.2 CONVEX QUADRATIC PROGRAMS

We first consider convex QPs with quadratic objectives and linear constraints:

min
y∈Rn

1

2
yTQy + pT y, s.t. Ay = x, Gy ≤ h, (13)

where Q ∈ Rn×n ⪰ 0, p ∈ Rn, A ∈ Rneq×n, G ∈ Rnineq×n, and h ∈ Rnineq are fixed. The input
x ∈ Rneq varies across problem instances, and the goal is to approximate the optimal y given x.

We generated 10,000 examples of x, and the experiment results are reported in Table 1. The initial
solutions use those from DC3, and the final solutions produced by Descent-Net achieve a relative
objective error of 2.6 × 10−4. Moreover, Descent solves the instances about 58 times faster than
the QP solver qpth. Note that the runtime reported for OSQP and Knitro corresponds to the
average time per instance, as it only supports sequential solving, and is therefore less efficient than
Descent-Net.

In addition, to further illustrate the effectiveness of Descent-Module, we examine the error between
the descent direction d and the optimal solution of its corresponding subproblem (3). The experi-
mental results are provided in appendix A.7. We also compare Descent-Module with the original
projected subgradient method, and the results are reported in appendix A.9. Furthermore, we include
additional experiments on more QP instances in appendix A.4 and appendix A.5.

5.3 SIMPLE NON-CONVEX OPTIMIZATION

We now examine a simple non-convex adaptation of the quadratic program

min
y∈Rn

1

2
yTQy + pT sin(y), s.t. Ay = x, Gy ≤ h, (14)

8
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Table 1: Results on the convex QP task evaluated on the test set with 833 samples.

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

Knitro 0.0000 0.0000 0 0 0.0255
OSQP 0.0000 0.0000 7.9× 10−4 6.8× 10−6 0.0055
qpth 0.0000 0.0000 8.0× 10−4 6.8× 10−6 0.7540
DC3 0.0000 0.0000 1.9× 10−1 1.1× 10−1 0.0038
Projection method 0.0000 0.0000 3.2× 10−2 8.4× 10−4 0.2124
CBWF 0.0000 0.0000 2.1× 10−1 6.6× 10−2 0.0366
DC3 + Descent (Ours) 0.0000 0.0000 1.2× 10−2 2.6× 10−4 0.0130

where sin(y) represents the component-wise application of the sine function to the vector y. Com-
pared to problem (13), the only difference is that y in the objective function is replaced with sin(y),
which makes the problem non-convex.

The experimental results are presented in Table 2. The initial solutions use those from DC3, and the
final solutions produced by Descent-Net achieve a relative objective error of 3.1× 10−4. Moreover,
Descent-Net solves the instances approximately 10 times faster than the solver IPOPT.

Table 2: Results on the simple non-convex task evaluated on the test set with 833 samples.

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

IPOPT 0.0000 0.0000 0 0 0.1493
DC3 0.0000 0.0000 2.2× 10−1 8.2× 10−2 0.0041
Projection method 0.0000 0.0000 5.4× 10−2 1.8× 10−3 0.2472
CBWF 0.0000 0.0000 2.6× 10−1 5.5× 10−2 0.0364
DC3 + Descent (Ours) 0.0000 0.0000 1.7× 10−2 3.1× 10−4 0.0144

5.4 ACOPF

The objective of the AC optimal power flow (AC-OPF) problem is to determine the optimal power
generation that balances supply and demand while satisfying both physical laws and operational
constraints of the network. A compact formulation of the AC-OPF problem is as follows:

min
pg∈Rn, qg∈Rn, v∈Cn

p⊤g Qpg + b⊤pg

s.t. pmin
g ≤ pg ≤ pmax

g , qmin
g ≤ qg ≤ qmax

g , vmin
m ≤ |v| ≤ vmax

m ,

vmin
a ≤ ∠vi − ∠vj ≤ vmax

a , |vi(vi − vj)wij | ≤ Smax
ij ,

(pg − pd) + (qg − qd)i = diag(v)W v.

(15)

Here, pd, qd ∈ Rn denote the active and reactive power demands, and pg, qg ∈ Rn are the cor-
responding power generations. The complex bus voltage is represented by v ∈ Cn. The nodal
admittance matrix W ∈ Cn×n encodes the network topology.

Since the equality constraints in this problem are nonlinear, a first-order approximation is not very
accurate. As a result, even if the descent direction d is orthogonal to the gradients of all equality
constraints, the updated point may still fail to satisfy them. To address this issue, we adopt an
equation completion approach, and the details are provided in the appendix A.10.

We conduct experiments on two ACOPF problem instances of different scales. Besides D-Proj
(i.e., DC3), we use H-Proj (Liang et al., 2024) as another initialization strategy, and denote the
corresponding solutions by yD and yH .

D-Proj originally reduces violations of inequality constraints by performing a gradient descent step
on the ℓ2 norm of constraint violations. In our experiments, we found that this gradient step is
time-consuming and, in practice, often unnecessary. Therefore, we introduce an improved variant of

9
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D-Proj by removing the gradient-descent step. This modification significantly reduces the computa-
tional time while maintaining comparable satisfaction of the inequality constraints. The optimized
initialization obtained using this approach is denoted by yD

∗
.

The results in Table 3 indicate that Descent-Net produces solutions with relative objective errors
on the order of 10−4 across all cases. The relative error of the solution obtained by Descent-Net
decreases only marginally compared to the initial point, which may be due to the non-convex nature
of the ACOPF problem. Note that the runtime of PYPOWER is the average per instance since it solves
sequentially, while Descent-Net solves instances in parallel, providing much higher efficiency.

Table 3: Results on the ACOPF task evaluated on the test set with 1024 samples.

30-bus system: neq = 60, nineq = 84

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

PYPOWER 0.0000 0.0000 0 0 0.5729
Projection method 0.0000 0.0000 5.6× 10−3 1.7× 10−2 0.0397
Warm start 0.0000 0.0000 5.5× 10−3 1.7× 10−2 0.0393
D-Proj 0.0000 0.0000 5.9× 10−3 1.9× 10−2 0.2442
H-Proj 0.0000 0.0000 5.8× 10−3 1.7× 10−2 0.2865
Descent (y0 = yD) 0.0000 0.0000 4.2× 10−3 3.6× 10−4 0.2619
Descent (y0 = yH ) 0.0000 0.0000 3.5× 10−3 3.3× 10−4 0.3039
Descent (y0 = yD

∗
) 0.0000 0.0000 3.6× 10−3 2.8× 10−4 0.0434

118-bus system: neq = 236, nineq = 452

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

PYPOWER 0.0000 0.0000 0 0 1.2539
Projection method 0.0000 0.0000 1.5× 10−2 2.4× 10−3 0.3040
Warm start 0.0000 0.0000 9.3× 10−3 1.8× 10−3 0.3137
D-Proj 0.0000 0.0000 1.3× 10−2 2.4× 10−3 0.7542
H-Proj 0.0000 0.0000 1.4× 10−2 3.1× 10−3 0.6682
Descent (y0 = yD) 0.0000 0.0000 1.2× 10−2 2.5× 10−4 0.9480
Descent (y0 = yH ) 0.0000 0.0000 1.4× 10−2 7.2× 10−4 0.8637
Descent (y0 = yD

∗
) 0.0000 0.0000 2.2× 10−3 3.0× 10−4 0.1622

6 FUTURE WORK

This work also points to several directions for further development. First, our theoretical results are
established under the assumption of linear constraints. In the ACOPF experiments, the constraints
are nonlinear, and although the method demonstrates strong empirical performance, extending the
theoretical analysis to nonlinear or nonconvex settings represents an important direction for future
work.

Second, to further demonstrate the advantages of our method, future work needs to validate it on
problems of even larger scale than those considered here. However, obtaining feasible initial solu-
tions for such instances is often challenging.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used the large language model ChatGPT (GPT-5-mini) to assist
with aspects of writing, including phrasing, grammar, and overall clarity of exposition. All scientific
content, results, and interpretations are the original work of the authors. The use of ChatGPT was
limited to writing assistance and did not influence the technical contributions or experimental results.

A.2 EXPERIMENT SETTING

For the convex QPs and the simple non-convex problems, the parameters are generated as follows.
The matrix Q is diagonal with entries sampled i.i.d. from the uniform distribution on [0, 1], while
the entries of A and G are sampled i.i.d. from N(0, 1). For each instance, the components of x are
drawn i.i.d. from the uniform distribution on [−1, 1]. To ensure that the generated problem has a
feasible solution, we set hi =

∑
j |(GA†)ij |, where A† denotes the Moore Penrose pseudoinverse

of A. For the ACOPF experiments, we adopt the datasets provided in (Liang et al., 2024).

We summarize the hyperparameters used in our experiments in Table 4. Below we briefly describe
several important parameters:

• S: the number of update steps performed in our Descent Net.
• K: determines the number of layers within each Descent module, controlling the expressive

power of the network.
• λh: the penalty factor for equality constraint violations.
• λg: the penalty factor for inequality constraint violations.
• q: the hidden dimension of operator T , which specifies the capacity of feature transforma-

tion inside each descent step.
• M, ϵ: parameters in cj , which is defined in (5).

Table 4: Hyperparameters used in different experiments

Hyperparameter QP Non-convex ACOPF node=30 ACOPF node=118
Train size 9167 9167 8976 18976
Test size 833 833 1024 1024
Batch size 64 64 512 512
Epochs 150 150 300 300
Learning rate lr 0.001 0.001 0.01 0.01
S 6 6 3 3
K 3 3 3 3
λh 5 5 5 5
λg 5 5 5 5
q 300 300 120 1080
M 1 1 1 1
ϵ 0.0005 0.0005 0.0001 0.0001

For the parameters in the Descent module, we employ the Adam optimizer with an initial learning
rate of lr, and reduce the learning rate by a factor of 0.1 at epochs 50, 100, and 150. The step-size
adjustment parameter β is updated separately using the SGD optimizer with a fixed learning rate
of 0.01. In the ACOPF experiments, the gradient norm is clipped at a threshold of 1 to stabilize
training, inspired by Zhang et al. (2019).

A.3 EFFECT OF LAYER NUMBER K AND DESCENT STEPS S

We conducted experiments on the convex quadratic program (13) to evaluate the performance of
Descent-Modules with different numbers of layers K. The results are shown in Table 5. It can be
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seen that increasing K leads to a slight improvement in performance, but the gains are not significant.
Considering computational efficiency, we ultimately choose K = 3 as the number of layers.

Table 5: Performance of Descent-Module with varying K

Layer ineq. vio. eq. vio. sol. rel. err. obj. rel. err.

K = 1 0.0000 0.0000 9.8× 10−2 2.2× 10−2

K = 2 0.0000 0.0000 9.3× 10−2 1.8× 10−2

K = 3 0.0000 0.0000 9.2× 10−2 1.7× 10−2

K = 4 0.0000 0.0000 8.9× 10−2 1.7× 10−2

With K fixed at 3, we further examined the effect of different Descent steps S, as summarized in
Table 6. When the number of update steps is 1, Descent-Net already achieves a solution with a
relative error on the order of 10−2. Increasing the steps to 3 reduces the error to the 10−3 level, and
further increasing to 6 reduces it to the 10−4 level.

Table 6: Performance of Descent-Net with varying S

Descent Step ineq. vio. eq. vio. sol. rel. err. obj. rel. err.

S = 1 0.0000 0.0000 8.9× 10−2 1.7× 10−2

S = 2 0.0000 0.0000 6.0× 10−2 1.1× 10−2

S = 3 0.0000 0.0000 3.5× 10−2 3.4× 10−3

S = 4 0.0000 0.0000 2.4× 10−2 1.6× 10−3

S = 5 0.0000 0.0000 2.6× 10−2 2.0× 10−3

S = 6 0.0000 0.0000 1.4× 10−2 4.5× 10−4

A.4 ADDITIONAL EXPERIMENTS ON QUADRATIC PROGRAMS

We further evaluate the robustness and scalability of our method on more general quadratic pro-
grams. In particular, we modify the generation of the matrix Q: instead of using a diagonal structure,
we replace it with a dense positive semidefinite matrix constructed as Q = R⊤R, where R contains
i.i.d. Gaussian entries. This removes the sparsity advantage typically leveraged by classical trust-
region solvers and leads to substantially more challenging QP instances. The results are summarized
in Table 7.

Table 7: Results on the convex QP task evaluated on the test set with 833 samples.

Method Max eq. Max ineq. sol. rel.err. obj. rel.err. Time (s)

Knitro 0.0000 0.0000 0 0 0.0224
osqp 0.0000 0.0000 1.5× 10−3 1.8× 10−5 0.8020
qpth 0.0000 0.0000 1.5× 10−3 1.8× 10−5 0.0035
DC3 0.0000 0.0000 5.2× 10−1 5.0× 10−1 0.0041
Descent 0.0000 0.0000 2.1× 10−2 9.3× 10−4 0.0131

Descent-Net continues to produce high-quality solutions under this more general setting, demon-
strating that its effectiveness is not tied to diagonal or otherwise simplified structures.

A.5 SCALABILITY EVALUATION ON PORTFOLIO OPTIMIZATION

A widely applicable instance of quadratic programming in real-world settings is the mean-variance
portfolio optimization problem. The objective is to minimize portfolio risk while satisfying practical
portfolio allocation constraints:

min
w

w⊤Σw s.t. w⊤1 = 1, w⊤µ ≥ R, w ≥ 0, (16)
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where w denotes asset weights, Σ is the covariance matrix, µ is the expected return vector, and R is
the minimum return requirement.

We conduct portfolio optimization experiments with n = 100, n = 800, and n = 4000 assets
to evaluate both the practical effectiveness and scalability of our method. For each problem size,
we generate 10,000 synthetic benchmark instances. To emulate a market environment where asset
co-movements evolve slowly, the covariance matrix is fixed across all instances and constructed as
Σ = A⊤A, where entries of A are sampled i.i.d. from a standard normal distribution. The expected
return vectors µ are independently sampled from a uniform distribution over [0, 1], modeling varying
market conditions.

The return thresholds differ between training and testing. For training, each R is drawn indepen-
dently from a uniform distribution over [0.05, 0.4]. For testing, R values are generated as a linearly
spaced sequence over the same interval. We use a 9:1 train-test split.

The network contains a single hidden layer. Its width is set to 8 times the number of assets for the
n = 100 experiment (i.e., 800), and 1.5 times the number of assets for the n = 800 and n = 4000
experiments (i.e., 1200 and 6000, respectively). The initial solution is refined using S = 3 descent
updates for n = 100 and S = 2 descent updates for n = 800 and n = 4000. Both the Descent
module and the step size β are trained using Adam. The initial learning rates are 1 × 10−3 for the
Descent module, and 0.1, 0.1, and 0.01 for β in the n = 100, n = 800, and n = 4000 experiments,
respectively. Learning rates are decayed by a factor of 0.1 at epochs 100, 150, and 200 over a total
of 300 epochs. All instances are initialized using the equal-weighted portfolio wi = 1/n.

We compare Descent-Net with osqp, a widely used and highly optimized QP solver, as well as DC3
(Donti et al., 2021). All experiments were conducted on a server equipped with two AMD EPYC
9754 CPUs (128 cores each, 3.1 GHz) and an NVIDIA RTX 5090 GPU. The combined numerical
results for all problem sizes are shown below.

Table 8: Test-set portfolio optimization results for n = 100 (batch size 512), n = 800 (batch size
100), and n = 4000 (batch size 10) assets

n = 100 ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

osqp 0.0000 0.0000 0 0 0.0015
DC3 0.0000 0.0000 2.8 5.4× 101 0.0125

Descent-Net 0.0000 0.0000 1.4× 10−4 4.9× 10−6 0.0019

n = 800 ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

osqp 0.0000 0.0000 0 0 0.0207
Descent-Net 0.0000 0.0000 9.3× 10−4 7.3× 10−6 0.0019

n = 4000 ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

osqp 0.0000 0.0000 0 0 0.6024
Descent-Net 0.0000 0.0000 1.6× 10−4 1.2× 10−6 0.0044

We find that DC3 fails to produce feasible solutions for n = 800 and n = 4000 because its training
diverges. This is likely due to DC3’s reliance on gradient steps, which are used to enforce inequality
constraints, but whose step sizes and momentum decay parameters are difficult to tune for large-
scale settings. In contrast, Descent-Net remains accurate and highly efficient across all problem
sizes.

The osqp times report the average runtime for a single instance, whereas the Descent-Net times
correspond to the average runtime for a batch of instances. As shown, Descent-Net achieves lower
runtimes while maintaining objective errors on the order of 10−6, demonstrating strong scalability
to problems with thousands of variables.

A.6 STEP SIZE SELECTION STRATEGIES

We compare the effectiveness of three different step size selection strategies:
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• A fixed step size α = 1/M ;

• The maximum feasible step size αmax that ensures feasibility;

• A learnable scale factor σ(β) applied to αmax.

We perform comparative experiments on the convex quadratic program (13), evaluating three meth-
ods based on the feasibility and optimality of their solutions after a fixed number of update steps
S = 6. The corresponding results are presented in Table 9. As shown, both the fixed step size 1/M
and the maximum feasible step size αmax perform worse than our final choice α = σ(β)αmax. The
limitation of 1/M lies in its lack of flexibility, as a fixed step size cannot adapt to the varying land-
scape of the problem. And σ(β)αmax outperforms αmax because the learnable parameter β captures
useful information that enables a more appropriate scaling of the maximum step size.

Table 9: Comparison of different step size selection strategies

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err.

1/M 0.0000 0.0000 9.0× 10−2 1.2× 10−2

αmax 0.0000 0.0000 1.1× 10−1 3.3× 10−2

σ(β)αmax 0.0000 0.0000 1.4× 10−2 4.5× 10−4

A.7 SUBPROBLEM

In our method, each descent direction ds is obtained by solving a subproblem (3). To assess the abil-
ity of the Descent-Net to solve this subproblem, we measure the relative error of the subproblem’s
objective value between each layer’s output dk and the corresponding optimal solution.

We conduct experiments on the convex QP task. For simplicity, we set S = 1, performing only a
single update, and fix the number of Descent-Net layers to K = 3. We then evaluate the trained
network, with the results reported in Table 10. As shown, the objective value of the subproblem
(Descent value) decreases progressively across layers, and by the final layer (layer 3), the relative
error in the objective value has already been reduced to 0.001, demonstrating the efficiency of the
Descent-Net in solving the subproblem.

Table 10: Effectiveness of Descent-Net in solving subproblem

Layer Descent Value Relative Error

0 1740.4817 2.6463
1 505.2591 0.0585
2 478.2721 0.0020
3 477.7893 0.0010

A.8 LEARNABLE γ IN DESCENT-NET

We recorded the values of the learnable parameter γ in each layer of the S Descent Modules of the
trained Descent-Net. For both QP and Nonconvex problems, γ is initialized to 0.1, while for the
ACOPF problem it is initialized to 1. The results are presented in Table 11 and Table 12. These
results indicate that the network is able to adjust γ dynamically across layers. In many cases, the
values of γ tend to decrease with the layer depth, which is consistent with the requirement of dimin-
ishing step sizes for convergence in subgradient methods.

A.9 COMPARISON WITH PGM (PROJECTED SUBGRADIENT METHOD)

We compare Descent-Net with the original PGM. Specifically, we remove the operator T k in
Descent-Net so that each layer reduces to (7). We still treat the step size γk as a learnable parameter
and train this degenerated network in the same manner as Descent-Net.
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Table 11: Values of γ in Descent-Net across steps for QP and Nonconvex problems

QP
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

γ1 5.25× 10−3 9.25× 10−3 1.02× 10−2 9.20× 10−3 3.34× 10−2 6.59× 10−2

γ2 1.67× 10−2 2.90× 10−2 9.14× 10−3 8.12× 10−3 5.44× 10−3 2.64× 10−3

γ3 6.48× 10−2 3.61× 10−2 7.65× 10−3 3.12× 10−3 1.50× 10−3 1.09× 10−3

Nonconvex
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

γ1 6.35× 10−3 9.47× 10−3 7.48× 10−3 1.35× 10−2 3.66× 10−2 9.13× 10−2

γ2 2.81× 10−2 2.47× 10−3 2.90× 10−3 4.60× 10−3 3.56× 10−3 3.44× 10−3

γ3 9.23× 10−2 3.09× 10−2 3.50× 10−3 2.96× 10−3 1.21× 10−3 1.18× 10−3

Table 12: Values of γ in Descent-Net across steps for ACOPF problems

node = 30, H-Proj node = 30, D-Proj
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

γ1 1.00 1.00 1.00 γ1 1.00 1.00 1.00
γ2 0.99 1.01 0.99 γ2 0.99 0.99 1.00
γ3 1.10 0.01 0.84 γ3 1.42 0.20 1.01

node = 118, H-Proj node = 118, D-Proj
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

γ1 1.00 1.00 1.00 γ1 1.00 1.00 1.00
γ2 1.00 1.00 1.00 γ2 1.00 1.00 1.00
γ3 1.07 1.06 1.10 γ3 1.29 1.03 0.99
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We evaluate the performance under different numbers of iterations K, with the results reported in
Table 13. We observe that PGM is inefficient, as the relative error in the objective value compared
to the initial solution decreases very little with increasing iterations. This is likely due to the dif-
ficulty of selecting an appropriate step size for PGM. In contrast, the Descent-Net achieves strong
solution quality with only three layers, which also leads to a significant advantage in computational
efficiency.

Table 13: Comparison of Descent-Net and PGM on the convex QP task.

Method ineq. vio. eq. vio. sol. rel. err. obj. rel. err. Time (s)

PGM (K = 10) 0.0000 0.0000 1.9× 10−1 1.1× 10−1 0.0270
PGM (K = 20) 0.0000 0.0000 1.9× 10−1 1.1× 10−1 0.0501
PGM (K = 50) 0.0000 0.0000 1.9× 10−1 1.1× 10−1 0.1119
Descent (K = 3) 0.0000 0.0000 1.4× 10−2 4.5× 10−4 0.0152

A.10 DESCENT UPDATES IN THE ACOPF PROBLEM

In the ACOPF problem, given (n −m) entries of a feasible point y ∈ Rn, the remaining m entries
are, in general, determined by the m equality constraints hx(y) = 0.

Following the method in Donti et al. (2021); Liang et al. (2024); Wu et al. (2025), we assume the
existence of a function φx : Rn−m → Rm such that hx([z, φx(z)]) = 0. This allows us to eliminate
the equality constraints and reformulate the problem in terms of the partial variable z. We can then
perform descent direction updates on z, where the optimization problem involves only the inequality
constraints:

min
z∈Rn−m

f̃x(z), s.t. g̃x(z) ≤ 0, (17)

where f̃x(z) = fx
(
[zT , φx(z)

T ]T
)

and g̃x(z) = gx
(
[zT , φx(z)

T ]T
)
.

Using the chain rule, we can compute the derivative of φx with respect to z, even without an explicit
expression of φx:

0 =
d

dz
hx

(
φx(z)

)
=

∂hx

∂z
+

∂hx

∂φx(z)

∂φx(z)

∂z

= Jh
:,0:m + Jh

:,m:n

∂φx(z)

∂z
,

⇒ ∂φx(z)

∂z
= −

(
Jh
:,m:n

)−1
Jh
:,0:m.

Here, Jh ∈ Rm×n denotes the Jacobian matrix of the equality constraints hx(y) with respect to y.
The notation Jh

:,0:m and Jh
:,m:n represents the submatrices corresponding to the partial derivatives

with respect to z and φx(z), respectively.

From this result, we can further obtain the gradients of the objective and inequality constraints with
respect to z. These gradient informations are then passed to the Descent-Net, which outputs the
descent direction dz for the partial variable z.

In order to obtain the complete descent direction d = [dz, dφ] for y, we also need the expression of
dφ. To ensure that the equality constraints remain satisfied, we require the following

h(z + αdz, φ(z) + αdφ) ≈h
(
z, φ(z)

)
+ αJh

[
dz
dφ

]
=h
(
z, φ(z)

)
+ α

(
Jh
:,0:mdz + Jh

:,m:ndφ
)
= 0,

where α > 0 is the step size. Hence, we obtain

dφ = −
(
Jh
:,m:n

)−1
Jh
:,0:m dz −

(
Jh
:,m:n

)−1 h
(
z,φ(z)

)
α .
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A.11 PROOF OF PROPOSITION 1

Proof. Given any vector d ∈ Rn, we aim to compute its projection onto D, i.e., solve the following
problem:

min
d′∈Rn

1

2
∥d′ − d∥22 s.t. ∥d′∥2 ≤ 1, H⊤d′ = 0.

Without loss of generality, we assume that the Linear Independence Constraint Qualification (LICQ)
holds. Otherwise, the projection reduces to the origin d′ = 0. Now we derive the KKT conditions
for this problem from the Lagrangian

L(d′, λ, µ) = 1

2
∥d′ − d∥22 + λ⊤H⊤d′ + µ(∥d′∥22 − 1),

where λ ∈ Rn−m and µ ≥ 0 are the Lagrange multipliers.

Taking the gradient with respect to d′ and setting it to zero gives:

d′ − d+Hλ+ 2µd′ = 0 ⇒ (1 + 2µ)d′ +Hλ = d.

Since H⊤d′ = 0, we have

H⊤Hλ = (1 + 2µ)H⊤d′ +H⊤Hλ = H⊤d ⇒ λ = (H⊤H)−1H⊤.

We consider two cases:

Case 1: If µ = 0, then the projection is

d′ = d−Hλ = d−H(H⊤H)−1H⊤d = d̂.

Case 2: If µ > 0, then we have ∥d′∥ = 1 and

(1 + 2µ)2 = (1 + 2µ)2(d′)⊤d′ = (d−Hλ)⊤(d−Hλ) = d̂⊤d̂ = ∥d̂∥2.

Hence, the projection is:

d′ =
1

1 + 2µ

(
d−H(H⊤H)−1H⊤d

)
=

1

∥d̂∥
d̂.

A.12 PROOF OF THEOREM 4.1

The following result is standard for projected subgradient method for solving convex problems.

Lemma 2. For any ε > 0, there exists a constant C > 0 such that if we set K = C
ε2 and choose the

step size in (7) as γk = 1√
K

, then

min
1≤k≤K

g(dk)− g(d∗) ≤ ε,

where d∗ denotes the optimal solution of Problem (3).

Proof. Let uk = ∇fx(y) +
∑l

j=1 cj1{⟨dk,∇gx,j(y)⟩≥−Mgx,j(y)}∇gx,j(y), and define G =

∥∇fx(y)∥+
∑l

j=1 cj∥∇gx,j(y)∥ < ∞. Then it follows that ∥uk∥2 ≤ G2 for all k.

By the non-expansiveness (contractive property) of the projection operator, we have:

∥dk+1 − d∗∥2 = ∥P(d̃k+1)− P(d∗)∥2

≤ ∥d̃k+1 − d∗∥2

= ∥dk − γkuk − d∗∥2

= ∥dk − d∗∥2 − 2γk⟨uk, dk − d∗⟩+ γ2
k∥uk∥2.
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Moreover, since uk ∈ ∂g(dk) and g is convex, we have

g(dk)− g(d∗) ≤ ⟨uk, dk − d∗⟩.

Substituting this into the previous inequality gives:

∥dk+1 − d∗∥2 ≤ ∥dk − d∗∥2 − 2γk(g(dk)− g(d∗)) + γ2
k∥uk∥2

≤ ∥dk − d∗∥2 − 2γk(g(dk)− g(d∗)) + γ2
kG

2.

Rearranging and summing both sides from k = 1 to K, we get

K∑
k=1

γk(g(dk)− g(d∗)) ≤ 1

2

(
∥d1 − d∗∥2 − ∥dK+1 − d∗∥2 +G2

K∑
k=1

γ2
k

)

≤ 1

2
(∥d1 − d∗∥2 +G2),

we let C =
√
(∥d1 − d∗∥2 +G2)/2.

On the other hand, we have
K∑

k=1

γk(g(dk)− g(d∗)) =
1√
K

K∑
k=1

(g(dk)− g(d∗))

≥ 1√
K

K∑
k=1

(
min

1≤k≤K
g(dk)− g(d∗)

)
=

√
K

(
min

1≤k≤K
g(dk)− g(d∗)

)
.

Combining both inequalities, we obtain:

min
1≤k≤K

g(dk)− g(d∗) ≤ 1√
K

· 1
2

(
∥d1 − d∗∥2 +G2

)
=

ε√
C

·
√
C = ε.

Lemma 3. Given the sequence of iterates {dproj
1 , · · · , dproj

K } generated by the projected gradient
method (7) with initial input d0, there exists a K-layer Descent-Net with a specific parameter as-
signment that, starting from the same initial input d0, it produces the same iterative sequence, i.e.,
dk = dproj

k for all 1 ≤ k ≤ K.

Proof. It suffices to show that there exists a set of parameters such that T k(uk) = γkuk for all
1 ≤ k ≤ K, where uk is defined in (8).

Let Wk ∈ Rq×n be a full column rank matrix , so its left pseudo-inverse (Wk)† ∈ Rn×q exists and
satisfies (Wk)†Wk = In.

By assuption (4) and the defination of uk, we have

∥uk∥2 ≤ ∥∇fx(y)∥2 +
l∑

j=1

|cj | ·
√
n · |∇gx,j(y)|

≤ ∥∇fx(y)∥2 +max
j

(cj) ·
√
n · ∥∇gx(y)∥1

≤ ∥∇fx(y)∥2 +max
j

(cj) · n · ∥∇gx(y)∥2

≤ Lf +max
j

(cj) · n · Lg

In the derivation of the third inequality, we used the equivalent norm theorem. Then we have

∥Wkuk∥1 ≤
√
n∥Wkuk∥2 ≤

√
n∥Wk∥2∥uk∥2 ≤

√
n∥Wk∥2(Lf +max

j
(cj) · n · Lg)
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Let L =
√
n∥Wk∥2(Lf + maxj(cj) · n · Lg). Define the bias vector as bk

1 = L · 1q , where 1q

denotes the q-dimensional vector with all entries equal to one. Then we have

ReLU(Wkuk + bk
1) = Wkuk + bk

1 ,

since each coordinate of Wkuk + bk
1 is positive.

Now, let the second layer weight be Vk = γk(W
k)†, and the second bias be bk

2 = −γk(W
k)†bk

1 .
Then we have:

T k(uk) = Vk · ReLU(Wkuk + bk
1) + bk

2 = γk(W
k)†(Wkuk + bk

1)− γk(W
k)†bk

1 = γkuk.

This completes the proof.

We now proceed to prove Theorem 4.1. First, by Lemma 2, we know that for any ε > 0, by
choosing an appropriate step size, there exists an iteration sequence {dproj

k }Kk=1 generated by the
projected subgradient method such that

| min
1≤k≤K

g(dproj
k )− g(d∗)| < ε.

Let Kε = argmin1≤k≤K g(dproj
k ), then we have Kε ≤ K = C/ε2 and

|g(dproj
Kε

)− g(d∗)| < ε.

Moreover, by Lemma 3, we know that there exists there exists a Kε layer Descent-Net such that the
output of each layer exactly matches the corresponding iterate sequence {dproj

k }Kε

k=1. In particular,
we have

dKε
= dproj

Kε

Therefore,
∥g(dKε

)− g(d∗)∥ < ε,

which is exactly the desired result.

A.13 PROOF OF LEMMA 1

To prove Lemma 1, for convenience, we have the following new notations.

• Gradient of the linearized objective: p := ∇fx(y) ∈ Rn.
• Active–constraint data (for j = 1, . . . , l): aj := ∇gx,j(y) ∈ Rn and bj := −M gj(y).

• Linear-equality matrix: E := ∇hx(y)
⊤ ∈ Rm×n. Write P := I −E⊤(EE⊤)−1E for the

orthogonal projector onto ker(E).
• Search set (unit Euclidean ball in the null–space of E):

D := { d ∈ Rn | Ed = 0, ∥d∥2 ≤ 1 }.

• Feasible set of Topkis–Veinott UFD sub-problem with l2 norm constraint:

F :=
{
d ∈ D | ⟨aj , d⟩ ≤ bj , j = 1, . . . , l

}
.

Using these notations, problem (3) can be written as

min
d∈D

Φ(d) := ⟨p, d⟩+
l∑

j=1

cj max
{
⟨aj , d⟩, bj

}
, cj > 0. (Pen)

We will it is equivalent to the following constrained problem with appropriate cj :

min
d∈F

⟨p, d⟩. (UFD-L2)

We now prove Lemma 1 in the main context. With our new notation, we rewrite it as the following
lemma.
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Lemma 4 (Exact hinge penalty on an ℓ2–ball). Let cmin = minj cj . If we have

cmin >
Lf

Mδg
, (18)

then every global minimizer of (Pen) is feasible for problem (UFD-L2), hence

argmin
d∈F

⟨p, d⟩ = argmin
d∈D

Φ(d).

Proof. Let
L̃ := ∥∇fx(y)∥2, bmin := min

j:bj>0
bj .

By assumption (4) and (5), we have L̃ ≤ Lf , bmin ≥ Mδg . Hence

cmin >
Lf

Mδg
≥ L̃

bmin

Suppose d ∈ D is the optimal point of problem (Pen), but d /∈ F. Define the violation vector
r(d) := (

[
⟨a1, d⟩ − b1

]
+
, . . . ,

[
⟨al, d⟩ − bl

]
+
) ∈ Rl

≥0. Let V (d) := {j | rj(d) > 0} be the index
set of violated constraints.

If r(d) = 0 then d ∈ F . Otherwise put

α(d) := min
j∈V (d)

bj
⟨aj , d⟩

∈ (0, 1), d̂ := α(d) d.

Since Ed = 0 and α(d) ≤ 1, one has d̂ ∈ D. Moreover, for every j, ⟨aj , d̂⟩ = α(d)⟨aj , d⟩ ≤ bj , so
d̂ ∈ F .

Pick ȷ̄ ∈ V (d) that attains the minimum in α(d) and set δ := rȷ̄(d) = ⟨aȷ̄, d⟩ − bȷ̄ > 0. Then

1− α(d) = 1− bȷ̄
⟨aȷ̄, d⟩

=
δ

⟨aȷ̄, d⟩
≤ δ

bȷ̄
≤ δ

bmin
,

where we use ⟨aȷ̄, d⟩ > bȷ̄. Because ∥d∥2 ≤ 1, we obtain

∥d− d̂∥2 = (1− α(d))∥d∥2 ≤ δ

bmin
.

First, the linear part is L̃-Lipschitz on D:

|⟨p, d⟩ − ⟨p, d̂⟩| ≤ L̃∥d− d̂∥2 ≤ L̃

bmin
δ.

Next, because d̂ ∈ F we have max{⟨aj , d̂⟩, bj} = bj for every j, whereas for d

max{⟨aj , d⟩, bj} − bj =
[
⟨aj , d⟩ − bj

]
+
= rj(d).

Hence
Φ(d)− Φ(d̂) =

(
⟨p, d⟩ − ⟨p, d̂⟩

)
+
∑

j∈V (d)

cjrj(d).

The second term is bounded below by cmin

∑
j∈V (d)

rj(d) ≥ cminδ, so using the Lipschitz bound,

Φ(d)− Φ(d̂) ≥
(
cmin − L̃

bmin

)
δ.

By definition, the coefficient of δ is positive, hence Φ(d) > Φ(d̂) for d̂ ∈ D, which contradicts with
the optimality. Therefore all global minimizers of (Pen) lie in F .

On F the penalty term vanishes, i.e. Φ(d) = ⟨p, d⟩+
∑

j cjbj . Thus (UFD-L2) and (Pen) share the
same minimizers and their optimal values differ only by the constant

∑
j cjbj .
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A.14 PROOF OF THEOREM 4.2

Definition 1 (Fritz–John point). Let y ∈ Rn be a feasible point for the problem

min f(y) s.t. hi(y) = 0, gj(y) ≤ 0.

Then y is called a Fritz–John point if there exist multipliers λ0 ≥ 0, λj ≥ 0 for j = 1, . . . , l, and
µi ∈ R for i = 1, . . . ,m, not all zero, such that

λ0∇f(y) +

l∑
j=1

λj∇gj(y) +

m∑
i=1

µi∇hi(y) = 0,

λj · gj(y) = 0, j = 1, . . . , l.

Definition 2 (KKT point). A feasible point y ∈ Rn is called a Karush–Kuhn–Tucker (KKT) point
if there exist multipliers λj ≥ 0 and µi ∈ R such that

∇f(y) +

l∑
j=1

λj∇gj(y) +

m∑
i=1

µi∇hi(y) = 0,

λj · gj(y) = 0, j = 1, . . . , l.

If the LICQ condition holds at ȳ, then the Fritz-John point is also a KKT point.

Lemma 5 (Farkas Lemma with equality constraints). Let A ∈ Rm×n, B ∈ Rp×n, and b ∈ Rm.

Then exactly one of the following two systems has a solution:

(a) There exists x ∈ Rn such that
Ax < b, Bx = 0.

(b) There exists (λ, µ) ∈ Rm × Rp, not both zero, such that

λ ≥ 0, A⊤λ+B⊤µ = 0, λ⊤b ≤ 0.

Moreover, both systems cannot be simultaneously feasible.

We show that the problem (UFD-L2) has negative value if y is not a Fritz-John point.

Lemma 6 (Descent direction under failure of Fritz–John). Let ȳ ∈ C be a feasible point. Suppose
that the set of vectorsv = λ0∇fx(ȳ) +

l∑
j=1

λj∇gj(ȳ) +

m∑
i=1

µi∇hi(ȳ)

∣∣∣∣∣∣ λ0 ≥ 0, λj ≥ 0, (λ, µ) ̸= 0, λjgj(ȳ) = 0


does not contain the zero vector. That is, ȳ is not a Fritz–John point.

Then there exists a vector d ∈ Rn such that:

• ∇hx(ȳ)
⊤d = 0,

• ∇fx(ȳ)
⊤d < 0,

• ∇gj(ȳ)
⊤d < −Mgj(ȳ) for all j = 1, . . . , l,

• ∥d∥2 ≤ 1.

Proof. Let H := [∇h1(ȳ), . . . ,∇hm(ȳ)] ∈ Rn×m, and define the subspace of directions satisfying
the linearised equality constraints:

T :=
{
d ∈ Rn | H⊤d = 0

}
.
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Let A ∈ R(l+1)×n be the matrix whose rows are:

A :=


∇fx(ȳ)

⊤

∇g1(ȳ)
⊤

...
∇gl(ȳ)

⊤

 , b :=


0

−Mg1(ȳ)
...

−Mgl(ȳ)

 .

Then we consider the system:

Ad < b, subject to H⊤d = 0.

Since ȳ is not a Fritz–John point, the system of equalities

λ0∇fx(ȳ) +
∑
j

λj∇gj(ȳ) +
∑
i

µi∇hi(ȳ) = 0 with λ0 ≥ 0, λj ≥ 0, µi not all zero,

has no solution satisfying the complementarity condition λjgj(ȳ) = 0.

Therefore, by the Farkas Lemma 5, the dual system:

find d ∈ T such that Ad < b

is feasible.

Because A, b are fixed and bj = −Mgj(ȳ) ≥ 0, which is finite for all j = 1, . . . , l, and T is a linear
subspace, the feasible set is convex and open in T . We can scale d such that ∥d∥2 ≤ 1.

Hence, such a direction d exists satisfying the claimed conditions.

By Lemma (1) and Theorem 4.1, if the following algorithm—based on the subprob-
lem (Pen)—converges subsequently to a KKT point, then there exist constants S > 0 and K > 0,
and certain network parameters Θ := {Vk,Wk,bk

1 ,b
k
2}k=0,1,...,K−1 and {βs}s=0,...,S−1, such

that Descent-Net returns a KKT point of the original problem (1). We therefore begin by proving
the convergence of the algorithm stated below.

Algorithm (UFD–penalty method). Given a feasible starting point y0 ∈ C, repeat for k =
0, 1, . . .

1. With the condition (4) holds, solve the sub–problem (Pen) at the current iterate yk and
obtain a minimizer dk.

2. Update yk+1 = yk + αkdk, where αk := argminα{fx(yk + αdk) | α ∈ (0, 1/M ]},
(Lemma 1 implies yk+1 ∈ C)

We have the following result, which is similar to the Topkis–Veinott method Zoutendijk (1960);
Faigle et al. (2013).
Theorem A.1 (global convergence of the UFD–L2 method). Suppose the Assumption 1 2 and 3
hold. Furthermore, we assume that the gradient ∇fx(y) is L−Lipschitz continuous, and hx, gx
are linear. Then every accumulation point ȳ of the sequence {yk} generated by the UFD-penalty
algorithm satisfies the KKT conditions of the problem (1).

Proof. (i) Feasibility and boundedness. Lemma 4 shows that every dk satisfies ∇gj(yk)
⊤dk ≤

−Mgj(yk), hence gj(yk+1) = gj(yk) + α∇gj(yk)
⊤dk ≤ 0, where α ∈ (0, 1/M ]. Equality con-

straints are preserved by ∇hx(yk)
⊤dk = 0, so yk+1 ∈ C. Because {y ∈ C | fx(y) ≤ fx(y0)} is

bounded, {yk} is bounded and admits convergent subsequences.

Step (ii): every accumulation point is a Fritz–John point.

Let ȳ be an accumulation point of {yk}, extracted from a subsequence {yks}. Suppose, for contra-
diction, that ȳ is not a Fritz–John point.
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Then, by Lemma 6, there exist z < 0 and a direction d ∈ Rn satisfying:

∥d∥2 ≤ 1, ∇hx(ȳ)
⊤d = 0, ∇fx(ȳ)

⊤d < z < 0, ∇gj(ȳ)
⊤d < −Mgj(ȳ) + z.

Since fx, gj , and all gradients are continuous, and yks
→ ȳ, there exists ε > 0 and δ > 0 such that

for all s sufficiently large (i.e., ∥yks
− ȳ∥ < δ):

∇fx(yks
)⊤d < z + ε,

∇gj(yks
)⊤d < −Mgj(yks

) + ε,

∇hx(yks)
⊤d < ε.

Fix ε := |z|/3 > 0. Then for large s, we obtain:

∇fx(yks
)⊤d < z + ε =: ẑ < 0,

∇gj(yks
)⊤d < −Mgj(yks

) + ε,

∇hx(yks)
⊤d < ε.

Now consider the solution dks of the UFD subproblem (UFD-L2) at yks , which satisfies:

∥dks∥2 ≤ 1, ∇hx(yks)
⊤dks = 0, ∇gj(yks)

⊤dks ≤ −Mgj(yks).

Since d is a feasible direction and ∇fx(yks
)⊤d < ẑ < 0, it follows that the optimal value zs :=

∇fx(yks
)⊤dks

must also satisfy:
zs < ẑ < 0.

Thus, for all large s, we have:

∇fx(yks)
⊤dks = zs < 0, ∇gj(yks)

⊤dks < 0, ∇hx(yks)
⊤dks = 0.

Now define yks+1
:= yks

+ tdks
, where t > 0 is small. Since dks

satisfies the linearized equality
constraints exactly and inequality constraints strictly, Taylor expansion gives:

fx(yks + tdks) = fx(yks) + t∇fx(yks)
⊤dks + o(t) < fx(yks) + tzs/2,

gj(yks + tdks) = gj(yks) + t∇gj(yks)
⊤dks + o(t) < 0,

hi(yks
+ tdks

) = hi(yks
) + t∇hi(yks

)⊤dks
= 0.

Therefore, for sufficiently small t > 0, the updated point yks+1
:= yks

+ tdks
remains feasible and

decreases the objective value.

Contradiction conclusion.

This contradicts the assumption that {fx(yk)} converges to a finite value (since it would go to −∞).
Hence, our assumption must be false: every limit point ȳ must satisfy the Fritz–John condition.

(iii) LICQ ⇒ KKT. Under LICQ the Fritz–John multipliers have λ0 > 0, so the KKT system holds
at ȳ.
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