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ABSTRACT

Self-supervised representation learning methods based on the principle of max-
imizing mutual information have been successful in unsupervised learning of
visual representations. These approaches are low-variance mutual information
lower bound estimators, yet the lack of distributional assumptions prevent them
from learning certain important information such as texture. Estimators that are
based on distributional assumptions bypass this issue with autoencoders but they
tend to have worse performance on downstream classification. To this end, we
consider a hybrid approach that incorporates both the distribution-free contrastive
lower bound and the distribution-based autoencoder lower bound. We illustrate
that with one set of representations, the hybrid approach is able to achieve good
performance on multiple downstream tasks such as classification, reconstruction,
and generation.

1 INTRODUCTION

Unsupervised learning of representations from data is critical to machine learning, since it allows the
use of large amounts of unlabeled data to boost performance on downstream tasks and alleviate the
use of labels (Mikolov et al., 2013; Devlin et al., 2018; Mnih & Kavukcuoglu, 2013; Radford et al.,
2018; Brown et al., 2020). In terms of learning visual representations where the observations are
continuous, self-supervised contrastive methods (van den Oord et al., 2018; Belghazi et al., 2018;
Devon Hjelm et al., 2018; Poole et al., 2019; Tian et al., 2019) have been more successful than
alternatives that consider jigsaw or rotation as self-supervised pre-text tasks. One explanation is that
contrastive methods are based on variational mutual information (MI) estimation, so in principle,
such representations are encouraged to maximize mutual information with the data.

However, there are fundamental limits to lower bound estimators of mutual information without
distributional assumptions. Song & Ermon (2019) have illustrated that unbiased mutual information
lower bound estimators can have variances that grows exponentially when measured with samples,
and McAllester & Stratos (2020) have shown that any such estimator that reliably produces a lower
bound to mutual information with M samples will have values reliably capped at O(logM).

Most successful contrastive approaches can be treated as an instance of the latter situation where
bias is introduced to prevent exponentially large variance. This means that in principle, we are not
encouraged to learn more than logM bits of information of the data with an objective of M samples
(positive and negative in the context of contrastive learning). This means that for low-dimensional
representations, there are potentially a lot of important information (such as details about texture)
that are discarded in favor of better downstream task performance (such as classification). While
these representations may perform favorably in tasks such as classification, they may not perform as
well in other tasks such as reconstruction or interpolation.

An alternative approach is to bypass these limitations by introducing distributional assumptions.
Given that we are trying to maximize mutual information with images, we may leverage inductive

∗Equal Contribution

1



Published as a conference paper at ICLR 2021

biases in deep neural networks, such as convolutional neural networks, to help overcome the funda-
mental limitations and learn more “informative” representations, e.g., with autoencoders (Kingma &
Welling, 2013). Unfortunately, representations learned with autoencoding structures tend to perform
worse than ones learned with contrastive methods.

Therefore, we investigate a hybrid approach, where we utilize one estimator without distributional
assumptions (such as a contrastive one) and another with distributional assumptions (such as an
autoencoder). In principle, this allows us to bring the best of both worlds in terms of estimating
mutual information; in practice, we can obtain one set of representations that performs well for
multiple downstream tasks including classification and reconstruction.

2 BACKGROUND AND RELATED WORK

The mutual information between two random variables X and Y is the following KL divergence:

I(X;Y ) = DKL(P (X,Y )‖P (X)P (Y )) (1)

which we wish to estimate using samples from P (X,Y ); in certain cases we may know the density
of marginals (e.g. P (X)). There are a wide range of variational approaches to variational MI
estimation. The following lower bound estimator (Barber & Agakov, 2003) integrates distributional
assumptions over the conditional distribution p(x|y):

IBA(qφ) := EP (X,Y ) [log qφ(x|y)− log p(x)] (2)

where qφ : Y → P(X ) is a valid conditional distribution over X given y ∈ Y and p(x) is the
probability density function of the marginal distribution P (X). A typical way to implement this is
via an autoencoder (Zhao et al., 2018; Song et al., 2018).

Contrastive methods, on the other hand, do not rely on distributional assumptions. For a batch of n
positive pairs {(xi,yi)}ni=1, the contrastive predictive coding (CPC) objective (van den Oord et al.,
2018) is defined as:

ICPC(g) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

g(xi,yi) +
∑m−1
j=1 g(xi,yi,j)

]
(3)

Subsequent works (Poole et al., 2019) have shown that CPC is a lower bound to mutual information.

3 A HYBRID MUTUAL INFORMATION LOWER BOUND FOR
REPRESENTATION LEARNING

Let x denote the unsupervised observations that we intend to learn representations from, and let
z = fθ(x) denote the learned representations that is processed via a neural network with parameters
θ. We consider splitting z into two separate components: z = [y,w], where we use the distribution-
free lower bound on y and the distribution-based lower bound on the entire y.

Concretely, our hybrid objective function then becomes the following, where we optimize g : X ×
Y → R and q : Z → P(X ) as deep neural networks and α ∈ (0, 1) is a weight that balances the
two objectives:

I(g, q) = αE [log q(x|z)− log p(x)] + (1− α)E

[
1

n

n∑
i=1

log
m · g(xi,yi)

g(xi,yi) +
∑m−1
j=1 g(xi,yi,j)

]
It is straightforward to show that I(g, q) is a lower bound to mutual information (from the fact that
each component is a lower bound and that mutual information between x and z is larger than that
between x and y), so maximizing it amounts to maximizing a lower bound to mutual information in
principle. We empirically observe that using the entirely of z in contrastive learning would lead to
worse empirical performance in reconstruction due to the loss of information in data augmentation.

In practice, our hybrid method can be illustrated as in Figure 1, where we jointly train an autoencoder
(from x to z to x′) with a contrastive component (x to y to g(x,y)). The component for performing
contrastive learning with y allows the use of flexible data augmentation techniques to be integrated
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into the system, whereas the component for autoencoding with z ensures that the learned represen-
tations are encouraged to make small errors in reconstruction thus retaining the information that are
potentially lost from data augmentation (such as colors). We use the Moco-v2 method (Chen et al.,
2020) on contrastive learning and the squared loss for autoencoding (which assumes that q(x|z) is
Gaussian) in all our experiments.

(a) (b)

Figure 1: The pipeline for our hybrid approach. a) We apply contrastive learning on top of latent
representations of an Auto-Encoder. We only use the top half of the representations for contrastive
learning. b) Once trained, we train a DDIM model over the entire latent space for efficient sampling.

Once the representation model f(x) is trained, we can learn a generative model by first freezing
the network, and then learn a generative model on top of the entire latent representations (which is
the distribution of z = f(x),x ∼ p(x)), similar to the approach used in VQ-VAE-2 (Razavi et al.
(2019)). We consider using the Denoising Diffusion Implicit Models (Song et al. (2020), DDIM)
in our experiments. Learning a generative model over the latent space, allows us to efficiently
sample from the model during test time, and thus our hybrid model can be used to learn one set of
representations for both the classification downstream task and generative model downstream task.

4 EXPERIMENTS AND RESULTS

Table 1: Frechet inception distance (FID) and Linear Classification Accuracy (Acc.) results for the
hybrid approach and other generative models. We note that BigGAN uses separate representations
for the generation and linear classification tasks. “ - ” denotes the results which are not available
because the representations are not trained for the tasks in question.

CIFAR-10 CIFAR-100
MSE FID Acc. MSE FID Acc.

Hybrid 2.6 34.6 77.6 3.3 41.2 46.7

Moco-v2 - - 78.3 - - 49.04
NVAE 0.25 36.4 18.8 0.53 42.5 4.1
DDIM 2.5 3.2 22.5 3.2 13.3 2.2
BigGAN - 18.6 70.8 - 22.2 43.3

We apply our hybrid approach over two datasets - CIFAR-10 (Krizhevsky et al. (2009)) and CIFAR-
100 (Krizhevsky et al. (2009)). For both datasets the input and output sizes of the Auto-Encoder are
32*32*3 respectively. We use a modified encoder and decoder network as used in NVAE (Vahdat
& Kautz (2020)), with fewer layers in our case. The size of the latent representation is 16*16*6,
with the size of the representation used for contrastive learning being 16*16*3. We compare the
following methods which can generate images from representations: NVAE, which uses an trained
autoencoder for representations; DDIM (Song et al., 2020), which trains a neural ODE model for
generative modeling, so the representations are obtained by reversing the ODE; BigGAN (Brock
et al., 2018), which uses two different sets of representations for generation and classification.

Quantitative evaluations We evaluate several downstream tasks – image classification (evaluated
in accuracy), image generation (evaluated in Frechet inception distance (FID) (Heusel et al. (2017)))
and image reconstruction (evaluated in mean squared error).
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Empirically, existing methods that use one set of representation either fail on the classification task or
fail on the generation / reconstruction task. For example, methods based on autoencoding latent vari-
ables, such as NVAE and DDIM, have decent performance in terms of reconstruction and generation,
but these representations are largely ineffective for classification; most notably, the performance on
CIFAR-100 is not much better than random guessing. Moco-v2 does not have a decoder, so we did
not report its generation and reconstruction performance. For BigGAN, there is no decoder and so
we do not report its reconstruction performance. In contrast, our hybrid method is able to learn one
set of representations that achieve competitive performance in all the scenarios, compared to the
BigGAN approach where two separate sets of representations are used to perform each task.

Figure 2: Samples obtained by interpolating across the entire latent code. Each row corresponds to
a different set of start and end images.

Figure 3: Samples obtained by interpolating across the top half of the latent code. The interpolated
samples appear very similar with the start image.

Figure 4: Samples obtained by interpolating across the bottom half of the latent code.

Qualitative evaluations Since our model has an autoencoder that encodes x into z = f(x) with
two separate components (which we call y and ŷ), we are interested in seeing how these represen-
tations are interpreted by the decoder on a high level. For two images x0 and x1, we evaluate their
representations z0 and z1 and consider the following interpolations:

• Interpolate the entire latent code: z1
t = tz0 + (1− t)z1

• Interpolate only the part for y: z2
t = [ty0 + (1− t)y1, ŷ0]

• Interpolate only the part for ŷ: z3
t = [y0, tŷ0 + (1− t)ŷ1]

We then visualize the interpolations by using the decoder. Figures 2, 3, 4 illustrates these cases
respectively; we show additional pairs in the appendix. These results suggest that the component of
y appears to contain little visual information that are used by the decoder as the images appears very
similar with the same ŷ whereas ŷ tend to contain most of the information needed to reconstruct
the image. These results suggest that contrastive learning alone might not be suitable for image
reconstruction or generation and may be prone to generative adversarial examples.
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A ADDITIONAL IMAGES

(a)

(b) (c)

Figure 5: Additional Interpolation results. Entire latent code is used for interpolation in (a), whereas
the top and bottom half are used for interpolation in (b) and (c) respectively.
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