SUBLINEAR SPECTRAL CLUSTERING ORACLE WITH LITTLE MEMORY

Anonymous authorsPaper under double-blind review

ABSTRACT

We study the problem of designing sublinear spectral clustering oracles for wellclusterable graphs. Such an oracle is an algorithm that, given query access to the adjacency list of a graph G, first constructs a compact data structure \mathcal{D} that captures the clustering structure of G. Once built, \mathcal{D} enables sublinear time responses to WHICHCLUSTER(G, x) queries for any vertex x. A major limitation of existing oracles is that constructing \mathcal{D} requires $\Omega(\sqrt{n})$ memory, which becomes a bottleneck for massive graphs and memory-limited settings. In this paper, we break this barrier and establish a memory-time trade-off for sublinear spectral clustering oracles. Specifically, for well-clusterable graphs, we present oracles that construct \mathcal{D} using much smaller than $O(\sqrt{n})$ memory (e.g., $O(n^{0.01})$) while still answering membership queries in sublinear time. We also characterize the tradeoff frontier between memory usage S and query time T, showing, for example, that $S \cdot T = O(n)$ for clusterable graphs with a logarithmic conductance gap, and we show that this trade-off is nearly optimal (up to logarithmic factors) for a natural class of approaches. Finally, to complement our theory, we validate the performance of our oracles through experiments on synthetic networks.

1 Introduction

A central task in graph analysis is to uncover communities, which are groups of vertices that are more densely connected internally than externally. This problem, known as *graph clustering*, has long been a cornerstone of graph theory and algorithms (Hagen & Kahng, 1992; Chan et al., 1993; Ng et al., 2001; Czumaj et al., 2015; Peng, 2020). Beyond its theoretical significance, graph clustering underlies diverse applications, ranging from community detection in networks (Van Gennip et al., 2013; Bedi & Sharma, 2016; Li et al., 2024) to bioinformatics (Paccanaro et al., 2006) and image segmentation (Shi & Malik, 2000; Felzenszwalb & Huttenlocher, 2004).

Despite their importance, most graph clustering algorithms are impractical for large graphs, as they require reading the entire input, spending $\Omega(n)$ time, and/or building data structures of size $\Omega(n)$, where n is the number of vertices. Even when only a few cluster memberships are needed, these methods still carry out full global computations, making them unsuitable for massive graphs where both time and memory (or space) matter – but memory is the primary bottleneck.

From a systems perspective, this memory bottleneck is especially pressing. Many realistic environments severely restrict available working memory: streaming models limit algorithms to a single pass with sublinear space; cloud-based platforms often impose high storage and data-transfer costs, making it infeasible to materialize the entire graph; and GPUs and TPUs offer massive compute but only modest on-chip memory relative to dataset size. In all these settings, the primary challenge is to fit a compact representation of the clustering structure into limited fast memory. Thus, developing memory-efficient clustering algorithms is not only a theoretical pursuit but also a practical necessity for analyzing trillion-edge graphs in modern computing environments.

These considerations have motivated the study of *local* clustering oracles that run in sublinear time and space. Our focus is on *sublinear spectral clustering oracles* (Peng, 2020; Gluch et al., 2021; Shen & Peng, 2023), which construct a compact data structure \mathcal{D} from query access to the adjacency list of the graph. Once built, \mathcal{D} enables efficient evaluation of WHICHCLUSTER (G, x) queries, that is, determining the cluster assignment of any vertex x without incurring the global $\Omega(n)$ costs. Importantly, these oracles return consistent assignments (with a fixed random seed) and closely

approximate the ground-truth clustering, thereby making local access to clustering information both theoretically sound and practically useful.

Several recent works (Peng, 2020; Gluch et al., 2021; Shen & Peng, 2023) demonstrate that such oracles are possible under planted clustering assumptions, supporting cluster membership queries in both sublinear time and sublinear space. However, all existing sublinear spectral clustering oracles require at least $\Omega(\sqrt{n})$ space. In particular, Peng (Peng, 2020) constructs an oracle using $\tilde{\Theta}(\sqrt{n})$ space, while both Gluch et al. (Gluch et al., 2021) and Shen et al. (Shen & Peng, 2023) require $\Omega(n^{1-\delta})$ space for any $\delta \leq \frac{1}{2}$, which is again at least \sqrt{n} . We refer to Section 1.3 for more details. For truly massive graphs, this requirement is prohibitive, as limited working memory and frequent main-memory access quickly dominate the overall cost. This raises the central question:

Is it possible to design a spectral clustering oracle that breaks the $\Omega(\sqrt{n})$ space barrier – can we use substantially less memory while still achieving sublinear query time? If so, what kinds of trade-offs between space and query efficiency can be realized?

This challenge is reminiscent of recent work on space-time trade-offs in learning, beginning with Raz (2017)'s result on parity learning and later extended to tasks such as linear regression (Sharan et al., 2019) and noisy parity (Garg et al., 2021). In the area of distribution testing, a series of works (Diakonikolas et al., 2019; Berg et al., 2022; Roy & Vasudev, 2023; Canonne & Yang, 2024) have established sharp space-time trade-offs for fundamental problems such as uniformity testing and closeness testing. Much like in these learning problems and in recent advances on distribution testing, the central question for sublinear spectral clustering is how far memory usage can be reduced without making query times impractically large.

In this paper, we give sublinear spectral clustering oracles with little memory (i.e., much less than $O(\sqrt{n})$) and a trade-off between memory usage S and query time T satisfying $S \cdot T \approx \widetilde{O}(n)$ (for a class of well clusterable graphs). We show that this trade-off is nearly optimal (up to logarithmic factors) for a natural class of approaches. In the following, we first present some basic definitions.

Basic definitions We measure cluster connectivity using conductance, a widely studied metric (e.g., (Chiplunkar et al., 2018; Dey et al., 2019; Manghiuc & Sun, 2021; Shen & Peng, 2023)). Let G=(V,E) be an undirected graph. For any vertex $v\in V$, let d_v denote the degree of v in G. For any subset $C\subseteq V$, let $\mathrm{vol}(C)=\sum_{v\in C}d_v$ denote the volume of C. For any two subsets $S,C\subseteq V$, let E(S,C) denote the set of edges between S and C.

Definition 1.1 (Outer and inner conductance). For any non-empty subset $C \subseteq V$, the *outer conductance* and *inner conductance* of C is defined to be

$$\phi_{\mathrm{out}}(C,V) = |E(C,V \backslash C)|/\mathrm{vol}(C), \quad \phi_{\mathrm{in}}(C) = \min_{S \subseteq C, 0 < \mathrm{vol}(S) \le \mathrm{vol}(C)/2} \phi_{\mathrm{out}}(S,C).$$

Specially, the *conductance* of graph G is defined to be $\phi(G) = \min_{C \subseteq V, 0 < \operatorname{vol}(C) \le \operatorname{vol}(G)/2} \phi_{\operatorname{out}}(C, V)$.

Intuitively, inner (resp. outer) conductance captures the internal (resp. external) connectivity of a cluster. A "good" cluster exhibits both large inner conductance and small outer conductance. Based on the definition of conductance, we give the formal definition of the input graph which is assumed to have a planted clustering structure (see Definition 1.3).

Definition 1.2 (k-partition). Let G = (V, E) be a graph. A k-partition of V is a collection of k disjoint subsets C_1, \ldots, C_k such that $\bigcup_{i=1}^k C_i = V$.

Definition 1.3 $((k, \varphi, \varepsilon)$ -clusterable graph). Let $k \geq 2$ be an integer and let $\varphi \in (0, 1)$ and $\varepsilon \in [0, 1)$. Let G = (V, E) be a graph. If there exists a k-partition of V, denoted by C_1, \ldots, C_k , such that for all $i \in [k]$, $\phi_{\text{in}}(C_i) \geq \varphi$, $\phi_{\text{out}}(C_i, V) \leq \varepsilon$ and for all $i, j \in [k]$, one has $\frac{|C_i|}{|C_j|} \in O(1)$, then we call G is a $(k, \varphi, \varepsilon)$ -clusterable graph.

We work in the *adjacency list model*, where the algorithm can query any neighbor of a specified vertex in constant time.

1.1 MAIN RESULTS

Sublinear spectral clustering oracle A key contribution of this work is a spectral clustering oracle that operates with very little memory and provides an explicit trade-off between memory and query

time. Given a (k,φ,ε) -clusterable graph, the goal of a clustering oracle is to build a data structure $\mathcal D$ in sublinear time such that, for any vertex x, the oracle can answer WHICHCLUSTER(G,x) in sublinear time. Moreover, the clustering induced by answering WHICHCLUSTER(G,x) for all x should have a small misclassification error, that is, only a small fraction of vertices are assigned to the wrong clusters compared to the ground truth.

In what follows, we state our main theorem in the simplified setting where $\varphi = \Omega(1)$ and d, k = O(1). The full general statement appears in Theorem 3.1. While we state our results for d-regular graphs, they naturally extend to d-bounded graphs, i.e., graphs in which every vertex has degree at most d (see Appendix D).

Theorem 1.1 (Informal main result). Suppose $\varphi = \Omega(1)$, d, k = O(1), and $\varepsilon \leq h(d, k, \varphi)$ for some function h. Let G = (V, E) be a d-regular $(k, \varphi, \varepsilon)$ -clusterable graph with clusters C_1, \ldots, C_k . Let $n^{\Theta(\varepsilon)} \leq M \leq O\left(n^{1/2 - O(\varepsilon)}\right)$ be a trade-off parameter. Then there exists a sublinear spectral clustering oracle that:

- constructs a data structure \mathcal{D} using $\widetilde{O}\left(n^{O(\varepsilon)}\cdot M\right)$ bits of space,
- answers any WHICHCLUSTER query in $\widetilde{O}\left(n^{1+O(\varepsilon)}/M\right)$ time,
- misclassifies at most $O(\varepsilon^{1/3})|C_i|$ vertices in each cluster C_i , $i \in [k]$.

Note that the space S used to build $\mathcal D$ and the query time T satisfy the trade-off $S\cdot T=\widetilde O\big(n^{1+O(\varepsilon)}\big)$. The oracle is built upon a new subroutine ESTCOLLIPROB(Alg. 2) for estimating the collision probability of two random walk distributions with asymptotically space-time trade-off. In particular, when $\varepsilon\ll 1/\log n$, this simplifies to $S\cdot T=\widetilde O(n)$. The theorem establishes a trade-off: larger space S yields faster queries, while smaller S slows them down. Unlike prior oracles that require at least $\Omega(\sqrt n)$ space, our method operates with substantially less space, often far below $\sqrt n$, thereby breaking the $\sqrt n$ space barrier.

Distinguishing 1-cluster vs. 2-cluster As a corollary of our main result, we obtain a sublinear algorithm for distinguishing between a single-cluster expander and a graph consisting of two disjoint clusters. Formally, let $\varphi = \Omega(1)$ and d = O(1). Consider the following promise problem: the input is a d-regular graph G = (V, E) that is guaranteed to be in one of two cases: (i) G is a φ -expander on n vertices (i.e., $(1, \varphi, 0)$ -clusterable); or (ii) G is the disjoint union of two identical φ -expanders, each on n/2 vertices (i.e., $(2, \varphi, 0)$ -clusterable). The goal of the 1-cluster vs. 2-cluster problem is to determine which case holds.

We address this problem with an ESTCOLLIPROB-based algorithm, yielding the following result.

Theorem 1.2 (Upper bound). For any trade-off parameter $1 \le M \le O(\sqrt{n})$, there exists an algorithm (Alg. 5) that, with probability at least $1 - 2n^{-100}$, solves the 1-cluster vs. 2-cluster problem. Moreover, the algorithm:

- uses $\widetilde{O}(M)$ bits of space,
- runs in $\widetilde{O}\left(\frac{n}{M}\right)$ time.

We complement this with a lower bound for distinguishing between the two cases when the graph can only be accessed through random walk queries. Specifically, for each queried vertex x, the oracle returns the endpoint of a random walk of length $O(\log n)$ starting from x.

Theorem 1.3 (Lower bound). Any algorithm that correctly solves the 1-cluster vs. 2-cluster problem with error at most 1/3 using only random walk oracles must satisfy $S \cdot T \geq \Omega(n)$, where S and T denote the space complexity and time complexity of the algorithm, respectively.

Note that a random walk query can be simulated with $O(\log n)$ adjacency-list queries, so our upper bound matches the lower bound up to $\operatorname{poly}(\log n)$ factors. Since the ESTCOLLIPROB-based approach solves the 1-cluster vs. 2-cluster problem, our lower bound indicates that its trade-off is nearly tight. This, in turn, suggests that the space-time trade-off of our clustering oracle is essentially tight, at least for approaches based on collision probability estimation.

1.2 TECHNICAL OVERVIEW

Sublinear spectral clustering oracle To obtain sublinear spectral clustering oracles that rely on a $\log(k)$ or $\operatorname{poly}(k)$ conductance gap, a key primitive is the estimation of the dot product $\langle f_x, f_y \rangle$, where f_x is the spectral embedding of $x \in V$ (see Definition 2.1). Suppose there exists an algorithm

that estimates such dot products using S space and T time. We can then design a clustering oracle based on this primitive, which uses $\widetilde{O}(\operatorname{poly}(k) \cdot S)$ space to construct a data structure $\mathcal D$ and answers WHICHCLUSTER queries in $\widetilde{O}(\operatorname{poly}(k) \cdot T)$ time (see Section 3.2). Thus, the central task is to understand the space-time trade-off for dot product estimation, as it directly determines the efficiency of the resulting clustering oracle.

Indeed, the previous $\Omega(\sqrt{n})$ space bottleneck in constructing \mathcal{D} arises precisely from this dot product estimation step, rather than from the clustering procedure itself. This observation motivates our technical improvements. In particular, the dot product estimation algorithm of Gluch et al. (2021) does not directly compute $\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle$ for arbitrary vertex pairs. Instead, it applies a sequence of transformations and shows that estimating $\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle$ can be reduced to computing the collision probability $(\boldsymbol{M}^t \mathbb{1}_x)^T (\boldsymbol{M}^t \mathbb{1}_y) = \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle$, where \boldsymbol{M} is the random walk transition matrix of \boldsymbol{G} and $\mathbb{1}_s$ is the indicator vector of vertex s.

Previous dot product oracle estimates $\langle M^t \mathbb{1}_x, M^t \mathbb{1}_y \rangle$ by performing $R \approx \sqrt{n}$ independent random walks of length $t = O(\frac{\log n}{\varphi^2})$ from each vertex x and y, respectively. The endpoints of these walks are stored to construct empirical distributions, whose dot product is then computed. This approach requires O(R) words of space and O(Rt) time, tightly coupling space usage with computation time. In particular, to ensure sufficient accuracy, R must be at least $\Omega(\sqrt{n})$, which implies that the space usage cannot be reduced below $O(\sqrt{n})$.

To reduce the memory requirement below $O(\sqrt{n})$ and achieve a more flexible trade-off between space and time, we propose a batch-based estimation strategy. The idea behind this approach is inspired by Canonne & Yang (2024), where a similar batching technique is used to design memory-efficient algorithms for uniformity testing under memory constraints. Specifically, we partition the total of R random walks into B=R/M batches. In each batch, M walks of length t are performed from each vertex, and only the endpoints within the batch are stored to construct empirical distributions. The batch-level dot product is computed, and the final estimate is obtained by averaging over all batches. This approach reduces the space requirement to O(M) words while keeping the total number of walks. By choosing M smaller than $O(\sqrt{n})$, we can achieve a space-time trade-off satisfies $M \cdot R \approx n$. This allows for efficient estimation of the dot product even under memory constraints.

Distinguishing 1-cluster vs. 2-cluster The core idea of our algorithm (Alg. 5) for distinguishing the 1-cluster vs. 2-cluster is to reduce the task to detecting a spectral gap in the random walk operator. Specifically, we set $t = O(\log n/\varphi^2)$ so that in the 1-cluster case, the second largest eigenvalue of M^t becomes negligibly small, while in the 2-cluster case it remains exactly 1. To capture this behavior within bounded space, we avoid storing M^t explicitly and instead construct a compact surrogate matrix $\mathcal G$ using the batch-based strategy described above. This surrogate preserves the essential spectral information of M^t , so that the separation between the two cases is faithfully reflected in the spectrum of $\mathcal G$. Consequently, analyzing $\mathcal G$ suffices to distinguish between the 1-cluster and 2-cluster cases using only O(M) space.

To prove the lower bound, we note that analyzing the distribution of random walks of the two cases reveals a fundamental discrepancy: in the 1-cluster case, this distribution converges to uniformity over the entire set of points; whereas in the 2-cluster case, it decomposes into two separate uniform distributions, each concentrated over half of the points. Under a sublinear space constraint, the algorithm cannot store enough indices to reliably identify which cluster a given sample belongs to. We formalize this via the information-theoretic framework for distribution-testing lower bounds of Diakonikolas et al. (2019), showing that each observation provides only limited distinguishing information. Consequently, any algorithm requires a sufficient number of observations to achieve statistical confidence, implying the stated space-time trade-off lower bound.

1.3 RELATED WORK

Peng (2020) (see also (Czumaj et al., 2015)) provided a robust sublinear spectral clustering oracle that constructs a data structure using $O(\sqrt{n} \cdot \operatorname{poly}(\frac{k \log n}{\varepsilon}))$ bits of space¹ and answers any WHICH-CLUSTER(G,x) in $O(\sqrt{n} \cdot \operatorname{poly}(\frac{k \log n}{\varepsilon}))$ time. This oracle relies on a $\operatorname{poly}(k) \log n$ conductance gap between inner and outer conductance and misclassifies at most $O(kn\sqrt{\varepsilon})$ vertices. Gluch et al. (2021)

¹Although the paper does not explicitly state the space complexity, it can be directly inferred from the algorithm description.

(resp. Shen & Peng $(2023)^2$) gave a sublinear spectral clustering oracle that constructs a data structure using $O(n^{1-\delta+O(\varepsilon)} \cdot \operatorname{poly}(\frac{k \log n}{\varepsilon}))$ (resp. $O(n^{1-\delta+O(\varepsilon)} \cdot \operatorname{poly}(k \log n))$) bits of space and answers any WHICHCLUSTER(G,x) in $O(n^{\delta+O(\varepsilon)} \cdot \operatorname{poly}(\frac{k \log n}{\varepsilon}))$) (resp. $O(n^{\delta+O(\varepsilon)} \cdot \operatorname{poly}(k \log n))$) time, where $\delta \in (0,\frac{1}{2}]$. These two oracles have different preprocessing time and misclassification error.

Recently, Neumann & Peng (2022) studied designing sublinear spectral clustering oracles for signed graph. Kapralov et al. (2023) studied designing sublinear hierarchical clustering oracle for graphs exhibiting hierarchical structure. We defer other related works to Appendix B due to page constraint. Moreover, all omitted proofs are provided in the appendix.

2 PRELIMINARIES

Let G=(V,E) denote an unweighted, undirected d-regular graph with n vertices, where $V=\{1,2,\ldots,n\}$. Let $i\in[n]$ denote $1\leq i\leq n$. For a graph G=(V,E), let $A\in\mathbb{R}^{n\times n}$ denote the adjacency matrix of G, where A(i,j)=1 if $(i,j)\in E$, and A(i,j)=0 otherwise, $i,j\in[n]$. Let $D\in\mathbb{R}^{n\times n}$ denote a diagonal matrix, where $D(i,i)=d_i, i\in[n]$. Let $L=D^{-1}(D-A)D^{-1}=I-\frac{A}{d}$ denote the normalized Laplacian matrix of G, where $I\in\mathbb{R}^{n\times n}$ is the identity matrix. For I, we use I0 is a single I1 is a single I2 to denote its eigenvalues and I2, I3, I4, I5 forms an orthonormal basis of I5. Let I2 is a single I4 generally, we assume I5 forms an orthonormal basis of I6. Let I7 is a single I8 seed on I9, we give the definition of spectral embedding (see Definition 2.1). Moreover, let I8 is a sector I9 is a vertex I8 denote the transition matrix of lazy random walk on I6. That is, if the walker is currently at a vertex I8 vertex I9, then in the next step it stays at I8 with probability I9, or moves to each neighbor of I8 with probability I9.

Let $\boldsymbol{a} \in \mathbb{R}^n$ denote a column vector (unless otherwise stated). For any two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$, we use $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{a}^T \boldsymbol{b}$ to denote the dot product of \boldsymbol{a} and \boldsymbol{b} . For any $x \in V$, let $\mathbb{1}_x \in \mathbb{R}^n$ denote the indicator vector of x, where $\mathbb{1}_x(i) = 1$ if i = x and 0 otherwise. For any symmetric matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$, we use $v_i(\boldsymbol{B})$ to denote the i-th largest eigenvalues of \boldsymbol{B} .

Definition 2.1 (spectral embedding). Let G=(V,E) be a graph. For any vertex $x\in V$, we use $f_x\in\mathbb{R}^k$ to denote the *spectral embedding* of x, where $f_x=U_{[k]}^T\mathbb{1}_x=(u_1(x),\ldots,u_k(x))^T$.

Definition 2.2 (φ -expander). Let G=(V,E) be a graph. Let $\varphi\in(0,1)$. Let $\phi(G)$ denote the conductance of G (see Definition 1.1). If $\phi(G)\geq\varphi$, then we call G a φ -expander.

The supplementary preliminaries are deferred to Appendix C.

3 SPECTRAL CLUSTERING ORACLES WITH LITTLE MEMORY

In this section, we present and prove our main algorithmic result, stated in the theorem below. We emphasize that the resulting algorithms exhibit different trade-offs between the conductance gap $(\varphi \text{ vs. } \varepsilon)$, the misclassification ratio, and the corresponding space-time bounds, depending on the clustering framework employed, either that of Gluch et al. (2021) or Shen & Peng (2023).

Theorem 3.1. Let $k \geq 2$ be an integer, $\varphi, \varepsilon \in (0,1)$ and $h_1(k,\varphi), h_2(k,\varepsilon)$ and $h_3(k,\varphi,\varepsilon)$ be three functions. Let $\varepsilon \ll h_1(k,\varphi)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph with C_1, \ldots, C_k . Let $n^{c \cdot \varepsilon/\varphi^2} \leq M \leq O(\frac{n^{1/2 - O(\varepsilon/\varphi^2)}}{k})$ be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral clustering oracle that, with probability at least 0.9:

- constructs a data structure \mathcal{D} using $\widetilde{O}_{\varphi}(h_2(k) \cdot n^{O(\varepsilon/\varphi^2)} \cdot M)$ bits of space,
- answers any WHICHCLUSTER query using $\mathcal D$ in $\widetilde O_{\varphi}(h_2(k)\cdot n^{1+O(\varepsilon/\varphi^2)}\cdot \frac{1}{M})$ time,
- has $O(h_3(k, \varphi, \varepsilon)) | C_i |$ misclassification error for each $i \in [k]$,

where we use O_{φ} suppresses dependence on φ and \widetilde{O} hides all poly $(\log n)$ factors and:

1 if
$$h_1(k,\varphi) = \frac{\varphi^3}{\log k}$$
, then $h_2(k,\varepsilon) = (\frac{k}{\varepsilon})^{O(1)}$ and $h_3(k,\varphi,\varepsilon) = \frac{\varepsilon}{\varphi^3} \cdot \log k$;
2 if $h_1(k,\varphi) = \frac{\varphi^2 \cdot \gamma^3}{k^{\frac{3}{2}} \cdot \log^3 k}$, then $h_2(k) = (\frac{k}{\gamma})^{O(1)}$ and $h_3(k,\varphi,\varepsilon) = (\frac{\varepsilon}{\varphi^2})^{\frac{1}{3}} \cdot k^{\frac{3}{2}}$, where $\gamma \in (0.001,1]$ is a constant such that for all $i \in [k]$, $\gamma \frac{n}{k} \leq |C_i| \leq \frac{n}{\gamma k}$.

²Shen & Peng (2023) stated their result for $\delta = 1/2$. Since their algorithm relies on the dot product oracle in Gluch et al. (2021), the guarantee extends naturally to any $\delta \in (0, \frac{1}{2}]$.

This section is organized as follows. In Section 3.1, we present our dot product oracle with little memory and the corresponding algorithms. In Section 3.2, we provide the proof of Item 2 of Theorem 3.1. The proof of the remaining case, Item 1, is deferred to Appendix F.

3.1 Dot product oracle with little memory

Recall that f_x denotes the spectral embedding of vertex x (see Definition 2.1). Our objective in this section is to design a dot product oracle that approximates $\langle f_x, f_y \rangle$ while achieving a favorable space-time trade-off and ensuring small approximation error. The following theorem states the performance guarantees of our oracle. Proof is deferred to Appendix E.

Theorem 3.2. Let $k \geq 2$ be an integer. Let $\varepsilon, \varphi \in (0,1)$ with $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph. Let $\frac{1}{n^5} < \xi < 1$. Let $1 \leq M_{\text{init}}, M_{\text{query}} \leq O(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k})$. Then, with probability at least $1-2n^{-100}$, INITORACLE $(G,k,\xi,M_{\text{init}})$ (Alg. 3) computes a sublinear space matrix Ψ of size $n^{O(\varepsilon/\varphi^2)} \cdot \log^2 n \cdot (\frac{k}{\varepsilon})^{O(1)}$, such that the following property is satisfied:

for every pair of vertices $x, y \in V$, QUERYDOT $(G, x, y, \xi, \Psi, M_{\text{query}})$ (Alg. 4) computes an output value $\langle f_x, f_y \rangle_{\text{apx}}$ such that with probability at least $1 - 6n^{-100}$:

$$|\langle oldsymbol{f}_x, oldsymbol{f}_y
angle_{ ext{apx}} - \langle oldsymbol{f}_x, oldsymbol{f}_y
angle| \leq rac{\xi}{n}.$$

Moreover, let S_{init} , T_{init} be the space and time costs of InitOracle $(G, k, \xi, M_{\text{init}})$ (Alg.3), and let S_{query} , T_{query} be those of a single QueryDot $(G, x, y, \xi, \Psi, M_{\text{query}})$ query (Alg.4). Then we have

$$\begin{split} \bullet \ \ S_{\text{init}} &= \left(\frac{k}{\xi}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{init}} \cdot \log^4 n, \quad T_{\text{init}} &= \left(\frac{k}{\xi}\right)^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{\log^4 n}{M_{\text{init}}} \cdot \frac{1}{\varphi^2}, \\ \bullet \ \ S_{\text{query}} &= \left(\frac{k}{\xi}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n, \quad T_{\text{query}} &= \left(\frac{k}{\xi}\right)^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{\log^3 n}{M_{\text{query}}} \cdot \frac{1}{\varphi^2}. \end{split}$$

Note that to ensure that INITORACLE($G,k,\xi,M_{\rm init}$) (Alg. 3) and QUERYDOT($G,x,y,\xi,\Psi,M_{\rm query}$) (Alg. 4) run in sublinear time, it is required that $M_{\rm init},M_{\rm query}\geq n^{c\cdot\varepsilon/\varphi^2}$, where c is a constant that is larger than the constant hidden in $O(\cdot)$ -term of $n^{1+O(\varepsilon/\varphi^2)}$ in both $T_{\rm init}$ and $T_{\rm query}$.

For initializing the dot product oracle, the previous dot product oracle in Gluch et al. (2021) requires at least $\widetilde{\Omega}(\sqrt{n})$ bits of space, whereas our proposed oracle can perform accurate estimation using at most $\widetilde{O}(\sqrt{n})$ bits of space, thus breaking the \sqrt{n} barrier.

The algorithm Algorithm 1 estimates the collision probability (i.e., $\langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_x \rangle$) of the random walk distributions from two given vertices within a bounded space $\widetilde{O}(M)$. Algorithm 2 computes an estimate of the Gram matrix $(\boldsymbol{M}^t \boldsymbol{S})^T (\boldsymbol{M}^t \boldsymbol{S})$ corresponding to the random walk distributions from a set S of vertices, where $\boldsymbol{S} \in \mathbb{R}^{n \times |S|}$ is a matrix whose i-th column is an indicator vector $\mathbb{1}_v$ for $v \in S$, while operating within a bounded space $\widetilde{O}(M \cdot |S|^2)$. The formal guarantees of these two procedures are stated in Lemma E.3 and Lemma E.5, respectively.

```
Algorithm 1: ESTRWDOT
(G, R, t, M, x, y)
1 Z := 0, B := \frac{R}{M} \triangleright B: number of batch
2 for b = 1 to B do
3 Run M independent random walks of length t starting from x (resp. from y)
4 Define \widehat{p}_x(i) (resp. \widehat{p}_y(i)) as the fraction of randoms walks from x (resp. from y) that end at i
5 Z_b := \langle \widehat{p}_x, \widehat{p}_y \rangle, Z := Z + Z_b
6 Z := \frac{Z}{B}
7 return Z
```

```
Algorithm 2: ESTCOLLIPROB
(G, R, t, M, I_S)
1 s := |I_S| = |\{s_1, \dots, s_s\}|
2 for l = 1 to O(\log n) do
3 for i = 1 to s do
4 for j = i to s do
5 \mathcal{G}_l(j, i) := \mathcal{G}_l(i, j) :
```

Algorithm 3 initializes the dot product oracle by constructing a compact matrix Ψ within approximately bounded space $\widetilde{O}(M)$. Then Algorithm 4 leverages Ψ to estimate $\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle$ while still

operating under the same bounded space. The formal guarantees of these two procedures are stated in Theorem 3.2.

```
326
                      Algorithm 3: INITORACLE
                                                                                                                                  Algorithm 4: QUERYDOT
327
                      (G, k, \xi, M_{\text{init}})
                                                                                                                                 (G, x, y, \xi, \Psi, M_{query})
328
                                                                                                                             \mathbf{1} \ \overline{t \coloneqq \tfrac{20 \log n}{\varphi^2}}
                 \begin{array}{l} \varphi^2 \\ \text{2 } R_{\text{init}} \coloneqq \Theta\big(\frac{n^{1+920\varepsilon/\varphi^2}}{M_{\text{init}}} \cdot \frac{k^{14}}{\xi^2}\big) \\ \text{3 } s \coloneqq O\big(n^{480 \cdot \varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2\big) \end{array}
330
                                                                                                                             2 R_{\mathrm{query}} \coloneqq \Theta(\frac{n^{1+440arepsilon/arphi^2}}{M_{\mathrm{query}}} \cdot \frac{k^6}{\xi^2})
331
332
                                                                                                                              for l = 1 \text{ to } O(\log n) \text{ do}
333
                  4 Let I_S = \{s_1, \dots, s_s\} be the multiset of
                                                                                                                                          for i = 1 to s do
                         s indices chosen i.u.r. from
334
                                                                                                                                                  x_l(i) := ESTRWDOT(G, R_{query}, t,
                         V = \{1, \ldots, n\}
335
336
                                                                                                                                                  egin{aligned} oldsymbol{y}_l(i) \coloneqq & \mathsf{EstRWDot}(G, R_{\mathsf{query}}, t, \\ M_{\mathsf{query}}, y, s_i) \end{aligned}
                         EstColliprob(G, R_{init}, t, M_{init}, I_S)
337
                  6 Let \frac{n}{2} \cdot \mathcal{G} := \widehat{W} \widehat{\Sigma} \widehat{W}^T be the
338
                         eigendecomposition of \frac{n}{s} \cdot \mathcal{G}
339
                                                                                                                              7 Let \alpha_x (resp. \alpha_y) be a vector obtained
                  7 if \widehat{\Sigma}^{-1} exists then
340
                                                                                                                                     by taking entrywise median of x_l's
                           \Psi \coloneqq \frac{n}{s} \cdot \widehat{W}_{[k]} \widehat{\Sigma}_{[k]}^{-2} \widehat{W}_{[k]}^T \triangleright \Psi \in \mathbb{R}^{s \times s}
341
                                                                                                                                     (resp. y_l's) \triangleright \alpha_x, \alpha_y \in \mathbb{R}^s
342
                                                                                                                              s return \langle m{f}_x, m{f}_y 
angle_{	ext{apx}} = m{lpha}_x^T \Psi m{lpha}_y
343
344
```

3.2 Clustering oracle: Item 2 of Theorem 3.1

We now present the proof of Item 2 of Theorem 3.1 and give a clustering oracle with the corresponding space-time trade-off. Item 2, which addresses a sublinear spectral clustering oracle under a poly(k) conductance gap. Our sublinear spectral clustering oracle closely follows the construction in Shen & Peng (2023), except that we substitute our new dot product oracle from Section 3.1 in place of theirs.

High-level idea of the algorithm Now we briefly outline the main idea of the oracle. Shen & Peng (2023) showed that for most vertices in a $(k, \varphi, \varepsilon)$ -clusterable graph, if $x, y \in V$ belong to the same cluster, then $\langle f_x, f_y \rangle \approx \frac{k}{n}$, otherwise, $\langle f_x, f_y \rangle \approx 0$. Leveraging this property, we can design a clustering oracle as follows: it first samples $s = \frac{k \log k}{\gamma}$ vertices to form a set S, and for each pair $u, v \in S$, it computes the dot product $\langle f_u, f_v \rangle_{\rm apx}$ using our new dot product oracle. If the value is large, an edge (u, v) is added to the initially empty similarity graph $H = (S, \emptyset)$. At query time, the oracle uses H and its connected components to determine the cluster assignment of vertices. We provide a full description of the clustering oracle in Appendix G. Now we present the proof of Item 2 in Theorem 3.1 as follows.

Proof of Item 2 in Theorem 3.1. Space and runtime. In the preprocessing phase, CONSTRUCTORACLE $(G,k,\varphi,\varepsilon,\gamma,M)$ (Alg. 12) invokes our INITORACLE (G,k,ξ,M) (Alg. 3) one time to get a matrix Ψ (see line 5 of Alg. 12), then CONSTRUCTORACLE $(G,k,\varphi,\varepsilon,\gamma,M)$ invokes our QUERY-DOT (G,u,v,ξ,Ψ,M) $O((k^2\log^2k)/\gamma^2)$ times (see lines $6\sim 9$ of Alg. 12) to get a similarity graph H. Therefore, CONSTRUCTORACLE $(G,k,\varphi,\varepsilon,\gamma,M)$ uses $S_{\text{init}}+O((k^2\log^2k)/\gamma^2)\cdot S_{\text{query}}$ bits of space. Using Theorem 3.2, we get that CONSTRUCTORACLE $(G,k,\varphi,\varepsilon,\gamma,M)$ uses $O(n^{O(\varepsilon/\varphi^2)}\cdot M\cdot \text{poly}(\frac{k\log n}{\gamma}))$ bits of space to get matrix Ψ and a similarity graph H.

In the query phase, WHICHCLUSTER (G,x,M) (Alg. 14) invokes SEARCH (H,ℓ,x,M) (Alg. 13) one time. SEARCH (H,ℓ,x,M) invokes our QUERYDOT (G,u,x,ξ,Ψ,M) $O((k\log k)/\gamma)$ times (see lines $1\sim 2$ of Alg. 13) and relies on the similarity graph H (see lines $3\sim 6$ of Alg. 13). Therefore, WHICHCLUSTER (G,x,M) uses $O((k\log k)/\gamma)\cdot S_{\text{query}}$ bits of space and runs in $O((k\log k)/\gamma)\cdot T_{\text{query}}$ time. Using Theorem 3.2, we get that WHICHCLUSTER (G,x,M) uses $O(n^{O(\varepsilon/\varphi^2)}\cdot M\cdot \operatorname{poly}(\frac{k\log n}{\gamma}))$ bits of space and runs in $O(n^{1+O(\varepsilon/\varphi^2)}\cdot \frac{1}{M}\cdot \operatorname{poly}(\frac{k\log n}{\gamma\varphi}))$ time.

Thus, the oracle constructs a data structure \mathcal{D} (including Ψ , similarity graph H etc) using $O(n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \operatorname{poly}(\frac{k \log n}{\gamma}))$ bits of space. Using \mathcal{D} , any WHICHCLUSTER(G,x) query can be answered by Alg. 14 in $O(n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \operatorname{poly}(\frac{k \log n}{\gamma \omega}))$ time.

Correctness. Since the correctness guarantees (i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of the dot product oracle, and our dot product oracle satisfies the same correctness guarantees with the previous one, the correctness of the overall clustering oracle follows directly from the correctness of the clustering oracle in Shen & Peng (2023).

4 DISTINGUISHING 1-CLUSTER VS. 2-CLUSTER

The algorithm and sketch of its analysis Now we present Alg. 5 for solving the 1-cluster vs. 2-cluster problem, which is based on estimating the second largest eigenvalue of \mathbf{M}^t using a subroutine ESTCOLLIPROB (Alg. 2) from Section 3.1.

Algorithm 5: DISTINGUISH(G, M)

```
1 t \coloneqq \frac{20 \log n}{\varphi^2}, R \coloneqq \Theta(\frac{n}{M}), s \coloneqq O(\log n)
2 Let I_S = \{s_1, \dots, s_s\} be the multiset of s indices chosen independently and uniformly at random from V = \{1, \dots, n\}
3 \mathcal{G} \coloneqq \text{EstColliProb}(G, R, t, M, I_S)
4 Let v_2(\frac{n}{s}\mathcal{G}) be the second largest eigenvalue of matrix \frac{n}{s}\mathcal{G}
5 if \left(v_2(\frac{n}{s}\mathcal{G})\right)^2 < 0.6 then
6 \left[ \text{return "1-cluster"} \right]
7 return "2-cluster"
```

The formal guarantee of this algorithm is given in Theorem 1.2, whose proof is deferred to Appendix H. Here, we provide a proof sketch.

Consider the case when the input graph G is a φ -expander. By Cheeger's inequality (Lemma H.1), we get that the second smallest eigenvalue of ${\bf L}$ satisfies $\lambda_2 \geq \varphi^2/2$. Equivalently, the lazy random walk matrix ${\bf M} = {\bf I} - {\bf L}/2$ has its second largest eigenvalue $v_2({\bf M}) \leq 1 - \varphi^2/4$. In contrast, if G consists of two disjoint φ -expanders of equal size, then $\lambda_2 = 0$ and hence $v_2({\bf M}) = 1$. Setting $t = O(\log n/\varphi^2)$, we obtain that in the 1-cluster case, the contribution of $v_2({\bf M}) \leq n^{-10}$, while in the 2-cluster case, $v_2({\bf M})$ remains exactly 1. Thus, ${\bf M}^t$ exhibits a clear spectral gap between the two cases. Alg. 5 constructs an approximation ${\cal G} \approx ({\bf M}^t {\bf S})^T({\bf M}^t {\bf S}) \in \mathbb{R}^{O(\log n) \times O(\log n)}$ within bounded space, where each column of ${\bf M}^t {\bf S}$ corresponds to the t-step lazy random walk distribution starting from a vertex in the sampled set I_S . The second largest eigenvalue of ${\cal G}$ closely reflects that of ${\bf M}^t$, thereby preserving the above separation (see Lemma H.4 for the formal statement). Moreover, since ${\cal G}$ is a small matrix, we can afford to perform an eigen-decomposition on it directly. Consequently, examining the spectrum of ${\cal G}$ suffices to distinguish between the 1-cluster and 2-cluster cases using $\widetilde{O}(M)$ bits of space and $\widetilde{O}(n/M)$ time.

The lower bound The lower bound for distinguishing 1-cluster vs. 2-cluster is summarized in Theorem 1.3. The main proof of Theorem 1.3 is presented in Appendix I and comprises two parts. First, we establish a lower bound for distinguishing between a uniform distribution over all vertices and two separate uniform distributions each over half of the vertex set. We demonstrate that under a space constraint of S, the information regarding the underlying case can only increase by O(S/n) per observation. Consequently, the total number of observations T must satisfy $T \cdot O(S/n) = \Omega(1)$, which directly implies the space-time trade-off lower bound $S \cdot T = \Omega(n)$ (see Theorem I.2).

Second, by analyzing the random walk distributions in the 1-cluster and 2-cluster cases, we observe that these distributions closely approximate the two aforementioned reference distributions. To finalize the reduction, it is necessary to demonstrate that deviations from uniformity do not significantly alter the final memory state distribution. The key challenge lies in the cumulative effect of sampling distribution discrepancies at each step, which collectively influence the memory state. To quantify this discrepancy, we adopt the total variation distance as a metric and employ a mathematical induction argument. This approach shows that the discrepancy in the memory state distribution does not substantially amplify after each sampling step. Specifically, the incremental increase in discrepancy is proportional to the difference between the sample distributions and remains controllable. Consequently, the overall discrepancy is bounded by the sum of these incremental increases and remains negligible throughout the process.

5 EXPERIMENTS

To evaluate the space-time trade-off of our sublinear spectral clustering oracles, we conducted experiments in Python on graphs generated from the stochastic block model (SBM) with parameters n (num of vertices), k (num of clusters), and edge probabilities p (within-cluster) and q (between-cluster). Experiments were run on a server with an Intel(R) Xeon(R) Platinum 8562Y processor (2.80 GHz) and 768 GB RAM. Each reported data is the average over five independent runs.

We implemented two variants of the $\operatorname{poly}(k)$ -conductance-gap clustering oracle³: the original oracle from Shen & Peng (2023), and our memory-efficient variant that operates within a smaller space. For each, we recorded the number of words stored in each component of the data structure $\mathcal D$ as a proxy for space S, evaluated accuracy (the fraction of vertices correctly classified), the success rate (i.e., the fraction of successful runs among $5 \, \mathrm{runs}^4$). Both variants used the same number of sampled vertices, random walk length, and median-trick repetitions; differences arose only in space-time-related parameters. We instantiated this setup on an SBM graph with n=3000, k=3, p=0.07, and q=0.002, yielding clusters of 1000 vertices each. Additional implementation details are provided in Appendix J.

Space efficiency Prior sublinear spectral clustering oracles require at least $\Omega(\sqrt{n})$ space to construct data structure \mathcal{D} . In contrast, our clustering oracle allows constructing \mathcal{D} using substantially less space, well below \sqrt{n} . In this section, we provide experimental evidence to validate this improvement.

Table 1: Comparison of space usage for clustering oracles, with 10400 words used as the baseline.

clustering oracle	ours			previous			
space (# of words)	9900	10100	10400	34840	43888	44383	61223
space (\times baseline)	$0.95 \times$	$0.97 \times$	$1\times$	$3.35 \times$	$4.22 \times$	$4.27 \times$	$5.89 \times$
success rate for constructing \mathcal{D}	1	1	1	0	0.6	1	1
accuracy	0.9833	0.9900	0.9907	0	0.9860	0.9997	1.0000

Table 1 demonstrate that our clustering oracle achieves high accuracy using substantially less space (10400 words as $1\times$). In contrast, the previous clustering oracle requires 4.27 times of the baseline space to achieve comparable accuracy, and even when given 3.35 times the baseline space, it fails to construct $\mathcal D$ successfully (i.e., success rate is 0). These results confirm that our approach significantly improves space efficiency without compromising accuracy.

Space-time trade-off As established in Theorem 3.1, there is a trade-off between the space S required to construct \mathcal{D} and the query time T, satisfying $S \cdot T \approx \widetilde{O}(n^{1+O(\varepsilon)})$, where ε is the small constant corresponding to the outer conductance.

Figure 1: Space-time trade-off of the sublinear spectral clustering oracle, showing S,T are inversely proportional.

To validate this experimentally, we also measured S as the total number of words stored to construct \mathcal{D} . We use the total number of random walks per WHICHCLUSTER query as a proxy for time T, since this dominates the query cost. Across all tested parameter settings, the oracle maintains high accuracy $(0.9833 \sim 1)$, confirming the practical validity of the configurations used

Figure 1 plots S (y-axis) versus T (x-axis), illustrating the space-time trade-off: memory usage decreases as query time increases, and vice versa, consistent with the theoretical bound.

 $^{^3}$ We did not experiment with the $\log(k)$ -conductance-gap oracle due to its impractical runtime of $2^{\text{poly}(k)} \cdot n^{1+O(\varepsilon)} \cdot \frac{1}{M}$ for constructing \mathcal{D} .

⁴If the available space is too limited, the construction of the similarity graph H may yield either too many or too few connected components, in which case the construction of \mathcal{D} fails.

ETHICS STATEMENT

This work is purely theoretical and algorithmic in nature. Our experimental evaluation is conducted solely on synthetic datasets generated from the stochastic block model (SBM). The research does not involve human subjects, personal data, or other sensitive information. We do not anticipate any immediate ethical, societal, or environmental risks arising from our methods or results.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical results are stated formally in the main text and accompanied by complete proofs in the appendix. The assumptions underlying our results are explicitly described. For the experimental evaluation, we used standard stochastic block model (SBM) graphs to ensure reproducibility. Implementation details and parameter settings are included in Appendix J.

REFERENCES

- Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In 2006 47th annual IEEE symposium on foundations of computer science (FOCS'06), pp. 475–486. IEEE, 2006.
- Reid Andersen, Shayan Oveis Gharan, Yuval Peres, and Luca Trevisan. Almost optimal local graph clustering using evolving sets. *Journal of the ACM (JACM)*, 63(2):1–31, 2016.
- Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding well-connected components in sparse graphs. In *Proceedings of the 2019 ACM Symposium on principles of distributed computing*, pp. 461–470, 2019.
- Sepehr Assadi, Christian Konrad, Kheeran K Naidu, and Janani Sundaresan. O (log log n) passes is optimal for semi-streaming maximal independent set. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pp. 847–858, 2024.
- Punam Bedi and Chhavi Sharma. Community detection in social networks. *Wiley interdisciplinary reviews: Data mining and knowledge discovery*, 6(3):115–135, 2016.
- Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi Hajiaghayi, Richard M Karp, and Jara Uitto. Massively parallel computation of matching and mis in sparse graphs. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing*, pp. 481–490, 2019.
- Tomer Berg, Or Ordentlich, and Ofer Shayevitz. On the memory complexity of uniformity testing. In *Conference on Learning Theory*, pp. 3506–3523. PMLR, 2022.
- Clément L Canonne and Joy Qiping Yang. Simpler distribution testing with little memory. In 2024 Symposium on Simplicity in Algorithms (SOSA), pp. 406–416. SIAM, 2024.
- Pak K Chan, Martine DF Schlag, and Jason Y Zien. Spectral k-way ratio-cut partitioning and clustering. In *Proceedings of the 30th international Design Automation Conference*, pp. 749–754, 1993.
- Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Testing graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 497–508. IEEE, 2018.
- Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In *Proceedings of the forty-seventh annual ACM symposium on Theory of Computing*, pp. 723–732, 2015.
- Tamal K Dey, Pan Peng, Alfred Rossi, and Anastasios Sidiropoulos. Spectral concentration and greedy k-clustering. *Computational Geometry*, 76:19–32, 2019.

- Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. Communication and memory efficient testing of discrete distributions. In *Conference on Learning Theory*, pp. 1070–1106. PMLR, 2019.
 - Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. *International journal of computer vision*, 59:167–181, 2004.
 - Sumegha Garg, Pravesh K Kothari, Pengda Liu, and Ran Raz. Memory-sample lower bounds for learning parity with noise. *arXiv preprint arXiv:2107.02320*, 2021.
 - Mohsen Ghaffari and Krzysztof Nowicki. Massively parallel algorithms for minimum cut. In *Proceedings of the 39th Symposium on Principles of Distributed Computing*, pp. 119–128, 2020.
 - Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pp. 1256–1266. SIAM, 2014.
 - Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, and Christian Sohler. Spectral clustering oracles in sublinear time. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 1598–1617. SIAM, 2021.
 - Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering. *IEEE transactions on computer-aided design of integrated circuits and systems*, 11(9):1074–1085, 1992.
 - Michael Kapralov. Better bounds for matchings in the streaming model. In *Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms*, pp. 1679–1697. SIAM, 2013.
 - Michael Kapralov, Akash Kumar, Silvio Lattanzi, and Aida Mousavifar. Learning hierarchical cluster structure of graphs in sublinear time. In *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 925–939. SIAM, 2023.
 - Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Walking randomly, massively, and efficiently. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*, pp. 364–377, 2020.
 - Jiakang Li, Songning Lai, Zhihao Shuai, Yuan Tan, Yifan Jia, Mianyang Yu, Zichen Song, Xiaokang Peng, Ziyang Xu, Yongxin Ni, et al. A comprehensive review of community detection in graphs. *Neurocomputing*, 600:128169, 2024.
 - Bogdan-Adrian Manghiuc and He Sun. Hierarchical clustering: o(1)-approximation for well-clustered graphs. *Advances in Neural Information Processing Systems*, 34:9278–9289, 2021.
 - Stefan Neumann and Pan Peng. Sublinear-time clustering oracle for signed graphs. In *International Conference on Machine Learning*, pp. 16496–16528. PMLR, 2022.
 - Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. *Advances in neural information processing systems*, 14, 2001.
 - Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the massively parallel computation model. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 2939–2958. SIAM, 2021.
 - Alberto Paccanaro, James A Casbon, and Mansoor AS Saqi. Spectral clustering of protein sequences. *Nucleic acids research*, 34(5):1571–1580, 2006.
 - Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 2953–2972. SIAM, 2020.
 - Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 732–742. IEEE, 2017.
 - Sampriti Roy and Yadu Vasudev. Testing properties of distributions in the streaming model. *arXiv* preprint arXiv:2309.03245, 2023.

- Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear regression with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 890–901, 2019. Ranran Shen and Pan Peng. A sublinear-time spectral clustering oracle with improved preprocessing time. Advances in Neural Information Processing Systems, 36, 2023. Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000. Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM Journal on computing, 42(1):1–26, 2013. Yves Van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan Halvorson, Shannon
 - Yves Van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan Halvorson, Shannon Reid, Matthew Valasik, James Wo, George E Tita, et al. Community detection using spectral clustering on sparse geosocial data. *SIAM Journal on Applied Mathematics*, 73(1):67–83, 2013.
 - Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab Mirrokni. A local algorithm for finding well-connected clusters. In *International Conference on Machine Learning*, pp. 396–404. PMLR, 2013.

Appendix

The appendix is organized as follows.

- Appendix A provides a statement on our use of LLMs for English writing assistance.
- Appendix B provides additional related works omitted from the main text.
- Appendix C presents supplementary preliminaries.
- Appendix D shows that how our results for d-regular graphs can be extended to d-bounded graphs.
- Appendix E presents the proofs of Theorem 3.2, which concerns our dot product oracle that operates under limited memory.
- Appendix F provides the proof of Item 1 in our main result (Theorem 3.1).
- Appendix G describes the sublinear spectral clustering oracle related to Item 2 in our main result (Theorem 3.1).
- Appendix H presents the proof of Theorem 1.2, which gives the upper bound for distinguishing 1-cluster vs. 2-cluster problem.
- Appendix D presents the proof of Theorem 1.3, which gives the lower bound for distinguishing 1-cluster vs. 2-cluster problem.
- Appendix J provides details on the experimental setup and parameter choices.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we mainly used ChatGPT to assist with English writing. Specifically, the model was employed to improve the fluency of sentences, check grammar, and suggest stylistic refinements. We emphasize that all theoretical contributions, proofs, and experimental results (including code implementation, simulations, and results collection) were developed and verified solely by the authors without the involvement of LLMs. The use of LLMs did not influence the research process, methodology, or the originality of the results presented in this paper.

B OTHER RELATED WORK

Property testing Besides the above most directly related work on sublinear spectral clustering oracles, several other research directions are also relevant to our study. One line of work is property testing (i.e., testing graph clusterability), where the goal is to quickly distinguish whether a graph can be partitioned into k clusters with high inner conductance, or whether it is far from having such clustering. For example, Czumaj et al. (2015) studied testing whether a graph admits a good cluster structure in the adjacency list query model, providing algorithms with sublinear query time. This direction was later advanced by Chiplunkar et al. (2018). While property testing algorithms do not provide explicit cluster assignments, they capture the feasibility of clustering in sublinear resources and thus serve as an important precursor to oracle-based approaches like ours. For example, Czumaj et al. (2015) implicitly yields a sublinear spectral clustering oracle under a $\log n$ conductance gap. This was later extended by Peng (2020), who developed a robust oracle capable of handling noise.

Local graph clustering Another line of related work is *local graph clustering* (Andersen et al., 2006; Spielman & Teng, 2013; Zhu et al., 2013; Gharan & Trevisan, 2014; Andersen et al., 2016). The goal of this category is to identify a cluster associated with a given vertex. In this setting, the algorithm outputs a set of vertices related to the input vertex, and its running time and memory usage are bounded by the size of the output cluster, up to a weak dependence on n. In particular, when the graph contains k clusters and k vertices, the complexity can be as large as k0 (k1).

Grapah problems under limited memory Recently, there has been a surge of work on understanding learning under limited memory. Graph problems inherently require substantial space and time to compute, and have attracted increasing attention. One line of research focuses on the semi-streaming model where the algorithm is permitted $O(n \cdot \operatorname{poly}(\log n))$ space. Both upper bound algorithms and lower bound results are proposed for various graph problems, including Maximal Independent Set (Assadi et al., 2024) and Matching (Kapralov, 2013). There is also significant work on the Massively Parallel Computation model, where machines have sublinear memory to solve the graph problems

(Behnezhad et al., 2019; Łącki et al., 2020; Nowicki & Onak, 2021; Assadi et al., 2019; Ghaffari & Nowicki, 2020).

C SUPPLEMENTARY PRELIMINARIES

 For a vector $\boldsymbol{a}=(\boldsymbol{a}(1),\ldots,\boldsymbol{a}(n))^T$, the p-norm $(p\geq 1)$ of \boldsymbol{a} is defined to be $\|\boldsymbol{a}\|_p=(\sum_{i=1}^n|\boldsymbol{a}(i)|^p)^{\frac{1}{p}}$. For any matrix $\boldsymbol{B}\in\mathbb{R}^{n\times n}$, we use $\|\boldsymbol{B}\|_F=\sqrt{\sum_{i=1}^n\sum_{j=1}^n\boldsymbol{B}^2(i,j)}$ to denote the Frobenius norm of \boldsymbol{B} , $\|\boldsymbol{B}\|_2=\max_{\boldsymbol{x}\in\mathbb{R}^n,\|\boldsymbol{x}\|_2=1}\|\boldsymbol{B}\boldsymbol{x}\|_2$ to denote the spectral norm of \boldsymbol{B} and $\boldsymbol{B}_{[i]}$ to denote the first i columns of $\boldsymbol{B},1\leq i\leq n$.

Definition C.1 (TV distance). For two probability distributions p, q over [n], the *total variance distance* (i.e., TV distance) of p, q is defined to be

$$d_{\text{TV}}(p, q) = \frac{1}{2} ||p - q||_1.$$

Fact C.1. For any vector $\mathbf{p} \in \mathbb{R}^n$, we have $\|\mathbf{p}\|_4^2 \leq \|\mathbf{p}\|_2^2$.

Proof. Let $\|\boldsymbol{p}\|_{\infty} = \max_{i=1}^{n} |\boldsymbol{p}(i)|$. Then, we have

$$\|p\|_4^2 = \sqrt{\sum_{i=1}^n p^4(i)} \le \sqrt{\sum_{i=1}^n p^2(i) \cdot \|p\|_\infty^2}$$

$$= \sqrt{\|p\|_\infty^2} \sqrt{\sum_{i=1}^n p^2(i)}$$

$$\le \sqrt{\sum_{i=1}^n p^2(i)} \sqrt{\sum_{i=1}^n p^2(i)}$$

$$= \|p\|_2^2.$$

D FROM d-BOUNDED GRAPHS TO d-REGULAR GRAPHS

Although we state our results for d-regular graphs, they extend naturally to d-bounded graphs, i.e., graphs in which every vertex has degree at most d. The extension is straightforward: for a d-bounded graph G'=(V,E'), for every $x\in V$, we can add $d-d_x$ self-loops with weight $\frac{1}{2}$ to x to get a d-regular graph G=(V,E). Note that the lazy random walk on G is equivalent to the random walk on G', with the random walk satisfying that if the walker is currently at $x\in V$, then in the next step it stays at x with probability $1-\frac{d_x}{2d}$, or moves to each neighbor of x with probability $\frac{1}{2d_x}$.

E Proof of Theorem 3.2

Theorem E.1 (Restate of Theorem 3.2). Let $k \geq 2$ be an integer. Let $\varepsilon, \varphi \in (0,1)$ with $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$. Let G = (V, E) be a d-regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let $\frac{1}{n^5} < \xi < 1$. Let $1 \leq M_{\text{init}}, M_{\text{query}} \leq O(\frac{n^{1/2 - 20\varepsilon/\varphi^2}}{k})$. Then, with probability at least $1 - 2n^{-100}$, INITORACLE $(G, k, \xi, M_{\text{init}})$ (Alg. 3) computes a sublinear space matrix Ψ of size $n^{O(\varepsilon/\varphi^2)} \cdot \log^2 n \cdot (\frac{k}{\xi})^{O(1)}$, such that the following property is satisfied:

for every pair of vertices $x, y \in V$, QUERYDOT $(G, x, y, \xi, \Psi, M_{\text{query}})$ (Alg. 4) computes an output value $\langle f_x, f_y \rangle_{\text{apx}}$ such that with probability at least $1 - 6n^{-100}$:

$$|\langle oldsymbol{f}_x, oldsymbol{f}_y
angle_{ ext{apx}} - \langle oldsymbol{f}_x, oldsymbol{f}_y
angle| \leq rac{\xi}{n}.$$

Moreover, let T_{init} , S_{init} be the time and space costs of INITORACLE($G, k, \xi, M_{\text{init}}$) (Alg.3), and let T_{query} , S_{query} be those of a single QUERYDOT($G, x, y, \xi, \Psi, M_{\text{query}}$) query (Alg.4). Then we have

•
$$T_{\mathrm{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{\log^4 n}{M_{\mathrm{init}}} \cdot \frac{1}{\varphi^2}$$
,

•
$$S_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{init}} \cdot \log^4 n$$

•
$$T_{\mathrm{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{\log^3 n}{M_{\mathrm{query}}} \cdot \frac{1}{\varphi^2}$$

•
$$S_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n.$$

To prove Theorem 3.2, we begin by analyzing Z_b defined in Alg. 1. The following lemma shows that Z_b is an unbiased estimator of $\langle M^t \mathbb{1}_x, M^t \mathbb{1}_x \rangle$ and quantifies its variance.

Lemma E.1. Let G = (V, E) be a graph. Let R, t, M be integers, where $1 \le M \le R$. Let $x, y \in V$ be two vertices. Let M be the random walk transition matrix of G. Let Z_b $(1 \le b \le \frac{R}{M})$ be the random variable defined in ESTRWDOT(G, R, t, M, x, y) (see line 6 of Alg. 1). Then, we have

$$\mathbb{E}[Z_b] = \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle,$$

$$\operatorname{Var}[Z_b] \leq \frac{1}{M^2} \| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 + \frac{1}{M} \left(\| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2^2 + \| \boldsymbol{M}^t \mathbb{1}_x \|_2^2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 \right).$$

Proof. Run M random walks of length t from x (resp. from y). Let $c_x(i)$ (resp. $c_y(i)$) denote the number of random walks from x (resp. from y) that end at vertex i. It's clear that we have $\widehat{p}_x(i) = \frac{c_x(i)}{M}$ and $\widehat{p}_y(i) = \frac{c_y(i)}{M}$ (see lines $4 \sim 5$ of Alg. 1). Let $p_x = M^t \mathbb{1}_x$ (resp. $p_y = M^t \mathbb{1}_y$) be the probability distribution of a length t random walk starting from x (resp. from y). Note that $c_x(i) \sim \operatorname{Binomial}(M, p_x(i))$ and $c_y(i) \sim \operatorname{Binomial}(M, p_y(i))$. According to line 6 of Alg. 1, we have $Z_b = \langle \widehat{p}_x, \widehat{p}_y \rangle$. Therefore, about $\mathbb{E}[Z_b]$, we have

$$\begin{split} \mathbb{E}[Z_b] &= \langle \widehat{\boldsymbol{p}}_x, \widehat{\boldsymbol{p}}_y \rangle \\ &= \mathbb{E}\left[\sum_{i=1}^n \widehat{\boldsymbol{p}}_x(i) \widehat{\boldsymbol{p}}_y(i)\right] \\ &= \frac{1}{M^2} \cdot \sum_{i=1}^n \mathbb{E}[\boldsymbol{c}_x(i) \boldsymbol{c}_y(i)] \\ &= \frac{1}{M^2} \cdot \sum_{i=1}^n \mathbb{E}[\boldsymbol{c}_x(i)] \mathbb{E}[\boldsymbol{c}_y(i)] \\ &= \frac{1}{M^2} \cdot \sum_{i=1}^n M \boldsymbol{p}_x(i) M \boldsymbol{p}_y(i) \\ &= \sum_{i=1}^n \boldsymbol{p}_x(i) \boldsymbol{p}_y(i) \\ &= \langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle = \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle. \end{split}$$

About $\operatorname{Var}[Z_b]$, since $\operatorname{Var}[Z_b] = \mathbb{E}[Z_b^2] - (\mathbb{E}[Z_b])^2$, it suffices to calculate $\mathbb{E}[Z_b^2]$ to get $\operatorname{Var}[Z_b]$.

$$\begin{split} \mathbb{E}[Z_b^2] &= \mathbb{E}\left[\langle \widehat{\boldsymbol{p}}_x, \widehat{\boldsymbol{p}}_y \rangle^2 \right] \\ &= \mathbb{E}\left[\left(\sum_{i=1}^n \widehat{\boldsymbol{p}}_x(i) \widehat{\boldsymbol{p}}_y(i) \right)^2 \right] \\ &= \mathbb{E}\left[\sum_{i=1}^n \sum_{j=1}^n \widehat{\boldsymbol{p}}_x(i) \widehat{\boldsymbol{p}}_y(i) \widehat{\boldsymbol{p}}_x(j) \widehat{\boldsymbol{p}}_y(j) \right] \end{split}$$

$$\begin{array}{ll} \textbf{810} \\ \textbf{811} \\ \textbf{812} \\ \textbf{813} \\ \textbf{814} \\ \textbf{815} \\ \textbf{815} \\ \textbf{816} \\ \textbf{817} \\ \textbf{818} \\ \end{array} \\ = \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} \left[\boldsymbol{c}_x(i) \boldsymbol{c}_y(j) \boldsymbol{c}_x(j) \boldsymbol{c}_y(j) \right] \\ \mathbb{E} \left[\boldsymbol{c}_y(i) \boldsymbol{c}_y(j) \right] \\ \mathbb{E} \left[\boldsymbol{c}_y(i) \boldsymbol{c}_y(j) \right] \\ = \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} \left[\boldsymbol{c}_x^2(i) \right] \cdot \mathbb{E} \left[\boldsymbol{c}_y^2(i) \right] \\ + \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \mathbb{E} \left[\boldsymbol{c}_x(i) \boldsymbol{c}_x(j) \right] \cdot \mathbb{E} \left[\boldsymbol{c}_y(i) \boldsymbol{c}_y(j) \right]. \end{array}$$

For convenience, we use A_1 to denote $\frac{1}{M^4}\sum_{i=1}^n \mathbb{E}\left[\boldsymbol{c}_x^2(i)\right] \cdot \mathbb{E}\left[\boldsymbol{c}_y^2(i)\right]$ and A_2 to denote $\frac{1}{M^4}\sum_{i=1}^n\sum_{j=1,j\neq i}^n \mathbb{E}\left[\boldsymbol{c}_x(i)\boldsymbol{c}_x(j)\right] \cdot \mathbb{E}\left[\boldsymbol{c}_y(i)\boldsymbol{c}_y(j)\right]$.

Since $c_x(i) \sim \text{Binomial}(M, p_x(i))$, we have $\mathbb{E}[c_x(i)] = Mp_x(i)$ and $\mathbb{E}[c_x^2(i)] = \text{Var}[c_x(i)] + (\mathbb{E}[c_x(i)])^2 = Mp_x(i)(1-p_x(i)) + M^2p_x^2(i) = M[p_x(i)+(M-1)p_x^2(i)]$. Therefore, we have

$$\begin{split} A_1 &= \frac{1}{M^4} \sum_{i=1}^n \mathbb{E} \left[\boldsymbol{c}_x^2(i) \right] \cdot \mathbb{E} \left[\boldsymbol{c}_y^2(i) \right] \\ &= \frac{1}{M^4} \sum_{i=1}^n M \left[\boldsymbol{p}_x(i) + (M-1) \boldsymbol{p}_x^2(i) \right] \cdot M \left[\boldsymbol{p}_y(i) + (M-1) \boldsymbol{p}_y^2(i) \right] \\ &= \frac{1}{M^2} \sum_{i=1}^n \boldsymbol{p}_x(i) \boldsymbol{p}_y(i) + (M-1) \left(\boldsymbol{p}_x \boldsymbol{p}_y^2(i) + \boldsymbol{p}_x^2(i) \boldsymbol{p}_y(i) \right) + (M-1)^2 \boldsymbol{p}_x^2(i) \boldsymbol{p}_y^2(i) \\ &= \frac{1}{M^2} \langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle + \frac{M-1}{M^2} \left(\langle \boldsymbol{p}_x, \boldsymbol{p}_y^2 \rangle + \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y \rangle \right) + \frac{(M-1)^2}{M^2} \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y^2 \rangle, \end{split}$$

where with a slight abuse of notation, we use $\langle p_x, p_y^2 \rangle$ to denote $\sum_{i=1}^n p_x(i) p_y^2(i)$, and we use $\langle p_x^2, p_y^2 \rangle$ to denote $\sum_{i=1}^n p_x^2(i) p_y^2(i)$.

To calculate A_2 , we need to calculate $\mathbb{E}[c_x(i)c_x(j)]$ where $i \neq j$. We define X_a^i as follows:

$$X_a^i = \begin{cases} 1, & \text{The } a\text{-th random walk from } x \text{ ends at } i \\ 0, & \text{otherwise} \end{cases}.$$

So we have $\mathbb{E}[\boldsymbol{c}_x(i)\boldsymbol{c}_x(j)] = \mathbb{E}\left[\sum_{a=1}^M X_a^i \sum_{a=1}^M X_a^j\right] = \sum_{a=1}^M \sum_{b=1}^M \mathbb{E}[X_a^i X_b^j]$. For all a=b and $i\neq j$, we have $\mathbb{E}[X_a^i X_b^j] = 0$, since for a single random walk, it cannot ends at i and j the same time. For all $a\neq b$ and $i\neq j$, we have $\mathbb{E}[X_a^i X_b^j] = \boldsymbol{p}_x(i)\boldsymbol{p}_x(j)$. So we can get $\mathbb{E}[\boldsymbol{c}_x(i)\boldsymbol{c}_x(j)] = M(M-1)\boldsymbol{p}_x(i)\boldsymbol{p}_x(j)$. By the same augment, we get that for all $i\neq j$, $\mathbb{E}[\boldsymbol{c}_y(i)\boldsymbol{c}_y(j)] = M(M-1)\boldsymbol{p}_y(i)\boldsymbol{p}_y(j)$. Therefore,

$$A_{2} = \frac{1}{M^{4}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \mathbb{E} \left[\boldsymbol{c}_{x}(i) \boldsymbol{c}_{x}(j) \right] \cdot \mathbb{E} \left[\boldsymbol{c}_{y}(i) \boldsymbol{c}_{y}(j) \right]$$

$$= \frac{1}{M^{4}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} M(M-1) \boldsymbol{p}_{x}(i) \boldsymbol{p}_{x}(j) \cdot M(M-1) \boldsymbol{p}_{y}(i) \boldsymbol{p}_{y}(j)$$

$$= \frac{(M-1)^{2}}{M^{2}} \sum_{i=1}^{m} \sum_{j=1, j \neq i}^{n} \boldsymbol{p}_{x}(i) \boldsymbol{p}_{y}(i) \cdot \boldsymbol{p}_{x}(j) \boldsymbol{p}_{y}(j)$$

$$= \frac{(M-1)^{2}}{M^{2}} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \boldsymbol{p}_{x}(i) \boldsymbol{p}_{y}(i) \cdot \boldsymbol{p}_{x}(j) \boldsymbol{p}_{y}(j) - \sum_{i=1}^{n} \boldsymbol{p}_{x}^{2}(i) \boldsymbol{p}_{y}^{2}(i) \right)$$

$$= \frac{(M-1)^{2}}{M^{2}} \left(\sum_{i=1}^{n} \boldsymbol{p}_{x}(i) \boldsymbol{p}_{y}(i) \sum_{j=1}^{n} \boldsymbol{p}_{x}(j) \boldsymbol{p}_{y}(j) - \langle \boldsymbol{p}_{x}^{2}, \boldsymbol{p}_{y}^{2} \rangle \right)$$

$$=rac{(M-1)^2}{M^2}\left(\langle oldsymbol{p}_x,oldsymbol{p}_y
angle^2-\langle oldsymbol{p}_x^2,oldsymbol{p}_y^2
angle
ight).$$

Put them together, we get

$$\begin{split} \mathbb{E}[Z_b^2] &= A_1 + A_2 \\ &= \frac{1}{M^2} \langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle + \frac{M-1}{M^2} \left(\langle \boldsymbol{p}_x, \boldsymbol{p}_y^2 \rangle + \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y \rangle \right) + \frac{(M-1)^2}{M^2} \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y^2 \rangle \\ &+ \frac{(M-1)^2}{M^2} \left(\langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle^2 - \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y^2 \rangle \right) \\ &= \frac{1}{M^2} \langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle + \frac{M-1}{M^2} \left(\langle \boldsymbol{p}_x, \boldsymbol{p}_y^2 \rangle + \langle \boldsymbol{p}_x^2, \boldsymbol{p}_y \rangle \right) + \frac{(M-1)^2}{M^2} \langle \boldsymbol{p}_x, \boldsymbol{p}_y \rangle^2. \end{split}$$

Therefore, we have

$$Var[Z_{b}] = \mathbb{E}[Z_{b}^{2}] - (\mathbb{E}[Z_{b}])^{2}$$

$$= \frac{1}{M^{2}} \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle + \frac{M-1}{M^{2}} \left(\langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y}^{2} \rangle + \langle \boldsymbol{p}_{x}^{2}, \boldsymbol{p}_{y} \rangle \right) + \frac{(M-1)^{2}}{M^{2}} \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle^{2} - \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle^{2}$$

$$= \frac{1}{M^{2}} \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle + \frac{M-1}{M^{2}} \left(\langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y}^{2} \rangle + \langle \boldsymbol{p}_{x}^{2}, \boldsymbol{p}_{y} \rangle \right) + \frac{1-2M}{M^{2}} \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle^{2}$$

$$\leq \frac{1}{M^{2}} \langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y} \rangle + \frac{1}{M} \left(\langle \boldsymbol{p}_{x}, \boldsymbol{p}_{y}^{2} \rangle + \langle \boldsymbol{p}_{x}^{2}, \boldsymbol{p}_{y} \rangle \right)$$

$$= \frac{1}{M^{2}} \sum_{i=1}^{n} \boldsymbol{p}_{x}(i) \boldsymbol{p}_{y}(i) + \frac{1}{M} \left(\sum_{i=1}^{n} \boldsymbol{p}_{x}(i) \boldsymbol{p}_{y}^{2}(i) + \sum_{i=1}^{n} \boldsymbol{p}_{x}^{2}(i) \boldsymbol{p}_{y}(i) \right)$$

$$\leq \frac{1}{M^{2}} \|\boldsymbol{p}_{x}\|_{2} \cdot \|\boldsymbol{p}_{y}\|_{2} + \frac{1}{M} \left(\|\boldsymbol{p}_{x}\|_{2} \cdot \|\boldsymbol{p}_{y}\|_{4}^{2} + \|\boldsymbol{p}_{x}\|_{4}^{2} \cdot \|\boldsymbol{p}_{y}\|_{2} \right)$$

$$\leq \frac{1}{M^{2}} \|\boldsymbol{p}_{x}\|_{2} \cdot \|\boldsymbol{p}_{y}\|_{2} + \frac{1}{M} \left(\|\boldsymbol{p}_{x}\|_{2} \cdot \|\boldsymbol{p}_{y}\|_{2}^{2} + \|\boldsymbol{p}_{x}\|_{2}^{2} \cdot \|\boldsymbol{p}_{y}\|_{2} \right),$$

where the second-to-last inequality uses the Cauchy–Schwarz inequality and the last one follows from Fact C.1.

Building on Lemma E.1, we now consider the estimator Z obtained by averaging B = R/M independent copies of Z_b . The following lemma shows that Z remains an unbiased estimator with variance reduced by a factor of B = R/M.

Lemma E.2. Let G=(V,E) be a graph. Let R,t,M be integers, where $1 \leq M \leq R$. Let $x,y \in V$ be two vertices. Let M be the random walk transition matrix of G. Let Z be the output of $Estroion_{G}(G,R,t,M,x,y)$ (Alg. 1). Then, we have

$$\mathbb{E}[Z] = \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle,$$

$$\operatorname{Var}[Z] \leq \frac{1}{R} \left[\frac{1}{M} \| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 + \left(\| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2^2 + \| \boldsymbol{M}^t \mathbb{1}_x \|_2^2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 \right) \right].$$

Proof. According to Alg. 1, we know that $Z=\frac{1}{B}\sum_{b=1}^B Z_b$, where $B=\frac{R}{M}$. Therefore, using Lemma E.1, we have $\mathbb{E}[Z]=\frac{1}{B}\sum_{b=1}^B \mathbb{E}[Z_b]=\langle \boldsymbol{M}^t\mathbb{1}_x, \boldsymbol{M}^t\mathbb{1}_y\rangle$ and

$$Var[Z] = \frac{1}{B^2} \sum_{b=1}^{B} Var[Z_b]$$
$$= \frac{1}{B} Var[Z_b]$$
$$= \frac{M}{B} Var[Z_b]$$

$$\leq \frac{M}{R} \left[\frac{1}{M^{2}} \| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2} + \frac{1}{M} \left(\| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2}^{2} + \| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2}^{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2} \right) \right]$$

$$= \frac{1}{R} \left[\frac{1}{M} \| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2} + \left(\| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2}^{2} + \| \boldsymbol{M}^{t} \mathbb{1}_{x} \|_{2}^{2} \cdot \| \boldsymbol{M}^{t} \mathbb{1}_{y} \|_{2} \right) \right].$$

Lemma E.3 shows that, with suitable input parameters, ESTRWDOT(G,R,t,M,x,y) (Alg. 1) approximates the dot product of the random walk distributions from any two vertices $x,y \in V$ within an error of σ_{err} .

Lemma E.3. Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph. Let M be the random walk transition matrix of G. Let Z be the output of ESTRWDOT(G,R,t,M,x,y) (Alg. 1). Let $\sigma_{err} > 0$. Let c > 1 be a large enough constant. For any $t \geq \frac{20\log n}{\varphi^2}$ and any $x,y \in V$, if $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{err}^2 M}$ and $1 \leq M \leq O(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k})$, then with probability at least 0.99, we have

$$|Z - \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle| \leq \sigma_{\text{err}}.$$

Moreover, ESTRWDOT(G, R, t, M, x, y) runs in O(Rt) time and uses $O(M \cdot \log n)$ bits of space.

Remark E.1. The success probability of Lemma E.3 can be boosted up to $1 - n^{-100}$ using median trick, i.e., by taking the median of $O(\log n)$ independent runs.

To prove Lemma E.3, we need the following lemma in Gluch et al. (2021).

Lemma E.4 (Lemma 22 in Gluch et al. (2021)). Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V, E) be a d-regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let M be the random walk transition matrix of G. For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x \in V$ we have

$$\|\mathbf{M}^t \mathbb{1}_x\|_2 \le O(k \cdot n^{-1/2 + (20\varepsilon/\varphi^2)}).$$

Now we are ready to prove Lemma E.3.

Proof of Lemma E.3. Correctness. By Lemma E.2 and Lemma E.4, we can get that

$$\operatorname{Var}[Z] \leq \frac{1}{R} \left[\frac{1}{M} \| \mathbf{M}^t \mathbb{1}_x \|_2 \cdot \| \mathbf{M}^t \mathbb{1}_y \|_2 + \left(\| \mathbf{M}^t \mathbb{1}_x \|_2 \cdot \| \mathbf{M}^t \mathbb{1}_y \|_2^2 + \| \mathbf{M}^t \mathbb{1}_x \|_2^2 \cdot \| \mathbf{M}^t \mathbb{1}_y \|_2 \right) \right] \\
= \frac{1}{R} \left(\frac{O(k^2 \cdot n^{-1 + 40\varepsilon/\varphi^2})}{M} + O(k^3 \cdot n^{-3/2 + 60\varepsilon/\varphi^2}) \right).$$

Using Chebyshev's inequality, we have

$$\begin{split} \Pr[|Z - \langle \boldsymbol{M}^t \mathbbm{1}_x, \boldsymbol{M}^t \mathbbm{1}_y \rangle| &\geq \sigma_{\text{err}}] = \Pr[|Z - \mathbb{E}[Z]| \geq \sigma_{\text{err}}] \\ &\leq \frac{\operatorname{Var}[Z]}{\sigma_{\text{err}}^2} \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \left(\frac{O(k^2 \cdot n^{-1 + 40\varepsilon/\varphi^2})}{M} + O(k^3 \cdot n^{-3/2 + 60\varepsilon/\varphi^2}) \right) \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \cdot O\left(\frac{k^2 \cdot n^{-1 + 40\varepsilon/\varphi^2}}{M} \right) \\ &\leq \frac{1}{100}, \end{split}$$

where the second-to-last inequality holds by $M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$. And the last inequality holds by our choice of

$$R \ge \frac{c \cdot k^2 n^{-1 + 40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M},$$

where c is a large enough constant that cancels the constant hidden in $O\left(\frac{k^2 \cdot n^{-1+40\varepsilon/\varphi^2}}{M}\right)$.

Runtime and space. Algorithm ESTRWDOT(G,R,t,M,x,y) (Alg. 1) performs $B=\frac{R}{M}$ bathches (i.e., $B=\frac{R}{M}$ iterations of the for-loop). In each batch, it runs M random walks of length t, which requires O(Mt) time and O(M) words of space to store the O(M) endpoints of the walks. Computing the dot product of two probability distributions takes O(M) time, since each distribution has at most M nonzero entries. Therefore, the runtime and space per batch are O(Mt+M)=O(Mt) time and O(M) words, respectively. Moreover, the space used within each batch can be reused across batches. Consequently, the overall runtime and space complexity of ESTRWDOT(G,R,t,M,x,y) (Alg. 1) are $B\cdot O(Mt)=\frac{R}{M}\cdot O(Mt)=O(Rt)$ and O(M) words (i.e., $O(M\cdot\log n)$ bits of space, since each endpoint can be stored in $\log n$ bits), respectively.

Lemma E.5 states that, under appropriate input parameters, the output \mathcal{G} of our algorithm EST-COLLIPROB (G,R,t,M,I_S) (Alg. 2) is close to $(\mathbf{M}^t\mathbf{S})^T(\mathbf{M}^t\mathbf{S})$ in spectral norm, where $(\mathbf{M}^t\mathbf{S})^T(\mathbf{M}^t\mathbf{S})$ is the Gram matrix of the random walk distributions from vertices in the sample set.

Lemma E.5. Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1,\ldots,s_s\}$ be a multiset of s indices chosen from $\{1,\ldots,n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Let $G \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G,R,t,M,I_S) (Alg. 2). Let $\sigma_{\text{err}} > 0$. Let c > 1 be a large enough constant. For any $t \geq \frac{20\log n}{\varphi^2}$, if $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then with probability at least $1-n^{-100}$, we have

$$\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \le s \cdot \sigma_{\text{err}}.$$

Moreover, ESTCOLLIPROB (G, R, t, M, I_S) runs in $O(Rt \cdot \log n \cdot s^2)$ time and uses $O(M \cdot \log^2 n \cdot s^2)$ bits of space.

Proof. Correctness. Note that in line 5 of Alg. 2, we get $\mathcal{G}_l(i,j)\coloneqq \mathsf{ESTRWDOT}(G,R,t,M,s_i,s_j)$ (Alg. 1). Since $t\geq \frac{20\log n}{\varphi^2},\ R\geq \frac{c\cdot k^2n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\mathsf{crr}}^2M}$ and $1\leq M\leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then by Lemma E.3, with probability at least 0.99, for all $i,j\in[s]$, we have

$$|\mathcal{G}_l(i,j) - \langle \boldsymbol{M}^t \mathbb{1}_{s_i}, \boldsymbol{M}^t \mathbb{1}_{s_i} \rangle| = |\mathcal{G}_l(i,j) - (\boldsymbol{M}^t \mathbb{1}_{s_i})^T (\boldsymbol{M}^t \mathbb{1}_{s_j})| \leq \sigma_{\text{err}}.$$

Note that in line 6 of Alg. 2, we define \mathcal{G} as a matrix obtained by taking the entrywises median of \mathcal{G}_l 's over $O(\log n)$ runs. Thus with probability at least $1 - n^{-100}$ (see Remark E.1), for all $i, j \in [s]$, we have

$$|\mathcal{G}(i,j) - (\boldsymbol{M}^t \mathbb{1}_{s_i})^T (\boldsymbol{M}^t \mathbb{1}_{s_j})| \leq \sigma_{\text{err}},$$

which implies

$$\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_F \leq s \cdot \sigma_{\text{err}}.$$

Moreover, we have

$$\|\mathcal{G} - (\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq \|\mathcal{G} - (\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_F \leq s \cdot \sigma_{\text{err}}.$$

Runtime and space. In Alg. 2, Alg. 1 is called $\log n \cdot s^2$ times. Since the runtime and space of Alg. 1 are O(Rt) and $O(M\log n)$ bits, respectively, the runtime and space of Alg. 2 are $O(Rt \cdot \log n \cdot s^2)$ and $O(M \cdot \log^2 n \cdot s^2)$ bits, respectively.

Recall that we use $(M^t\mathbb{1}_x)^T(M^tS)(\frac{n}{s} \cdot \widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^T)(M^tS)^T(M^t\mathbb{1}_y)$ to estimate $\langle f_x, f_y \rangle$. Lemma E.6 states that under appropriate parameters, Alg. 3 outputs a matrix $\Psi = \frac{n}{s} \cdot \widehat{W}_{[k]}\widehat{\Sigma}_{[k]}^{-2}\widehat{W}_{[k]}^T$ which, with high probability, is spectrally close to $\frac{n}{s} \cdot \widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^T$. The proof of Lemma E.6 is analogous to that of Lemma 24 in Gluch et al. (2021). Nevertheless, for completeness, we provide a concise proof here.

Lemma E.6. Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1,\ldots,s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1,\ldots,n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbbm{1}_{s_i}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G,R,t,M,I_S) (Alg. 2). Let $\sqrt{\frac{n}{s}} \cdot M^t S = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot M^t S$ where $\widetilde{U} \in \mathbb{R}^{n \times n}$, $\widetilde{\Sigma} \in \mathbb{R}^{n \times n}$, $\widetilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{n}{s} \cdot \mathcal{G} = \widehat{W} \widehat{\Sigma} \widetilde{W}^T$ be an eigendecomposition of $\frac{n}{s} \cdot \mathcal{G}$. Let $\frac{1}{n^8} < \xi < 1$. Let $c_1 > 1$ and $c_2 > 1$ be two large enough constants. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, $s \geq c_1 \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, $R \geq \frac{c_2 \cdot k^6 \cdot n^{1+760\varepsilon/\varphi^2}}{M \cdot \xi^2}$ and $1 \leq M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then with probability at least $1 - 2 \cdot n^{-100}$, matrices $\widehat{\Sigma}_{[k]}^{-2}$ and $\widehat{\Sigma}_{[k]}^{-4}$ exist and we have

$$\|\widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^T - \widehat{W}_{[k]}\widehat{\Sigma}_{[k]}^{-2}\widehat{W}_{[k]}^T\|_2 < \xi.$$

Equipped with Lemma E.5, to prove Lemma E.6, we also need the following lemmas.

Lemma E.7 (Lemma 18 in Gluch et al. (2021)). Let \widetilde{A} , $\widehat{A} \in \mathbb{R}^{n \times n}$ be symmetric matrices with eigendecomposition $\widetilde{A} = \widetilde{Y}\widetilde{\Gamma}\widetilde{Y}^T$ and $\widehat{A} = \widehat{Y}\widehat{\Gamma}\widehat{Y}^T$. Let the eigenvalues of \widetilde{A} be $1 \geq \gamma_1 \geq \cdots \geq \gamma_n \geq 0$. Suppose that $\|\widetilde{A} - \widehat{A}\|_2 \leq \frac{\gamma_k}{100}$ and $\gamma_{k+1} < \frac{\gamma_k}{4}$. Then we have

$$\|\widetilde{Y}_{[k]}\widetilde{\Gamma}_{[k]}^{-1}\widetilde{Y}_{[k]}^T - \widehat{Y}_{[k]}\widehat{\Gamma}_{[k]}^{-1}\widehat{Y}_{[k]}^T\|_2 \le \frac{16\|\widetilde{A} - \widehat{A}\|_2 + 4\gamma_{k+1}}{\gamma_k^2}.$$

Lemma E.8 (Lemma 28 in Gluch et al. (2021)). Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V, E) be a d-regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1, \ldots, s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1, \ldots, n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Let c > 1 be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$ and $s \geq c \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, then with probability at least $1 - n^{-100}$, we have

•
$$v_k\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})(\boldsymbol{M}^t\boldsymbol{S})^T\right) = v_k\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right) \ge \frac{n^{-80\varepsilon/\varphi^2}}{2},$$

• $v_{k+1}\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})(\boldsymbol{M}^t\boldsymbol{S})^T\right) \le n^{-9}.$

Lemma E.9 (Weyl's Inequality). Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be the eigenvalues of A and B respectively. Then for any $i \in [n]$, we have

$$|\alpha_i - \beta_i| \le ||A - B||_2.$$

Now we are ready to prove Lemma E.6.

Proof of Lemma E.6. Let $c_3>1$ be a large enough constant and let $\sigma_{\rm err}=\frac{\xi\cdot n^{-1-360\varepsilon/\varphi^2}}{c_3\cdot k^2}$. Let c be a constant from Lemma E.5. By the assumption of the lemma for a large enough constant $c_2>1$, we have

$$R \geq \frac{c_2 \cdot k^6 \cdot n^{1+760\varepsilon/\varphi^2}}{M \cdot \xi^2} \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\mathrm{err}}^2 M}.$$

Thus we can apply Lemma E.5. Hence, with probability at least $1 - n^{-100}$, we have

$$\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err.}}$$

Let $\widetilde{A} = \frac{n}{s} \cdot (M^t S)^T (M^t S) = \widetilde{W} \widetilde{\Sigma}^2 \widetilde{W}^T$ and $\widehat{A} = \frac{n}{s} \cdot \mathcal{G}$. Thus, we have $\widetilde{A}^2 = (\frac{n}{s} \cdot (M^t S)^T (M^t S))^2 = \widetilde{W} \widetilde{\Sigma}^4 \widetilde{W}^T$ and $\widehat{A}^2 = (\frac{n}{s} \cdot \mathcal{G})^2 = \widehat{W} \widehat{\Sigma}^2 \widehat{W}^T$. To use Lemma E.7, we

have to bound $\|\widetilde{A}^2 - \widehat{A}^2\|_2 = \left(\frac{n}{s}\right)^2 \|\left((\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2 - \mathcal{G}^2\|_2$. Using the triangle inequality and sub-multiplicativity of spectral norm and the above $\|\mathcal{G} - (\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq s \cdot \sigma_{\text{err}}$ bound, we can get that

$$\|\left((\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2 - \mathcal{G}^2\|_2 \le (s \cdot \sigma_{\text{err}})^2 + 2 \cdot s \cdot \sigma_{\text{err}}\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2.$$

Note that $\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq \|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_F = \sqrt{\sum_{i=1}^s \sum_{j=1}^s ((\boldsymbol{M}^t\mathbb{1}_{s_i})^T(\boldsymbol{M}^t\mathbb{1}_{s_j}))^2}$, by Cauchy Schwarz inequality and Lemma E.4, we can get that $\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq O(s\cdot k^2\cdot n^{-1+40\varepsilon/\varphi^2})$. Put them together and by the choice of $\sigma_{\text{err}} = \frac{\xi\cdot n^{-1-360\varepsilon/\varphi^2}}{c_3\cdot k^2}$, we have that

$$\|\widetilde{A}^2 - \widehat{A}^2\|_2 \le O\left(\frac{\xi \cdot n^{-320\varepsilon/\varphi^2}}{c_3}\right).$$

Moreover, let c_1 be the constant from Lemma E.8, since $s \ge c_1 \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, by Lemma E.8, with probability at least $1 - n^{-100}$, we have

$$v_k\left(\widetilde{A}^2\right) = v_k\left(\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2\right) \geq \left(\frac{n^{-80\varepsilon/\varphi^2}}{2}\right)^2 = \frac{n^{-160\varepsilon/\varphi^2}}{4},$$

and

$$v_{k+1}\left(\widetilde{A}^2\right) = v_{k+1}\left(\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2\right) \le (n^{-9})^2 = n^{-18}.$$

By Weyl's inequality, we have that $v_k(\widehat{A}^2) \geq v_k(\widetilde{A}^2) - \|\widetilde{A}^2 - \widehat{A}^2\|_2 \geq \frac{n^{-160\varepsilon/\varphi^2}}{4} - O(\frac{\xi \cdot n^{-320\varepsilon/\varphi^2}}{c_3}) > 0$, so $\widehat{\Sigma}_{[k]}^{-2}$ exists. Moreover, since \widetilde{A}^2 , \widehat{A}^2 are symmetric matrices, $\|\widetilde{A}^2 - \widehat{A}^2\|_2 \leq \frac{v_k(\widetilde{A}^2)}{100}$ and $v_{k+1}(\widetilde{A}^2) < \frac{v_k(\widetilde{A}^2)}{4}$, by Lemma E.7, we have that

$$\begin{split} \|\widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^{T} - \widehat{W}_{[k]}\widehat{\Sigma}_{[k]}^{-2}\widehat{W}_{[k]}^{T}\|_{2} &\leq \frac{16\|\widetilde{A}^{2} - \widehat{A}^{2}\|_{2} + 4v_{k+1}(\widetilde{A}^{2})}{v_{k}(\widetilde{A}^{2})^{2}} \\ &\leq \frac{O\left(\frac{\xi \cdot n^{-320\varepsilon/\varphi^{2}}}{c_{3}}\right) + 4n^{-18}}{\frac{n^{-320\varepsilon/\varphi^{2}}}{16}} \\ &\leq O\left(\frac{\xi}{c_{3}}\right) + 64n^{-17} \\ &\leq \xi. \end{split}$$

Moreover, both Lemma E.5 and Lemma E.8 fail with probability at most n^{-100} , by union bound, we can get that the above inequality holds with probability at least $1 - 2n^{-100}$.

The following lemma shows that the output value $\langle f_x, f_y \rangle_{\rm apx}$ of Alg. 4 is close to $(M^t\mathbb{1}_x)^T(M^tS)\left(\frac{n}{s}\cdot\widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^T\right)(M^tS)^T(M^t\mathbb{1}_y)$. The proof follows from the proof of Lemma 29 in Gluch et al. (2021). Nevertheless, for completeness, we provide a concise proof here.

Lemma E.10. Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V,E) be a d-regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1, \ldots, s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1, \ldots, n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot M^t S = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot M^t S$ where $\widetilde{U} \in \mathbb{R}^{n \times n}, \widetilde{\Sigma} \in \mathbb{R}^{n \times n}, \widetilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{1}{n^6} < \xi < 1$ and $1 \leq M_{\text{init}} \leq O\left(\frac{n^{1/2 - 20\varepsilon/\varphi^2}}{k}\right)$. Let $t \geq \frac{20\log n}{\varphi^2}$. Let c > 1 be a large enough constant. Let $s \geq 1$

 $c \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$. Let Ψ denote the matrix constructed by InitOracle $(G, k, \xi, M_{\text{init}})$ (Alg. 3).

Let $x, y \in V$. Let $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\mathrm{apx}} \in \mathbb{R}$ denote the value returned by QUERYDOT $(G, x, y, \xi, \Psi, M_{\mathrm{query}})$ (Alg. 4). If $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, Alg. 3 succeeds and $1 \leq M_{\mathrm{query}} \leq O\left(\frac{n^{1/2 - 20\varepsilon/\varphi^2}}{k}\right)$, then with probability at least $1 - 5n^{-100}$ matrix $\widetilde{\Sigma}_{[k]}^{-4}$ exists and we have

$$\left| \langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle_{\text{apx}} - (\boldsymbol{M}^t \mathbb{1}_x)^T (\boldsymbol{M}^t \boldsymbol{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\boldsymbol{M}^t \boldsymbol{S})^T (\boldsymbol{M}^t \mathbb{1}_y) \right| < \frac{\xi}{n}.$$

Proof. Note that in line 8 of Alg. 4, $\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle_{\text{apx}}$ is defined as $\boldsymbol{\alpha}_x^T \Psi \boldsymbol{\alpha}_y$, where in line 8 of Alg. 3, $\Psi \in \mathbb{R}^{s \times s}$ is defined to be $\Psi = \frac{n}{s} \cdot \widehat{W}_{[k]} \widehat{\Sigma}_{[k]}^{-2} \widehat{W}_{[k]}^T$ and $\boldsymbol{\alpha}_x, \boldsymbol{\alpha}_y \in \mathbb{R}^s$ are vectors obtained by taking entriwise median over all $O(\log n)$ runs (see lines $3 \sim 7$ of Alg. 4).

For any vertex $x \in V$, we use p_x to denote $p_x = M^t \mathbb{1}_x$. We then define

$$\mathbf{a}_x = \boldsymbol{p}_x^T(\boldsymbol{M}^t\boldsymbol{S}), A = \frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T, \mathbf{a}_y = (\boldsymbol{M}^t\boldsymbol{S})^T \boldsymbol{p}_x,$$

$$\mathbf{e}_x = \boldsymbol{\alpha}_x^T - \mathbf{a}_x, \quad E = \Psi - A, \quad \mathbf{e}_y = \boldsymbol{\alpha}_y - \mathbf{a}_y.$$

Then by triangle inequality, we have

$$\begin{split} & \left| \mathbf{\alpha}^T \Psi \mathbf{\alpha}_y - \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T \mathbf{p}_y \right| \\ &= \left| (\mathbf{a}_x + \mathbf{e}_x) (A + E) (\mathbf{a}_y + \mathbf{e}_y) - \mathbf{a}_x A \mathbf{a}_y \right| \\ &\leq \|\mathbf{e}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2 \\ &+ \|\mathbf{a}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2. \end{split}$$

In the following, we bound $\|\mathbf{a}_x\|_2$, $\|\mathbf{a}_y\|_2$, $\|E\|_2$, $\|A\|_2$, $\|\mathbf{e}_x\|_2$ and $\|\mathbf{e}_x\|_2$.

Let c'>1 be a constant and let $\xi'=\frac{\xi}{c'\cdot k^4\cdot n^{80\varepsilon/\varphi^2}}.$ Thus for large enough constant c, we have $s\geq c_1\cdot n^{240\varepsilon/\varphi^2}\cdot \log n\cdot k^4$ and $R_{\rm init}=\Theta(\frac{n^{1+920\varepsilon/\varphi^2}}{M_{\rm init}}\cdot \frac{k^{14}}{\xi^2})\geq \frac{c_2k^6\cdot n^{1+760\varepsilon/\varphi^2}}{M_{\rm init}\cdot \xi'^2}$ as in line 2 of Alg. 3, hence, by Lemma E.6 applied with ξ' we have that with probability at least $1-2n^{-100},\,\widehat{\Sigma}_{[k]}^{-2}$ and $\widetilde{\Sigma}_{[k]}^{-4}$ exist and we have

$$||E||_{2} = \frac{n}{s} \cdot ||\widehat{W}_{[k]}\widehat{\Sigma}_{[k]}^{-2}\widehat{W}_{[k]}^{T} - \widetilde{W}_{[k]}\widetilde{\Sigma}_{[k]}^{-4}\widetilde{W}_{[k]}^{T}||_{2} < \frac{n}{s} \cdot \xi' = \frac{\xi \cdot n}{c' \cdot k^{4} \cdot n^{80\varepsilon/\varphi^{2} \cdot s}}.$$
 (1)

Moreover, according to the proof of Lemma 29 in Gluch et al. (2021), we have that, with probability at least $1 - n^{-100}$,

$$||A||_2 \le \frac{4 \cdot n^{1 + 160\varepsilon/\varphi^2}}{s}.\tag{2}$$

And with probability 1, we have

$$\|\mathbf{a}_x\|_2 \le O(\sqrt{s} \cdot k^2 \cdot n^{-1+40\varepsilon/\varphi^2}) \tag{3}$$

and

$$\|\mathbf{a}_y\|_2 \le O(\sqrt{s} \cdot k^2 \cdot n^{-1+40\varepsilon/\varphi^2}). \tag{4}$$

Now we need to bound \mathbf{e}_x and \mathbf{e}_y . Recall that $\mathbf{e}_x = \boldsymbol{\alpha}_x^T - \boldsymbol{p}_x^T(\boldsymbol{M}^t\boldsymbol{S})$, where $\boldsymbol{\alpha}_x \in \mathbb{R}^s$ is obtained by taking entrywise median over all \boldsymbol{x}_l 's. Note that in line 5 of Alg. 4, $\boldsymbol{x}_l(i)$ is the output of ESTRWDOT $(G, R_{\text{query}}, t, M_{\text{query}}, x, s_i)$ (Alg. 1). Let c_3 be a constant infront of R in Lemma E.3.

Let $\sigma_{\text{err}} = \frac{\xi}{c' \cdot k^2 \cdot n^{1+200\varepsilon/\varphi^2}}$. Thus by our choice of $R_{\text{query}} = \Theta(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\text{query}}} \cdot \frac{k^6}{\xi^2})$ in line 2 of Alg. 4, the prerequisites of Lemma E.3 are satisfied:

$$R_{\mathrm{query}} = \Theta\left(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\mathrm{query}}} \cdot \frac{k^6}{\xi^2}\right) \geq \frac{c_3 \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\mathrm{err}}^2 \cdot M_{\mathrm{query}}}.$$

 Thus we can apply Lemma E.3. Hence, for any $1 \le i \le s$ with probability at least 0.99, we have

$$|\boldsymbol{x}_l(i) - \boldsymbol{p}_x^T \boldsymbol{p}_{s_i}| \leq \sigma_{\text{err}}.$$

Since we are running $O(\log n)$ rounds to compute x_l 's and α_x is obtained by taking entrywise median, we can get that with probability at least $1 - n^{-100}$ for all $z \in I_S$ (see Remark E.1), we have

$$|\boldsymbol{\alpha}_x(z) - \boldsymbol{p}_x^T \boldsymbol{p}_z| \leq \sigma_{\text{err}}.$$

Therefore, with probability at least $1 - n^{-100}$, we can get

$$\|\mathbf{e}_x\|_2 = \|\boldsymbol{\alpha}_x^T - \boldsymbol{p}_x^T(\boldsymbol{M}^t \boldsymbol{S})\|_2 \le \sqrt{s} \cdot \sigma_{\text{err}} = \frac{\sqrt{s} \cdot \xi}{c' \cdot k^2 \cdot n^{1 + 200\varepsilon/\varphi^2}}.$$
 (5)

Using the same analysis, with probability at least $1 - n^{-100}$, we can get that

$$\|\mathbf{e}_y\|_2 = \|\boldsymbol{\alpha}_y - (\boldsymbol{M}^t \boldsymbol{S})^T \boldsymbol{p}_y\|_2 \le \sqrt{s} \cdot \sigma_{\text{err}} = \frac{\sqrt{s} \cdot \xi}{c' \cdot k^2 \cdot n^{1 + 200\varepsilon/\varphi^2}}.$$
 (6)

Putting (1),(2),(3),(4),(5),(6) together and for large enough n, we can get

$$\begin{split} & \left| \mathbf{\alpha}^{T} \Psi \mathbf{\alpha}_{y} - \mathbf{p}_{x}^{T} (\mathbf{M}^{t} \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^{T} \right) (\mathbf{M}^{t} \mathbf{S})^{T} \mathbf{p}_{y} \right| \\ & \leq \| \mathbf{e}_{x} \|_{2} \| E \|_{2} \| \mathbf{e}_{y} \|_{2} + \| \mathbf{e}_{x} \|_{2} \| A \|_{2} \| \mathbf{e}_{y} \|_{2} + \| \mathbf{a}_{x} \|_{2} \| E \|_{2} \| \mathbf{e}_{y} \|_{2} \\ & + \| \mathbf{a}_{x} \|_{2} \| A \|_{2} \| \mathbf{e}_{y} \|_{2} + \| \mathbf{a}_{x} \|_{2} \| E \|_{2} \| \mathbf{a}_{y} \|_{2} + \| \mathbf{e}_{x} \|_{2} \| A \|_{2} \| \mathbf{a}_{y} \|_{2} + \| \mathbf{a}_{x} \|_{2} \| E \|_{2} \| \mathbf{a}_{y} \|_{2} \\ & \leq O(\frac{\xi}{c' \cdot n}) \\ & \leq \frac{\xi}{\pi}. \end{split}$$

The last inequality holds by setting c' be a large enough constant to cancel the hidden constant of $O(\frac{\xi}{c' \cdot n})$.

Using union bound, if Alg. 3 succeeds, then the above inequality holds with probability at least $1-2n^{-100}-n^{-100}-2n^{-100}=1-5n^{-100}$.

Having Lemma E.3 and Lemma E.10, to prove Theorem 3.2, we also need the following lemma.

Lemma E.11 (Lemma 19 in Gluch et al. (2021)). Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0,1)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1,\ldots,s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1,\ldots,n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot M^t S = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot M^t S$ where $\widetilde{U} \in \mathbb{R}^{n \times n}, \widetilde{\Sigma} \in \mathbb{R}^{n \times n}, \widetilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{1}{n^6} < \xi < 1$ and $t \geq \frac{20 \log n}{\varphi^2}$. Let c > 1 be a large enough constant. Let $s \geq c \cdot n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2$. If $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, then with probability at least $1 - n^{-100}$, matrix $\widetilde{\Sigma}_{[k]}^{-4}$ exists and we have

$$\left|\mathbb{1}_x^T \boldsymbol{U}_{[k]} \boldsymbol{U}_{[k]}^T \mathbb{1}_y - (\boldsymbol{M} \mathbb{1}_x)^T (\boldsymbol{M}^t \boldsymbol{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\boldsymbol{M}^t \boldsymbol{S})^T (\boldsymbol{M} \mathbb{1}_y) \right| \leq \frac{\xi}{n}.$$

Now we are ready to prove Theorem 3.2.

Poof of Theorem 3.2. Correctness. Equipped with Lemma E.10, based on the correctness proof of Theorem 2 in Gluch et al. (2021), we can directly obtain the correctness.

Note that in line 3 of Alg. 3, we set $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2)$, and in line 4 of Alg. 3, we sample s indices independently and uniformly at random form $V = \{1, \ldots, n\}$ to get $I_S = \{s_1, \ldots, s_s\}$. Recall that M is the random walk transition matrix of G. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column is $\mathbb{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$ where $\widetilde{U} \in \mathbb{R}^{n \times n}, \widetilde{\Sigma} \in \mathbb{R}^{n \times n}, \widetilde{W} \in \mathbb{R}^{s \times n}$.

 Recall that for any vertex $x \in V$, we define $f_x = U_{[k]}^T \mathbb{1}_x$ (see Definition 2.1), thus we have $\langle f_x, f_y \rangle = f_x^T f_y = (U_{[k]}^T \mathbb{1}_x)^T U_{[k]}^T \mathbb{1}_y = \mathbb{1}_x^T U_{[k]} U_{[k]}^T \mathbb{1}_y$. For convenience, let us denote $B = (M^t \mathbb{1}_x)^T (M^t S) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T\right) (M^t S)^T (M^t \mathbb{1}_y)$. By trangle inequality, we have

$$egin{aligned} |\langle m{f}_x, m{f}_y
angle_{ ext{apx}} - \langle m{f}_x, m{f}_y
angle| &= |\langle m{f}_x, m{f}_y
angle_{ ext{apx}} - m{B} + m{B} - \langle m{f}_x, m{f}_y
angle| \\ &\leq |\langle m{f}_x, m{f}_y
angle_{ ext{apx}} - m{B}| + |m{B} - \langle m{f}_x, m{f}_y
angle| \\ &= |\langle m{f}_x, m{f}_y
angle_{ ext{apx}} - m{B}| + |m{B} - \langle \mathbb{1}_x^T m{U}_{[k]} m{U}_{[k]}^T \mathbb{1}_y
angle|. \end{aligned}$$

Let $\xi' = \frac{\xi}{2}$. Let c' be a constant in front of s form Lemma E.10. Since $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2) \ge c' \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, then by Lemma E.10, with probability at least $1 - 5n^{-100}$, we have $|\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle_{\rm apx} - \boldsymbol{B}| \le \frac{\xi'}{n} = \frac{\xi}{2n}$.

Let c be a constant in front of s form Lemma E.11. Since $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2) \ge c \cdot n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi'^2$ and $\frac{\varepsilon}{\varphi^2} \le \frac{1}{10^5}$, then by Lemma E.11, with probability at least $1 - n^{-100}$, we have $|\boldsymbol{B} - \langle \mathbb{1}_x^T \boldsymbol{U}_{[k]} \boldsymbol{U}_{[k]}^T \mathbb{1}_y \rangle| \le \frac{\xi'}{n} = \frac{\xi}{2n}$.

Therefore, by union bound, with probability at least $1-5n^{-100}-n^{-100}=1-6n^{-100}$, we have $|\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle_{\rm apx} - \langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle| \leq \frac{\xi}{2n} + \frac{\xi}{2n} = \frac{\xi}{n}$.

Runtime and space of INITORACLE. Algorithm INITORACLE $(G,k,\xi,M_{\mathrm{init}})$ (Alg. 3) calls EST-COLLIPROB $(G,R_{\mathrm{init}},t,M_{\mathrm{init}},I_S)$ (Alg. 2) to get $\mathcal G$ (see line 5 of Alg. 3). According to Lemma E.5, ESTCOLLIPROB $(G,R_{\mathrm{init}},t,M_{\mathrm{init}},I_S)$ runs in $O(R_{\mathrm{init}}\cdot t\cdot \log n\cdot s^2)$ time and uses $O(M_{\mathrm{init}}\cdot \log^2 n\cdot s^2)$ bits of space. Then in line 7 of INITORACLE, it computes the SVD of matrix $\mathcal G$ in s^3 time and it uses $s^2 \cdot \log n$ bits of space to store $\Psi \in \mathbb R^{n\times n}$. Thus overall INITORACLE runs in $O(R_{\mathrm{init}}\cdot t\cdot \log n\cdot s^2+s^3)$ time and uses $O(M_{\mathrm{init}}\cdot \log^2 n\cdot s^2+s^2\cdot \log n)$ bits of space. By the choice of $t:=\frac{20\log n}{\varphi^2}$, $R_{\mathrm{init}}:=\Theta(\frac{n^{1+920\varepsilon/\varphi^2}}{M_{\mathrm{init}}}\cdot \frac{k^{14}}{\xi^2})$ and $s:=O(n^{480\cdot \varepsilon/\varphi^2}\cdot \log n\cdot k^8/\xi^2)$ as in INITORACLE, we get that INITORACLE runs in $T_{\mathrm{init}}=(\frac{k}{\xi})^{O(1)}\cdot n^{1+O(\varepsilon/\varphi^2)}\cdot \frac{1}{M_{\mathrm{init}}}\cdot \log^4 n\cdot \frac{1}{\varphi^2}$ time and uses $S_{\mathrm{init}}=(\frac{k}{\xi})^{O(1)}\cdot n^{O(\varepsilon/\varphi^2)}\cdot M_{\mathrm{init}}\cdot \log^4 n$ bits of space.

Runtime and space of QUERYDOT. In QUERYDOT (Alg. 4), in lines $3 \sim 6$, it calls ESTRW-DOT $(G,R_{\text{query}},t,M_{\text{query}},x,s_i)$ (Alg. 1) for $O(\log n \cdot s)$ times. According to Lemma E.3, ESTRW-DOT $(G,R_{\text{query}},t,M_{\text{query}},x,s_i)$ runs in $O(R_{\text{query}}\cdot t)$ time and uses $O(M_{\text{query}}\cdot \log n)$ bits of space. Moreover, in line 9 of QUERYDOT, it returns $\langle \pmb{f}_x,\pmb{f}_y\rangle_{\text{apx}}=\pmb{\alpha}_x^T\Psi\pmb{\alpha}_y$, which can be computed in $O(s^2)$ time, since we can compute $\pmb{a}=\pmb{\alpha}_x^T\Psi$ in s^2 time and then we compute $\pmb{a}\pmb{\alpha}_y$ in s^2 time. Thus overall QUERYDOT runs in $O(\log n \cdot s \cdot R_{\text{query}} \cdot t + s^2)$ time and $O(\log^2 n \cdot s \cdot M_{\text{query}})$ bits of space. By the choice of $t\coloneqq \frac{20\log n}{\varphi^2}$, $R_{\text{query}}\coloneqq \Theta(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\text{query}}}\cdot\frac{k^6}{\xi^2})$ and $s\coloneqq O(n^{480\cdot\varepsilon/\varphi^2}\cdot\log n \cdot k^8/\xi^2)$ as in QUERYDOT, we get that QUERYDOT runs in $T_{\text{query}}=(\frac{k}{\xi})^{O(1)}\cdot n^{1+O(\varepsilon/\varphi^2)}\cdot\frac{1}{M_{\text{query}}}\cdot\log^3 n\cdot\frac{1}{\varphi^2}$ time and uses $S_{\text{query}}=(\frac{k}{\xi})^{O(1)}\cdot n^{O(\varepsilon/\varphi^2)}\cdot M_{\text{query}}\cdot\log^3 n$ bits of space.

F Proof of Item 1 in Theorem 3.1

In this section, we first present an algorithm for computing the spectral dot product in a subspace, which will serve as a building block for the sublinear spectral clustering oracle that relies on a $\log(k)$ conductance gap. Next, we introduce the sublinear spectral clustering oracle, originally proposed in Gluch et al. (2021), corresponding to Item 1 in Theorem 3.1. Finally, we provide the proof of Item 1 in Theorem 3.1.

F.1 DOT PRODUCT ORACLE ON SUBSPACE

Note that the clustering oracle in Gluch et al. (2021) relies on cluster centers:

1297

1302

1303

1304

1305

1306 1307

1309

1310

1311

1322 1323

1324

1326

1327

1328 1329

1330

1331

1332

1333 1334

1335

1336

1338 1339

1340

1341

1342

1343

1344

1345 1346

1347

1348 1349 **Definition F.1** (Cluster center). For a vertex set $C \subset V$, the *cluster center* of C is defined to be

$$\mu_C = \frac{1}{|C|} \sum_{x \in C} \mathbf{f}_x.$$

They proved that if $x \in C_i$, then f_x is close to μ_{C_i} , which means $\langle f_x, \mu_C \rangle \geq c \cdot \|\mu_C\|_2^2$, where c is a constant. Therefore, the key idea behind the clustering oracle in Gluch et al. (2021) is to sample a subset of vertices and enumerate possible k-partition in order to obtain a good approximation $\widehat{\mu}_1,\ldots,\widehat{\mu}_k$ to the true cluster centers μ_1,\ldots,μ_k (see lines $6\sim 11$ of Alg. 7). When answering an arbitrary WHICHCLUSTER (G, x) query, the oracle assigns the x to the cluster whose center is close to f_x while other cluster centers are not close to f_x (see line 5 of Alg. 11).

In fact, their clustering algorithm uses hyperplane partitioning, which requires computing dot products in the subspace (i.e., $\langle f_x, \Pi \mu \rangle$). Therefore, we first present the algorithm that computes the dot products in the subspace based on our improved version. We highlight that this (i.e., Alg. 6) is not our contribution.

Algorithm 6: DOTPRODUCTORACLEONSUBSPACE $(G, x, y, \xi, \Psi, M, B_1, \dots, B_r)$

```
1312
            ı Let X \in \mathbb{R}^{r \times r}, h_x \in \mathbb{R}^r, h_y \in \mathbb{R}^r
            2 Let \xi' = \Theta(\xi \cdot n^{-80\varepsilon/\varphi^2} \cdot k^{-6})
1314
1315
            s for i,j \in [r] do
            4 | X(i,j) \coloneqq \frac{1}{|B_i||B_j|} \cdot \sum_{z_i \in B_i} \sum_{z_j \in B_j} \text{QUERYDOT}(G, z_i, z_j, \xi', \Psi, M)
1316
1317
            5 for i \in [r] do
1318
                      \boldsymbol{h}_x(i) \coloneqq \frac{1}{|B_i|} \cdot \sum_{z_i \in B_i} \mathsf{QUERYDOT}(G, z_i, x, \xi', \Psi, M)
1319
                 oldsymbol{h}_y(i) \coloneqq rac{1}{|B_i|} \cdot \sum_{z_i \in B_i} \operatorname{QUERYDot}(G, z_i, y, \xi', \Psi, M)
1320
            s return \langle \boldsymbol{f}_x, \widehat{\Pi} f_y \rangle_{\text{apx}} \coloneqq \text{QUERYDOT}(G, x, y, \xi', \Psi, M) - \boldsymbol{h}_x^T \boldsymbol{X}^{-1} \boldsymbol{h}_y
1321
```

In the following, we will give some informal theorem and corollaries about Alg. 6. Note that the only modification we make to Alg. 6 is to replace SPECTRALDOTPRODUCT with our improved version. Since our dot product oracle provides the same correctness guarantees as the original one, the correctness of the theorem and corollaries concerning Alg. 6 follows immediately from the proof of Theorem 6 in Gluch et al. (2021). Therefore, we focus on analyzing the time and space complexities.

Theorem F.1 (Informal). Let $k \ge be$ an integer, φ , $\frac{1}{n^5} < \xi < 1$ and $\frac{\varepsilon}{\varphi^2}$ be smaller than a positive absolute constant. Let G = (V, E) be a d-regular and $(k, \varphi, \varepsilon)$ -clusterable graph with C_1, \ldots, C_k .

Let $r \in [k]$. Let B_1, \ldots, B_r denote multisets of vertices. Let $b = \max_{i \in [r]} |B_i|$. Let $\widehat{\mu}_i = \sum_{i \in [r]} |B_i|$ $\frac{1}{|B_i|}\sum_{x\in B_i} f_x$. Let $\widehat{\Pi}$ is defined as a orthogonal projection onto the span $(\{\widehat{\mu}_1,\ldots,\widehat{\mu}_r\})^{\perp}$. Then for all $x, y \in V$, we have

```
1 \left| \langle \boldsymbol{f}_x, \widehat{\boldsymbol{\Pi}} \boldsymbol{f}_y \rangle_{\mathrm{apx}} - \langle \boldsymbol{f}_x, \widehat{\boldsymbol{\Pi}} \boldsymbol{f}_y \rangle \right| \leq \frac{\xi}{n}, \text{ where } \langle \boldsymbol{f}_x, \widehat{\boldsymbol{\Pi}} \boldsymbol{f}_y \rangle_{\mathrm{apx}} \text{ is the output of Alg. 6,}
2 Ålg. 6 runs in b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} time,
3 Alg. 6 uses b^2 \cdot (\frac{k}{\epsilon})^{O(1)} \cdot n^{O(\epsilon/\varphi^2)} \cdot M \cdot \log^3 n bits of space.
```

Proof. In lines $3 \sim 4$ of Alg. 6, to compute X, Alg. 6 calls QUERYDOT for $r^2 \cdot b^2 \leq k^2 \cdot b^2$ times. In lines $5 \sim 7$ of Alg. 6, to compute h_x , h_y , Alg. 6 calls QUERYDOT for $r \cdot b \leq k \cdot b$ times. To compute $m{X}^{-1}$, it takes $r^3 \leq k^3$ time. Therefore, Alg. 6 runs in $k^2 \cdot b^2 \cdot T_{ ext{query}} + k \cdot b \cdot T_{ ext{query}} + k^3$ time and it uses $k^2 \cdot b^2 \cdot S_{\text{query}} + k \cdot b \cdot S_{\text{query}} + k^2 \text{ bits of space. Note that } T_{\text{query}} = (\frac{k}{\xi'})^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{Q} \cdot \frac{1}{Q} \cdot \log^3 n \cdot \frac{1}{Q} \cdot \frac{1}{Q} \cdot \log^3 n \cdot \frac{1}{Q}$ and $S_{\text{query}} = (\frac{k}{\xi'})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$, where $\xi' = \Theta(\xi \cdot n^{-80\varepsilon/\varphi^2} \cdot k^{-6})$. Therefore, we get that $\text{Alg. 6 runs in } b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1 + O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} \text{ time and uses } b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n \cdot \frac{1}{2} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{M} \cdot \log^3 n$ bits of space.

Corollary F.1. There exists an algorithm that

```
1 returns a value \langle \mathbf{f}_x, \widehat{\Pi} \widehat{\mu} \rangle_{\text{apx}} such that \left| \langle \mathbf{f}_x, \widehat{\Pi} \widehat{\mu} \rangle_{\text{apx}} - \langle \mathbf{f}_x, \widehat{\Pi} \widehat{\mu} \rangle \right| \leq \frac{\xi}{n},
```

```
1350
2 runs in b^3 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} time,
1351
3 uses b^3 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n bits of space.
```

Proof. One can compute $\langle \boldsymbol{f}_x, \widehat{\Pi} \widehat{\mu} \rangle_{\mathrm{apx}} \coloneqq \frac{1}{|B|} \cdot \sum_{y \in B} \mathrm{DOTPRODUCTORACLEONSUBSPACE}(G, x, y, \xi, \Psi, M, B_1, \ldots, B_r)$ (Alg. 6). Therefore, the algorithm that computes $\langle \boldsymbol{f}_x, \widehat{\Pi} \widehat{\mu} \rangle_{\mathrm{apx}}$ calls Alg. 6 b times, which ends the proof.

Corollary F.2. There exists an algorithm that

1353 1354

1355

1356

1357 1358

1359

1360

1362

1363 1364 1365

1366

1367

1368 1369

1370 1371

1372

1373

1374

1375 1376

1377

1390 1391

```
1 returns a value \|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2 such that \left|\|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2 - \|\widehat{\Pi}\widehat{\mu}\|^2\right| \leq \frac{\xi}{n}, 2 runs in b^4 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} time, 3 uses b^4 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n bits of space.
```

Proof. One can compute $\|\widehat{\Pi}\widehat{\mu}\|_{\rm apx}^2 = (\widehat{\Pi}\widehat{\mu})^T(\widehat{\Pi}\widehat{\mu}) = \widehat{\mu}^T\widehat{\Pi}^T\widehat{\Pi}\widehat{\mu} = \widehat{\mu}^T\widehat{\Pi}\widehat{\mu} = \langle \widehat{\mu}, \widehat{\Pi}\widehat{\mu} \rangle = \frac{1}{|B|} \cdot \sum_{x \in B} \langle \boldsymbol{f}_x, \widehat{\Pi}\widehat{\mu} \rangle_{\rm apx}$. Therefore, the algorithm that computes $\|\widehat{\Pi}\widehat{\mu}\|_{\rm apx}^2$ calls the algorithm in Corollary F.1 b times, which ends the proof.

F.2 SUBLINEAR SPECTRAL CLUSTERING ORACLE

Now we present the sublinear spectral clustering oracle with a $\log(k)$ gap between inner and outer conductance, originally proposed in Gluch et al. (2021), and adapt it by incorporating our dot product oracle, which operates with very little memory.

Algorithm 7 finds some cluster centers that reflects the clustering structure of the input graph.

Algorithm 7: FINDCENTERS(G, M)

```
1378
          1 INITORACLE(G, k, 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{G}, M)
1379
          \mathbf{z} \ s_1 \coloneqq \Theta\left(\frac{\varphi^2}{\varepsilon} k^5 \log^2 k \log(1/\eta)\right), s_2 \coloneqq \Theta\left(\frac{\varphi^4}{\varepsilon^2} k^5 \log^2 k \log(1/\eta)\right)
1380
          t \in [1 \dots \log(2/\eta)] do
1381
                    S := Random samples of vertices of V of size s = \Theta(\frac{\varphi^2}{\varepsilon}k^4 \log k)
                   for (P_1, P_2, \dots, P_k) \in PARTITION(S) do
                          for i = 1 to k do
1384
                              \widehat{\mu}_i \coloneqq \frac{1}{|P_i|} \sum_{x \in P_i} f_x
1385
1386
                          (r, C) := \text{COMPUTERORDEREDPARTITION}(G, (\widehat{\mu}_1, \dots, \widehat{\mu}_k)), s_1, s_2, M)
1387
                         if r = TRUE then
1388
                               return C
1389
```

Algorithm 8: Compute Ordered Partition $(G, (\widehat{\mu}_1, \dots, \widehat{\mu}_k), s_1, s_2, M)$

```
1392
         S := \{\widehat{\mu}_1, \dots, \widehat{\mu}_k\}
1393
         2 for i = 1 to \lceil \log k \rceil do
1394
                   T_i := \emptyset
1395
                   for \widehat{\mu} \in S do
1396
                         \psi := \text{OUTERCONDUCTANCE}(G, \widehat{\mu}, (T_1, \dots, T_{i-1}), S, s_1, s_2, M)
                        if \psi \leq O(\frac{\varepsilon}{c^2} \cdot \log k) then
                          T_i := T_i \cup \{\widehat{\mu}\}
1399
                   S := S \backslash T_i
1400
                   if S = \emptyset then
1401
                        return (TRUE, (T_1, \ldots, T_i))
1402
            return (FALSE, \perp)
```

```
1404
             Algorithm 9: OUTERCONDUCTANCE(G, \widehat{\mu}, (T_1, \dots, T_b), S, s_1, s_2, M)
1405
1406
         1 \text{ cnt} := 0
         2 for t = 1 to s_1 do
1407
                   x \sim \text{UNIFORM}\{1 \dots n\}
1408
                   if IsInside(x, \widehat{\mu}, (T_1, \dots, T_b), S, M) then
1409
                        cnt := cnt + 1
1410
          6 if \frac{n}{s_1} \cdot \text{cnt} < \min_{p \in [k]} |C_p|/2 then
1411
1412
                 return \infty
1413
          \mathbf{s} \ e \coloneqq 0, a \coloneqq 0
1414
          9 for t = 1 \text{ to } s_2 \text{ do}
1415
                  x \sim \text{Uniform}\{1 \dots n\}
1416
                   y \sim \text{Uniform}\{w \in \mathcal{N}(u)\}
1417
                   if IsInside(x, \widehat{\mu}, (T_1, \dots, T_b), S, M) then
        12
                         a \coloneqq a + 1
1418
        13
                         if \neg IsInside(y, \widehat{\mu}, (T_1, \dots, T_b), S, M) then
1419
        14
                              e \coloneqq e + 1
         15
1420
         16 return \frac{e}{a}
1422
1423
1424
             Algorithm 10: IsInside(x, \widehat{\mu}, (T_1, \dots, T_b), S, M)
1425
          1 for i=1 to b do
1426
                   Let \Pi be the projection onto the span (\bigcup_{j < i} T_j)^{\perp}
1427
                   Let S_i = (\cup_{j \ge i} T_j) \cup S
1428
                   for \widehat{\mu}_i \in T_i \ \mathbf{do}
                        if x \in C^{\text{apx}}_{\Pi\widehat{\mu}_i,0.93} \setminus \bigcup_{\widehat{\mu}' \in S_i \setminus \{\widehat{\mu}_i\}} C^{\text{apx}}_{\Pi\widehat{\mu}',0.93} then
1429
1430
                              return FALSE
1431
1432
         7 Let Π be the projection onto the span (\cup_{i < b} T_i)^{\perp}
          s if x \in C^{\operatorname{apx}}_{\Pi\widehat{\mu},0.93} \setminus \cup_{\widehat{\mu}' \in S \setminus \{\widehat{\mu}\}} C^{\operatorname{apx}}_{\Pi\widehat{\mu}',0.93} then
1433
1434
                  return TRUE
1435
         10 return FALSE
1436
1437
             Algorithm 11 corresponds to the query phase of the clustering oracle where it is used to assign
1438
             vertices to clusters based on cluster centers.
1439
             Algorithm 11: HYPERPLANEPARTITIONING(x, (T_1, \ldots, T_b), M)
1440
1441
          1 for i=1 to b do
1442
                  Let \Pi be the projection onto the span (\bigcup_{i < i} T_i)^{\perp}
                   Let S_i = (\cup_{j \ge i} T_j)
1443
                   for \widehat{\mu} \in T_i do
1444
                         if x \in C^{\operatorname{apx}}_{\Pi\widehat{\mu},0.93} \setminus \bigcup_{\widehat{\mu}' \in S_i \setminus \{\widehat{\mu}\}} C^{\operatorname{apx}}_{\Pi\widehat{\mu}',0.93} then
1445
1446
                              return \widehat{\mu}
1447
1448
```

F.3 DEFERRED PROOF

1449

1450 1451

1452

1453

1454

1455

1456 1457 **Theorem F.2** (Restate of Item 1 in Theorem 3.1). Let $k \geq 2$ be an integer, $\varphi, \varepsilon \in (0,1)$ and $h_1(k,\varphi), h_2(k,\varepsilon)$ and $h_3(k,\varphi,\varepsilon)$ be three functions. Let $\varepsilon \ll h_1(k,\varphi)$. Let G = (V,E) be a d-regular and (k,φ,ε) -clusterable graph with C_1,\ldots,C_k . Let $n^{c\cdot\varepsilon/\varphi^2} \leq M \leq O\left(\frac{n^{1/2-O(\varepsilon/\varphi^2)}}{k}\right)$ be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral clustering oracle that:

ullet constructs a data structure $\mathcal D$ using $\widetilde O_{arphi}\left(h_2(k)\cdot n^{O(arepsilon/arphi^2)}\cdot M
ight)$ bits of space,

- answers any WHICHCLUSTER query using \mathcal{D} in $\widetilde{O}_{\varphi}\left(h_2(k)\cdot n^{1+O(arepsilon/arphi^2)}\cdot rac{1}{M}
 ight)$ time,
- has $O(h_3(k,\varphi,\varepsilon)) | C_i |$ misclassification error for each $i \in [k]$,

where we use O_{φ} suppresses dependence on φ and \widetilde{O} hides all poly $(\log n)$ factors and:

1 if
$$h_1(k,\varphi) = \frac{\varphi^3}{\log k}$$
, then $h_2(k,\varepsilon) = \left(\frac{k}{\varepsilon}\right)^{O(1)}$ and $h_3(k,\varphi,\varepsilon) = \frac{\varepsilon}{\varphi^3} \cdot \log k$.

Proof. Space and runtime. In the preprocessing phase, as line 1 of FINDCENTERS (Alg. 7), it invokes INITORACLE(G,k,ξ,M) one time to get a matrix Ψ , which takes S_{init} bits of space according to Theorem 3.2. Then it samples $s = \frac{\varphi^2}{\varepsilon} k^4 \log k$ vertices and tests all the possible k-partitions of the sample set. For each partition, it invokes Alg. 8 one time. Each run of Alg. 8 invokes Alg. 9 $k \log k$ times. Each run of Alg. 9 invokes Alg. 10 $(s_1 + s_2)$ times. Each run of Alg. 10 computes $C_{\Pi\widehat{\mu},0.93}^{\text{apx}}$ about $k^{O(1)}$ times, where $C_{\Pi\widehat{\mu},0.93}^{\text{apx}} = \{x \in V, \frac{\langle f_x, \Pi\widehat{\mu} \rangle_{\text{apx}}}{\|\Pi\widehat{\mu}\|_{\text{apx}}^2} \geq 0.93\}$. According to Corollary F.1 and Corollary F.2, computing $\frac{\langle f_x, \Pi\widehat{\mu} \rangle_{\text{apx}}}{\|\Pi\widehat{\mu}\|_{\text{apx}}^2}$ takes $s^4 \cdot (\frac{k\varphi}{\varepsilon})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n$ bits of space, where we set $\xi = 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{\varphi}$. Therefore, Alg. 7 uses $S_{\text{init}} + k \log k \cdot (s_1 + s_2) \cdot s^4 \cdot (\frac{k\varphi}{\varepsilon})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n$ bits of space. By setting $s_1 \coloneqq \Theta\left(\frac{\varphi^2}{\varepsilon} k^5 \log^2 k \log(1/\eta)\right)$, $s_2 \coloneqq \Theta\left(\frac{\varphi^4}{\varepsilon^2} k^5 \log^2 k \log(1/\eta)\right)$, $\eta = O(\log n)$ and $M_{\text{query}} = M$, we get that Alg. 7 uses $(\frac{k\varphi}{\varepsilon})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \text{poly}(\log n)$ bits of space to get a matrix Ψ and a collection of vertex sets C that represents the cluster centers.

In the query phase, HYPERPLANEPARTITIONING (Alg. 11) computes $C_{\Pi\widehat{\mu},0.93}^{\rm apx}$ about $k^{O(1)}$ times, where $C_{\Pi\widehat{\mu},0.93}^{\rm apx} = \{x \in V, \frac{\langle f_x,\Pi\widehat{\mu}\rangle_{\rm apx}}{\|\Pi\widehat{\mu}\|_{\rm apx}^2} \geq 0.93\}$. According to Corollary F.1 and Corollary F.2, computing $\frac{\langle f_x,\Pi\widehat{\mu}\rangle_{\rm apx}}{\|\Pi\widehat{\mu}\|_{\rm apx}^2}$ takes $s^4 \cdot \left(\frac{k}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$ bits of space and $s^4 \cdot \left(\frac{k}{\varepsilon}\right)^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ time, where we set $\xi = 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{\varphi}$. By setting $s = \frac{\varphi^2}{\varepsilon} k^4 \log k$, we get that Alg. 11 takes $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \operatorname{poly}(\log n)$ bits of space and $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \operatorname{poly}(\log n)$ time.

Thus, the clustering oracle constructs a data structure \mathcal{D} (including matrix Ψ , cluster centers C and other information used by the query phase) using $(\frac{k\varphi}{\varepsilon})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \operatorname{poly}(\log n)$ bits of space. Using \mathcal{D} , any WHICHCLUSTER query can be answered by Alg. 11 in $(\frac{k\varphi}{\varepsilon})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \operatorname{poly}(\log n)$ time.

Correctness. We highlight that the sublinear spectral clustering oracle is not our contribution. Note that the only modification we make to the clustering oracle is to replace the dot product oracle used in the original work (Gluch et al., 2021) with our improved oracle. Since the correctness guarantees (i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of the dot product oracle, and our dot product oracle satisfies the same correctness guarantees with the previous one, the correctness of the overall clustering oracle follows directly from the correctness of the clustering oracle in Gluch et al. (2021).

G Sublinear clustering oracle related to Item 2 in Theorem 3.1

In this section, we present the sublinear spectral clustering oracle with a poly(k) gap between inner and outer conductance, originally proposed in Shen & Peng (2023), and adapt it by incorporating our dot product oracle, which operates with very little memory.

Algorithm 12 first initializes our dot product oracle to get a matrix Ψ (see line 5). It then leverages our dot product oracle to estimate $\langle \boldsymbol{f}_x, \boldsymbol{f}_y \rangle$ for all pairs of vertices x, y in the sample set S, which are subsequently used to construct a similarity graph H (see lines $6 \sim 9$).

```
1512
          Algorithm 12: ConstructOracle(G, k, \varphi, \varepsilon, \gamma, M)
1513
       1 Let \xi = \frac{\sqrt{\gamma}}{1000} and let s = \frac{10 \cdot k \log k}{\gamma}
1514
        2 Let \theta=0.96(1-\frac{4\sqrt{\varepsilon}}{\varphi})\frac{\gamma k}{n}-\frac{\sqrt{k}}{n}(\frac{\varepsilon}{\varphi^2})^{1/6}-\frac{\xi}{n}
1515
1516
        3 Sample a set S of s vertices independently and uniformly at random from V
1517
        4 Generate a similarity graph H = (S, \emptyset)
1518
        5 Let \Psi = \text{INITORACLE}(G, k, \xi, M)
        6 for any u, v \in S do
1520
               Let \langle \boldsymbol{f}_u, \boldsymbol{f}_v \rangle_{\mathrm{apx}} = \mathrm{QUERYDOT}(G, u, v, \xi, \Psi, M)
1521
               if \langle f_u, f_v \rangle_{\rm apx} \geq \theta then
1522
                Add an edge (u, v) to the similarity graph H
1523
       10 if H has exactly k connected components then
1524
               Label the connected components with 1, 2, ..., k (we write them as S_1, ..., S_k)
1525
               Label x \in S with i if x \in S_i
1526
               Return H and the vertex labeling \ell
1527
       14 else
1528
           return fail
1530
1531
          Algorithm 13: SEARCHINDEX(H, \ell, x, M)
1532
        1 for any vertex u \in S do
1533
       2 Let \langle \boldsymbol{f}_u, \boldsymbol{f}_x \rangle_{\mathrm{apx}} = \mathrm{QUERYDOT}(G, u, x, \xi, \Psi, M)
1535
        3 if there exists a unique index 1 \le i \le k such that \langle f_u, f_x \rangle_{\text{add}} \ge \theta for all u \in S_i then
               return index i
       5 else
1537
               return outlier
1538
1539
1540
          Algorithm 14 corresponds to the query phase of the sublinear spectral clustering oracle, where it
1541
          answers any WHICHCLUSTER query using matrix \Psi and similarity graph H.
1542
1543
          Algorithm 14: WHICHCLUSTER(G, x, M)
1544
        1 if preprocessing phase fails then
1545
          return fail
1546
        3 if SEARCHINDEX(H, \ell, x, M) return outlier then
1547
               return a random index \in |k|
       5 else
1549
               return SEARCHINDEX(H, \ell, x, M)
1550
```

H PROOF OF THEOREM 1.2

1551 1552

1554 1555

1556

1557

1558

1560 1561

1562 1563

1564 1565 **Theorem H.1** (Restate of Theorem 1.2). For any trade-off parameter $1 \le M \le O(\sqrt{n})$, there exists an algorithm (Alg. 5) that, with probability at least $1 - 2n^{-100}$, solves the 1-cluster vs. 2-cluster problem. Moreover, the algorithm:

- uses O(M) bits of space,
- runs in $\widetilde{O}\left(\frac{n}{M}\right)$ time.

To prove Theorem 1.2, we need the following lemmas.

Lemma H.1 (Cheeger's inequality). In holds for any graph G that

$$\frac{\lambda_2}{2} \le \phi(G) \le \sqrt{2\lambda_2}.$$

Lemma H.2 bounds the ℓ_2 -norm of the t-step random walk distribution starting from any vertex x in a d-regular graph, distinguishing between the case where the graph is a single φ -expander and the case where it consists of two disjoint φ -expanders.

Lemma H.2 (Expander related version of Lemma E.4). Let $\varphi \in (0,1)$. Let G be a d-regular graph. Let M be the random walk transition matrix of G. For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x \in V$,

1 if G is a φ -expander of size n, then $\|\mathbf{M}^t \mathbb{1}_x\|_2 \leq \sqrt{\frac{2}{n}}$,

2 if G is the disjoint union of two identical φ -expanders of size n/2, then $\|\mathbf{M}^t \mathbb{1}_x\|_2 \leq \sqrt{\frac{3}{n}}$.

Proof. Item 1. Let L be the normalized Laplacian matrix of G. Recall that we use $0=\lambda_1\leq\cdots\leq\lambda_n\leq 2$ to denote the eigenvalues of L and we use u_1,\ldots,u_n to denote the corresponding eigenvectors, where u_1,\ldots,u_n form an orthonormal basis of \mathbb{R}^n and $u_1(x)=\frac{1}{\sqrt{n}}$ for any $x\in V$. Note that $M=I-\frac{L}{2}$. Hence, the eigenvalues of M are given by $1=1-\frac{\lambda_1}{2}\geq\cdots\geq 1-\frac{\lambda_n}{2}\geq 0$, and the corresponding eigenvectors are still u_1,\ldots,u_n . For convenience, we relabel the eigenvalues of M as $1=v_1(M)=(1-\frac{\lambda_1}{2})\geq v_2(M)=(1-\frac{\lambda_2}{2})\geq\cdots\geq v_n(M)=(1-\frac{\lambda_n}{2})\geq 0$. Moreover, we can write that $\mathbbm{1}_x=\sum_{i=1}^n\alpha_iu_i$. Note that $u_j^T\mathbbm{1}_x=\sum_{i=1}^n\alpha_iu_j^Tu_i=\alpha_j$. Therefore, α_j corresponds to $u_j^T\mathbbm{1}_x=u_j(x)$. Now, we have

$$M^t \mathbb{1}_x = M^t \sum_{i=1}^n \alpha_i u_i = \sum_{i=1}^n \alpha_i M^t u_i = \sum_{i=1}^n \alpha_i \left(v_i(M) \right)^t u_i.$$

Thus, we have

$$\|\boldsymbol{M}^{t} \mathbb{1}_{x}\|_{2}^{2} = (\boldsymbol{M}^{t} \mathbb{1}_{x})^{T} (\boldsymbol{M}^{t} \mathbb{1}_{x}) = \sum_{i=1}^{n} \alpha_{i}^{2} (v_{i}(\boldsymbol{M}))^{2t}$$

$$= \alpha_{1}^{2} (v_{1}(\boldsymbol{M}))^{2t} + \sum_{i=2}^{n} \alpha_{i}^{2} (v_{i}(\boldsymbol{M}))^{2t}$$

$$\leq \frac{1}{n} + (v_{2}(\boldsymbol{M}))^{2t} \cdot \sum_{i=2}^{n} \alpha_{i}^{2}$$

$$\leq \frac{1}{n} + (v_{2}(\boldsymbol{M}))^{2t} \cdot (n-1).$$

Since G is a φ -expander, according to Cheeger's inequality (Lemma H.1), we get that $\lambda_2 \geq \frac{\varphi^2}{2}$. Therefore, for any $t \geq \frac{20 \log n}{\varphi^2}$, we have

$$v_2(M)^{2t} = \left(1 - \frac{\lambda_2}{2}\right)^{2t} \le \left(1 - \frac{\varphi^2}{4}\right)^{\frac{4}{\varphi^2} \cdot 10 \log n} \le \frac{1}{n^{10}}.$$

Combine above results together, we get that

$$\|\boldsymbol{M}^{t}\mathbb{1}_{x}\|_{2}^{2} \leq \frac{1}{n} + \frac{1}{n^{10}} \cdot (n-1) = \frac{1}{n} + \frac{1}{n^{9}} \leq \frac{2}{n}.$$

Item 2. We use C_1, C_2 to denote the two φ -expanders in G. Since C_1 and C_2 are disconnected, the normalized Laplacian matrix L of G can be written in block-diagonal form as

$$\boldsymbol{L} = \begin{pmatrix} \boldsymbol{L}_{C_1} & 0 \\ 0 & \boldsymbol{L}_{C_2} \end{pmatrix},$$

where $\boldsymbol{L}_{C_1} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ and $\boldsymbol{L}_{C_2} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ are the normalized Laplacian matrix of C_1 and C_2 , respectively. For \boldsymbol{L}_{C_i} , we use $0 = \lambda_1^{C_i} \leq \cdots \leq \lambda_{n/2}^{C_i} \leq 2$ to denote the eigenvalues of \boldsymbol{L}_{C_i} and we use $\boldsymbol{u}_1^{C_i}, \ldots, \boldsymbol{u}_{n/2}^{C_i} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ to denote the corresponding eigenvectors, where $\boldsymbol{u}_1^{C_i}, \ldots, \boldsymbol{u}_{n/2}^{C_i}$

from an orthonormal basis of $\mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ and $\boldsymbol{u}_{1}^{C_{i}}(x) = \sqrt{\frac{2}{n}}$ for any $x \in V$. Therefore, the eigenvalues of \boldsymbol{L} are given by $0 = \lambda_{1} \leq \cdots \leq \lambda_{n/2} \leq 2$, each of which has multiplicity two, where $\lambda_{i} = \lambda_{i}^{C_{1}} = \lambda_{i}^{C_{2}}$. For λ_{i} , we use $\boldsymbol{u}_{2i-1}, \boldsymbol{u}_{2i} \in \mathbb{R}^{n}$ to denote the corresponding eigenvectors, where $\boldsymbol{u}_{2i-1} = ((\boldsymbol{u}_{i}^{C_{1}})^{T}, 0, \dots, 0)^{T}$ and $\boldsymbol{u}_{2i} = (0, \dots, 0, (\boldsymbol{u}_{i}^{C_{2}})^{T})^{T}$. Note that $\boldsymbol{M} = \boldsymbol{I} - \frac{\boldsymbol{L}}{2}$. Hence, the eigenvalues of \boldsymbol{M} are given by $1 = 1 - \frac{\lambda_{1}}{2} \geq \cdots \geq 1 - \frac{\lambda_{n/2}}{2} \geq 0$, each of which has multiplicity two, and the corresponding eigenvectors are still $\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{n}$. For convenience, we relabel the eigenvalues of \boldsymbol{M} as $1 = v_{1}(\boldsymbol{M}) = v_{2}(\boldsymbol{M}) = (1 - \frac{\lambda_{1}}{2}) \geq v_{3}(\boldsymbol{M}) = v_{4}(\boldsymbol{M}) = (1 - \frac{\lambda_{2}}{2}) \geq \cdots \geq v_{n-1}(\boldsymbol{M}) = v_{n}(\boldsymbol{M}) = (1 - \frac{\lambda_{n/2}}{2}) \geq 0$.

Similar to the proof of item 1, we get

$$\|\mathbf{M}^{t} \mathbb{1}_{x}\|_{2}^{2} = (\mathbf{M}^{t} \mathbb{1}_{x})^{T} (\mathbf{M}^{t} \mathbb{1}_{x}) = \sum_{i=1}^{n} \alpha_{i}^{2} (v_{i}(\mathbf{M}))^{2t}$$

$$= \alpha_{1}^{2} + \alpha_{2}^{2} + \sum_{i=3}^{n} \alpha_{i}^{2} (v_{i}(\mathbf{M}))^{2t}$$

$$\leq \frac{2}{n} + (v_{3}(\mathbf{M}))^{2t} \cdot \sum_{i=3}^{n} \alpha_{i}^{2}$$

$$\leq \frac{2}{n} + (v_{3}(\mathbf{M}))^{2t} \cdot (n-2).$$

Since C_1 and C_2 both are φ -expander, according to Cheeger's inequality (Lemma H.1), we get that $\lambda_2^{C_1} = \lambda_2^{C_2} \geq \frac{\varphi^2}{2}$. Therefore, for any $t \geq \frac{20 \log n}{\varphi^2}$, we have

$$(v_3(\boldsymbol{M}))^{2t} = \left(1 - \frac{\lambda_2}{2}\right)^{2t} = \left(1 - \frac{\lambda_2^{C_1}}{2}\right)^{2t} \le \left(1 - \frac{\varphi^2}{4}\right)^{\frac{4}{\varphi^2} \cdot 10 \log n} \le \frac{1}{n^{10}}.$$

Combine above results together, we get that

$$\|\boldsymbol{M}^{t}\mathbb{1}_{x}\|_{2}^{2} \leq \frac{2}{n} + \frac{1}{n^{10}} \cdot (n-2) = \frac{2}{n} + \frac{1}{n^{9}} \leq \frac{3}{n}.$$

The following lemma shows that, under appropriate parameters, Alg. 1 can estimate the dot product of the random walk distributions from any two vertices up to $\sigma_{\rm err}$, whether the graph is a single φ -expander or consists of two disjoint φ -expanders.

Lemma H.3 (Expander related version of Lemma E.3). Let $\varphi \in (0,1)$. Let G = (V,E) be either a d-regular φ -expander with size n or the disjoint union of two identical d-regular φ -expander of size n/2. Let M be the random walk transition matrix of G. Let Z be the output of ESTRWDOT(G,R,t,M,x,y) (Alg. 1). Let $\sigma_{\text{err}} > 0$. Let c > 1 be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x,y \in V$, if $R \geq \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O(n^{1/2})$, then with probability at least 0.99, we have

$$|Z - \langle \boldsymbol{M}^t \mathbb{1}_x, \boldsymbol{M}^t \mathbb{1}_y \rangle| \leq \sigma_{\text{err}}.$$

Moreover, ESTRWDOT(G, R, t, M, x, y) runs in O(Rt) time and uses $O(M \cdot \log n)$ bits of space.

Proof. **Runtime and space**. See the proof of Lemma E.3.

Correctness.

By Lemma E.2 and Lemma H.2, we can get that

$$\operatorname{Var}[Z] \leq \frac{1}{R} \left[\frac{1}{M} \| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 + \left(\| \boldsymbol{M}^t \mathbb{1}_x \|_2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2^2 + \| \boldsymbol{M}^t \mathbb{1}_x \|_2^2 \cdot \| \boldsymbol{M}^t \mathbb{1}_y \|_2 \right) \right]$$

$$= \frac{1}{R} \left(\frac{O(n^{-1})}{M} + O(n^{-3/2}) \right).$$

Using Chebyshev's inequality, we have

$$\begin{split} \Pr[|Z - \langle \boldsymbol{M}^t \mathbbm{1}_x, \boldsymbol{M}^t \mathbbm{1}_y \rangle| &\geq \sigma_{\text{err}}] = \Pr[|Z - \mathbbm{E}[Z]| \geq \sigma_{\text{err}}] \\ &\leq \frac{\operatorname{Var}[Z]}{\sigma_{\text{err}}^2} \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \left(\frac{O(n^{-1})}{M} + O(n^{-3/2}) \right) \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \cdot O\left(\frac{n^{-1}}{M} \right) & M \leq O\left(n^{1/2} \right) \\ &\leq \frac{1}{100}. \end{split}$$

The last inequality holds by our choice of R as follows, where c is a large enough constant that cancels the constant hidden in $O\left(\frac{n^{-1}}{M}\right)$:

$$R \ge \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}.$$

Lemma H.4 asserts that, under suitable parameters, the output \mathcal{G} of ESTCOLLIPROB (Alg. 2) approximates $(M^tS)^T(M^tS)$ in spectral norm, where the latter is the Gram matrix of the random walk distributions from sampled vertices, and this holds whether the graph is a single φ -expander or two disjoint φ -expanders.

Lemma H.4 (Expander related version of Lemma E.5). Let $\varphi \in (0,1)$. Let G = (V,E) be either a d-regular φ -expander with size n or the disjoint union of two identical d-regular φ -expander of size n/2. Let M be the random walk transition matrix of G. Let $I_S = \{s_1, \ldots, s_s\}$ be a multiset of s indices chosen from $\{1, \ldots, n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals 1_{s_i} . Let $G \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G, R, t, M, I_S) (Alg. 2). Let $\sigma_{\text{err}} > 0$. Let c > 1 be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $R \geq \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O\left(n^{1/2}\right)$, then weith probability $1 - n^{-100}$, we have

$$\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \le s \cdot \sigma_{\text{err}}.$$

Moreover, ESTCOLLIPROB (G, R, t, M, I_S) runs in $O(Rt \cdot \log n \cdot s^2)$ time and uses $O(M \cdot \log^2 n \cdot s^2)$ bits of space.

Proof. Note that we have established Lemma H.3, which is an analogue of Lemma E.3 for graph that is either a φ -expander of size n or the disjoint union of two identical φ -expanders of size n/2. Since the proof of Lemma E.5 relies only on Lemma E.3, the same augment immediately yields Lemma H.4, the corresponding analogue of Lemma E.5.

Lemma H.5 demonstrates that $(M^tS)(M^tS)^T$ has a clear spectral gap between the 1-cluster and 2-cluster cases.

Lemma H.5 (Expander related version of Lemma E.8). Let $\varphi \in (0,1)$. Let G be a d-regular graph. Let M be the random walk transition matrix of G. Let $I_S = \{s_1, \ldots, s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1, \ldots, n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. For any $t \geq \frac{20 \log n}{\varphi^2}$, with probability at least $1 - n^{-100}$, we have

1 if G is a φ -expander of size n and $s \ge 1$, then $v_2\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T\right) \le n^{-9}$,

2 if G is the disjoint union of two identical φ -expanders of size n/2 and $s \ge c \cdot \log n$, where c>1 is a large enough constant, then $v_2\left(\frac{n}{s}\cdot(\mathbf{M}^t\mathbf{S})(\mathbf{M}^t\mathbf{S})^T\right)\geq 0.99.$

To prove Lemma H.5, we need the following lemma.

Lemma H.6 (Lemma 21 in Gluch et al. (2021)). Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Let b = $\max_{\ell \in \{1,...,n\}} \|(\mathbf{A} \mathbb{1}_{\ell})(\mathbf{A} \mathbb{1}_{\ell})^T\|_2$. Let $0 < \xi < 1$. Let $s \ge \frac{40n^2b^2\log n}{\xi^2}$. Let $I_S = \{s_1,...,s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1, \dots, n\}$. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Then we have

$$\Pr\left[\|\boldsymbol{A}\boldsymbol{A}^T - \frac{n}{s}(\boldsymbol{A}\boldsymbol{S})(\boldsymbol{A}\boldsymbol{S})^T\|_2 \ge \xi\right] \le n^{-100}.$$

Proof of Lemma H.5. Item 1. The proof follows directly from the proof of item 2 of Lemma 28 in Gluch et al. (2021).

Item 2. Let $A = (M^t)(M^t)^T = M^{2t}$, we get $v_2(A) = v_2(M)^{2t}$. Since G is the disjoint union of two identical φ -expanders, G has two connected components. Therefore, the normalized Laplacian matrix L of G has two smallest eigenvalues equal to 0. Consequently, since $M = I - \frac{L}{2}$, the two largest eigenvalues of M are $1 - \frac{0}{2} = 1$. Thus, $v_2(A) = 1$.

Let $\widetilde{A} = \frac{n}{s} \cdot (M^t S)(M^t S)^T$. By Item 2 in Lemma H.2, we have $b = \|(M^t \mathbb{1}_x)(M^t \mathbb{1}_x)^T\|_2 \le$ $\|\boldsymbol{M}^t \mathbb{1}_x\|_2^2 \leq \frac{3}{n}$. Let $\xi = \frac{1}{100}$. Therefore, for a large enough constant c > 1, we have $s = c \cdot \log n \geq 1$ $\frac{40n^2b^2\log n}{(\frac{1}{100})^2}$. Thus, according to Lemma H.6, we get that with probability at least $1-n^{-100}$,

$$||A - \widetilde{A}||_2 \le \frac{1}{100}.$$

By Weyl's inequality (Lemma E.9), we get that $v_2(\widetilde{A}) \geq v_2(A) - \|\widetilde{A}\|_2 \geq 1 - \frac{1}{100} = 0.99$.

The proof of Lemma H.7 follows directly from the proof of Lemma 24 in Gluch et al. (2021). Nevertheless, for the sake of completeness, we provide a concise proof here.

Lemma H.7 (Expander related version of Lemma E.6). Let $\varphi \in (0,1)$. Let G = (V,E) be a dregular graph. Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen independently and uniformly at random form $V = \{1, \ldots, n\}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G, R, t, M, I_S) (Alg. 2). Let $c_1 > 1$ be a large enough constant. For any $t \ge \frac{20 \log n}{\varphi^2}$, if $R \ge \frac{c_1 \cdot n}{M}$ and $1 \le M \le O(n^{1/2})$, then with probability at least $1 - 2 \cdot n^{-100}$,

- 1 if G is a φ -expander of size n and $s \ge 1$, then $v_2\left(\left(\frac{n}{s}\mathcal{G}\right)^2\right) = \left(v_2\left(\frac{n}{s}\mathcal{G}\right)\right)^2 < 0.001$, 2 if G is the disjoint union of two identical φ -expanders of size n/2 and $s \ge c_2 \cdot \log n$, where
- $c_2 > 1$ is a large enough constant, then $v_2\left(\left(\frac{n}{s}\mathcal{G}\right)^2\right) = \left(v_2\left(\frac{n}{s}\mathcal{G}\right)\right)^2 > 0.95$.

Proof. Let M be the random walk transition matrix of G. Let $S \in \mathbb{R}^{n \times s}$ be the matrix whose i-th column equals $\mathbb{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot M^t S = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot M^t S$ where $\widetilde{U} \in \mathbb{R}^{n \times n}, \widetilde{\Sigma} \in \mathbb{R}^n$ $\mathbb{R}^{n\times n}, \widetilde{W} \in \mathbb{R}^{s\times n}$. Let $\frac{n}{s}\cdot \mathcal{G} = \widehat{W}\widehat{\Sigma}\widehat{W}^T$ be an eigendecomposition of $\frac{n}{s}\cdot \mathcal{G}$.

Item 1. Let $\sigma_{\text{err}} = \frac{0.0001}{n}$. Let c be the constant from Lemma H.4. By the assumption of the lemma, we have

$$R = \frac{c_1 \cdot n}{M} \ge \frac{c \cdot 10^8 \cdot n}{M} = \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}.$$

Thus we can apply Lemma H.4. Hence, with probability at least $1 - n^{-100}$, we have

$$\|\mathcal{G} - (\boldsymbol{M}^t \boldsymbol{S})^T (\boldsymbol{M}^t \boldsymbol{S})\|_2 \le s \cdot \sigma_{\text{err}}.$$

Let $\widetilde{A} = \frac{n}{s} \cdot (M^t S)^T (M^t S) = \widetilde{W} \widetilde{\Sigma}^2 \widetilde{W}^T$ and $\widehat{A} = \frac{n}{s} \cdot \mathcal{G}$. Thus, we have $\widetilde{A}^2 = \widetilde{W} \widetilde{\Sigma}^2 \widetilde{W}^T = \widetilde{W} \widetilde{S}^2 \widetilde{W}^T$ $\left(\frac{n}{s}\cdot(M^tS)^T(M^tS)\right)^2=\widetilde{W}\widetilde{\Sigma}^4\widetilde{W}^T$ and $\widehat{A}^2=\left(\frac{n}{s}\cdot\mathcal{G}\right)^2=\widetilde{W}\widehat{\Sigma}^2\widehat{W}^T$. Moreover, we have

 $\|\widetilde{A}^2 - \widehat{A}^2\|_2 = \left(\frac{n}{s}\right)^2 \|\left((\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2 - \mathcal{G}^2\|_2$. Using the triangle inequality and submultiplicativity of spectral norm and the above $\|\mathcal{G} - (\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq s \cdot \sigma_{\text{err}}$ bound, we can get that

$$\|\left((\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2 - \mathcal{G}^2\|_2 \leq (s \cdot \sigma_{\text{err}})^2 + 2 \cdot s \cdot \sigma_{\text{err}}\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2.$$

Note that $\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq \|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_F = \sqrt{\sum_{i=1}^s \sum_{j=1}^s ((\boldsymbol{M}^t\mathbb{1}_{s_i})^T(\boldsymbol{M}^t\mathbb{1}_{s_j}))^2}$, by Cauchy Schwarz inequality and Item 1 of Lemma H.2, we can get that $\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq s \cdot \frac{2}{n}$. Put them together and by the choice of $\sigma_{\text{err}} = \frac{0.0001}{n}$, we have that

$$\|\widetilde{A}^2 - \widehat{A}^2\|_2 \le \left(\frac{n}{s}\right)^2 \cdot \left(s^2 \sigma_{\text{err}}^2 + 2 \cdot s \cdot \sigma_{\text{err}} \cdot s \cdot \frac{2}{n}\right) = n^2 \sigma_{\text{err}}^2 + 4n \sigma_{\text{err}} \le 0.00005.$$

Moreover, since $s \ge 1$, by Item 1 of Lemma H.5, with probability at least $1 - n^{-100}$, we have

$$v_2\left(\widetilde{A}^2\right) = v_2\left(\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2\right) \le (n^{-9})^2 = n^{-18}.$$

By Weyl's inequality, we have that

$$v_2(\widehat{A}^2) \le v_2(\widetilde{A}^2) + \|\widetilde{A}^2 - \widehat{A}^2\|_2 \le n^{-18} + 0.0005 \le 0.001.$$

Item 2. By the same augment of the proof of Item 1 and Item 2 of Lemma H.2, we can get that $\|(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\|_2 \leq s \cdot \frac{3}{n}$. Thus, by the choice of $\sigma_{\text{err}} = \frac{0.0001}{n}$, we have that

$$\|\widetilde{A}^2 - \widehat{A}^2\|_2 \le \left(\frac{n}{s}\right)^2 \cdot \left(s^2 \sigma_{\mathsf{err}}^2 + 2 \cdot s \cdot \sigma_{\mathsf{err}} \cdot s \cdot \frac{3}{n}\right) = n^2 \sigma_{\mathsf{err}}^2 + 6n \sigma_{\mathsf{err}} \le 0.0007.$$

Moreover, since $s \ge c_2 \cdot \log n$, by Item 2 of Lemma H.5, with probability at least $1 - n^{-100}$, we have

$$v_2\left(\widetilde{A}^2\right) = v_2\left(\left(\frac{n}{s}\cdot(\boldsymbol{M}^t\boldsymbol{S})^T(\boldsymbol{M}^t\boldsymbol{S})\right)^2\right) \ge (0.99)^2 > 0.98.$$

By Weyl's inequality, we have that

$$v_2(\widehat{A}^2) \geq v_2(\widetilde{A}^2) - \|\widetilde{A}^2 - \widehat{A}^2\|_2 \geq 0.98 - 0.0007 > 0.95.$$

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Correctness. By the promise in the theorem statement, the input d-regular graph G=(V,E) is guaranteed to be either a φ -expander or the disjoint union of two identical φ -expanders, each of size n/2. We run algorithm DISTINGUISH(G,M) (Alg. 5) to distinguish the above two cases. Note that the choices of t,s, and R are made so that all the assumptions required by Lemma H.7 are satisfied. Therefore, by Lemma H.7, we get that in case (i) (when G is a φ -expander), with probability at least $1-2n^{-100}$, $(v_2(\frac{n}{s}\mathcal{G}))^2<0.001<0.6$; in case (ii), with probability at least $1-2n^{-100}$, $(v_2(\frac{n}{s}\mathcal{G}))^2>0.6$. Therefore, we get that, with probability at least $1-2n^{-100}$, algorithm DISTINGUISH correctly distinguishes which case holds.

Space and runtime. According to Lemma H.4, getting matrix $\mathcal G$ requires $O(R \cdot t \cdot \log n \cdot s^2)$ time and $O(M \cdot \log^2 n \cdot s^2)$ bits of space. Computing $(\frac{n}{s}\mathcal G)^2$ requires $O(s^3)$ time and $O(s^2 \cdot \log n)$ bits of space. Therefore, the overall runtime and space complexity are $O(R \cdot t \cdot \log n \cdot s^2 + s^3)$ and $O(M \cdot \log^2 n \cdot s^2 + s^2 \log n)$ bits, respectively. By setting $t = \frac{20 \log n}{\varphi^2}$, $R = \Theta(\frac{n}{M})$ and $s = O(\log n)$, we get that DISTINGUISH(G, M) runs in $n \cdot \frac{1}{M} \cdot \operatorname{poly}(\log n) \cdot \frac{1}{\varphi^2}$ time and uses $M \cdot \operatorname{poly}(\log n)$ bits of space.

I PROOF OF THEOREM 1.3

Theorem I.1 (Restate of Theorem 1.3). Any algorithm that correctly solves the 1-cluster vs. 2-cluster problem with error at most 1/3 using only random walk oracles must satisfy $T \cdot S \ge \Omega(n)$, where T and S denote the time complexity and space complexity of the algorithm, respectively.

Before we start the proof of Theorem 1.3, we would first introduce some basic definitions in information theory.

I.1 BASIC DEFINITIONS

Definition I.1 (Entropy). Given a random variable X taking values in the set \mathcal{X} and distributed according to $p: \mathcal{X} \to [0, 1]$, the *entropy* of X is defined as

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x).$$

In the special case where X has only two possible outcoms, the entropy is given by

$$H_2(X) := -p \log p - (1-p) \log(1-p).$$

The entropy of a random variable quantifies the average level of uncertainty or information associated with the random variable. Note that for the special case of H_2 , we have the following property:

Lemma I.1.

$$1 - H_2\left(\frac{1}{2} + a\right) = \frac{1}{2\ln 2} \sum_{l=1}^{\infty} \frac{(2a)^{2l}}{l(2l-1)} = O\left(a^2\right).$$

Given the outcome of another random variable Y, we can also quantify this randomness using conditional entropy.

Definition I.2 (Conditional entropy). Given random variables X and Y taking values in sets \mathcal{X} and \mathcal{Y} , respectively, with joint distribution $p: \mathcal{X} \times \mathcal{Y} \to [0,1]$, the *conditional entropy* of X given Y is defined as

$$H(X\mid Y) = H(X,Y) - H(Y) = -\sum_{x\in\mathcal{X},y\in\mathcal{Y}} p(x,y)\log\frac{p(x,y)}{p(y)}.$$

Furthermore, the amount of information that is shared between two random variables is called mutual information.

Definition I.3 (Mutual Information). Given random variables X and Y taking values in \mathcal{X} and \mathcal{Y} , respectively, the *mutual information* between X and Y is defined as

$$I(X;Y) = H(X) - H(X \mid Y) = H(Y) - H(Y \mid X).$$

Similarly, given a random variable Z taking values in \mathcal{Z} , the *conditional mutual information* of X and Y given Z is defined as

$$I(X;Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z).$$

Our proof will also use the following key properties of mutual information.

Lemma I.2 (Data Processing Inequality). Given random variables X, Y and Z taking values in sets X, Y and Z, respectively, such that $X \perp Z \mid Y$. Then

Lemma I.3 (Chain Rule). Given random variables X, Y and Z taking values in sets X, Y and Z, respectively, we have

$$I(X;Y,Z) = I(X;Z) + I(X;Y \mid Z).$$

I.2 HARD INSTANCE I

To prove Theorem 1.3, we first consider the following Hard Instance, inspired by Diakonikolas et al. (2019) and commonly used in uniformity testing. Note that in our construction, at each time t, the player is allowed to pick a $W_t \in [2n]$. The proof of Theorem I.2 then follows from the proof of Theorem 23 in Diakonikolas et al. (2019).

Definition I.4 (Hard Instance I). Let X be a uniformly random bit. Based on X, the adversary chooses the distribution p on $\lceil 2n \rceil$ bins as follows:

- X = 0: Pick $p = U_{2n}$, where U_{2n} is the uniform distribution on [2n].
- X=1: We construct two sets as follows: Pair the bins as $\{1,2\}, \{3,4\}, \cdots, \{2n-1,2n\}$. Now on each pair $\{2i-1,2i\}$ pick a random $Y_i \in \{\pm 1\}$. If $Y_i=1$, we put bin 2i-1 to set 1 and bin 2i to set 2; otherwise, we put bin 2i to set 1 and bin 2i-1 to set 2. Each time, the player picks $W_t \in [2n]$. If W_t belongs to set 1, we have $Z_t=1$; otherwise, $Z_t=-1$. The distribution is then

$$(p_{2i-1}, p_{2i}) = \left(\frac{1 + Y_i Z_t}{2n}, \frac{1 - Y_i Z_t}{2n}\right).$$

We have the space-time tradeoff of this instance to be

Theorem I.2. Let A be an algorithm that detects the Hard Instance I with error at most 1/3. The algorithm can access the samples in a single-pass streaming fashion using M bits of space and T samples. Furthermore, at each step, the algorithm may choose which set to sample by specifying W_t . We then have $T \cdot M = \Omega(n)$.

Remark I.1. In Theorem I.2, we use M to denote the space complexity because S is already used in the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem I.2. In either case, we can think of the output of p as being a pair (C, V), where C is an element of [n] is chosen uniformly, and $V \in \{0, 1\}$ is a fair coin if X = 0 and has bias $Y_C Z_t$ if X = 1.

Let s_1, \ldots, s_T be the observed samples from p. Let M_t denote the bits stored in the memory after the algorithm sees the t-th sample s_t .

Since the algorithm \mathcal{A} learns X with probability at least 2/3 after viewing T samples, we know that $I(X;M_T)>\Omega(1)$. On the other hand, M_t is computed from (M_{t-1},s_t) without using any information about X. More formally, $X\perp M_t\mid (M_{t-1},s_t)$ and therefore we can use the data processing inequality (Lemma I.2) and chain rule (Lemma I.3) to get:

$$I(X; M_t) \leq I(X; M_{t-1}, s_t) = I(X; M_{t-1}) + I(X; s_t \mid M_{t-1}).$$

Since irrespective of X, C is uniform over the pairs of bins, we note that C is independent of X even when conditioned on the memory M. Moreover, player's choice of W_t is computed only from M_{t-1} . Thus,

$$I(X; s_t \mid M_{t-1}) = I(X; C_t V_t \mid M_{t-1}) = I(X; V_t \mid M_{t-1} C_t) = I(X; V_t \mid M_{t-1} C_t W_t).$$

Let
$$\alpha_{t-1} = \Pr[X = 1 \mid M_{t-1}C_tW_t]$$
 and thus $\Pr[X = 0 \mid M_{t-1}C_tW_t] = 1 - \alpha_{t-1}$.

We have that

$$\Pr\left[V_{t} = 0 \mid X = 0, M_{t-1}, C_{t}, W_{t}\right] = \frac{1}{2},$$

$$\Pr\left[V_{t} = 0 \mid X = 1, M_{t-1}, C_{t}, Z_{t}\right] = \frac{1 + \mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2},$$

$$\Pr\left[V_{t} = 0 \mid M_{t-1}, C_{t}\right] = (1 - \alpha_{t-1})\frac{1}{2} + \alpha_{t-1}\frac{1 + \mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}$$

$$= \frac{1}{2} + \frac{\alpha_{t-1}\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}.$$

We can calculate

$$\begin{aligned} & 1956 \\ & 1957 \end{aligned} \qquad I\left(X; V_{t} \mid M_{t-1}C_{t}W_{t}\right) = H\left(V_{t} \mid M_{t-1}C_{t}W_{t}\right) - H\left(V_{t} \mid M_{t-1}C_{t}W_{t}X\right) \\ & = H_{2}\left(\Pr\left[V_{t} = 0 \mid M_{t-1}, C_{t}, W_{t}\right]\right) \\ & - \left\{\Pr\left[X = 1 \mid M_{t-1}C_{t}W_{t}\right] H_{2}\left(\Pr\left[V_{t} = 0 \mid X = 1, M_{t-1}, C_{t}, W_{t}\right]\right) \\ & + \Pr\left[X = 0 \mid M_{t-1}C_{t}W_{t}\right] H_{2}\left(\Pr\left[V_{t} = 0 \mid X = 0, M_{t-1}, C_{t}, W_{t}\right]\right) \\ & = H_{2}\left(\frac{1}{2} + \frac{\alpha_{t-1}\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right) - \alpha_{t-1}H_{2}\left(\frac{1}{2} + \frac{\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right) \\ & - \left(1 - \alpha_{t-1}\right)H_{2}\left(\frac{1}{2}\right) \\ & = \alpha_{t-1}\left[1 - H_{2}\left(\frac{1}{2} + \frac{\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right)\right] - \left[1 - H_{2}\left(\frac{1}{2} + \frac{\alpha_{t-1}\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right)\right] \\ & = \Theta(1)\left[\alpha_{t-1}\left(\frac{\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right)^{2} - \left(\frac{\alpha_{t-1}\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]}{2}\right)^{2}\right] \\ & = \Theta(1)\alpha_{t-1}\left(1 - \alpha_{t-1}\right)\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]^{2} \\ & \leq O(1)\mathbb{E}\left[Z_{t}Y_{C_{t}} \mid M_{t-1}, W_{t}\right]^{2}. \end{aligned}$$

Since C_t is uniformly random, we have that

$$I(X; V_t \mid M_{t-1}C_tW_t) = \frac{1}{n} \cdot \sum_{j=1}^n O(1)\mathbb{E}\left[Z_tY_j \mid M_{t-1}, W_t\right]^2.$$

Now to bound this part, note that we first have $H(M_{t-1}, W_t) \leq M$ that $I(Z_tY_1 \dots Z_tY_n; M_{t-1}, W_t) \leq M$. At the same time, notice that Z_t is just flipping the value of Y_1, \dots, Y_n and thus $H(Z_tY_1 \dots Z_tY_n) = H(Y_1 \dots Y_n) = n$. Thus we have

$$H(Z_tY_1...Z_tY_n \mid M_{t-1}, W_t) = H(Z_tY_1...Z_tY_n) - I(Z_tY_1...Z_tY_n; M_{t-1}, W_t) \ge n - M.$$

On the other hand, we have that

$$\sum_{i=1}^{n} H(Z_{t}Y_{i} \mid M_{t-1}, W_{t}) \ge H(Z_{t}Y_{1} \dots Z_{t}Y_{n} \mid M_{t-1}, W_{t}) \ge n - M.$$

Thus,

$$M \ge \sum_{i=1}^{n} [1 - H(Z_t Y_i \mid M_{t-1}, W_t)] = \Theta\left(\sum_{i=1}^{n} \mathbb{E}[Z_t Y_i \mid M_{t-1}, W_t]^2\right),$$

where the equality comes from the fact that if $\Pr[Z_tY_i=1\mid M_{t-1},W_t]=\frac{1}{2}+\beta$, then

$$\begin{split} \mathbb{E}\left[Z_{t}Y_{i} \mid M_{t-1}, W_{t}\right] &= \Pr\left[Z_{t}Y_{i} = 1 \mid M_{t-1}, W_{t}\right](+1) + \Pr\left[Z_{t}Y_{i} = -1 \mid M_{t-1}, W_{t}\right](-1) \\ &= \left(\frac{1}{2} + \beta\right) - \left(\frac{1}{2} - \beta\right) = 2\beta. \end{split}$$

We finally have that

$$\Omega(1) \leq I(M_T; X) = \sum_{t=0}^{T-1} I(M_{t+1}; X) - I(M_t; X)$$

$$= \sum_{t=0}^{T-1} I(M_t, S_{t+1}; X) - I(M_t; X)$$

$$= \sum_{t=0}^{T-1} I(S_{t+1}; X \mid M_t)$$

$$= \sum_{t=0}^{T-1} I(V_{t+1}; X \mid M_t, C_{t+1}, W_{t+1})$$

$$= O(1) \frac{T \cdot M}{n}.$$

We conclude that $T \cdot M \ge \Omega(n)$.

I.3 HARD INSTANCE II

For the graph problems, we would consider the following Hard Instance.

Definition I.5 (Hard Instance II). Let X be a uniformly random bit. Let $\varphi \in (0,1)$ with $\varphi = \Omega(1)$, and let d = O(1). Based on X, the adversary chooses a d-regular graph G on 2n vertices as follows:

- X = 0: Pick the graph to be a φ -expander on 2n vertices.
- X = 1: We construct two sets as follows: Pair bins the as $\{1, 2\}, \{3, 4\}, \dots, \{2n 1, 2n\}$. Now on each pair $\{2i 1, 2i\}$ pick a random $Y_i \in \{\pm 1\}$. If $Y_i = 1$, we put vertex 2i 1 to set 1 and vertex 2i to set 2; otherwise, we put vertex 2i to set 1 and vertex 2i 1 to set 2. The graph is then composed of two identical φ -expanders over set 1 and set 2.

We would assume that the algorithm has access to the graph only via the random walk queries.

Definition I.6 (Random walk queries). In a random walk query, the algorithm specifies a starting vertex x in G. The query then returns the endpoint of a random walk of length $O(\log n)$ starting from x.

We have the properties of a random walk for a φ -expander as follows:

Lemma I.4. Assume G = (V, E) is a d-regular φ -expander on n vertices. Let M be the lazy random walk transition matrix of G. Let $M^t \mathbb{1}_x$ be the probability distribution of a random walk with length $O(\frac{\log n}{\varphi^2})$ starting from vertex $x \in V$. Let $\pi = (\frac{1}{n}, \dots, \frac{1}{n})^T \in \mathbb{R}^n$ be the uniform distribution over n vertices. We have that $d_{\text{TV}}(M^t \mathbb{1}_x, \pi) \leq \frac{0.01}{n^2}$.

To prove Lemma I.4, we first introduce the definition of mixing time.

Definition I.7 (Mixing time). Let G=(V,E) be a d-regular graph on n vertices. Let M be the lazy random walk transition matrix of G. Let $m_t=M^tm_0$, where m_0 is a distribution over [n]. Let $\pi=(\frac{1}{n},\ldots,\frac{1}{n})^T$ be the stationary distribution of G. Then the mixing time $\tau_{\varepsilon}(M)$ is defined to be the smallest t such that for any $m_0, d_{\text{TV}}(m_x, \pi) \leq \varepsilon$.

Proof of Lemma I.4. Note that $\pi=(\frac{1}{n},\ldots,\frac{1}{n})^T\in\mathbb{R}^n$ is the stationary distribution of G. According to spectral graph theory, we have $\tau_{\varepsilon}(M)=O(\frac{1}{\phi(G)^2})\log(\frac{n}{\varepsilon})$. Let $\varepsilon=\frac{0.01}{n^2}$. Note that G

is a φ -expander, we have that $\phi(G) = \varphi$ (see Definition 1.1). Therefore, according to the definition of mixing time, we get that for $t = \tau_{\varepsilon}(M) = O(\frac{1}{\varphi^2}\log(\frac{n}{\frac{0.01}{n^2}})) = O(\frac{\log n}{\varphi^2})$, we have that $d_{\text{TV}}(M^t \mathbb{1}, \pi) \leq \frac{0.01}{n^2}$.

With the above results, we would show the space-time trade-off of identifying Hard Instance II.

Theorem I.3 (Variant of Theorem 1.3). Let A be an algorithm which detects the Hard Instance II with error probability at most 1/3. The algorithm can perform T random walk queries using M bits of space. We have $M \cdot T = \Omega(n)$.

Remark I.2. In Theorem I.3, we use M to denote the space complexity because S is already used in the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem I.3. We would reduce this problem to the Hard Instance I. Assume we have an algorithm \mathcal{A} that solves the Hard Instance II. We would show how it can be used to solve Hard Instance I. At each time, the algorithm would choose to make a random walk query starting from vertex i. We would then set W_t to the Hard Instance I and get the feedback sample s_t . We would feed s_t to the algorithm \mathcal{A} and then to the next round. Finally, after T rounds, we would output the results of \mathcal{A} .

To prove the correctness, we need to show that the total variation distance is O(1) between the history generated by Hard Instance I: $(s_1, m_1, \ldots, s_T, m_T)$ and the history generated by Hard Instance II: $(s'_1, m'_1, \ldots, s'_T, m'_T)$. We would prove by math induction.

Now for $d_{\text{TV}}((m_t, s_t), (m_t', s_t'))$, we consider any fixed $x \in [2n], m \in [M]$ that

$$|p(m_{t} = m, s_{t} = x) - p(m'_{t} = m, s'_{t} = x)|$$

$$= \Big| \sum_{(\widetilde{m}, \widetilde{x})} p(m_{t} = m, s_{t} = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) \cdot (m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x})$$

$$- \sum_{(\widetilde{m}, \widetilde{x})} p(m'_{t} = m, s'_{t} = x | m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \cdot p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \Big|$$

$$\leq \Big| \sum_{(\widetilde{m}, \widetilde{x})} p(m_{t} = m, s_{t} = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x})$$

$$\cdot (p(m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x})) \Big|$$

$$+ \Big| \sum_{(\widetilde{m}, \widetilde{x})} p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x})$$

$$\cdot (p(m_{t} = m, s_{t} = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t} = m, s'_{t} = x | m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x})) \Big|.$$

Now for the first part, we have

$$\sum_{(m,x)} \left| \sum_{(\widetilde{m},\widetilde{x})} p(m_{t} = m, s_{t} = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) \right.$$

$$\cdot \left. \left(p(m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \right) \right|$$

$$\leq \sum_{(m,x)} \sum_{(\widetilde{m},\widetilde{x})} \left(p(m_{t} = m, s_{t} = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) \right.$$

$$\cdot \left| p(m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \right| \right)$$

$$= \sum_{(\widetilde{m},\widetilde{x})} \left(\left| p(m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \right| \right)$$

2106
$$\sum_{(m,x)} p(m_t = m, s_t = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x})$$
2108
$$= \sum_{(\widetilde{m},\widetilde{x})} \left| p(m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \right|$$
2110
$$= 2d_{\text{TV}}((m_{t-1}, s_{t-1}), (m'_{t-1}, s'_{t-1})).$$

For the second part, we notice that

$$p(m_t = m, s_t = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_t = m, s'_t = x | m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x})$$

$$= p(m_t = m | s_t = x, m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) \cdot p(s_t = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x})$$

$$- p(m'_t = m | s'_t = x, m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}) \cdot p(s'_t = x | m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x}).$$

Note that since we are using the same algorithm, when fixing m_{t-1} and s_t , the update of m_t and m'_t is the same, and thus

$$p(m_t = m, s_t = x | m_{t-1} = \widetilde{m}, s_{t-1} = \widetilde{x}) - p(m'_t = m, s'_t = x | m'_{t-1} = \widetilde{m}, s'_{t-1} = \widetilde{x})$$

$$= p(m_t = m | s_t = x, m_{t-1} = \widetilde{m}) \cdot \left(p(s_t = x | m_{t-1} = \widetilde{m}) - p(s'_t = x | m'_{t-1} = \widetilde{m}) \right).$$

Moreover, by the property of lazy random walk (Lemma I.4), we should have that for any \widetilde{m} ,

$$\frac{1}{2} \sum_{x} \left| p(s_t = x | m_{t-1} = \widetilde{m}) - p(s'_t = x | m'_{t-1} = \widetilde{m}) \right| \le \frac{0.01}{n^2}.$$

Summing over all (m, x), we have the second part is bounded by

$$\sum_{(m,x)} \left| \sum_{(\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \right|$$

$$\sum_{(m,x)} \left| \sum_{(\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2137)} \left| \sum_{(m,x)} p(m'_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\leq \sum_{(m,x,\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m_t = m | s_t = x, m_{t-1} = \tilde{m})$$

$$\sum_{(m,x)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2143)} p(m_t = m | s_t = x, m_{t-1} = \tilde{m})$$

$$\sum_{(2144)} p(m_t = m | s_t = x, m_{t-1} = \tilde{m})$$

$$\sum_{(2145)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2146)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2147)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_{x} \left| p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m}) \right|$$

$$\sum_{(2148)} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_$$

Combining the results, we have

$$d_{\text{TV}}((m_t, s_t), (m_t', s_t')) = \frac{1}{2} \sum_{(m, x)} |p(m_t = m, s_t = x) - p(m_t' = m, s_t' = x)|$$

$$\leq d_{\text{TV}}((m_{t-1}, s_{t-1}), (m'_{t-1}, s'_{t-1})) + \frac{0.01}{n^2}.$$

Moreover, for the initial points, we have that

$$d_{\text{TV}}(s_1, s_1') \le \frac{0.01}{n^2}.$$

Since m_1, m'_1 are merely a function of s_1, s'_1 , we have that

$$d_{\text{TV}}(m_1, m_1') \le \frac{0.01}{n^2}.$$

Therefore

$$d_{\text{TV}}((m_1, s_1), (m_1', s_1')) \le d_{\text{TV}}(s_1, s_1') + d_{\text{TV}}(m_1, m_1') \le \frac{0.02}{n^2},$$
$$d_{\text{TV}}((m_t, s_t), (m_t', s_t')) \le \frac{0.01(1+t)}{n^2}.$$

This means that

$$d_{\text{TV}}(m_T, m_T') \le d_{\text{TV}}((m_T, s_T), (m_T', s_T')) \le \frac{0.01(1+T)}{n^2} \le 0.01,$$

where we use the fact that $T \leq O(n^2)$ since otherwise we can get the output using constant space.

Now note that the output result is only the function of m_T . Since the total variation distance of m_T is bounded, the correctness can still be guaranteed using the uniform distribution rather than the random walk distribution.

J EXPERIMENTAL DETAILS

Accuracy Let C_1, \ldots, C_k be the ground-truth clustering and let $\widehat{C}_1, \ldots, \widehat{C}_k$ be the clusters produced by the oracle, where $\widehat{C}_i = \{x \in V | \text{WHICHCLUSTER}(G, x) = i\}$. The accuracy is defined as $\frac{1}{n} \cdot \max_{\pi} \sum_{i=1}^k |C_i \cap \widehat{C}_{\pi(i)}|$, where $\pi : [k] \to [k]$ is a permutation.

Implementation details In our experiments, we implemented three main components: (i) the new dot product oracle proposed in this paper (Alg. 3 and Alg. 4), (ii) the original dot product oracle in Gluch et al. (2021), and (iii) the spectral clustering oracle relies on a poly(k) conductance gap itself. The clustering oracle relies on accurate dot product estimates to function correctly; hence, we first needed to identify parameters that ensure reliable dot product estimation performance. These parameters include (i) s_{dot} , the number of sampled vertices in dot product oracle, (ii) t, the random walk length and (iii) l, the number of repetitions in the median trick, and a set of space-time-related parameters.

(a) unsuitable parameter values: $R_{\rm init} = R_{\rm query} = 40$

(b) suitable parameter values: $R_{\text{init}} = R_{\text{query}} = 80$

Figure 2: Effect of parameter settings on the original dot product oracle. (a): an unsuitable configuration where the estimated spectral dot products for intra-cluster and inter-cluster pairs overlap. (b): a suitable configuration where a clear gap emerges between the two distributions.

For the original dot product oracle in Gluch et al. (2021), R_{init} , R_{query} are the space-time-related parameters. We set R_{init} and R_{query} according to the theoretical guarantee, which states that the oracle works when $R_{\text{init}} = R_{\text{query}} = O(\sqrt{n})$. Following the implementation details in Shen & Peng (2023), we explored multiple parameter configurations for s_{dot} , t, l, $R_{\text{init}} = R_{\text{query}}$. For each configuration, we initialized the dot product oracle with the corresponding parameters, sampled a subset of vertex pairs, computed their estimated spectral dot products, and plotted the density graphs (see Figure 2). The presence of a clear gap (see Figure 2b) in the density graph was used as the criterion for selecting suitable parameter values. In fact, for a graph with parameters n = 3000, k = 3, p = 0.07, and q=0.002, we found that $s_{\text{dot}}=20$, t=20, l=20, and $R_{\text{init}}=R_{\text{query}}\geq 80$ provided reliable estimates. And we make 80×80 a concrete instantiation of $O(\sqrt{n}) \times O(\sqrt{n}) = O(n)$. For the new dot product oracle, we set $s_{\text{dot}} = 20$, t = 20 and l = 20 like above. The space-timerelated parameters $M_{\text{init}} = M_{\text{query}}$ serve as inputs, corresponding to $R_{\text{init}}^{\text{our}} = R_{\text{query}}^{\text{our}} = \frac{80 \times 80}{M_{\text{init}}} = \frac{6400}{M_{\text{init}}}$ (see line 2 of Alg. 3 and Alg. 4). In our experiments, we varied $M_{\text{init}} = M_{\text{query}}$ in the range [30, 80]. Finally, for the clustering oracle itself, we determined the number of sampled vertices s (see line 3 of Alg. 12) through extensive testing of multiple candidate values, and selected s=21 for all experiments. Additionally, we set a threshold θ (see line 8 of Alg. 12) to construct similarity graph; based on the density plots of estimated dot products (see Figure 2b), we chose $\theta \approx 0.0005$.