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ABSTRACT

We study the problem of designing sublinear spectral clustering oracles for well-
clusterable graphs. Such an oracle is an algorithm that, given query access to
the adjacency list of a graph G, first constructs a compact data structure D that
captures the clustering structure of G. Once built, D enables sublinear time
responses to WHICHCLUSTER(G, z) queries for any vertex z. A major limitation
of existing oracles is that constructing D requires 2(y/n) memory, which becomes
a bottleneck for massive graphs and memory-limited settings. In this paper, we
break this barrier and establish a memory-time trade-off for sublinear spectral
clustering oracles. Specifically, for well-clusterable graphs, we present oracles that
construct D using much smaller than O(y/n) memory (e.g., O(n’-%1)) while still
answering membership queries in sublinear time. We also characterize the trade-
off frontier between memory usage S and query time 7', showing, for example,

that S - T = O(n) for clusterable graphs with a logarithmic conductance gap,
and we show that this trade-off is nearly optimal (up to logarithmic factors) for a
natural class of approaches. Finally, to complement our theory, we validate the
performance of our oracles through experiments on synthetic networks.

1 INTRODUCTION

A central task in graph analysis is to uncover communities, which are groups of vertices that are more
densely connected internally than externally. This problem, known as graph clustering, has long
been a cornerstone of graph theory and algorithms (Hagen & Kahng, [1992;|Chan et al.| 1993} |Ng
et al.| 2001} |Czuma; et al.l 2015} [Peng, [2020). Beyond its theoretical significance, graph clustering
underlies diverse applications, ranging from community detection in networks (Van Gennip et al.|
2013; Bedi & Sharmal 2016 |Li et al.,|2024) to bioinformatics (Paccanaro et al., |2006) and image
segmentation (Shi & Malik, [2000; Felzenszwalb & Huttenlocher, [2004).

Despite their importance, most graph clustering algorithms are impractical for large graphs, as they
require reading the entire input, spending 2(n) time, and/or building data structures of size 2(n),
where n is the number of vertices. Even when only a few cluster memberships are needed, these
methods still carry out full global computations, making them unsuitable for massive graphs where
both time and memory (or space) matter — but memory is the primary bottleneck.

From a systems perspective, this memory bottleneck is especially pressing. Many realistic environ-
ments severely restrict available working memory: streaming models limit algorithms to a single
pass with sublinear space; cloud-based platforms often impose high storage and data-transfer costs,
making it infeasible to materialize the entire graph; and GPUs and TPUs offer massive compute but
only modest on-chip memory relative to dataset size. In all these settings, the primary challenge is to
fit a compact representation of the clustering structure into limited fast memory. Thus, developing
memory-efficient clustering algorithms is not only a theoretical pursuit but also a practical necessity
for analyzing trillion-edge graphs in modern computing environments.

These considerations have motivated the study of local clustering oracles that run in sublinear time
and space. Our focus is on sublinear spectral clustering oracles (Pengl 20205 |Gluch et al.l 2021}
Shen & Peng},2023)), which construct a compact data structure D from query access to the adjacency
list of the graph. Once built, D enables efficient evaluation of WHICHCLUSTER(G, x) queries,
that is, determining the cluster assignment of any vertex 2 without incurring the global 2(n) costs.
Importantly, these oracles return consistent assignments (with a fixed random seed) and closely
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approximate the ground-truth clustering, thereby making local access to clustering information both
theoretically sound and practically useful.

Several recent works (Peng, 20205 |Gluch et al.| 2021} |Shen & Peng, [2023) demonstrate that such
oracles are possible under planted clustering assumptions, supporting cluster membership queries in
both sublinear time and sublinear space. However, all existing sublinear spectral clustering oracles
require at least Q(y/n) space. In particular, Peng (Peng 2020) constructs an oracle using ©(y/n)
space, while both Gluch et al. (Gluch et al., 2021)) and Shen et al. (Shen & Peng| [2023) require
Q(n'~°) space for any § < % which is again at least \/n. We refer to Section for more details.
For truly massive graphs, this requirement is prohibitive, as limited working memory and frequent
main-memory access quickly dominate the overall cost. This raises the central question:

Is it possible to design a spectral clustering oracle that breaks the Q)(\/n) space barrier — can we use
substantially less memory while still achieving sublinear query time? If so, what kinds of trade-offs
between space and query efficiency can be realized?

This challenge is reminiscent of recent work on space-time trade-offs in learning, beginning with
Raz|(2017)’s result on parity learning and later extended to tasks such as linear regression (Sharan
et al.|[2019) and noisy parity (Garg et al.,|2021). In the area of distribution testing, a series of works
(Diakonikolas et al., 2019} |Berg et al., 2022; Roy & Vasudev, [2023};[Canonne & Yang| [2024) have
established sharp space-time trade-offs for fundamental problems such as uniformity testing and
closeness testing. Much like in these learning problems and in recent advances on distribution testing,
the central question for sublinear spectral clustering is how far memory usage can be reduced without
making query times impractically large.

In this paper, we give sublinear spectral clustering oracles with little memory (i.e., much less than
O(4/n)) and a trade-off between memory usage S and query time 7 satisfying S - T =~ O(n) (for a
class of well clusterable graphs). We show that this trade-off is nearly optimal (up to logarithmic
factors) for a natural class of approaches. In the following, we first present some basic definitions.

Basic definitions We measure cluster connectivity using conductance, a widely studied metric
(e.g., (Chiplunkar et al., [2018];|Dey et al.l2019; Manghiuc & Sunl [2021;Shen & Peng, |2023))). Let
G = (V, F) be an undirected graph. For any vertex v € V, let d,, denote the degree of v in G. For
any subset C' C V, let vol(C) = ZUEC d, denote the volume of C'. For any two subsets S,C C V,
let E(S, C') denote the set of edges between S and C.

Definition 1.1 (Outer and inner conductance). For any non-empty subset C' C V, the outer conduc-
tance and inner conductance of C'is defined to be

dout(C, V) = |E(C,V\C)|/vol(C), ¢n(C) min Gout(S, C).

T SCC0<vol(S)<vol(C) /2

Specially, the conductance of graph G is defined to be ¢(G) = min Cc, V).
P Y grap &) CCV,0<vol(C)<vol(G) /2 Gout(C, V)
Intuitively, inner (resp. outer) conductance captures the internal (resp. external) connectivity of a
cluster. A “good” cluster exhibits both large inner conductance and small outer conductance. Based
on the definition of conductance, we give the formal definition of the input graph which is assumed

to have a planted clustering structure (see Definition [I.3).

Definition 1.2 (k-partition). Let G = (V| E) be a graph. A k-partition of V is a collection of k
disjoint subsets C1, . . ., Cy, such that Ule C,=V.

Definition 1.3 ((k, ¢, €)-clusterable graph). Let k > 2 be an integer and let ¢ € (0,1) and € € [0, 1).
Let G = (V, E) be a graph. If there exists a k-partition of V, denoted by C1, .. ., Ck, such that for

all i € [k], ¢in(Ci) > @, pou(Ci, V) < e and for all 4, j € [k], one has “27\ € O(1), then we call G

is a (k, , €)-clusterable graph.

We work in the adjacency list model, where the algorithm can query any neighbor of a specified
vertex in constant time.

1.1 MAIN RESULTS

Sublinear spectral clustering oracle A key contribution of this work is a spectral clustering oracle
that operates with very little memory and provides an explicit trade-off between memory and query
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time. Given a (k, o, €)-clusterable graph, the goal of a clustering oracle is to build a data structure
D in sublinear time such that, for any vertex z, the oracle can answer WHICHCLUSTER(G, z) in
sublinear time. Moreover, the clustering induced by answering WHICHCLUSTER(G, ) for all x
should have a small misclassification error, that is, only a small fraction of vertices are assigned to
the wrong clusters compared to the ground truth.

In what follows, we state our main theorem in the simplified setting where ¢ = Q(1) and d, k = O(1).
The full general statement appears in Theorem [3.1] While we state our results for d-regular graphs,
they naturally extend to d-bounded graphs, i.e., graphs in which every vertex has degree at most d
(see Appendix D).

Theorem 1.1 (Informal main result). Suppose o = Q(1), d,k = O(1), and ¢ < h(d, k, ) for some
Sunction h. Let G = (V, E) be a d-regular (k, ¢, €)-clusterable graph with clusters C1, ..., C.
Letn®©) < M <O (nl/Q_O(E)) be a trade-off parameter. Then there exists a sublinear spectral
clustering oracle that:

* constructs a data structure D using 0 (no(e) - M ) bits of space,
o answers any WHICHCLUSTER query in O (n1+0(5)/M) time,
* misclassifies at most O('/3)|C;| vertices in each cluster C;, i € [k].

Note that the space S used to build D and the query time 7T satisfy the trade-off S - 7' = O (n!*+9().
The oracle is built upon a new subroutine ESTCOLLIPROB(AIg. [2)) for estimating the collision
probability of two random walk distributions with asymptotically space-time trade-off. In particular,
when ¢ < 1/logn, this simplifies to S - T = O(n). The theorem establishes a trade-off: larger
space S yields faster queries, while smaller S slows them down. Unlike prior oracles that require at
least Q(+/n) space, our method operates with substantially less space, often far below +/n, thereby
breaking the \/n space barrier.

Distinguishing 1-cluster vs. 2-cluster As a corollary of our main result, we obtain a sublinear
algorithm for distinguishing between a single-cluster expander and a graph consisting of two disjoint
clusters. Formally, let ¢ = ©(1) and d = O(1). Consider the following promise problem: the input
is a d-regular graph G = (V, F) that is guaranteed to be in one of two cases: (i) G is a ¢-expander
on n vertices (i.e., (1, ¢, 0)-clusterable); or (i) G is the disjoint union of two identical ¢-expanders,
each on n/2 vertices (i.e., (2, ¢, 0)-clusterable). The goal of the 1-cluster vs. 2-cluster problem is to
determine which case holds.

We address this problem with an ESTCOLLIPROB-based algorithm, yielding the following result.

Theorem 1.2 (Upper bound). For any trade-off parameter 1 < M < O(\/n), there exists an
algorithm (Alg. |5) that, with probability at least 1 — 2n 190, solves the 1-cluster vs. 2-cluster
problem. Moreover, the algorithm:

« uses O(M) bits of space,
* runs in O (ﬁ) time.
We complement this with a lower bound for distinguishing between the two cases when the graph

can only be accessed through random walk queries. Specifically, for each queried vertex x, the oracle
returns the endpoint of a random walk of length O(log n) starting from z.

Theorem 1.3 (Lower bound). Any algorithm that correctly solves the 1-cluster vs. 2-cluster problem
with error at most 1/3 using only random walk oracles must satisfy S - T > Q(n), where S and T
denote the space complexity and time complexity of the algorithm, respectively.

Note that a random walk query can be simulated with O(log n) adjacency-list queries, so our upper
bound matches the lower bound up to poly(log n) factors. Since the ESTCOLLIPROB-based approach
solves the 1-cluster vs. 2-cluster problem, our lower bound indicates that its trade-off is nearly tight.
This, in turn, suggests that the space-time trade-off of our clustering oracle is essentially tight, at least
for approaches based on collision probability estimation.

1.2 TECHNICAL OVERVIEW

Sublinear spectral clustering oracle To obtain sublinear spectral clustering oracles that rely on
a log(k) or poly(k) conductance gap, a key primitive is the estimation of the dot product (f5, f,),
where f, is the spectral embedding of € V' (see Definition [2.1). Suppose there exists an algorithm
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that estimates such dot products using .S space and 7" time. We can then design a clustering oracle
based on this primitive, which uses 6(poly(k‘) - S) space to construct a data structure D and answers
WHICHCLUSTER queries in O(poly(k) - T) time (see Section . Thus, the central task is to
understand the space-time trade-off for dot product estimation, as it directly determines the efficiency
of the resulting clustering oracle.

Indeed, the previous 2(y/n) space bottleneck in constructing D arises precisely from this dot
product estimation step, rather than from the clustering procedure itself. This observation motivates
our technical improvements. In particular, the dot product estimation algorithm of |Gluch et al.
(2021) does not directly compute (f,, f,) for arbitrary vertex pairs. Instead, it applies a sequence
of transformations and shows that estimating (f, f,) can be reduced to computing the collision
probability (M*1,)T(M1,) = (M'1,, M'1,), where M is the random walk transition matrix
of G and 1, is the indicator vector of vertex s.

Previous dot product oracle estimates (M "1, M*1,) by performing R ~ /n independent random
walks of length ¢t = O( 1‘?52") from each vertex = and y, respectively. The endpoints of these walks
are stored to construct empirical distributions, whose dot product is then computed. This approach
requires O(R) words of space and O(Rt) time, tightly coupling space usage with computation time.
In particular, to ensure sufficient accuracy, R must be at least £2(y/n), which implies that the space
usage cannot be reduced below O(+/n).

To reduce the memory requirement below O(+/n) and achieve a more flexible trade-off between space
and time, we propose a batch-based estimation strategy. The idea behind this approach is inspired
by|Canonne & Yang|(2024), where a similar batching technique is used to design memory-efficient
algorithms for uniformity testing under memory constraints. Specifically, we partition the total of R
random walks into B = R/M batches. In each batch, M walks of length ¢ are performed from each
vertex, and only the endpoints within the batch are stored to construct empirical distributions. The
batch-level dot product is computed, and the final estimate is obtained by averaging over all batches.
This approach reduces the space requirement to O (M) words while keeping the total number of walks.
By choosing M smaller than O(+/n), we can achieve a space-time trade-off satisfies M - R ~ n.
This allows for efficient estimation of the dot product even under memory constraints.

Distinguishing 1-cluster vs. 2-cluster The core idea of our algorithm (Alg. [5) for distinguishing
the 1-cluster vs. 2-cluster is to reduce the task to detecting a spectral gap in the random walk
operator. Specifically, we set t = O(logn/p?) so that in the 1-cluster case, the second largest
eigenvalue of M becomes negligibly small, while in the 2-cluster case it remains exactly 1. To
capture this behavior within bounded space, we avoid storing M explicitly and instead construct a
compact surrogate matrix G using the batch-based strategy described above. This surrogate preserves
the essential spectral information of M, so that the separation between the two cases is faithfully
reflected in the spectrum of G. Consequently, analyzing G suffices to distinguish between the 1-cluster
and 2-cluster cases using only O (M) space.

To prove the lower bound, we note that analyzing the distribution of random walks of the two cases
reveals a fundamental discrepancy: in the 1-cluster case, this distribution converges to uniformity
over the entire set of points; whereas in the 2-cluster case, it decomposes into two separate uniform
distributions, each concentrated over half of the points. Under a sublinear space constraint, the
algorithm cannot store enough indices to reliably identify which cluster a given sample belongs
to. We formalize this via the information-theoretic framework for distribution-testing lower bounds
of Diakonikolas et al.[(2019), showing that each observation provides only limited distinguishing
information. Consequently, any algorithm requires a sufficient number of observations to achieve
statistical confidence, implying the stated space-time trade-off lower bound.

1.3 RELATED WORK

Peng| (2020) (see also (Czumaj et al.,[2015))) provided a robust sublinear spectral clustering oracle
that constructs a data structure using O(y/n - poly(klOTg")) bits of spac and answers any WHICH-
CLUSTER(G, ) in O(\/ﬁpoly(kl"%)) time. This oracle relies on a poly(k) log n conductance gap
between inner and outer conductance and misclassifies at most O (kn+/) vertices. |Gluch et al.{(2021)

! Although the paper does not explicitly state the space complexity, it can be directly inferred from the
algorithm description.
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(resp. |Shen & Peng (2023ﬂ) gave a sublinear spectral clustering oracle that constructs a data structure
using O(n! =0+0() . poly(£1%87)) (resp. O(n'~+9) . poly(klog n))) bits of space and answers
any WHICHCLUSTER(G, z) in O(n?+9() . poly(#1%6™))) (resp. O(n’*9() . poly(klog n))) time,
where § € (0, %] These two oracles have different preprocessing time and misclassification error.

Recently, Neumann & Peng|(2022)) studied designing sublinear spectral clustering oracles for signed
graph. [Kapralov et al.|(2023) studied designing sublinear hierarchical clustering oracle for graphs
exhibiting hierarchical structure. We defer other related works to Appendix |B|due to page constraint.
Moreover, all omitted proofs are provided in the appendix.

2 PRELIMINARIES

Let G = (V, E) denote an unweighted, undirected d-regular graph with n vertices, where V =
{1,2,...,n}. Let¢ € [n] denote 1 < i < n. For a graph G = (V, E), let A € R"*™ denote the
adjacency matrix of G, where A(i,j) = 1if (4,7) € E, and A(4, j) = 0 otherwise, ¢, j € [n]. Let
D € R™*" denote a diagonal matrix, where D(i,i) = d;,i € [n]. Let L= D~ Y(D — A)D~! =
I— % denote the normalized Laplacian matrix of G, where I € R™*" is the identity matrix. For
L, weuse 0 = A\ < --- < A\, < 2 to denote its eigenvalues and ug,...,u, € R" to denote
the corresponding eigenvectors. Without loss of generality, we assume {uq,...,u,} forms an
orthonormal basis of R”. Let U = (uq,...,u,) € R™*". Based on U we give the definition
of spectral embedding (see Definition . Moreover, let M = (I + ) =1- 5 denote the
transition matrix of lazy random walk on GG. That is, if the walker is currently atavertex x € V, then
in the next step it stays at  with probability %, or moves to each neighbor of = with probability i.

Let @ € R™ denote a column vector (unless otherwise stated). For any two vectors a, b € R", we use
{a,b) = a’'b to denote the dot product of @ and b. For any = € V, let 1, € R" denote the indicator
vector of x, where 1,(:¢) = 1 if i = x and 0 otherwise. For any symmetric matrix B € R"*", we
use v;(B) to denote the i-th largest eigenvalues of B.

Definition 2.1 (spectral embedding). Let G = (V, E') be a graph. For any vertex € V, we use
fu € R* to denote the spectral embedding of x, where f, = U1, = (ui(@),... up(x))".

Definition 2.2 (p-expander). Let G = (V, E) be a graph. Let ¢ € (0,1). Let ¢(G) denote the
conductance of G (see Definition[L.1). If ¢(G) > ¢, then we call G a p-expander.

The supplementary preliminaries are deferred to Appendix [C]
3 SPECTRAL CLUSTERING ORACLES WITH LITTLE MEMORY

In this section, we present and prove our main algorithmic result, stated in the theorem below. We
emphasize that the resulting algorithms exhibit different trade-offs between the conductance gap
(¢ vs. €), the misclassification ratio, and the corresponding space-time bounds, depending on the
clustering framework employed, either that of |Gluch et al.| (2021} or|[Shen & Peng| (2023)).

Theorem 3.1. Let k > 2 be an integer, ¢,c € (0,1) and hi(k, ), ha(k,e) and hs(k, ¢, €) be
three functions. Let € < hy(k, ). Let G = (V, E) be a d-regular and (k, @, €)-clusterable graph
(e 0?
with Cy,...,Cy. Let neel/e? <M< O(M) be a trade-off parameter, where c is a large
enough constant. There exists a sublinear spectral clustering oracle that, with probability at least

0.9: ~
* constructs a data structure D using O (ha(k) - n©E/¢ DM ) bits of space,

* answers any WHICHCLUSTER query using D in O (R (k) nltO(E/e%) . <) time,
* has O (hs(k, p, €)) |C;| misclassification error for each i €[kl

where we use O, suppresses dependence on ¢ and O hides all poly(log n) factors and:

1 ifhi(k, @) = 1o, then ha(k, <) = (£)°0) and hs(k, p,¢) = 5 - log ks

2 if hi(k,g) = kg’zl o then ha(k) = ()00 and ha(k,p.€) = (5)5 - k3, where
~v € (0.001,1]) is a constant such that for all i € [k], v% < |Cj| < %

“Shen & Peng| (2023) stated their result for § = 1/2. Since their algorithm relies on the dot product oracle in
Gluch et al.[(2021), the guarantee extends naturally to any 6 € (0, 3].
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This section is organized as follows. In Section [3.1I] we present our dot product oracle with little
memory and the corresponding algorithms. In Section [3.2] we provide the proof of Item [2] of
Theorem [3.1] The proof of the remaining case, Item|[I] is deferred to Appendix [F]

3.1 DOT PRODUCT ORACLE WITH LITTLE MEMORY

Recall that f, denotes the spectral embedding of vertex x (see Definition 2.1)). Our objective in
this section is to design a dot product oracle that approximates { f;, f,) while achieving a favorable
space-time trade-off and ensuring small approximation error. The following theorem states the
performance guarantees of our oracle. Proof is deferred to Appendix [E]
Theorem 3.2. Let k > 2 be an integer. Let €, € (0,1) with 5 < Let G = (V,E) be a

105
1/27208/(;)2

d-regular and (k, p, €)-clusterable graph. Let s <& <L Let 1 < Minit, Mguery < O("—5%—).
Then, with probablllty at least 1 —2n—100 INITORACLE(G7 k, &, M) (Alg. I) computes a sublinear
space matrix U of size nOE/¢*) . log2 n- (E)O(l), such that the following property is satisfied:

for every pair of vertices x,y € V, QUERYDOT(G, z, 3, &, \If Mquery) (Alg. 4l) computes an output
value (fx, fy)apx such that with probability at least 1 — 6n~ 00

|<fa;afy>apx - <.fz,.fy>| S *-

Moreover; let Sy, Tinit be the space and time costs of INITORACLE(G k, & Minit) (AlgE]) and let
Squerys Tquery be those of a single QUERYDOT(G, x,y, &, V¥, Myuery) query (AlgE]) Then we have

o St = (%)O(l) nOE/e*) . My -log*n, T = (E)O(l) . pl+O(e/¢%) . bﬁi‘n . Sol
b b 3
* Squery (%) ) . nOe/¢?) . Mauery -108° 1, Tyuery = (%)Oﬂ) . pltO(e/@?) . 1°qu ) #.

Note that to ensure that INITORACLE(G, k, £, Miy;i) (Alg. [3) and QUERYDOT(G 2,9, 6V, Myuery)
(Alg run in sublinear time, it is required that My, Mquery > n“ e/¢? , where c is a constant that is
larger than the constant hidden in O(-)-term of n1+0(/9*) in both Tinic and Tiyery-

For initializing the dot product oracle, the previous dot product oracle in Gluch et al|(2021) requires
at least Q(y/n) bits of space, whereas our proposed oracle can perform accurate estimation using at
most O(y/n) bits of space, thus breaking the \/n barrier.

The algorithm Algorlthmlesumates the collision probability (i.e., <M 1., M'1,)) of the random
walk distributions from two given vertices within a bounded space O( ). Algorlthm computes an
estimate of the Gram matrix (M®S)T (M*S) corresponding to the random walk distributions from
a set S of vertices, where S € R"*I5l js a matri)i whose i-th column is an indicator vector 1, for
v € S, while operating within a bounded space O(M - |S|?). The formal guarantees of these two
procedures are stated in Lemma[E.3]and Lemmal[E.5] respectively.

Algorithm 1: ESTRWDoT Algorithm 2: ESTCOLLIPROB
(G’R7 t’ M’ x’ y) (G7 R7 t,M’ IS)
1 Z=0,B:= % > B: number of batch 1 5= [Ig] = [{s1,..., 55}

2 forb=1t Bdo
3 Run M independent random walks of
length ¢ starting from x (resp. from

for [ = 110 O(logn) do

for i =110 s do

for j =itosdo

Y) Gi(4,1) = Gi(i,j) =
4 Define p,, (i) (resp. P, (7)) as the ESTRWDOT(G, R, t, M, s;, s;)
fraction of randoms walks from x
(resp. from y) that end at ¢
5 Zy = <ﬁz7ﬁy>’ Z=Z+2Zy 6 Let G be a matrix obtained by taking the
6 7 — entrywise median of G;’s

7 return

23 R I N

Zz
B
VA return G

<

Algorithm [3]initializes the dot product oracle by constructing a compact matrix ¥ within approx-
imately bounded space O( ). Then Algorithm {4 leverages ¥ to estimate (f,, f,) while still
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operating under the same bounded space. The formal guarantees of these two procedures are stated
in Theorem

Algorithm 3: INITORACLE Algorithm 4: QUERYDOT
(G, k7£aMnit) (va7y7§’W7Mquery)
t = 20 lozg’n, L= 20 lozgn
. v nl+920e/02  p14 ¢ pl+440e/02 16
2 Rimt = @( Minic ' 572) 2 unery = ®< ]unsry ’ 572)
. 2
3 5= 0(n*0/¢" logn -k /€2) s for I = 1 t0 O(logn) do
4 Let Ig = {s1,..., s} be the multiset of fori— 1105 do
s indices chosen i.u.r. from ¢ L= rhos
5 x;(i) =ESTRWDOT(G, Rquery, t,
V={1,...,n} query
5 G = Mquery;37>3i)
ESTCOLLIPROB(G, Riyit, t, Minit, I's) 6 i (i) :=ESTRWDOT(G, Ryery, t,
¢ Let -G = WEWT be the Myuery; Y 5:)
eigendecomposition of % - G .
i i_l <t5 th 7 Let o, (resp. o) be a vector obtained
71 exlits then o L by taking entrywise median of x;’s
8 L U= 5 Wi X Wiy oW e RE (resp. y;’s) > Qa,,a, € R
v
? return s return (fr, fy)apx = @l Vay,

3.2 CLUSTERING ORACLE: ITEM[2]OF THEOREM [3.1]

We now present the proof of Item[2]of Theorem[3.T]and give a clustering oracle with the corresponding
space-time trade-off. Iteml 2l which addresses a sublinear spectral clustering oracle under a poly(k)
conductance gap. Our sublinear spectral clustering oracle closely follows the construction in|Shen &
Peng| (2023), except that we substitute our new dot product oracle from Section [3.1]in place of theirs.

High-level idea of the algorithm Now we briefly outline the main idea of the oracle. Shen &
Peng|(2023)) showed that for most vertices in a (k, ¢, £)-clusterable graph, if 2,y € V belong to the
same cluster, then (f,, fy) ~ % otherwise, (fs, f,) =~ 0. Leveraging this property, we can design a

clustering oracle as follows: it first samples s = klogk vertices to form a set S, and for each pair

u,v € S, it computes the dot product ( f,, f,)apx using our new dot product oracle. If the value is
large, an edge (u, v) is added to the initially empty similarity graph H = (S, (). At query time, the
oracle uses H and its connected components to determine the cluster assignment of vertices. We
provide a full description of the clustering oracle in Appendix [G] Now we present the proof of Item 2]
in Theorem [3.1] as follows.

ACLE(G, k, p,e,v, M) (Alg.|12) invokes our INITORACLE(G, k, £, M) (Alg. [3) one time to get a
matrix U (see line 5 of Alg. [12), then CONSTRUCTORACLE(G, k, ¢, £, 7, M) invokes our QUERY-
DOT(G, u,v,&, W, M) O((k?*log® k)/~?) times (see lines 6 ~ 9 of Alg. [12) to get a similarity
graph H. Therefore, CONSTRUCTORACLE(G, k, ¢, &,~y, M) uses Sinit + O((k2 log® k) /7?) - Squery
bits of space. Using Theorem we get that CONSTRUCTORACLE(G, k, p,&,v, M) uses
O(no(f/V’ ). M - poly( klog")) bits of space to get matrix ¥ and a similarity graph H.

Proof of Item[2]in Theorem[3.1] Space and runtime. In the preprocessing phase, CONSTRUCTOR-
12

In the query phase, WHICHCLUSTER(G, z, M) (Alg. [14)) invokes SEARCH(H, ¢, z, M) (Alg.
one time. SEARCH(H, ¢, x, M) invokes our QUERYDOT(G, u, z,&, ¥, M) O((klogk)/v) times
(see lines 1 ~ 2 of Alg. [I3) and relies on the similarity graph H (see lines 3 ~ 6 of Alg.
Therefore, WHICHCLUSTER(G x, M) uses O((klogk)/~) - Squery bits of space and runs
in O((klog k)/7) - Tquery time. Using Theorem | we get that WHICHCLUSTER(G x, M) uses

O(n O(=/¢*) . M - poly( kl‘fyg")) bits of space and runs in O(n 1+0(e/¢”) . 47 - poly( klogn)) time.

Thus, the oracle constructs a data structure D (including ¥, similarity graph H etc) using O (n°(¢/ ©7).
M - poly( klog")) bits of space. Using D, any WHICHCLUSTER(G, ) query can be answered by

Alg. [14in O(n!+0OE/#%) . poly(klog”)) time.
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Correctness. Since the correctness guarantees (i.e., conductance gap and misclassification error) of
the clustering oracle rely on the properties of the dot product oracle, and our dot product oracle satisfies
the same correctness guarantees with the previous one, the correctness of the overall clustering oracle
follows directly from the correctness of the clustering oracle in[Shen & Peng| (2023)). O

4 DISTINGUISHING 1-CLUSTER VS. 2-CLUSTER

The algorithm and sketch of its analysis Now we present Alg. [5|for solving the 1-cluster vs. 2-
cluster problem, which is based on estimating the second largest eigenvalue of M using a subroutine
ESTCOLLIPROB (Alg. [2) from Section[3.1}

Algorithm 5: DISTINGUISH(G, M)

= 7203;;“, R = 0O(4;),s = O(logn)

Let Is = {s1,..., S} be the multiset of s indices chosen independently and uniformly at
random from V = {1,...,n}

G = ESTCOLLIPROB(G, R, t, M, Ig)

Let v2(2G) be the second largest eigenvalue of matrix 2§

if (v5(2G))? < 0.6 then
| return “1-cluster”

return “2-cluster”

The formal guarantee of this algorithm is given in Theorem|[I.2] whose proof is deferred to Appendix[H]
Here, we provide a proof sketch.

Consider the case when the input graph G is a ¢-expander. By Cheeger’s inequality (Lemma [H.T),
we get that the second smallest eigenvalue of L satisfies Ao > 2 /2. Equivalently, the lazy random
walk matrix M = I — L/2 has its second largest eigenvalue vo(M) < 1 — ?/4. In contrast, if
G consists of two disjoint p-expanders of equal size, then A\ = 0 and hence vy(M) = 1. Setting
t = O(logn/p?), we obtain that in the 1-cluster case, the contribution of vo(M) < n~1°, while in
the 2-cluster case, vo (M) remains exactly 1. Thus, M? exhibits a clear spectral gap between the
two cases. Alg. constructs an approximation G ~ (M'S)T(M'S) € ROUcen)xOogn) within
bounded space, where each column of MtS corresponds to the ¢-step lazy random walk distribution
starting from a vertex in the sampled set I5. The second largest eigenvalue of G closely reflects
that of M, thereby preserving the above separation (see Lemma for the formal statement).
Moreover, since G is a small matrix, we can afford to perform an eigen-decomposition on it directly.
Consequently, examining the spectrum of G suffices to distinguish between the 1-cluster and 2-cluster

cases using O(M) bits of space and O(n/M) time.

The lower bound The lower bound for distingushing 1-cluster vs. 2-cluster is summarized in
Theorem[I.3] The main proof of Theorem[I.3]is presented in Appendix [[land comprises two parts.
First, we establish a lower bound for distinguishing between a uniform distribution over all vertices
and two separate uniform distributions each over half of the vertex set. We demonstrate that under a
space constraint of S, the information regarding the underlying case can only increase by O(S/n)
per observation. Consequently, the total number of observations 7" must satisfy 7' - O(S/n) = Q(1),
which directly implies the space-time trade-off lower bound S - T' = Q(n) (see Theorem [[.2)).

Second, by analyzing the random walk distributions in the 1-cluster and 2-cluster cases, we observe
that these distributions closely approximate the two aforementioned reference distributions. To finalize
the reduction, it is necessary to demonstrate that deviations from uniformity do not significantly
alter the final memory state distribution. The key challenge lies in the cumulative effect of sampling
distribution discrepancies at each step, which collectively influence the memory state. To quantify
this discrepancy, we adopt the total variation distance as a metric and employ a mathematical
induction argument. This approach shows that the discrepancy in the memory state distribution
does not substantially amplify after each sampling step. Specifically, the incremental increase in
discrepancy is proportional to the difference between the sample distributions and remains controllable.
Consequently, the overall discrepancy is bounded by the sum of these incremental increases and
remains negligible throughout the process.
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5 EXPERIMENTS

To evaluate the space-time trade-off of our sublinear spectral clustering oracles, we conducted
experiments in Python on graphs generated from the stochastic block model (SBM) with parameters
n (num of vertices), k (num of clusters), and edge probabilities p (within-cluster) and ¢ (between-
cluster). Experiments were run on a server with an Intel(R) Xeon(R) Platinum 8562Y processor (2.80
GHz) and 768 GB RAM. Each reported data is the average over five independent runs.

We implemented two variants of the poly(k)-conductance-gap clustering oracl the original oracle
from |Shen & Peng|(2023), and our memory-efficient variant that operates within a smaller space.
For each, we recorded the number of words stored in each component of the data structure D as
a proxy for space S, evaluated accuracy (the fraction of vertices correctly classified), the success
rate (i.e., the fraction of successful runs among 5 runs{ﬂ). Both variants used the same number
of sampled vertices, random walk length, and median-trick repetitions; differences arose only in
space-time-related parameters. We instantiated this setup on an SBM graph with n = 3000, k = 3,
p = 0.07, and ¢ = 0.002, yielding clusters of 1000 vertices each. Additional implementation details
are provided in Appendix [J]

Space efficiency Prior sublinear spectral clustering oracles require at least 2(+/n) space to construct
data structure D. In contrast, our clustering oracle allows constructing D using substantially less
space, well below +/n. In this section, we provide experimental evidence to validate this improvement.

Table 1: Comparison of space usage for clustering oracles, with 10400 words used as the baseline.

clustering oracle \ ours \ previous
space (# of words) 9900 10100 10400 | 34840 43888 44383 61223
space (X baseline) 0.95x 0.97x 1x 3.35x  4.22x 4.27x 5.89x
success rate for constructing D 1 1 1 0 0.6 1 1
accuracy 0.9833 0.9900 0.9907 0 0.9860 0.9997 1.0000

Table [T]demonstrate that our clustering oracle achieves high accuracy using substantially less space
(10400 words as 1x). In contrast, the previous clustering oracle requires 4.27 times of the baseline
space to achieve comparable accuracy, and even when given 3.35 times the baseline space, it fails to
construct D successfully (i.e., success rate is 0). These results confirm that our approach significantly
improves space efficiency without compromising accuracy.

Space-time trade-off As established in Theorem there is a trade-off between the space S

required to construct D and the query time 7T, satisfying S - T' = 6(n1+0(5)), where ¢ is the small
constant corresponding to the outer conductance.

10400 - —e— Space vs. Time To validate this experimentally, we also mea-
sured S as the total number of words stored to
10300 1 construct D. We use the total number of random
walks per WHICHCLUSTER query as a proxy
10200 1 for time 7', since this dominates the query cost.
Across all tested parameter settings, the oracle
maintains high accuracy (0.9833 ~ 1), confirm-
ing the practical validity of the configurations
used.

10100 +

10000 -

space usage S (# of words)

9900 Figure ] plots S (y-axis) versus T' (x-axis), il-
0.6 08 10 12 14 lustrating the space-time trade-off: memory us-

time T (# of d lks) le6 . . .
quenyEime TIT ofrandom watks age decreases as query time increases, and vice

Figure 1: Space-time trade-off of the sublinear Versa consistent with the theoretical bound.
spectral clustering oracle, showing S,7" are in-
versely proportional.

3We did not experiment with the log(k)-conductance-gap oracle due to its impractical runtime of 2P°%(%) .
n'TE) . L for constructing D.

“If the available space is too limited, the construction of the similarity graph H may yield either too many or
too few connected components, in which case the construction of D fails.
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ETHICS STATEMENT

This work is purely theoretical and algorithmic in nature. Our experimental evaluation is conducted
solely on synthetic datasets generated from the stochastic block model (SBM). The research does
not involve human subjects, personal data, or other sensitive information. We do not anticipate any
immediate ethical, societal, or environmental risks arising from our methods or results.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical results are stated
formally in the main text and accompanied by complete proofs in the appendix. The assumptions
underlying our results are explicitly described. For the experimental evaluation, we used standard
stochastic block model (SBM) graphs to ensure reproducibility. Implementation details and parameter
settings are included in Appendix [J}
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Appendix

The appendix is organized as follows.

Appendix [A] provides a statement on our use of LLMs for English writing assistance.

Appendix [B| provides additional related works omitted from the main text.

Appendix [C| presents supplementary preliminaries.

Appendix [D|shows that how our results for d-regular graphs can be extended to d-bounded

graphs.

* Appendix [E|presents the proofs of Theorem [3.2] which concerns our dot product oracle that
operates under limited memory.

* Appendix [F provides the proof of Item[I]in our main result (Theorem [3.T).

* Appendix [G|describes the sublinear spectral clustering oracle related to Item 2]in our main
result (Theorem |3.1).

* Appendix [H|presents the proof of Theorem|[I.2] which gives the upper bound for distinguish-
ing 1-cluster vs. 2-cluster problem.

* Appendix [D]presents the proof of Theorem[I.3] which gives the lower bound for distinguish-
ing 1-cluster vs. 2-cluster problem.

* Appendix ]| provides details on the experimental setup and parameter choices.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we mainly used ChatGPT to assist with English writing.
Specifically, the model was employed to improve the fluency of sentences, check grammar, and
suggest stylistic refinements. We emphasize that all theoretical contributions, proofs, and experimental
results (including code implementation, simulations, and results collection) were developed and
verified solely by the authors without the involvement of LLMs. The use of LLMs did not influence
the research process, methodology, or the originality of the results presented in this paper.

B OTHER RELATED WORK

Property testing Besides the above most directly related work on sublinear spectral clustering
oracles, several other research directions are also relevant to our study. One line of work is property
testing (i.e., testing graph clusterability), where the goal is to quickly distinguish whether a graph
can be partitioned into k clusters with high inner conductance, or whether it is far from having such
clustering. For example, |(Czumaj et al.| (2015) studied testing whether a graph admits a good cluster
structure in the adjacency list query model, providing algorithms with sublinear query time. This
direction was later advanced by Chiplunkar et al.|(2018)). While property testing algorithms do not
provide explicit cluster assignments, they capture the feasibility of clustering in sublinear resources
and thus serve as an important precursor to oracle-based approaches like ours. For example, Czumaj
et al.| (2015) implicitly yields a sublinear spectral clustering oracle under a log n conductance gap.
This was later extended by [Peng| (2020), who developed a robust oracle capable of handling noise.

Local graph clustering Another line of related work is local graph clustering (Andersen et al.,
2006; |Spielman & Teng, 2013} Zhu et al.,|2013;/Gharan & Trevisan, 2014; |Andersen et al.,2016)).
The goal of this category is to identify a cluster associated with a given vertex. In this setting, the
algorithm outputs a set of vertices related to the input vertex, and its running time and memory usage
are bounded by the size of the output cluster, up to a weak dependence on n. In particular, when the
graph contains & clusters and n vertices, the complexity can be as large as Q(n/k).

Grapah problems under limited memory Recently, there has been a surge of work on understand-
ing learning under limited memory. Graph problems inherently require substantial space and time to
compute, and have attracted increasing attention. One line of research focuses on the semi-streaming
model where the algorithm is permitted O(n - poly(log n)) space. Both upper bound algorithms and
lower bound results are proposed for various graph problems, including Maximal Independent Set
(Assadi et al.,[2024)) and Matching (Kapralov} 2013). There is also significant work on the Massively
Parallel Computation model, where machines have sublinear memory to solve the graph problems

13
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(Behnezhad et al.| [2019; E.acki et al.| 2020; Nowicki & Onakl 2021 |Assadi et al., 2019} |Ghaffari &
Nowickil, [2020).

C SUPPLEMENTARY PRELIMINARIES

For a vector a = (a(1),...,a(n))?, the p-norm (p > 1) of a is defined to bellall, =
(>, la(i)[P)». For any matrix B € R"*", we use ||B||p = \/Zf 1 2y B%(i, j) to de-

note the Frobenius norm of B, | Bz = maxweRn IIsz 1 || B||2 to denote the spectral norm of B
and By; to denote the first i columns of B,1 < i < n.

Definition C.1 (TV distance). For two probablllty distributions p, g over [n], the fotal variance
distance (i.e., TV distance) of p, q is defined to be

1
drv(p,q) = §||P —q|1-

Fact C.1. For any vector p € R™, we have ||p||7 < ||p|3.

Proof. Let ||p|lcc = max}_, |p(7)|. Then, we have

IpI3 (1) - I3

IN

D FROM d-BOUNDED GRAPHS TO d-REGULAR GRAPHS

Although we state our results for d-regular graphs, they extend naturally to d-bounded graphs, i.e.,
graphs in which every vertex has degree at most d. The extension is straightforward: for a d-bounded
graph G’ = (V, E’), for every « € V, we can add d — d, self-loops with weight % to x to get a
d-regular graph G = (V| E). Note that the lazy random walk on G is equivalent to the random walk
on G, with the random walk satisfying that if the walker is currently at x € V, then in the next step
it stays at « with probability 1 — or moves to each neighbor of x with probability - o

ﬁ7
E PROOF OF THEOREM

G = (V, E) be a d-regular and (k, ¢, €)-clusterable graph. Let - a5 <&< L Letl< an, Mauery <

1/2—20e/¢2

O(Z————). Then, with probability at least 1 — 2n~ %, INITORACLE(G, k, £, Mini,) (Alg.
computes a sublinear space matrix V of size n©(=/ ©*) . log?n - (%)O(l), such that the following
property is satisfied:

Theorem E.1 (Restate of Theorem . Letk > 2 be aninteger. Let e, ¢ € (0,1) with < 5. Let

for every pair of vertices x,y € V, QUERYDOT(G, z,y,§, ¥ Mquery (Alg. 4 I) computes an output
value (fr, fy)apx such that with probability at least 1 — 6n~ 100

|<fmfy>apx - <,fa:,fy>| < %

14
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Moreover, let Ty, Sinit be the time and space costs of INITORACLE(G, k, £, M) (Alg.EI), and let
Tyuerys Squery be those of a single QUERYDOT (G, x,y, &, ¥, Mquery) query (Alg.@). Then we have

4
(%)OO) .n1+0(sjw2) ) Lgmn i é
o S = (%)0(1) -nOE/e) L Mo - loghn
(
(

’

EYO() . 1+0(e/¢?)  log®n | 1
3 Mguery
k

22
5)0(1) .nO/¥?) - Myery - log® .

To prove Theorem [3.2] we begin by analyzing Z,, defined in Alg.[I] The following lemma shows that
7y is an unbiased estimator of (M*1,, M*1,) and quantifies its variance.

Lemma E.1. Let G = (V, E) be a graph. Let R, t, M be integers, where 1 < M < R. Let xz,y € V
be two vertices. Let M be the random walk transition matrix of G. Let Zy (1 < b < J\% ) be the
random variable defined in ESTRWDOT(G, R, t, M, x,y) (see line 6 of Alg. . Then, we have

E[Z)) = (M"1,, M'1,),
1

1
VarlZ] < 3 M el 1MLy o + 57 (1Ml - [ M0, [5 + M La]3 - [M11,]2).

Proof. Run M random walks of length ¢ from z (resp. from y). Let ¢, (i) (resp. ¢,(i)) denote
the number of random walks from z (resp. from y) that end at vertex ¢. It’s clear that we have

D(i) = c‘j\/(;) and p, (i) = C’T(Z) (see lines 4 ~ 5 of Alg. . Let p, = M'1, (resp. p, = M'1,)
be the probability distribution of a length ¢ random walk starting from x (resp. from y). Note that
¢z (1) ~ Binomial(M, p,(i)) and ¢, (i) ~ Binomial(M, p,(i)). According to line 6 of Alg. |1} we

have Z;, = (D, Dy). Therefore, about E[Z,], we have

E[Z) = (.. D))
—E lz ﬁm)ﬁyw]
i=1

_ # . ZE[cx(i)Cy(i)]

_ # Y Elea(0)]Ele, (0)

= 15 > Mp.(i)Mpy i)
i=1

= > pa(i)py (1)

= (P2, Py) = <Mt]lrth]1y>-

About Var[Z,], since Var[Zy] = E[ZZ] — (E[Z,])?, it suffices to calculate E[Z}] to get Var[Zy).

E[ZI?] =E [<ﬁ$’ﬁy>2]

-E (Zﬁz(i)ﬁy(i)>

—E |3 5.0, (). ()5, )

i=1 j=1
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% 3" Eleali)ey (ies(i)ey (7))

i=1 j=1
= Y Eleniei)]-Eley(ile, ()]
i=1 j=1
= ﬁ Y E[()] E[e@)] + ﬁ Y D Elea(i)ea(h)]-Eley (e, ()):
1=1 i=1 j=1,j#i

For convenience, we use A; to denote x> .1 E[c2(i)] -E[c2(i)] and A to denote
17 i1 2ot i Elex(i)ea(5)] - E ey (d)ey (5)]-

Since ¢, (i ) ~ Binomial(M, p, (7)), we have Elc,(i)] = Mp,(i) and E[c2(i)] = Var[e,(i)] +
(Elez(1)])? = Mp,(i)(1 — p.(i)) + M2p2(i) = M[p,(i) + (M — 1)p2(i)]. Therefore, we have

A= ZE [ (i)] - E [2(9)]

= S M [pa (i) + (M~ V2] M [p,0) + (M~ 1p26)]

= # pr(i)Py(i) + (M = 1) (papy (i) + P2(1)py (1) + (M —1)°pZ (0)py (0)

M-1 (M —1)?

(Paspy) + == (02 ) + (PLoPy) + 55— (P22,

1
M2
where with a slight abuse of notation, we use (p., ;) to denote " | p,.(i)p3 (i), and we use (p2, p;.)

to denote Y7, p2 (i )Py( i).

To calculate Az, we need to calculate E[c, (i)c,(j)] where i # j. We define X as follows:

Yi 1, The a-th random walk from x ends at ¢
%7010, otherwise '

So we have Elc,(i)c.(j)] = [Za L X Z = Zi\/le Zé\il IE[X;XZ]. For all a = b and

i # j, we have E[X! X g = 0], since for a smgle random walk, it cannot ends at 7 and j the same
time. For all @ # band i # j, we have E[X!Xj] = p,(i)p,(j). So we can get E[c, (i), (j)] =
M(M — 1)p,(i)p,(j). By the same augment, we get that for all i # j, E[c, (i)c, ()] = M(M —
1)py (4)py(j). Therefore,

A== 30 3 Elelie]-Eley(ile, ()]

= =1
M4 ;j %:# = 1)pe()px(j) - M(M — 1)p,(i)py(5)

_ % i __i#px@')py(n P.(Pu)

= _1 ii}pw )Py (i) - P2 (7)Py (j ZPI Dy (i

:(MM;QUQ anpx(i)py sz 7)py (i) — (P2, P)

16
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_ % ((pz,py)* — (P2,D})) -

Put them together, we get
E[Z2] = A1 + Ay

= e+ M () + ) + P 2
+ % ((pspy)* — (P} P}))

1 M—1 M —1)2
= 33 PPy + (P2, P;) + (P2, py)) + %(pwpy) -

Therefore, we have
Var[Zy] = E[Z;] — (E[Zs))*

1 M—-1 (M —1)2
= 327 PePy) + ((pa, P) + (P2, py)) + T(})z,py)Q — (P py)?

1 M—1 1—2M
= 572 Pepy) + — 5 ((PenP)) + (02.9y) + — 5 (Par2y)”

1 1 ) )
< W@x,pw + 7 (2, Py} + (P2, py))

= M2 pr 1)y (i <me py i) + Zpi(z)p(ﬂz))

i=1

| /\

Mgllpxllz 1Pyll2 + 27 (prllz Iy I3 + 213 - 1pyll2)

SMgllpzllz 1Pyll2 + 57 (szllz lpyl13 + 1213 - Ipyll2) ,

where the second-to-last inequality uses the Cauchy—Schwarz inequality and the last one follows
from Fact[CIl [

Building on Lemma we now consider the estimator Z obtained by averaging B = R/M
independent copies of Z;. The following lemma shows that Z remains an unbiased estimator with
variance reduced by a factor of B = R/M.

Lemma E.2. Let G = (V, E) be a graph. Let R,t, M be integers, where 1| < M < R. Let
x,y € V be two vertices. Let M be the random walk transition matrix of G. Let Z be the output of
ESTRWDOT(G, R, t, M, z,y) (Alg.[I). Then, we have

E[Z] = (M'1,,M'1,),

11
Var[Z] < & {MIIMt]lmllz ML 2+ (MLl - (ML [J3 + ([ M L5 - [ M1y]|2)

Proof. According to Alg. we know that 7 = % Zszl Zy, where B = %. Therefore, us-
ing Lemma we have E[Z] = L S0 | E[Z,] = (M'1,, M'1,) and

Var[Z] = Z Var[Zy)

= EVar[Zb]

M
= ﬁV&I’[Zb]

17
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M| 1 1
T T M I 57 (ML LML+ ML - M1, )|

IN

R

111
| Il DML (1MLl D0, + 1ML B 108 )

O

Lemma shows that, with suitable input parameters, ESTRWDOT(G, R, t, M, x,y) (Alg.
approximates the dot product of the random walk distributions from any two vertices z,y € V within
an error of ogy.

Lemma E.3. Ler k > 2 be an integer and p,c € (0,1). Let G = (V, E) be a d-regular and
(k, @, €)-clusterable graph. Let M be the random walk transition matrix of G. Let Z be the output
of ESTRWDOT(G, R, t, M, x,y) (Alg. . Let 0ey > 0. Let ¢ > 1 be a large enough constant. For

n71+405/¢2 1/2-20e /42

anytz%#andanym,yev,ifRZ%andlﬁMﬁO(” .
probability at least 0.99, we have

), then with

|Z — (M"1,, M"1,)| < o

Moreover, ESTRWDOT(G, R, t, M, x,y) runs in O(Rt) time and uses O(M - logn) bits of space.

Remark E.1. The success probability of Lemmacan be boosted up to 1 — n 1% ysing median
trick, i.e., by taking the median of O(logn) independent runs.

To prove Lemmal[E.3] we need the following lemma in Gluch et al| (2021).

Lemma E.4 (Lemma 22 in [Gluch et al.|(2021)). Ler k > 2 be an integer and ¢,e € (0,1). Let
G = (V, E) be a d-regular and (k, @, €)-clusterable graph. Let M be the random walk transition

matrix of G. For any t > 20;# and any x € V we have
||Mt]lw||2 < O(]{} . n—1/2+(205/¢2)).
Now we are ready to prove Lemma[E3]

Proof of LemmalE-3] Correctness. By Lemma and Lemma [E-4] we can get that

11
VarlZ] < & {MMt]leQ I 2+ (M L2 - ML ]I + (M L5 - [ ML]|2)

1 O(k2 .n—1+405/<p2)
R M

+ O(k3 _n—3/2+605/¢2>> )
Using Chebyshev’s inequality, we have

Pr(|Z — (M'1,,M'1,)| > 0ex] = Pr[|Z — E[Z]| > 0cx]
< Var[Z]

IN
|

M

l o k2 . p—1+40e/0?
err R M

—1+40e/p?
(O(k2 -0 /%) Lo -n‘3/2+605/"”2)>

IN
|

IN

18
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n1/27205/(,o2

where the second-to-last inequality holds by M < O (ﬁ) And the last inequality holds by

our choice of
c- k2n71+405/ap2

R> —F+——
-_ O_ean 3

. . . 2, —1+40s /2
where c is a large enough constant that cancels the constant hidden in O (%)

Runtime and space. Algorithm ESTRWDOT(G, R, t, M, z,y) (Alg. EI) performs B = % bathches

(.e., B = % iterations of the for-loop). In each batch, it runs M random walks of length ¢,
which requires O(Mt) time and O (M) words of space to store the O(M) endpoints of the walks.
Computing the dot product of two probability distributions takes O (M) time, since each distribution
has at most M nonzero entries. Therefore, the runtime and space per batch are O(Mt+ M) = O(Mt)
time and O (M) words, respectively. Moreover, the space used within each batch can be reused across
batches. Consequently, the overall runtime and space complexity of ESTRWDOT(G, R, t, M, x,y)
(Alg.|l) are B - O(Mt) = £ . O(Mt) = O(Rt) and O(M) words (i.e., O(M - logn) bits of space,
since each endpoint can be stored in log n bits), respectively. O

Lemma states that, under appropriate input parameters, the output G of our algorithm EST-
COLLIPROB (G, R,t,M,Is) (Alg. is close to (M'S)T(M?'S) in spectral norm, where
(M'S)T(M'S) is the Gram matrix of the random walk distributions from vertices in the sam-
ple set.

Lemma E.5. Let k > 2 be an integer and ¢, € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let M be the random walk transition matrix of G. Let Ig = {s1,...,55} be
a multiset of s indices chosen from {1,...,n}. Let S € R"**® be the matrix whose i-th column
equals 1,. Let G € R**® be the output of ESTCOLLIPROB (G, R,t, M, Is) (Alg. . Let e > 0.

. 1.2, —1440e /02
Let ¢ > 1 be a large enough constant. For any t > mjo#, ifR > % and1 < M <

1/2—20e 2
@ (%) then with probability at least 1 — n=1%, we have
||g - (MtS)T(MtS)”Q < S Oenr-

Moreover, ESTCOLLIPROB (G, R, t, M, I ) runs in O(Rt-logn-s?) time and uses O(M -log® n-s?)
bits of space.

Proof. Correctness. Note that in line 5 of Alg. 2| we get G (¢, j) :==ESTRWDOT(G, R, t, M, s;, s;)

. 1.2, —1440e/p2 1/2—20e /42
(Alg. |1). Since t > Wlogn p > ckin TFE and 1 < M < O(2""""") then
@ o2 M k

err

by Lemma [E.3| with probability at least 0.99, for all i, j € [s], we have
|gl(zm7) - <Mt]lsl'th]ls]'>| = |gl(27]) - (Mt]lsi)T(Mt]ls]'” < Oerr-

Note that in line 6 of Alg. 2] we define G as a matrix obtained by taking the entrywises median of
Gi’s over O(logn) runs. Thus with probability at least 1 — n =199 (see Remark [E. 1)), for all 7, j € [s],
we have

|g(27.]) - (Mtﬂsi)T(MtIsz” < Oerr,
which implies
IG — (M'S)" (M*S)||p< s+ Oerr.
Moreover, we have
IG — (M'S)"(M*S)|l2< |G — (M*S)T(M'S)||p< s - O
Runtime and space. In Alg.|2} Alg. is called log n - 5% times. Since the runtime and space of Alg.
)

are O(Rt) and O(M logn) bits, respectively, the runtime and space of Alg. are O(Rt -logn - s
and O(M - log® n - s2) bits, respectively. O
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Recall that we use (M'1,)"(M'S)(2 - W[HE[k] W[k )(MES)T(M1,) to estimate
(fe, fy> Lemma! states that under appropriate parameters, Alg. I outputs a matrix
U==2-Wy ]E[ %[]k] which, with high probability, is spectrally close to = W[k]E[ ]W[k] The

proof of Lemma is analogous to that of Lemma 24 in (Gluch et al. (2021) Nevertheless, for
completeness, we provide a concise proof here.

Lemma E.6. Let k > 2 be an integer and p, e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let M be the random walk transition matrix of G. Let Is = {s1,...,8s}
be a multiset of s indices chosen independently and uniformly at random form V. = {1,...,n}.
Let S € R"*® be the matrix whose i-th column equals 15,. Let G € R**® be the output of

ESTCOLLIPROB (G R,t, M, Ig) (Alg. @) Let /% - M'S = USWT be an SVD of /% - Mt
where U € R % € R*n, W e Rs*n, Let > -G = WEWT be an eigendecomposition of % -
Let -5 < § < 1. Letcy > 1and cy > 1 be two large enough constants. For any t > 20;°g", if

6. 14760 /0?2
s> ¢p - n240e/¥” logn-k* R > 2k 711v1‘52

1/2—20e/¢p2

£ < andlﬁMSO(%),then

05 ’
wzth probability at least 1 — 2 - n~19 matrices f][;]z and i[ﬁ exist and we have

7 sS4t T T =277 T
Wik 20 Wiky = Wi Zpg Wi ll2 <€

Equipped with Lemma|[E.5] to prove Lemma|[E.6] we also need the following lemmas.

Lemma E.7 (Lemma 18 in |Gluch et al. (2021)) Let A A € R™™ pe symmetric matrices with
eigendecomposition A=YTYT and A =YTYT. Let the eigenvalues ofA bel>my >+ >
Y > 0. Suppose that | A — Al|y < o5 and Y41 < . Then we have

16]|A — A||2 + 4’7k+1
Vk

Lemma E.8 (Lemma 28 in|Gluch et al|(2021)). Let k > 2 be an integer and p,c € (0,1). Let
G = (V, E) be a d-regular and (k, ¢, €)-clusterable graph. Let M be the random walk transition
matrix of G. Let Ig = {817 ..., 85} be a multiset of s indices chosen independently and uniformly at
random formV = {1,...,n}. Let S € R"** be the matrix whose t-th column equals 15,. Let c > 1
240¢e /¢

v p-lyvT _ v polyT
Y0 Ly Yo — Y Dy Y llz <

be a large enough constant. For any t > M if S < szands>c-n logn - k%, then

105
—100

with probability at least 1 — n , we have

n7805/gp2

o o (2 - (MIS)(M'S)T) = vy (2 - (M'S)T(M'S)) >
© vpgr (2 (MIS)(M!S)T) <n™.

Lemma E.9 (Weyl’s Inequality). Let A, B € R"*" be symmetric matrices. Let oy, ..., ay, and
B1,- .., Bn be the eigenvalues of A and B respectively. Then for any i € [n], we have

@i = Bil <[|A — Bl

Now we are ready to prove LemmaE.6]

1 2
n 1-360g/¢

Proof of Lemmal|E.6] Let c3 > 1 be a large enough constant and let oy = ET Letcbea
constant from Lemma [E.3] By the assumption of the lemma for a large enough constant ¢, > 1, we
have
o kO - n1+760€/¢2 c-k2n —1440e /2
R >

= M- &2 = o2 M

err

Thus we can apply LemmaE E.5| Hence, with probability at least 1 — , we have
||g ( ) (Mt )”2 < S Oenr-

Let A = Lo (MIS)T(MES) = WE2WT and A = % . G. Thus, we have A2 =
(2. (M’fS)T(MtS))2 = WS4WT and A2 = (2. 9)2 = WS2WT. To use Lemma we
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have to bound || A2 — A2||, = (%)2 I ((MtS)T(MtS))2 — G?||2. Using the triangle inequality and

sub-multiplicativity of spectral norm and the above ||G — (M*S)T (M'S)||z < s - 0er bound, we
can get that

I(M*S)T(M*8))" = G|l2 < (5 0rr)? + 2 5 Ter (M S) T (M"S) .

by Cauchy Schwarz inequality and Lemma we can get that ||(M?S)T(M?!S)||s < O(s - k? -

Note that [|(M*S)"(M'S)|> < [[(M'S)"(M'S)|r = \/Zle > (ML) (M1,,))?,

. . —1—360e/
n~1+40e/9%) Pyt them together and by the choice of ooy = &2 ; _Jkg ", we have that
.y —320e/p?
- n
132 - 22 < 0 <§> .
3

Moreover, let ¢ be the constant from Lemma since s > ¢; - n240¢/ o7 logn - k*, by Lemma
with probability at least 1 — n =199, we have

) (2 vsrons) ) (=55

and

Vk41 (A2) = Vk41 <(z : (MtS)T(MtS))2> <) =n""

—160e /42 n—320£/4p2

By Weyl’s inequality, we have that vk(g2) > vk(ZQ)—HﬁQ—IPHQ > n ) >

c3

—0(5‘
~ ~ o~ ~, ~ e
0, so E[*k]z exists. Moreover, since A%, A? are symmetric matrices, ||A? — A?|]y < ”’“1(6?) ) and

vpy1(A2?) < @, by Lemma we have that
16]| A2 — A2y + 4vp11(A2)

W S5 Wiy = Win i Wiigllz <

[k] v (A2)2
0] (f'nZOE/wQ) n An—18
S n—320e/p2
16
<0 <£> + 64n~ 17
C3
1
<¢ o8 <¢

Moreover, both Lemma [E.5|and Lemma [E.§| fail with probability at most n~°°, by union bound, we
can get that the above inequality holds with probability at least 1 — 2n =100, O

The following lemma shows that the output value (f.,fy,)upx of Alg. [ is close to

(M'1,)T(M!S) (% : W[k]i[;?ﬁ[{]) (M'S)T(M'1,). The proof follows from the proof of
Lemma 29 in |Gluch et al.| (2021). Nevertheless, for completeness, we provide a concise proof

here.

Lemma E.10. Let k > 2 be an integer and p,e € (0,1). Let G = (V, E) be a d-regular and
(k, p,€)-clusterable graph. Let M be the random walk transition matrix of G. Let Is = {s1,...,8s}
be a multiset of s indices chosen independently and uniformly at random form' V. = {1,... n}.

Let S € R™™® be the matrix whose i-th column equals 1,,. Let \/™ - M'S = USWT be an
SVD of\/é-MtS where U € R"“Zi € R”X",W € R**", Let % < ¢ <landl <

711/27205/“"2 20logn
My < O("—F—). Lett > - Let ¢ > 1 be a large enough constant. Let s >
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¢ - n240e/¢” . logn - k*. Let U denote the matrix constructed by INITORACLE (G, k, &, M) (Alg.
B

Letxz,y € V. Let (fz, fy)apx € R denote the value returned by QUERYDOT (G, z,y, &, ¥, Mauery)

1/2—20e 2
(Alg. EI) Ifﬁ < #, Alg. Esucceeds and 1 < Myyery < O (%) then with probability at
least 1 — 50190 matrix i[ﬁ exists and we have
N~ <y ¢
|(Fos Foape = (MU L)T (M) (2 - Wy S Wiy ) (M1S)7 (M'1,)| < =

Proof. Note that in line 8 of Alg. 4 (£, f,)apx is defined as a’ Wer,, where in line 8 of Alg.
U € R**¢ is defined tobe ¥ = % - W[k]Z[_k]QW{;C] and o, oy € R? are vectors obtained by taking
entriwise median over all O(logn) runs (see lines 3 ~ 7 of Alg. Ié-_ll)

For any vertex x € V, we use p, to denote p, = M*1,. We then define
"’L —~ ~_ —~
Ay = pg(MtS),A = s ’ W[k]z[k?w[z]vay = (MtS)Tpmv

e,=al —a,, E=V-A, e, = oy — ay.

Then by triangle inequality, we have
n — ~_ —
o’ Vo, —p; (M'S) (g : W[k]E[k?W[TIS]) (MtS)pr‘
=[(as +e:)(A + E)(ay + ey) — azAay|

< llezll2lEll2lleyll2 + llexll2llAllzlley[l2 + llazll2[| Ell2lleyll2
+ lacll2llAllzlleyllz + [laz 2| Ell2llayll2 + llexll2lAllzllay[l2 + [laz 2| £ll2]lay[l2-

In the following, we bound ||a,||2, ||ay||2, || Ell2, [|4]|2; |l€z||2 and |les||2.

Let ¢’ > 1 be a constant and let £’ = W Thus for large enough constant ¢, we have

2 i+9205/¢2 14 6. 1+760e/ o2
s> cp -n2405/¢" Jlogn - k* and Riyi = G(nT . %) > %
hence, by Lemma applied with ¢’ we have that with probability at least 1 — 2199, Z[_kf and

Z[_k?‘ exist and we have

as in line 2 of Alg.

27

n o5 o e n &-n
1Bll2 = < - Wi S5 Wiy — Wi S Wil < €' =

c k4. n80e/p? L g”

ey

Moreover, according to the proof of Lemma 29 in|Gluch et al.|(2021), we have that, with probability

at least 1 — n =100,

4 . plt+160e/0®

[[All2 < — o
And with probability 1, we have
||az||2 < O(\/g k2. n_1+408/s02) 5
and
laylls < O(V5 - k2 - = 1405/%%), N

Now we need to bound e, and e,. Recall that e, = af — pf(M tS), where a;, € R® is obtained

by taking entrywise median over all x;’s. Note that in line 5 of Alg. (i) is the output of

ESTRWDOT (G, Ryuery; t, Mauery, Z, 5;) (Alg. [I). Let c3 be a constant infront of R in Lemma
. /o2 . .
Let ooy = W Thus by our choice of Rquery = @(% . ’g—g) in line 2 of Alg. ,

the prerequisites of Lemma[E-3|are satisfied:
plt440e/0* 1.6 cs - k2p—1+40e/?
unery = —ar > .

Mquery 62 02 ) Mquery

err
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Thus we can apply Lemma[E-3] Hence, for any 1 < i < s with probability at least 0.99, we have

< Oerr-

‘ml(z) - pgp&:

Since we are running O(logn) rounds to compute x;’s and «, is obtained by taking entrywise
median, we can get that with probability at least 1 — n 100 for all z € Ig (see Remark[E.1), we have

|am(z) - ngz| S Oerr-

—100

Therefore, with probability at least 1 — n , wWe can get

, ERS
”ea:HQ = ||az; _pg(MfS)HQ < \/g Oerr = ¢ k2. pl1+200e/02 " ®)

100

Using the same analysis, with probability at least 1 — n~™""", we can get that

Valts

leyllz = lle, = (M) Tpyll < V5 0ew = 5 S ers ©
Putting (1).(2).(3).[@).().(6) together and for large enough n, we can get
n o~ ~7 o~
‘aT\I/ay —pT(M'S) (g : W[k]z[kfwﬁg]) (MtS)pr‘
< llezll2llE[l2lleyll2 + llexll2llAllzlleyll2 + lazll2ll £ll2]leyll2
+ [lazll2l|All2lleyll2 + laz /2| Ell2llayll2 + llexll2l|All2llayll2 + az (2| Ell2llay |2

<o)

<0(—
3
n

C/

<

The last inequality holds by setting ¢’ be a large enough constant to cancel the hidden constant of
O(%).

c'n

Using union bound, if Alg. @Osucceeds then the above inequality holds with probability at least
1—2n~100 _ =100 _9pn- O

Having Lemma[E3]and Lemma[E.10] to prove Theorem[3.2] we also need the following lemma.

Lemma E.11 (Lemma 19 in Gluch et al.{(2021)). Let k > 2 be an integer and p,e € (0,1). Let
G = (V, E) be a d-regular and (k, @, €)-clusterable graph. Let M be the random walk transition
matrix of G. Let Is = {s1, ..., 55} be a multiset of s indices chosen independently and uniformly
at random form' V. = {1,...,n}. Let S € R"** be the matrix whose i-th column equals 1,. Let
\/§ -M'S = USWT be an SVD of\/g - M'S where U € R™" Y € R W € R¥*", Let
L<é<landt> M Let ¢ > 1 be a large enough constant. Let s > c-n 480/’ Jogn-k8/€2.

If ﬁ < 00’ then with probablllty at least 1 — n=19 matrix ENJ[;? exists and we have

n

)= (ML) (M'8) (% £

WS Wi ) (MS)T (M1,)| <
Now we are ready to prove Theorem 3.2]

Poof of Theorem[3.2] Correctness. Equipped with LemmaE.T0] based on the correctness proof of
Theorem 2 in|Gluch et al.| (2021]), we can directly obtain the correctness.

Note that in line 3 of Alg. [3| we set s = O(n*80=/9” .Jog n- k8 /£2), and in line 4 of Alg. [3| we sample
s indices independently and uniformly at random form V = {1,...,n} to get Is = {s1,..., 85}
Recall that M is the random walk transition matrix of G. Let S € R"**® be the matrix whose
i-th column is 1. Let \/Z - M*S = USWT be an SVD of /2 - M"'S where U € R"*" %, €

Rnxn, W 6 RSX’I’L.
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Recall that for any vertex © € V, we define f, = U, [1,; (see Definition , thus we have
(fosfy) = XSy = (U[i]ll )'U L, = 13Uy Upy1,. For convenience, let us denote B =

(M'1,)T(M?!S) (% W[] 4W[ })( tS)T(M?*1,). By trangle inequality, we have

|<fzvfy>apx - <fxvfy>| |<.fz>.fy>apx —-B+B- <.fz»fy>|
|<fz’fy>apx - B| + |B - <fw’fy>|
|

<.facz.fy>apx - B| + |B - <]1£U[k]U[TI;]]1y>|'

IN

Let ¢ = % Let ¢’ be a constant in front of s form Lemma Since s = O(n4805/w2 logn
k8/£2) > - n240e/0% logn - k*, then by Lemma , with probability at least 1 — 51100 we
have |<fzv.fy>apx — B| < % = %

Let ¢ be a constant in front of s form Lemma Since s = O(n80/¢" . logn - k8/¢2) >
¢ - pA80e/¥? . logn - k8/§'2 and £ < 05 , then by Lemma | with probability at least 1 — n—100,

we have |B — (]ITU[k]U o)l < =5,

2n

Therefore, by union bound, W1th probability atleast 1 — 5n 100 — =100 =1 _ 65,=100 '\e have

[(fas Fydapx — (Fos Fy)| < 2n + 2n = EL

Runtime and space of INITORACLE. Algorlthm INITORACLE(G, k, €, Minir) (Alg. [3) calls EST-
COLLIPROB(G, Rinit, t, Minit, Is) (Alg. 2)) to get G (see line 5 of Alg. [3). According to Lemma
ESTCOLLIPROB(G, Rinit, t, Minit, Is) runs in O( Ry - -log n- %) time and uses O (Mipi; - log? n 32)
bits of space. Then in line 7 of INITORACLE, it computes the SVD of matrix G in s3 time
and it uses s? - logn bits of space to store ¥ € R™*", Thus overall INITORACLE runs in
O(Rinic - t - logn - 5% + s3) time and uses O(an -log*n - 52 4+ 52 - logn) bits of space. By

. =/¢? .
the choice of t := 20;‘?", Rinit == @(% e ) and s = O(n"‘go'a/*‘22 . logn . k8/§2) as in

INITORACLE, we get that INITORACLE runs in Ty = (E) 0(1) . p1+0(e/¢?) . M log*n - % time

init

and uses Sy = ( ) 0(1) . pO(e/¥?) . M - log* n bits of space.

Runtime and space of QUERYDOT. In QUERYDOT (Alg. , in lines 3 ~ 6, it calls ESTRW-
DOT(G, Ryuery: t» Mquery, %, ;) (Alg. 1) for O(log n - s) times. According to Lemma [E.3] ESTRW-
DOT(G, Rquery; t, Muery, , 8;) runs in O(Rquery - t) time and uses O(Mquery - log 1) bits of space.
Moreover, in line 9 of QUERYDOT, it returns (f, fy>apX = o, \I/ozy, which can be computed in
O(s?) time, since we can compute @ = X ¥ in s? time and then we compute acy, in s? time. Thus
overall QUERYDOT runs in O(logn - § - Ryuery - t + s°) time and O(log®n - s - Mguery) bits of space.
By the choice of ¢ := 20;"2%" Rquery = @(% ’g—ﬁ) and s == O(n*80</%* .logn - k8/€2) as

in QUERYDOT, we get that QUERYDOT runs in Toyery = (g)o(l) plHO(e/e?) . 1. logn - %

query ®

time and uses Squery = (%)O(l) - nO(e/e) . Muery - log® n bits of space.

O

F PROOF OF ITEM[I]IN THEOREM [3.1]

In this section, we first present an algorithm for computing the spectral dot product in a subspace,
which will serve as a building block for the sublinear spectral clustering oracle that relies on a log(k)
conductance gap. Next, we introduce the sublinear spectral clustering oracle, originally proposed in
Gluch et al.| (2021)), corresponding to Item [T]in Theorem 3.1} Finally, we provide the proof of Item|[T]
in Theorem[3.1]

F.1 DOT PRODUCT ORACLE ON SUBSPACE

Note that the clustering oracle in Gluch et al.| (2021) relies on cluster centers:
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Definition F.1 (Cluster center). For a vertex set C' C V, the cluster center of C is defined to be

1

zeC

They proved that if z € C;, then f, is close to sic;, which means (f., uc) > ¢ - || uc||3, where ¢ is
a constant. Therefore, the key idea behind the clustering oracle in |Gluch et al.|(2021) is to sample
a subset of vertices and enumerate possible k-partition in order to obtain a good approximation
1, - - ., i to the true cluster centers pu1, .. ., ty (see lines 6 ~ 11 of Alg. . When answering an
arbitrary WHICHCLUSTER (G, z) query, the oracle assigns the x to the cluster whose center is close
to f, while other cluster centers are not close to f, (see line 5 of Alg. .

In fact, their clustering algorithm uses hyperplane partitioning, which requires computing dot products
in the subspace (i.e., (f., Iu)). Therefore, we first present the algorithm that computes the dot
products in the subspace based on our improved version. We highlight that this (i.e., Alg. [6) is not
our contribution.

Algorithm 6: DOTPRODUCTORACLEONSUBSPACE (G, z,y,¢, YV, M, By,...,B,)
Let X € R"*" h, € R",h, € R’
Let& = ©(¢ - n=80e/%" . |=6)
fori,j € [r] do

L X(i,7) = m “>ien, 2os,en, QUERYDOT(G, 25, 25, €', ¥, M)
fori € [r] do

L h,(i) = |Bl_ - .., QUERYDOT(G, z;, z,&, ¥, M)

by (i) : |Bl - Y..c, QUERYDOT(G, 2;,y,£', ¥, M)

return (fw,ﬁfy>apx = QUERYDOT(G, z,y,&', ¥, M) — hI X 'h,

In the following, we will give some informal theorem and corollaries about Alg. [] Note that the
only modification we make to Alg. [f]is to replace SPECTRALDOTPRODUCT with our improved
version. Since our dot product oracle provides the same correctness guarantees as the original one, the
correctness of the theorem and corollaries concerning Alg. [6] follows immediately from the proof of
Theorem 6 in|Gluch et al.|(2021). Therefore, we focus on analyzing the time and space complexities.
Theorem F.1 (Informal). Let k > be an integer, o, # < &< land ﬁ be smaller than a positive
absolute constant. Let G = (V, E) be a d-regular and (k, o, €)-clusterable graph with C1, . . ., Ch.
Let v € [k]l. Let By,...,B, denote multisets of vertices. Let b = max;c[,]|B;|. Let ji; =
|711-| > wep, fo Let Il is defined as a orthogonal projection onto the span ({fi1, .- 1ir}) ", Then
forall x,y € V, we have

1 ‘(fm, ﬁfy>apx - <fz,ﬁfy>’ < %, where (fm,ﬁfy>apx is the output ofAlg.El
2 Alg. |6|runs in b* - (%)O(l) - plHOE/e%) . & log®n - é time,
3 Alg. |6|luses b? - (%)0(1) -nOE/*) . M - log® n bits of space.

Proof. Inlines 3 ~ 4 of Alg.[6] to compute X, Alg. [f|calls QUERYDOT for 12 - b? < k2. b? times. In
lines 5 ~ 7 of Alg. @ to compute h, h,, Alg. @calls QUERYDOT for r-b < k- b times. To compute
X1, ittakes r® < k3 time. Therefore, Alg. @runs in k%02 Tyuery + k- b+ Tyuery + & time and it uses
k2.b2. Saquery + k- b- Squery +k2. bits of space. Note that Tyyery = (?)O(l) . HO(e/9%). % Jog®n- é
and Squery = (?)0(1) .nO(e/#%) oM~log3 n, where £’ = G)({-*rfsos/*"2 -k~6). Therefore, we get that

Alg. |6[runs in b2 - ( )O(l)~n1+0(5/*"2)‘ﬁ~10g3n~#timeandusesb2~(§)0(1)ono(€/¢2)~M~log3n

bits of space. O

S Ead

Corollary F.1. There exists an algorithm that

1 returns a value {f,, ﬁﬁ)apx such that |{ fo, ﬁmapx — (fus ﬁm < &

n’
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. 2 .
2 runsin b3 - (%)O(l) -pl+OE/eD) L Tog® n - # time,
0

3 uses b3 - (%) (1) . pOE/e) . 0 - log® n bits of space.

Proof. One can compute (fmﬁﬁ)apx = Ié\ > e DOTPRODUCTORACLEONSUBSPACE(G, 7, Y,

&V, M,By,...,B,) (Alg. EI) Therefore, the algorithm that computes { f, Hu)dpx calls Alg. |§Ib
times, Wthh ends the proof.

Corollary F.2. There exists an algorithm that

1 returns a value ||1'I/VL||dle such that ‘HH,qupx ||Hu|| %
2 runsin b* - (E) O1) . pl+0(/¢%) . 2 log’n - ? time,
3 uses b*- (%)O(1> -nOE/e) 0T log® n bits of space.

Proof. One can compute ITa|2, = [pT[n) = aTo'E = p'hp = (6,0p) =
@ Y owen (T Hu>apx. Therefore, the algorithm that computes [|TIfi|2,, calls the algorithm in
Corollary [F.1]b times, which ends the proof. O

F.2 SUBLINEAR SPECTRAL CLUSTERING ORACLE

Now we present the sublinear spectral clustering oracle with a log(k) gap between inner and outer
conductance, originally proposed in|Gluch et al.|(2021)), and adapt it by incorporating our dot product
oracle, which operates with very little memory.

Algorithm[7]finds some cluster centers that reflects the clustering structure of the input graph.

Algorithm 7: FINDCENTERS(G, M)
INITORACLE(G, k, 1076 - %,M)

5= O (“"—kz5 log? klog(l/n)>, 59 = O (“"—kf’ log? klog(l/n)>
fort € [1...1og(2/n)] do
S :=Random samples of vertices of V of size s = ©(£-k*log k)

for (Py, Ps, ..., P;) €EPARTITION (S) do
fori: =1t kdo

Lﬂz- ‘P|Zz€P Ja

(r,C) :== COMPUTERORDEREDPARTITION(G, ({1, . . ., [ik)), S1, S2, M)
if » =TRUE then
L return C'

Algorithm 8: COMPUTEORDEREDPARTITION(G, (fi1, - - ., fix), 81, S2, M)
S = {ﬂlw",ﬁk}
for i = 11to [logk] do
Ti = (Z)
for 1 € S do

P OUTERCONDUCTANCE(G, i, (Ty,...,Ti—1), S, 81,82, M)

if < O( - logk) then

| T=Tu{a}

S = S\T;
if S = () then
| return (TRUE, (T1,...,T;))

u return (FALSE, L)
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Algorithm 9: OUTERCONDUCTANCE(G, i1, (T4, . .., Tp), S, $1, 82, M)
cnt =0
fort =110 s1 do
x ~UNIFORM{1...n}
if ISINSIDE(z, 11, (T4, ..., T}),.S, M) then
| ent:=cnt+1

if - - cnt < minye ) |Cp|/2 then
| return oo
e=0,a:=0

9 fort =11to s, do

10
11
12
13
14
15

16

EET I T I S

e % 3

10

a A W =

x ~ UNIFORM{1...n}
y ~ UNIFORM{w € N (u)}
if ISINSIDE(z, i1, (T4, ..., T}),.S, M) then
a=a+1
if —ISINSIDE(y, i, (T4, ..., Tp), S, M) then
| e=e+1

return £
a

Algorithm 10: ISINSIDE(z, i, (11, . ..,Tp), S, M)

fori=1t0bdo
Let II be the projection onto the span (U;;7;)*
Let Sz = (UjZiTj) us
for //.L\,‘ € T; do
L if v € Crfﬁ,;,o.%\ Unresi\{a:} 01%1[),7/,0.93 then

L return FALSE

Let II be the projection onto the span (Uj<;,T;)~*
. apx apx
if € O 93\ Upres\(a} Cripr 0,03 then
| return TRUE
return FALSE

Algorithm [TT] corresponds to the query phase of the clustering oracle where it is used to assign
vertices to clusters based on cluster centers.

Algorithm 11: HYPERPLANEPARTITIONING(x, (T4, ..., ), M)
fori =1t bdo
Let II be the projection onto the span (Uj<iTj)l
Let S; = (UjZiTj)
for i € T; do
. apx apx
if v € Cnpﬁ,o.93\ Upresi\{a} Crfﬂ',o‘gg then
| return i

F.3 DEFERRED PROOF

Theorem F.2 (Restate of Item [1] in Theorem [3.1). Let k > 2 be an integer, ¢,e € (0,1) and
hi(k, ), ha(k,e) and hs(k, @, ) be three functions. Let ¢ < hy(k,p). Let G = (V,E) be a
d-regular and (k, p, €)-clusterable graph with C1, ..., Cy. Let nee/?’ < M <O (W)
be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral
clustering oracle that:

* constructs a data structure D using 5¥, (hg(k) -nO(E/e?) . M) bits of space,
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* answers any WHICHCLUSTER query using D in 5¢ (hg(k) - lHOE/$%) . ﬁ) time,
* has O (hs(k, p,€)) |C;| misclassification error for each i € [k],

where we use O, suppresses dependence on ¢ and O hides all poly(log n) factors and:

o)
)

1 ifhi(k, ) = top, then ha(k,e) = ()7 and ha(k, ¢,¢) = 5 -logk.

Proof. Space and runtime. In the preprocessing phase, as line 1 of FINDCENTERS (Alg. [7), it
invokes INITORACLE(G, k, £, M) one time to get a matrix W, which takes Siy; bits of space according

to Theorem Then it samples s = %2144 log k vertices and tests all the possible k-partitions of the
sample set. For each partition, it invokes Alg. [8lone time. Each run of Alg. [§|invokes Alg. [9]% log k
times. Each run of Alg. Elinvokes Alg. |10 (s1 + s2) times. Each run of Alg. computes Cis 0.03

about k() times, where Cﬁ; 0.93 = {z eV, % > 0.93}. According to Corollary and
(e apx

Corollary , computing % takes s* - (£2)0() . nOE/9") . My yory -log® n bits of space, where
apx

weset& = 1076. %. Therefore, Alg. uses Sinit+k log k- (51 +52) 5% (%")O(l) nO(/¢?) * Mauery -
. . 2 . 4.
log® n bits of space. By setting 51 = © (%k‘" log® k log(l/n)) ,82 =0 (%k" log® k log(l/n)) ,

n = O(logn) and Mquery = M, we get that Alg. uses (%‘p)o(l) nOE/") M poly(logn) bits
of space to get a matrix ¥ and a collection of vertex sets C' that represents the cluster centers.

In the query phase, HYPERPLANEFARTITIONING (Alg. computes Cflfg 0.9 about kO times,
where C’;E%O.% ={z eV, oMo 0.93}. According to Corollaryand Corollary

ITIE3

computing % takes s - (E2)0() . nO(/¢%) . M . log® n bits of space and s* - ()01 .

pt+OE/) . L logp - # time, where we set £ = 1076 - %. By setting s = %2]64 log k, we get
that Alg. takes (k)0 . nOC/¢*) . M - poly(log n) bits of space and (£2)0() . p1+0(/¢%) .
+ - poly(log n) time.

Thus, the clustering oracle constructs a data structure D (including matrix W, cluster centers C' and
other information used by the query phase) using (%")O(l) O/ T poly(log n) bits of space.
Using D, any WHICHCLUSTER query can be answered by Alg. in (%“’)O(l) - plHO(E/e?) ﬁ .
poly(log n) time.

Correctness. We highlight that the sublinear spectral clustering oracle is not our contribution. Note
that the only modification we make to the clustering oracle is to replace the dot product oracle used
in the original work (Gluch et al.| 2021) with our improved oracle. Since the correctness guarantees
(i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of
the dot product oracle, and our dot product oracle satisfies the same correctness guarantees with the

previous one, the correctness of the overall clustering oracle follows directly from the correctness of
the clustering oracle in|Gluch et al.[(2021)).

O

G SUBLINEAR CLUSTERING ORACLE RELATED TO ITEM [2]IN THEOREM [3.1]

In this section, we present the sublinear spectral clustering oracle with a poly(k) gap between inner
and outer conductance, originally proposed in|Shen & Peng|(2023), and adapt it by incorporating our
dot product oracle, which operates with very little memory.

Algorithm[T2]first initializes our dot product oracle to get a matrix ¥ (see line 5). It then leverages
our dot product oracle to estimate (f, f,) for all pairs of vertices z, v in the sample set .S, which are
subsequently used to construct a similarity graph H (see lines 6 ~ 9).
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Algorithm 12: CONSTRUCTORACLE(G, k, ¢, €,v, M)
Let{ = % and let s = m'k,yﬂ
Let 0 = 0.96(1 — 25)2E — vE(2)1/6 _ £
Sample a set S of s vertices independently and uniformly at random from V'
Generate a similarity graph H = (S, 0)
Let W = INITORACLE(G, k, &, M)
for any u,v € S do
Let (fu, fu)apx = QUERYDOT(G, u, v, &, ¥, M)
if (fu, fo)apx > 6 then
| Add an edge (u,v) to the similarity graph H

if H has exactly k connected components then

Label the connected components with 1,2, ..., k (we write them as S1, ..., S)
Label x € S withiif x € S;

Return H and the vertex labeling ¢

else
L return fail

Algorithm 13: SEARCHINDEX(H, ¢, z, M)

1 for any vertex u € S do

[

= LY B )

L Let <.fu; fm>apx = QUERYDOT(G,u, z,§, ¥, M)

if there exists a unique index 1 < i < k such that (fu, fu)apx > 0 for all u € S; then
| return index 4

else
| return outlier

Algorithm [T4] corresponds to the query phase of the sublinear spectral clustering oracle, where it
answers any WHICHCLUSTER query using matrix ¥ and similarity graph H.

Algorithm 14: WHICHCLUSTER(G, x, M)

1 if preprocessing phase fails then

(8

o N s W

L return fail

if SEARCHINDEX(H, ¢, z, M) return outlier then
| return a random indexe [k]

else
| return SEARCHINDEX(H, ¢, z, M)

H PROOF OF THEOREM

Theorem H.1 (Restate of Theorem[1.2). For any trade-off parameter 1 < M < O(+/n), there exists
an algorithm (Alg. El) that, with probability at least 1 — 2n~199, solves the 1-cluster vs. 2-cluster
problem. Moreover, the algorithm:

« uses O(M) bits of space,
* runs in O (%) time.

To prove Theorem |1.2] we need the following lemmas.

Lemma H.1 (Cheeger’s inequality). In holds for any graph G that
A
5 <06 < V2
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Lemma[H.2]bounds the ¢5-norm of the ¢-step random walk distribution starting from any vertex x in
a d-regular graph, distinguishing between the case where the graph is a single p-expander and the
case where it consists of two disjoint p-expanders.

Lemma H.2 (Expander related version of LemmalE.4). Ler v € (0,1). Let G be a d-regular graph.
Let M be the random walk transition matrix of G. For any t > 2 log" andany x €V,

1 if G is a p-expander of size n, then || M1 |2 < \/g
2 if G is the disjoint union of two identical p-expanders of size n/2, then ||M"'1, |2 < \/%

Proof. Item [I} Let L be the normalized Laplacian matrix of G. Recall that we use 0 = \; <
- < A\, < 2to denote the eigenvalues of L and we use uq, ..., u, to denote the corresponding
eigenvectors, where ul, ..., uy form an orthonormal basis of R" and uq(x) = \F foranyz € V.

Note that M = I — . Hence, the eigenvalues of M are givenby 1 =1 — >‘1 > >1- 2" >0,
and the correspondlng eigenvectors are still w1, ..., u,. For convenience, we relabel the eigenvalues
of Mas1=uv(M)=(1-2)> UQ(M) =(1-22)> - >v,(M)=(1-2) >0.

2
Moreover, we can write that 1, = 7" | ou;. Note that u] 1, = > | cyu] u; = ;. Therefore,

J
T — oy
a; corresponds to u; 1, = u;(z). Now, we have

_2\4—t]1m = Mt i: a;U; = iathui = i: (7 (Ul(M))t u;.
i=1 i=1 i=1

Thus, we have

M, 32 = (M'1,)T (M*,) Za v (M

N
\

+
s
S
S
NIE

R
=7

< % + (va(M))*" - (n = 1).

Since G is a p-expander, according to Cheeger’s inequality (Lemma , we get that Ay > %2.
Therefore, for any ¢ > 20:@#, we have

Combine above results together, we get that
1 1
IMUL <=+ 5 (- 1) =

Item@ We use (', Cs to denote the two p-expanders in G. Since C; and C; are disconnected, the
normalized Laplacian matrix L of G can be written in block-diagonal form as

_ (Lc¢ 0
L< 01 LC2>’

where Lo, € R3*% and Lc, € R2*% are the normalized Laplacian matrix of C; and Cs,

respectively. For Lc we use 0 = )\10 - < )\C/2 < 2 to denote the eigenvalues of L¢, and
we use ulc, RN T /2 € R3*3 to denote the corresponding eigenvectors, where ulcﬂ . ,uS}g
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from an orthonormal basis of R * % and u%" (z) = \/g for any € V. Therefore, the eigenvalues
of L are givenby 0 = A} < --- < )\, 2 <2, each of which has multiplicity two, where \; =
)\icl = )\iCZ. For )\;, we use ug;—1,u2; € R™ to denote the corresponding eigenvectors, where
wgi_1 = (u)7,0,...,0)T and ug; = (07 .0, (u CQ) )T Note that M = I — Z. Hence, the

'n./2

eigenvalues of M are givenby 1 = 1— % > >1- > 0, each of which has multiplicity two,
and the corresponding eigenvectors are still wy, ..., wy,. For convenience, we relabel the eigenvalues
of Masl= vl(M) =wv(M) = ( ——) > vg(M) =u(M) = (1—%) > > (M) =
vn(M) = (1-252) > 0.

Similar to the proof of item 1, we get

M, |2 = (M'1,)T(M!1,) Za v (M))*

ad 4+ a3+ Za? (v; (M)
i=3

<2 (M) Y e

=3

<24 (M) (n-2).

Since C; and 02 both are -expander, according to Cheeger’s inequality (Lemma|[H.I]), we get that
AST = 2?2 > £°. Therefore, for any t > 20:90g" we have

2t 4..10logn
Ao 2t )\Cl ()02 2 g 1
<v3<M>>2t=(1—2) ~(1-2) <(1-£ <

Combine above results together, we get that

2 1 2
t 2 —
IMUL <=+ (n-2) ==

+ <

L3
n n

O

The following lemma shows that, under appropriate parameters, Alg. [T]can estimate the dot product
of the random walk distributions from any two vertices up to o, whether the graph is a single
p-expander or consists of two disjoint ¢-expanders.

Lemma H.3 (Expander related version of Lemma [E3). Ler ¢ € (0,1). Let G = (V,E) be
either a d-regular p-expander with size n or the disjoint union of two identical d-regular p-
expander of size n/2. Let M be the random walk transition matrix of G. Let Z be the output
of ESTRWDOT(G, R, t, M, z,y) (Alg. . Let gey > 0. Let ¢ > 1 be a large enough constant. For
anyt > 203@# and any x,y € V, if R > ir;:;b; and 1 < M < O(n'/?), then with probability at
least 0.99, we have

|Z — (M1, M'1,)| < 0err.
Moreover, ESTRWDOT(G, R, t, M, x,y) runs in O(Rt) time and uses O(M - logn) bits of space.

Proof. Runtime and space. See the proof of Lemma|E.3]
Correctness.

By Lemma [E.2|and Lemma[H.2] we can get that

1
Var[Z] < & | IM Tyl MO0y [lo + (| M Le |2 - [ MUT |5 + | ML |3 - [ M1, )

==
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= % <O(]7\}1) +O(n3/2)) :

Using Chebyshev’s inequality, we have

Pr[|Z — (M1, M'1,)| > 0ex| = Pr[|Z — E[Z]| > Oen]
Var[Z]
Ter
1 1
ok R
1
R

<

< —.
— 100

The last inequality holds by our choice of R as follows, where c is a large enough constant that
cancels the constant hidden in O (”—A}l) :

O

Lemma [H.4] asserts that, under suitable parameters, the output G of ESTCOLLIPROB (Alg.
approximates (M*S)T (M?*S) in spectral norm, where the latter is the Gram matrix of the random
walk distributions from sampled vertices, and this holds whether the graph is a single ¢-expander or
two disjoint ¢-expanders.

Lemma H.4 (Expander related version of Lemma[E.5). Let ¢ € (0,1). Let G = (V, E) be either
a d-regular p-expander with size n or the disjoint union of two identical d-regular p-expander of
size n/2. Let M be the random walk transition matrix of G. Let Is = {s1, ..., s} be a multiset of
s indices chosen from {1,...,n}. Let S € R"** be the matrix whose i-th column equals 1,. Let
G € R*** be the output of BSTCOLLIPROB (G, R, t, M, Is) (Alg. ). Let 0y > 0. Let ¢ > 1 be
a large enough constant. For any t > 20;#, if R > 2?;; and1 < M < O (n1/2), then weith

probability 1 — n~1%, we have

G — (M'S)T(M!S)||2 < 5 - Oerr-

Moreover, ESTCOLLIPROB (G, R, t, M, Is) runs in O(Rt-logn-s?) time and uses O(M -log® n.-s%)
bits of space.

Proof. Note that we have established Lemma[H.3] which is an analogue of Lemma [E.3|for graph that
is either a p-expander of size n or the disjoint union of two identical p-expanders of size n/2. Since
the proof of LemmalE.5relies only on Lemma|E.3] the same augment immediately yields Lemma[H.4]
the corresponding analogue of Lemma[E.5] O

Lemma demonstrates that (M*S)(M?'S)T has a clear spectral gap between the 1-cluster and
2-cluster cases.

Lemma H.5 (Expander related version of Lemmal(E.8). Let ¢ € (0,1). Let G be a d-regular graph.
Let M be the random walk transition matrix of G. Let Is = {s1, ..., ss} be a multiset of s indices
chosen independently and uniformly at random form V- = {1,... ,n}. Let S € R™** be the matrix

whose i-th column equals 1. For any t > 20logn sy probability at least 1 — n=190 we have
i ©
1 if G is a p-expander of sizen and s > 1, then vy (2 - (M'S)(M'S)") < n~°,

S
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2 if G is the disjoint union of two identical p-expanders of size n/2 and s > c - logn, where
¢ > 1is a large enough constant, then vy (2 - (M'S)(M'S)T) > 0.99.

To prove Lemma[H.3] we need the following lemma.

Lemma H.6 (Lemma 21 in |Gluch et al.| (2021)). Let A € R"*™ be a matrix. Let b =
272

maxge(1,...n} [(AL)(AL) T ||o. Let 0 < & < 1. Let s > 100180 Lot [g = {sy,...,5,}

be a multiset of s indices chosen independently and uniformly at random formV = {1,...,n}. Let
S € R™** be the matrix whose i-th column equals 15,. Then we have

Pr [||AAT — " (A8)(AS) |y > €] < n 100,
S

Proof of Lemmal[H.5| Item [T} The proof follows directly from the proof of item 2 of Lemma 28 in
Gluch et al.|(2021)).

Item[2} Let A = (M*)(M*")T = M?, we get vg(A) = vy (M)?*. Since G is the disjoint union of

two identical p-expanders, GG has two connected components. Therefore, the normalized Laplacian
matrix L of G has two smallest eigenvalues equal to 0. Consequently, since M = [ — %, the two

largest eigenvalues of M are 1 — = 1. Thus, vy (A) = 1.

Let A = L. (M'S)(M'S)T. By Itemin Lemma we have b = ||(M'1,)(M'1,)T |2 <
[M*1,]3 < 2. Let £ = 155. Therefore, for a large enough constant ¢ > 1, we have s = ¢ - logn >
40n*Wlogn hyg, according to Lemma we get that with probability at least 1 — n =100,

(150)?

~ 1
A—Als < —.
4 Al < -

By Weyl’s inequality (Lemma, we get that vg(g) > vy(A) — HEHQ >1- ﬁ = 0.99. O

The proof of Lemma follows directly from the proof of Lemma 24 in |Gluch et al.| (2021)).
Nevertheless, for the sake of completeness, we provide a concise proof here.

Lemma H.7 (Expander related version of Lemma [E.6). Let ¢ € (0,1). Let G = (V, E) be a d-
regular graph. Let I = {s1, ..., 85} be a multiset of s indices chosen independently and uniformly at
random formV = {1,...,n}. Let G € R®** be the output of ESTCOLLIPROB (G, R, t, M, Is) (Alg.

. Let c1 > 1 be a large enough constant. For any t > 2030#, if R > % and1 < M <O (nl/Q),
then with probability at least 1 — 2 - n =100,

1 if G is a p-expander of size n and s > 1, then vy ((gg)z) = (vg(%g))2 < 0.001,
2 if G is the disjoint union of two identical p-expanders of size n/2 and s > ¢y - logn, where
co > lis a large enough constant, then vy ((%9)2) = (Uz(gg))Q > 0.95.

Proof. Let M be the random walk transition matrix of G. Let S € R™** be the matrix whose i-th
column equals 1. Let /2 - M*S = USW7 be an SVD of \/Z - M"'S where U € R"*", % €
R7>™ W € RS*™, Let % -G = WEWT be an eigendecomposition of % -g.

Item|l} Let o¢y = %. Let c be the constant from Lemma By the assumption of the lemma,

we have )

j c1n S c-108-n _ c-n- -
MOT T M oz M
Thus we can apply Lemma|[H.4] Hence, with probability at least 1 — n =19, we have

IG — (M'S)T (M'S)||2 < 5 - Oerr-

~

Let A = Lo (MIS)T(MES) = WE2WT and A = % . G. Thus, we have A2
(2. (M’fS)T(MtS))2 = WS*WT and A2 = (%-Q)2 = WS2WT. Moreover, we have
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|A2 — A2||, = (%)2 H((MtS)T(MltS))2 — G?|]2. Using the triangle inequality and sub-

multiplicativity of spectral norm and the above ||G — (M'S)T(M!S)|2 < s - oer bound, we
can get that

I((MS)T(M'8))" = G[l> < (5 Ter)? + 2 5 Teul (M1 S) T (M S) .

by Cauchy Schwarz inequality and Itemof Lemma we can get that || (M'S)T (M'S)||; < s-2.

Put them together and by the choice of gy = %, we have that

Note that [|(M*S)"(M'S)|> < [[(M'S)"(M'S)|r = \/Zle > (M) (M,,))?,

- —~ 2 2
| A% — A%, < (E> : (SQUEW +2:-85 Ocr-S- > =n?02, 4 4noer < 0.00005.
s n

Moreover, since s > 1, by Item|[1]of Lemma|H.5] with probability at least 1 — n~%°, we have
- 2
Vs (A?) — v <(” : (MtS)T(MtS)) > < (n%)?2 =n18,
s
By Weyl’s inequality, we have that
9 (A2%) < vo(A?) + || A2 — A%||5 < n~"® +0.0005 < 0.001.

ItemE} By the same augment of the proof of Item [I] and ItemOE] of Lemma we can get that
[(M*S)T(M?!S)||2 < s- 2. Thus, by the choice of ooy = 292 we have that

n s

~ 2
|A2 = A2||, < (%) : <s%§ﬂ 25 e s :’L> = 1202, + 6n0er < 0.0007.

Moreover, since s > c¢3 - log n, by Itemof Lemma with probability at least 1 — n 190 we have

va (,12) = vy ((: : (MfS)T(MfS))2> > (0.99)% > 0.98.

By Weyl’s inequality, we have that
va(A?) > vy(A?) — || A% — A%||5 > 0.98 — 0.0007 > 0.95.

Now we are ready to prove Theorem

Proof of Theorem[[.2] Correctness. By the promise in the theorem statement, the input d-regular
graph G = (V, E) is guaranteed to be either a p-expander or the disjoint union of two identical
p-expanders, each of size n/2. We run algorithm DISTINGUISH(G, M) (Alg. [3) to distinguish
the above two cases. Note that the choices of ¢, s, and R are made so that all the assumptions
required by Lemma([H.7]are satisfied. Therefore, by Lemma we get that in case (i) (when G is
a p-expander), with probability at least 1 — 2n =190, (v2(%G))* < 0.001 < 0.6; in case (ii), with
probability at least 1 — 2n.71%9, (v2(2G))? > 0.95 > 0.6. Therefore, we get that, with probability at
least 1 — 2n~199, algorithm DISTINGUISH correctly distinguishes which case holds.

Space and runtime. According to Lemma getting matrix G requires O(R - t - logn - s?) time
and O(M -log® n - s2) bits of space. Computing (2G)? requires O(s?) time and O(s? - log n) bits
of space. Therefore, the overall runtime and space complexity are O(R -t - logn - s> + s3) and
O(M -log® n- s>+ s% log n) bits, respectively. By setting t = 20;#, R =0(3%)and s = O(logn),
we get that DISTINGUISH(G, M) runs in 7o - 57 - poly(logn) - — time and uses M - poly(log 1) bits
of space.

O

34



Under review as a conference paper at ICLR 2026

I PROOF OF THEOREM [L.3|

Theorem L1 (Restate of Theorem([I.3). Any algorithm that correctly solves the 1-cluster vs. 2-cluster
problem with error at most 1/3 using only random walk oracles must satisfy T - S > Q(n), where T
and S denote the time complexity and space complexity of the algorithm, respectively.

Before we start the proof of Theorem [I.3] we would first introduce some basic definitions in
information theory.

I.1 BASIC DEFINITIONS

Definition 1.1 (Entropy). Given a random variable X taking values in the set " and distributed
according to p : X — [0, 1], the entropy of X is defined as

H(X):=—Y_ p(z)logp(x).

reX
In the special case where X has only two possible outcoms, the entropy is given by
Hy(X) = —plogp — (1 - p)log(l —p).

The entropy of a random variable quantifies the average level of uncertainty or information associated
with the random variable. Note that for the special case of H>, we have the following property:

Lemma I.1.

1 = (2a0)% )
1H2< +a> 21n22l2l—1 0 (@)

Given the outcome of another random variable Y, we can also quantify this randomness using
conditional entropy.

Definition 1.2 (Conditional entropy). Given random variables X and Y taking values in sets X and
Y, respectively, with joint distribution p : X x ) — [0, 1], the conditional entropy of X givenY is
defined as

HX|Y)=HXY)-HI) == 3, plry)log @fgj)'
reX,yey

Furthermore, the amount of information that is shared between two random variables is called mutual
information.

Definition 1.3 (Mutual Information). Given random variables X and Y taking values in X and )/,
respectively, the mutual information between X and Y is defined as

I(X;Y)=HX)-HX|Y)=H(Y)-H(Y | X).
Similarly, given a random variable Z taking values in Z, the conditional mutual information of X
and Y given Z is defined as
I(X;Y|Z)=HX|Z)-H(X|Y,2Z2).

Our proof will also use the following key properties of mutual information.

Lemma I.2 (Data Processing Inequality). Given random variables X,Y and Z taking values in sets
X, Y and Z, respectively, such that X | Z |Y. Then

I(X;Z) < I(X;Y).

Lemma 1.3 (Chain Rule). Given random variables X,Y and Z taking values in sets X,) and Z,
respectively, we have
(XY, 2)=1(X;2)+ I(X;Y | Z).
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1.2 HARD INSTANCE I

To prove Theorem I.3] we first consider the following Hard Instance, inspired by [Diakonikolas et al.
(2019) and commonly used in uniformity testing. Note that in our construction, at each time ¢, the
player is allowed to pick a W; € [2n]. The proof of Theorem [I.2|then follows from the proof of
Theorem 23 in |Diakonikolas et al.|(2019).

Definition 1.4 (Hard Instance I). Let X be a uniformly random bit. Based on X, the adversary
chooses the distribution p on [2n] bins as follows:

* X =0: Pick p = Usy,, where Uy, is the uniform distribution on [2n].

* X = 1: We construct two sets as follows: Pair the bins as {1, 2}, {3,4},--- ,{2n — 1,2n}.
Now on each pair {2i — 1, 2i} pick arandom Y; € {£1}. If ¥; = 1, we put bin 2 — 1 to
set 1 and bin 27 to set 2; otherwise, we put bin 27 to set 1 and bin 27 — 1 to set 2. Each time,
the player picks W; € [2n]. If W, belongs to set 1, we have Z; = 1; otherwise, Z; = —1.
The distribution is then

1+YZ, 1-YZ;
(P2i_1,p2i) = ) .

2n 2n

We have the space-time tradeoff of this instance to be

Theorem L.2. Let A be an algorithm that detects the Hard Instance I with error at most 1/3. The
algorithm can access the samples in a single-pass streaming fashion using M bits of space and T

samples. Furthermore, at each step, the algorithm may choose which set to sample by specifying W;.
We then have T - M = Q (n).

Remark L1. In Theorem|[[.2] we use M to denote the space complexity because S is already used in
the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will
denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem[[.2] In either case, we can think of the output of p as being a pair (C, V'), where C'
is an element of [n] is chosen uniformly, and V' € {0, 1} is a fair coin if X = 0 and has bias Yo Z; if
X =1

Let s1,..., s be the observed samples from p. Let M; denote the bits stored in the memory after
the algorithm sees the ¢-th sample s;.

Since the algorithm A learns X with probability at least 2/3 after viewing T samples, we know
that I (X; M7) > Q(1). On the other hand, M; is computed from (M;_1, s;) without using any
information about X. More formally, X L M; | (M;_1,s;) and therefore we can use the data
processing inequality (Lemma[[.2) and chain rule (Lemma|[[.3) to get:

I(X7Mf) §I(X;Mt_1,st) :I(X7Mf_1)+I(X,St ‘ Mt—l)-

Since irrespective of X, C' is uniform over the pairs of bins, we note that C' is independent of X even
when conditioned on the memory M. Moreover, player’s choice of W, is computed only from M;_;.
Thus,

I(X,St | Mt—l) = I(X,Of‘/t | Mt—l) = I(X,‘/t | Mt_lot) = [(X,‘/{» | Mt_lctWt) .

Let Qp_1 = Pr [X =1 | MtflctWt] and thus Pr [X =0 | MtflctWt] =1- Qp—1.
We have that
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PriVi=0[X=0,M;_1,C;, W] =

1
23
1+ E[ZiYe, | Mi—1, W]
2 b
1 1+ E[Z;Ye, | My_1, W,
Pr[mzo|Mtfl’ct]:(l_atfl)g‘f'at,l [ t Ct2| t—1 t]
1 o E[ZYe, | My, Wi
=5+ 5 :

PriVi=0|X=1,M;1,C,Zi] =

‘We can calculate

I(X§V;t ‘ Mt—lCtWt) = H(Vt | Mt_lCtWt) — H(Vt | Mt—lctWtX)
=Hy (Pr[V; =0 | M—1,Cy, Wi)

_ {PI‘ [X =1 | Mt,lctWt] HQ (Pr [‘/vt =0 | X = 17Mt7170t;Wt])

+Pr [X = 0 ‘ MtilCtWt] H2 (PI' [W = O | X = 07Mt7130t7 Wt])}
—H, <1 a1 E[Z,Ye, | Mt—l,Wt]) oy Hy <1 E[ZYe, | Mt—hWt})

5 T 2 Rl 2

a3

1 E[Z/Y M;_1, W, 1 1 E[Z:Y M;_1, W,
=at1[1—H2<2+ [tct\z t—1, t]>:|_|:1_H2(2+04t1 [tC’£| t—1; t])]

. (E[Ztht |Mt_1,Wt])2 B (aHE [ZYe, |Mt_1,Wt}>2
B 2 2

=0(1)

=0(Mas—1 (1 — a1 E[ZYe, | M1, Wi)?
<OWE[ZYe, | My_v1, Wi)?.

Since C; is uniformly random, we have that

Y COME[ZY; | My_y, Wy

j=1

I(X;Vt | Mt—lctWt) =

3=

Now to bound this part, note that we first have H (M;_1,W;) < M that
I1(ZiYh...Z Y, My, W) < M. At the same time, notice that Z; is just flipping the

value of Y1, ...,Y, and thus H (Z;Y1 ... Z;Y,) = H (Y1...Y,) = n. Thus we have

H(ZY...Z.Y, | My, W) =H(Z)Y1...Z:Y,) — 1(ZYr ... Zy Y My, W) > — M.
On the other hand, we have that

n
N H(ZY; | Myy,Wi) = H(ZiYa ... ZiYo | My, Wy) > n— M.

=1

Thus,

M > Z (1= H(ZY; | My—y,W;)] =© (ZE[Zth‘ | Mt—l’Wt]2> ,
=1

=1

where the equality comes from the fact that if Pr [Z;Y; = 1 | M1, W;] = % + f3, then

37



Under review as a conference paper at ICLR 2026

E[Z:Y; | My, Wi] = Pr([Z:Y; = 1| My_1,Wi] (+1) + Pr[Z;Y; = =1 | My_1, W] (—1)

()-(-0)-

We finally have that

b

Q) < T(Mp;X) =S T (Mysy; X) — I (My; X)

T
|
- o

I(Mt,St+1;X) — I(Mt,X)

|
T

I(St+1;X | Mt)

Il
T

I (Vigr; X | My, Cryq, Wiga)

ﬁ
i
<

M,

n

|
)

We conclude that T - M > Q(n). O

1.3 HARD INSTANCE II

For the graph problems, we would consider the following Hard Instance.

Definition I.5 (Hard Instance II). Let X be a uniformly random bit. Let ¢ € (0, 1) with ¢ = Q(1),
and let d = O(1). Based on X, the adversary chooses a d-regular graph G on 2n vertices as follows:

o X = 0: Pick the graph to be a p-expander on 2n vertices.

o X = 1: We construct two sets as follows: Pair bins the as {1,2},{3,4},--- ,{2n—1,2n}.
Now on each pair {2i — 1,2i} pick a random Y; € {£1}. If Y; = 1, we put vertex 2i — 1 to
set 1 and vertex 2i to set 2; otherwise, we put vertex 2i to set 1 and vertex 2i — 1 to set 2.
The graph is then composed of two identical p-expanders over set 1 and set 2.

We would assume that the algorithm has access to the graph only via the random walk queries.

Definition 1.6 (Random walk queries). In a random walk query, the algorithm specifies a starting
vertex « in G. The query then returns the endpoint of a random walk of length O(log n) starting from
xZ.

We have the properties of a random walk for a p-expander as follows:

Lemma L4. Assume G = (V, E) is a d-regular p-expander on n vertices. Let M be the lazy random
walk transition matrix of G. Let M*1,, be the probability distribution of a random walk with length
O( k:pgzn) starting from vertex x € V. Let T = (% LT ¢ R™ be the uniform distribution over n

%’ ceey Z
vertices. We have that dpy (M1, m) < Oﬁozl.

To prove Lemma|l.4] we first introduce the definition of mixing time.

Definition 1.7 (Mixing time). Let G = (V, E) be a d-regular graph on n vertices. Let M be the lazy
random walk transition matrix of G. Let m, = M'm, where my is a distribution over [n]. Let
7= (%,..., )T be the stationary distribution of G. Then the mixing time 7.(M ) is defined to be

the smallest ¢ such that for any my, drv(m,,m) < e.

Proof of Lemmal[[4] Note that T = (%, ey %)T € R™ is the stationary distribution of G. Accord-

ing to spectral graph theory, we have 7.(M) = O(ﬁ) log(Z). Lete = %41, Note that G

n
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is a p-expander, we have that ¢(G) = ¢ (see Definition . Therefore, according to the defi-

n logn

nition of mixing time, we get that for t = 7.(M) = O(ﬁ log(wtr)) = O(%%"), we have that

’IL2

dry(M'1,7) < 021, 0

m

With the above results, we would show the space-time trade-off of identifying Hard Instance II.

Theorem 1.3 (Variant of Theorem [[.3). Ler A be an algorithm which detects the Hard Instance II
with error probability at most 1/3. The algorithm can perform T random walk queries using M bits
of space. We have M - T = Q (n).

Remark L.2. In Theorem[[.3| we use M to denote the space complexity because S is already used in
the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will
denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem[[.3] We would reduce this problem to the Hard Instance I. Assume we have an
algorithm A that solves the Hard Instance II. We would show how it can be used to solve Hard
Instance I. At each time, the algorithm would choose to make a random walk query starting from
vertex 7. We would then set W; to the Hard Instance I and get the feedback sample s,. We would
feed s; to the algorithm .4 and then to the next round. Finally, after 7" rounds, we would output the
results of A.

To prove the correctness, we need to show that the total variation distance is O(1) between the history
generated by Hard Instance I: (s1,my, ..., sr, mr) and the history generated by Hard Instance II:
(sh,mi, ..., s, ml). We would prove by math induction.

Now for drv((me, s¢), (m4', s})), we consider any fixed « € [2n],m € [M] that

Ip(my =m, sy = x) — p(m}, =m, s, = z)

= ‘ Z pimy =m, sy = x|lmy_1 =m,s_1 =T) (My—1 =M, 51 =1T)
(m,T)

- Z p(m; = m,SQ = x|m;71 = ’ffL, 8271 = f) ‘p(m2,1 = T?L,S;fl = %)

(M, T)

< ‘ Z p(mt =m,Sst = l’|mt—1 =m,s_1 = f)
(77)

(Pl = T, s11 = F) = plmi_y =i sj_y = 7)) |

| D plmi =iy =)
(M, %)

(p(mye =m, s8¢ = xlmy—y =m, 8,1 =) — p(my =m, s; = x|lmy_, =m,s;_, = 7)) ’

Now for the first part, we have

Z ‘ Z p(me =m, sy = x|lmy_1 =M, s¢—1 = 7T)
(m,z)  (M,T)

(plmes = i, i1 = &) = plm_y =i, 5}y = 7)) |

<> Y (p(mt =m, s = x|my_1 =M, s,_1 = 7T)
(

m,m) (M,T)
: |P(mt71 =M, 81 =2) —p(my_; =M, s,_; = %)| )

= (|p(mt_1 — i, 51 = F) — p(ml_y =, 8j_, = 7)|

(m,@)
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: Z p(my =m, sy = x[my_1 = m, 841 = i))
(m,x)
= Z ‘p(mt—l = ﬁlast—l = %) 7p(m;—1 = 771»5:5_1 = E)|
(M, )
= 2drv((mi—1,5t-1), (M}_1, 51-1))-

For the second part, we notice that

p(my =m, sy = xlmy_y = M, 5,1 = T) — p(my = m, s, = x|my_y =M, s;_, =7)
=p(my =mlss =x,m4_1 =M, $—1 =) - p(sg = x|Mmy_1 =M, $4—1 = T)
—p(my =mls; = x,my_y =M, s,y =) p(s; = zlmy_y =M, s;,_y = T).

Note that since we are using the same algorithm, when fixing m;_; and s, the update of m; and m;
is the same, and thus

p(my =m, sy =xlmy_1 =m,s1_1 =) —p(my =m, s, =xlm;,_, =m,s,_, =1)

=p(my =mls; =z, M1 =m) - (P(St = x|my_1 = m) — p(sy = xlmy_; = m)) .

Moreover, by the property of lazy random walk (Lemma|[.4), we should have that for any m,
0.01

1 - ~
3 Z ‘p(st =xz|lmi_1 =m) —p(s; = x|m}_, = m)‘ < RO
xr

Summing over all (m, z:), we have the second part is bounded by

SIS plmiy = sty =7) - plme = mlse = 2,muy = )

(m,z)  (m,7)
(plse = @lmir =) = pls}, = almi_, =) |

< Z p(my_y =1, s;_ = T) - p(my = mlsy = x,my_1 = m)
(m,z,m,T)

“|p(se = @lmi—1 = m) — p(sy = xlmj_, = m)|

= Y plmi_y =51y =T)|p(s; = almy—1 = m) — p(s; = a|mj_, = )]

= > plmiy =5ty =7) [p(s; = xlme—y = m) = p(s; = x|mj_, = m)]
(z,m,7)
= D plmi_y =5y =) ) |p(se = almer = m) = p(s; = zmi_y = m)
(77) -
0.01 -
S2X —5 Zp(m:s | =M, s =7)
(m, )
0.01
=2 X —

Combining the results, we have

1
drv((me, s1), (my', 51)) = ) Z [p(my = m, sy = x) — p(mj; = m, s; = )|
)

(m,x

40



Under review as a conference paper at ICLR 2026

0.01
< dry((mi—1,50-1), (My_y,811)) + g
Moreover, for the initial points, we have that
0.01
dTV(51’3/1) < F
Since my, m/) are merely a function of sy, s}, we have that
0.01
dTV(m17m/1) < F
Therefore 0.02
drv((m1, s1), (m1', 1)) < drv(s1,81) + drv(mi,m)) < ?7
0.01(1+¢
drv((mi, se), (my',81)) < %

This means that

< 0.01,

0.011+7T
drv(me, mi) < dry((mr, 51, (me, ) < 20T

where we use the fact that 7' < O(n?) since otherwise we can get the output using constant space.

Now note that the output result is only the function of m. Since the total variation distance of my is
bounded, the correctness can still be guaranteed using the uniform distribution rather than the random
walk distribution. O

J EXPERIMENTAL DETAILS

Accuracy Let C1,...,C} be the ground-truth clustering and let C1, .. ., C be the clusters pro-
duced by the oracle, where C; = {x € V|WHICHCLUSTER(G, z) = i}. The accuracy is defined as
L max, Zle |Ci N Criy|, where 7 = [k] — [K] is a permutation.

Implementation details In our experiments, we implemented three main components: (i) the new
dot product oracle proposed in this paper (Alg. [3|and Alg. [), (ii) the original dot product oracle
in|Gluch et al.|(2021), and (iii) the spectral clustering oracle relies on a poly(k) conductance gap
itself. The clustering oracle relies on accurate dot product estimates to function correctly; hence, we
first needed to identify parameters that ensure reliable dot product estimation performance. These
parameters include (i) sqo, the number of sampled vertices in dot product oracle, (ii) ¢, the random
walk length and (iii) /, the number of repetitions in the median trick, and a set of space-time-related
parameters.

R i=40,R_q=40,t=20,5_dot=20,=20 R i=80,R_q=80,t=20,5_dot=20,=20

1600
- [ intra-cluster - 3 intra-cluster

= inter-cluster == inter-cluster

1400 M 4000

1200

1000 3000 -

800

Density
Density

2000 -
600

1000 4

0 7 0 T T
-0.002  —0.001 0.000 0.001 0.002 0.003 0.004 0.005 ~0.0005  0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

(a) unsuitable parameter values: Rinit = Rquery = 40 (b) suitable parameter values: Rinit = Rquery = 80
Figure 2: Effect of parameter settings on the original dot product oracle. (a): an unsuitable configura-

tion where the estimated spectral dot products for intra-cluster and inter-cluster pairs overlap. (b): a
suitable configuration where a clear gap emerges between the two distributions.
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For the original dot product oracle in |Gluch et al.|(2021), Rini¢, Rquery are the space-time-related
parameters. We set Ripj; and Rqyery according to the theoretical guarantee, which states that the oracle
works when Riyii = Rquery = O(y/n). Following the implementation details in Shen & Peng (2023),
we explored multiple parameter configurations for sqe, ¢, [, Rinit = Rquery. For each configuration,
we initialized the dot product oracle with the corresponding parameters, sampled a subset of vertex
pairs, computed their estimated spectral dot products, and plotted the density graphs (see Figure[2).
The presence of a clear gap (see Figure[2b) in the density graph was used as the criterion for selecting
suitable parameter values. In fact, for a graph with parameters n = 3000, k£ = 3, p = 0.07, and
g = 0.002, we found that sqq = 20, ¢ = 20, [ = 20, and Rjsjy = Rquery > 80 provided reliable
estimates. And we make 80 x 80 a concrete instantiation of O(y/n) x O(y/n) = O(n).

For the new dot product oracle, we set sqgoy = 20,¢ = 20 and | = 20 like above. The space-time-
related parameters Mipic = Mquery Serve as inputs, corresponding to ROU = RO = 89x80 6400

(see line 2 of Alg. |3[and Alg. . In our experiments, we varied Minig = Muery in the range [30, 80].

init query ™ M Minyg

Finally, for the clustering oracle itself, we determined the number of sampled vertices s (see line
3 of Alg. [12) through extensive testing of multiple candidate values, and selected s = 21 for all
experiments. Additionally, we set a threshold 6 (see line 8 of Alg. [12) to construct similarity graph;
based on the density plots of estimated dot products (see Figure e chose 6 ~ 0.0005.
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