
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUBLINEAR SPECTRAL CLUSTERING ORACLE WITH
LITTLE MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of designing sublinear spectral clustering oracles for well-
clusterable graphs. Such an oracle is an algorithm that, given query access to
the adjacency list of a graph G, first constructs a compact data structure D that
captures the clustering structure of G. Once built, D enables sublinear time
responses to WHICHCLUSTER(G, x) queries for any vertex x. A major limitation
of existing oracles is that constructing D requires Ω(

√
n) memory, which becomes

a bottleneck for massive graphs and memory-limited settings. In this paper, we
break this barrier and establish a memory-time trade-off for sublinear spectral
clustering oracles. Specifically, for well-clusterable graphs, we present oracles that
construct D using much smaller than O(

√
n) memory (e.g., O(n0.01)) while still

answering membership queries in sublinear time. We also characterize the trade-
off frontier between memory usage S and query time T , showing, for example,
that S · T = Õ(n) for clusterable graphs with a logarithmic conductance gap,
and we show that this trade-off is nearly optimal (up to logarithmic factors) for a
natural class of approaches. Finally, to complement our theory, we validate the
performance of our oracles through experiments on synthetic networks.

1 INTRODUCTION

A central task in graph analysis is to uncover communities, which are groups of vertices that are more
densely connected internally than externally. This problem, known as graph clustering, has long
been a cornerstone of graph theory and algorithms (Hagen & Kahng, 1992; Chan et al., 1993; Ng
et al., 2001; Czumaj et al., 2015; Peng, 2020). Beyond its theoretical significance, graph clustering
underlies diverse applications, ranging from community detection in networks (Van Gennip et al.,
2013; Bedi & Sharma, 2016; Li et al., 2024) to bioinformatics (Paccanaro et al., 2006) and image
segmentation (Shi & Malik, 2000; Felzenszwalb & Huttenlocher, 2004).

Despite their importance, most graph clustering algorithms are impractical for large graphs, as they
require reading the entire input, spending Ω(n) time, and/or building data structures of size Ω(n),
where n is the number of vertices. Even when only a few cluster memberships are needed, these
methods still carry out full global computations, making them unsuitable for massive graphs where
both time and memory (or space) matter – but memory is the primary bottleneck.

From a systems perspective, this memory bottleneck is especially pressing. Many realistic environ-
ments severely restrict available working memory: streaming models limit algorithms to a single
pass with sublinear space; cloud-based platforms often impose high storage and data-transfer costs,
making it infeasible to materialize the entire graph; and GPUs and TPUs offer massive compute but
only modest on-chip memory relative to dataset size. In all these settings, the primary challenge is to
fit a compact representation of the clustering structure into limited fast memory. Thus, developing
memory-efficient clustering algorithms is not only a theoretical pursuit but also a practical necessity
for analyzing trillion-edge graphs in modern computing environments.

These considerations have motivated the study of local clustering oracles that run in sublinear time
and space. Our focus is on sublinear spectral clustering oracles (Peng, 2020; Gluch et al., 2021;
Shen & Peng, 2023), which construct a compact data structure D from query access to the adjacency
list of the graph. Once built, D enables efficient evaluation of WHICHCLUSTER(G, x) queries,
that is, determining the cluster assignment of any vertex x without incurring the global Ω(n) costs.
Importantly, these oracles return consistent assignments (with a fixed random seed) and closely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

approximate the ground-truth clustering, thereby making local access to clustering information both
theoretically sound and practically useful.

Several recent works (Peng, 2020; Gluch et al., 2021; Shen & Peng, 2023) demonstrate that such
oracles are possible under planted clustering assumptions, supporting cluster membership queries in
both sublinear time and sublinear space. However, all existing sublinear spectral clustering oracles
require at least Ω(

√
n) space. In particular, Peng (Peng, 2020) constructs an oracle using Θ̃(

√
n)

space, while both Gluch et al. (Gluch et al., 2021) and Shen et al. (Shen & Peng, 2023) require
Ω(n1−δ) space for any δ ≤ 1

2 , which is again at least
√
n. We refer to Section 1.3 for more details.

For truly massive graphs, this requirement is prohibitive, as limited working memory and frequent
main-memory access quickly dominate the overall cost. This raises the central question:

Is it possible to design a spectral clustering oracle that breaks the Ω(
√
n) space barrier – can we use

substantially less memory while still achieving sublinear query time? If so, what kinds of trade-offs
between space and query efficiency can be realized?

This challenge is reminiscent of recent work on space-time trade-offs in learning, beginning with
Raz (2017)’s result on parity learning and later extended to tasks such as linear regression (Sharan
et al., 2019) and noisy parity (Garg et al., 2021). In the area of distribution testing, a series of works
(Diakonikolas et al., 2019; Berg et al., 2022; Roy & Vasudev, 2023; Canonne & Yang, 2024) have
established sharp space-time trade-offs for fundamental problems such as uniformity testing and
closeness testing. Much like in these learning problems and in recent advances on distribution testing,
the central question for sublinear spectral clustering is how far memory usage can be reduced without
making query times impractically large.

In this paper, we give sublinear spectral clustering oracles with little memory (i.e., much less than
O(

√
n)) and a trade-off between memory usage S and query time T satisfying S · T ≈ Õ(n) (for a

class of well clusterable graphs). We show that this trade-off is nearly optimal (up to logarithmic
factors) for a natural class of approaches. In the following, we first present some basic definitions.

Basic definitions We measure cluster connectivity using conductance, a widely studied metric
(e.g., (Chiplunkar et al., 2018; Dey et al., 2019; Manghiuc & Sun, 2021; Shen & Peng, 2023)). Let
G = (V,E) be an undirected graph. For any vertex v ∈ V , let dv denote the degree of v in G. For
any subset C ⊆ V , let vol(C) =

∑
v∈C dv denote the volume of C. For any two subsets S,C ⊆ V ,

let E(S,C) denote the set of edges between S and C.
Definition 1.1 (Outer and inner conductance). For any non-empty subset C ⊆ V , the outer conduc-
tance and inner conductance of C is defined to be

ϕout(C, V) = |E(C, V \C)|/vol(C), ϕin(C) = min
S⊆C,0<vol(S)≤vol(C)/2

ϕout(S,C).

Specially, the conductance of graph G is defined to be ϕ(G) = min
C⊆V,0<vol(C)≤vol(G)/2

ϕout(C, V).

Intuitively, inner (resp. outer) conductance captures the internal (resp. external) connectivity of a
cluster. A “good” cluster exhibits both large inner conductance and small outer conductance. Based
on the definition of conductance, we give the formal definition of the input graph which is assumed
to have a planted clustering structure (see Definition 1.3).
Definition 1.2 (k-partition). Let G = (V,E) be a graph. A k-partition of V is a collection of k
disjoint subsets C1, . . . , Ck such that

⋃k
i=1 Ci = V .

Definition 1.3 ((k, φ, ε)-clusterable graph). Let k ≥ 2 be an integer and let φ ∈ (0, 1) and ε ∈ [0, 1).
Let G = (V,E) be a graph. If there exists a k-partition of V , denoted by C1, . . . , Ck, such that for
all i ∈ [k], ϕin(Ci) ≥ φ, ϕout(Ci, V) ≤ ε and for all i, j ∈ [k], one has |Ci|

|Cj | ∈ O(1), then we call G
is a (k, φ, ε)-clusterable graph.

We work in the adjacency list model, where the algorithm can query any neighbor of a specified
vertex in constant time.

1.1 MAIN RESULTS

Sublinear spectral clustering oracle A key contribution of this work is a spectral clustering oracle
that operates with very little memory and provides an explicit trade-off between memory and query

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

time. Given a (k, φ, ε)-clusterable graph, the goal of a clustering oracle is to build a data structure
D in sublinear time such that, for any vertex x, the oracle can answer WHICHCLUSTER(G, x) in
sublinear time. Moreover, the clustering induced by answering WHICHCLUSTER(G, x) for all x
should have a small misclassification error, that is, only a small fraction of vertices are assigned to
the wrong clusters compared to the ground truth.

In what follows, we state our main theorem in the simplified setting where φ = Ω(1) and d, k = O(1).
The full general statement appears in Theorem 3.1. While we state our results for d-regular graphs,
they naturally extend to d-bounded graphs, i.e., graphs in which every vertex has degree at most d
(see Appendix D).

Theorem 1.1 (Informal main result). Suppose φ = Ω(1), d, k = O(1), and ε ≤ h(d, k, φ) for some
function h. Let G = (V,E) be a d-regular (k, φ, ε)-clusterable graph with clusters C1, . . . , Ck.
Let nΘ(ε) ≤ M ≤ O

(
n1/2−O(ε)

)
be a trade-off parameter. Then there exists a sublinear spectral

clustering oracle that:
• constructs a data structure D using Õ

(
nO(ε) ·M

)
bits of space,

• answers any WHICHCLUSTER query in Õ
(
n1+O(ε)/M

)
time,

• misclassifies at most O(ε1/3)|Ci| vertices in each cluster Ci, i ∈ [k].

Note that the space S used to build D and the query time T satisfy the trade-off S · T = Õ
(
n1+O(ε)

)
.

The oracle is built upon a new subroutine ESTCOLLIPROB(Alg. 2) for estimating the collision
probability of two random walk distributions with asymptotically space-time trade-off. In particular,
when ε ≪ 1/ log n, this simplifies to S · T = Õ(n). The theorem establishes a trade-off: larger
space S yields faster queries, while smaller S slows them down. Unlike prior oracles that require at
least Ω(

√
n) space, our method operates with substantially less space, often far below

√
n, thereby

breaking the
√
n space barrier.

Distinguishing 1-cluster vs. 2-cluster As a corollary of our main result, we obtain a sublinear
algorithm for distinguishing between a single-cluster expander and a graph consisting of two disjoint
clusters. Formally, let φ = Ω(1) and d = O(1). Consider the following promise problem: the input
is a d-regular graph G = (V,E) that is guaranteed to be in one of two cases: (i) G is a φ-expander
on n vertices (i.e., (1, φ, 0)-clusterable); or (ii) G is the disjoint union of two identical φ-expanders,
each on n/2 vertices (i.e., (2, φ, 0)-clusterable). The goal of the 1-cluster vs. 2-cluster problem is to
determine which case holds.

We address this problem with an ESTCOLLIPROB-based algorithm, yielding the following result.

Theorem 1.2 (Upper bound). For any trade-off parameter 1 ≤ M ≤ O(
√
n), there exists an

algorithm (Alg. 5) that, with probability at least 1 − 2n−100, solves the 1-cluster vs. 2-cluster
problem. Moreover, the algorithm:

• uses Õ(M) bits of space,
• runs in Õ

(
n
M

)
time.

We complement this with a lower bound for distinguishing between the two cases when the graph
can only be accessed through random walk queries. Specifically, for each queried vertex x, the oracle
returns the endpoint of a random walk of length O(log n) starting from x.

Theorem 1.3 (Lower bound). Any algorithm that correctly solves the 1-cluster vs. 2-cluster problem
with error at most 1/3 using only random walk oracles must satisfy S · T ≥ Ω(n), where S and T
denote the space complexity and time complexity of the algorithm, respectively.

Note that a random walk query can be simulated with O(log n) adjacency-list queries, so our upper
bound matches the lower bound up to poly(log n) factors. Since the ESTCOLLIPROB-based approach
solves the 1-cluster vs. 2-cluster problem, our lower bound indicates that its trade-off is nearly tight.
This, in turn, suggests that the space-time trade-off of our clustering oracle is essentially tight, at least
for approaches based on collision probability estimation.

1.2 TECHNICAL OVERVIEW

Sublinear spectral clustering oracle To obtain sublinear spectral clustering oracles that rely on
a log(k) or poly(k) conductance gap, a key primitive is the estimation of the dot product ⟨fx,fy⟩,
where fx is the spectral embedding of x ∈ V (see Definition 2.1). Suppose there exists an algorithm

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

that estimates such dot products using S space and T time. We can then design a clustering oracle
based on this primitive, which uses Õ(poly(k) · S) space to construct a data structure D and answers
WHICHCLUSTER queries in Õ(poly(k) · T) time (see Section 3.2). Thus, the central task is to
understand the space-time trade-off for dot product estimation, as it directly determines the efficiency
of the resulting clustering oracle.

Indeed, the previous Ω(
√
n) space bottleneck in constructing D arises precisely from this dot

product estimation step, rather than from the clustering procedure itself. This observation motivates
our technical improvements. In particular, the dot product estimation algorithm of Gluch et al.
(2021) does not directly compute ⟨fx,fy⟩ for arbitrary vertex pairs. Instead, it applies a sequence
of transformations and shows that estimating ⟨fx,fy⟩ can be reduced to computing the collision
probability (M t1x)

T (M t1y) = ⟨M t1x,M
t1y⟩, where M is the random walk transition matrix

of G and 1s is the indicator vector of vertex s.

Previous dot product oracle estimates ⟨M t1x,M
t1y⟩ by performing R ≈

√
n independent random

walks of length t = O(logn
φ2) from each vertex x and y, respectively. The endpoints of these walks

are stored to construct empirical distributions, whose dot product is then computed. This approach
requires O(R) words of space and O(Rt) time, tightly coupling space usage with computation time.
In particular, to ensure sufficient accuracy, R must be at least Ω(

√
n), which implies that the space

usage cannot be reduced below O(
√
n).

To reduce the memory requirement belowO(
√
n) and achieve a more flexible trade-off between space

and time, we propose a batch-based estimation strategy. The idea behind this approach is inspired
by Canonne & Yang (2024), where a similar batching technique is used to design memory-efficient
algorithms for uniformity testing under memory constraints. Specifically, we partition the total of R
random walks into B = R/M batches. In each batch, M walks of length t are performed from each
vertex, and only the endpoints within the batch are stored to construct empirical distributions. The
batch-level dot product is computed, and the final estimate is obtained by averaging over all batches.
This approach reduces the space requirement toO(M) words while keeping the total number of walks.
By choosing M smaller than O(

√
n), we can achieve a space-time trade-off satisfies M · R ≈ n.

This allows for efficient estimation of the dot product even under memory constraints.

Distinguishing 1-cluster vs. 2-cluster The core idea of our algorithm (Alg. 5) for distinguishing
the 1-cluster vs. 2-cluster is to reduce the task to detecting a spectral gap in the random walk
operator. Specifically, we set t = O(log n/φ2) so that in the 1-cluster case, the second largest
eigenvalue of M t becomes negligibly small, while in the 2-cluster case it remains exactly 1. To
capture this behavior within bounded space, we avoid storing M t explicitly and instead construct a
compact surrogate matrix G using the batch-based strategy described above. This surrogate preserves
the essential spectral information of M t, so that the separation between the two cases is faithfully
reflected in the spectrum of G. Consequently, analyzing G suffices to distinguish between the 1-cluster
and 2-cluster cases using only O(M) space.

To prove the lower bound, we note that analyzing the distribution of random walks of the two cases
reveals a fundamental discrepancy: in the 1-cluster case, this distribution converges to uniformity
over the entire set of points; whereas in the 2-cluster case, it decomposes into two separate uniform
distributions, each concentrated over half of the points. Under a sublinear space constraint, the
algorithm cannot store enough indices to reliably identify which cluster a given sample belongs
to. We formalize this via the information-theoretic framework for distribution-testing lower bounds
of Diakonikolas et al. (2019), showing that each observation provides only limited distinguishing
information. Consequently, any algorithm requires a sufficient number of observations to achieve
statistical confidence, implying the stated space-time trade-off lower bound.

1.3 RELATED WORK

Peng (2020) (see also (Czumaj et al., 2015)) provided a robust sublinear spectral clustering oracle
that constructs a data structure using O(

√
n · poly(k logn

ε)) bits of space1 and answers any WHICH-
CLUSTER(G, x) in O(

√
n ·poly(k logn

ε)) time. This oracle relies on a poly(k) log n conductance gap
between inner and outer conductance and misclassifies at most O(kn

√
ε) vertices. Gluch et al. (2021)

1Although the paper does not explicitly state the space complexity, it can be directly inferred from the
algorithm description.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(resp. Shen & Peng (2023)2) gave a sublinear spectral clustering oracle that constructs a data structure
using O(n1−δ+O(ε) · poly(k logn

ε)) (resp. O(n1−δ+O(ε) · poly(k log n))) bits of space and answers
any WHICHCLUSTER(G, x) in O(nδ+O(ε) · poly(k logn

ε))) (resp. O(nδ+O(ε) · poly(k log n))) time,
where δ ∈ (0, 12]. These two oracles have different preprocessing time and misclassification error.

Recently, Neumann & Peng (2022) studied designing sublinear spectral clustering oracles for signed
graph. Kapralov et al. (2023) studied designing sublinear hierarchical clustering oracle for graphs
exhibiting hierarchical structure. We defer other related works to Appendix B due to page constraint.
Moreover, all omitted proofs are provided in the appendix.

2 PRELIMINARIES

Let G = (V,E) denote an unweighted, undirected d-regular graph with n vertices, where V =
{1, 2, . . . , n}. Let i ∈ [n] denote 1 ≤ i ≤ n. For a graph G = (V,E), let A ∈ Rn×n denote the
adjacency matrix of G, where A(i, j) = 1 if (i, j) ∈ E, and A(i, j) = 0 otherwise, i, j ∈ [n]. Let
D ∈ Rn×n denote a diagonal matrix, where D(i, i) = di, i ∈ [n]. Let L = D−1(D −A)D−1 =
I − A

d denote the normalized Laplacian matrix of G, where I ∈ Rn×n is the identity matrix. For
L, we use 0 = λ1 ≤ · · · ≤ λn ≤ 2 to denote its eigenvalues and u1, . . . ,un ∈ Rn to denote
the corresponding eigenvectors. Without loss of generality, we assume {u1, . . . ,un} forms an
orthonormal basis of Rn. Let U = (u1, . . . ,un) ∈ Rn×n. Based on U , we give the definition
of spectral embedding (see Definition 2.1). Moreover, let M = 1

2 (I + A
d) = I − L

2 denote the
transition matrix of lazy random walk on G. That is, if the walker is currently at a vertex x ∈ V , then
in the next step it stays at x with probability 1

2 , or moves to each neighbor of x with probability 1
2dx

.

Let a ∈ Rn denote a column vector (unless otherwise stated). For any two vectors a, b ∈ Rn, we use
⟨a, b⟩ = aT b to denote the dot product of a and b. For any x ∈ V , let 1x ∈ Rn denote the indicator
vector of x, where 1x(i) = 1 if i = x and 0 otherwise. For any symmetric matrix B ∈ Rn×n, we
use vi(B) to denote the i-th largest eigenvalues of B.
Definition 2.1 (spectral embedding). Let G = (V,E) be a graph. For any vertex x ∈ V , we use
fx ∈ Rk to denote the spectral embedding of x, where fx = UT

[k]1x = (u1(x), . . . ,uk(x))
T .

Definition 2.2 (φ-expander). Let G = (V,E) be a graph. Let φ ∈ (0, 1). Let ϕ(G) denote the
conductance of G (see Definition 1.1). If ϕ(G) ≥ φ, then we call G a φ-expander.

The supplementary preliminaries are deferred to Appendix C.

3 SPECTRAL CLUSTERING ORACLES WITH LITTLE MEMORY

In this section, we present and prove our main algorithmic result, stated in the theorem below. We
emphasize that the resulting algorithms exhibit different trade-offs between the conductance gap
(φ vs. ε), the misclassification ratio, and the corresponding space-time bounds, depending on the
clustering framework employed, either that of Gluch et al. (2021) or Shen & Peng (2023).
Theorem 3.1. Let k ≥ 2 be an integer, φ, ε ∈ (0, 1) and h1(k, φ), h2(k, ε) and h3(k, φ, ε) be
three functions. Let ε ≪ h1(k, φ). Let G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph

with C1, . . . , Ck. Let nc·ε/φ
2 ≤M ≤ O(n

1/2−O(ε/φ2)

k) be a trade-off parameter, where c is a large
enough constant. There exists a sublinear spectral clustering oracle that, with probability at least
0.9:

• constructs a data structure D using Õφ(h2(k) · nO(ε/φ2) ·M) bits of space,
• answers any WHICHCLUSTER query using D in Õφ(h2(k) · n1+O(ε/φ2) · 1

M) time,
• has O (h3(k, φ, ε)) |Ci| misclassification error for each i ∈ [k],

where we use Oφ suppresses dependence on φ and Õ hides all poly(log n) factors and:

1 if h1(k, φ) = φ3

log k , then h2(k, ε) = (kε)
O(1) and h3(k, φ, ε) = ε

φ3 · log k;

2 if h1(k, φ) = φ2·γ3

k
9
2 ·log3 k

, then h2(k) = (kγ)
O(1) and h3(k, φ, ε) = (ε

φ2)
1
3 · k 3

2 , where

γ ∈ (0.001, 1] is a constant such that for all i ∈ [k], γ n
k ≤ |Ci| ≤ n

γk .

2Shen & Peng (2023) stated their result for δ = 1/2. Since their algorithm relies on the dot product oracle in
Gluch et al. (2021), the guarantee extends naturally to any δ ∈ (0, 1

2
].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This section is organized as follows. In Section 3.1, we present our dot product oracle with little
memory and the corresponding algorithms. In Section 3.2, we provide the proof of Item 2 of
Theorem 3.1. The proof of the remaining case, Item 1, is deferred to Appendix F.

3.1 DOT PRODUCT ORACLE WITH LITTLE MEMORY

Recall that fx denotes the spectral embedding of vertex x (see Definition 2.1). Our objective in
this section is to design a dot product oracle that approximates ⟨fx,fy⟩ while achieving a favorable
space-time trade-off and ensuring small approximation error. The following theorem states the
performance guarantees of our oracle. Proof is deferred to Appendix E.
Theorem 3.2. Let k ≥ 2 be an integer. Let ε, φ ∈ (0, 1) with ε

φ2 ≤ 1
105 . Let G = (V,E) be a

d-regular and (k, φ, ε)-clusterable graph. Let 1
n5 < ξ < 1. Let 1 ≤Minit,Mquery ≤ O(n

1/2−20ε/φ2

k).
Then, with probability at least 1−2n−100, INITORACLE(G, k, ξ,Minit) (Alg. 3) computes a sublinear
space matrix Ψ of size nO(ε/φ2) · log2 n · (kξ)

O(1), such that the following property is satisfied:

for every pair of vertices x, y ∈ V , QUERYDOT(G, x, y, ξ,Ψ,Mquery) (Alg. 4) computes an output
value ⟨fx,fy⟩apx such that with probability at least 1− 6n−100:

|⟨fx,fy⟩apx − ⟨fx,fy⟩| ≤
ξ

n
.

Moreover, let Sinit, Tinit be the space and time costs of INITORACLE(G, k, ξ,Minit) (Alg.3), and let
Squery, Tquery be those of a single QUERYDOT(G, x, y, ξ,Ψ,Mquery) query (Alg.4). Then we have

• Sinit = (kξ)
O(1) · nO(ε/φ2) ·Minit · log4 n, Tinit = (kξ)

O(1) · n1+O(ε/φ2) · log4 n
Minit

· 1
φ2 ,

• Squery = (kξ)
O(1) · nO(ε/φ2) ·Mquery · log3 n, Tquery = (kξ)

O(1) · n1+O(ε/φ2) · log3 n
Mquery

· 1
φ2 .

Note that to ensure that INITORACLE(G, k, ξ,Minit) (Alg. 3) and QUERYDOT(G, x, y, ξ,Ψ,Mquery)

(Alg. 4) run in sublinear time, it is required that Minit,Mquery ≥ nc·ε/φ
2

, where c is a constant that is
larger than the constant hidden in O(·)-term of n1+O(ε/φ2) in both Tinit and Tquery.

For initializing the dot product oracle, the previous dot product oracle in Gluch et al. (2021) requires
at least Ω̃(

√
n) bits of space, whereas our proposed oracle can perform accurate estimation using at

most Õ(
√
n) bits of space, thus breaking the

√
n barrier.

The algorithm Algorithm 1 estimates the collision probability (i.e., ⟨M t1x,M
t1x⟩) of the random

walk distributions from two given vertices within a bounded space Õ(M). Algorithm 2 computes an
estimate of the Gram matrix (M tS)T (M tS) corresponding to the random walk distributions from
a set S of vertices, where S ∈ Rn×|S| is a matrix whose i-th column is an indicator vector 1v for
v ∈ S, while operating within a bounded space Õ(M · |S|2). The formal guarantees of these two
procedures are stated in Lemma E.3 and Lemma E.5, respectively.

Algorithm 1: ESTRWDOT
(G,R, t,M, x, y)

1 Z := 0, B := R
M ▷ B: number of batch

2 for b = 1 to B do
3 Run M independent random walks of

length t starting from x (resp. from
y)

4 Define p̂x(i) (resp. p̂y(i)) as the
fraction of randoms walks from x
(resp. from y) that end at i

5 Zb := ⟨p̂x, p̂y⟩, Z := Z + Zb

6 Z := Z
B

7 return Z

Algorithm 2: ESTCOLLIPROB
(G,R, t,M, IS)

1 s := |IS | = |{s1, . . . , ss}|
2 for l = 1 to O(log n) do
3 for i = 1 to s do
4 for j = i to s do
5 Gl(j, i) := Gl(i, j) :=

ESTRWDOT(G,R, t,M, si, sj)

6 Let G be a matrix obtained by taking the
entrywise median of Gl’s

7 return G

Algorithm 3 initializes the dot product oracle by constructing a compact matrix Ψ within approx-
imately bounded space Õ(M). Then Algorithm 4 leverages Ψ to estimate ⟨fx,fy⟩ while still

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

operating under the same bounded space. The formal guarantees of these two procedures are stated
in Theorem 3.2.

Algorithm 3: INITORACLE
(G, k, ξ,Minit)

1 t := 20 logn
φ2

2 Rinit := Θ(n
1+920ε/φ2

Minit
· k14

ξ2)

3 s := O(n480·ε/φ
2 · log n · k8/ξ2)

4 Let IS = {s1, . . . , ss} be the multiset of
s indices chosen i.u.r. from
V = {1, . . . , n}

5 G :=
ESTCOLLIPROB(G,Rinit, t,Minit, IS)

6 Let n
s · G := Ŵ Σ̂ŴT be the

eigendecomposition of n
s · G

7 if Σ̂−1 exists then
8 Ψ := n

s · Ŵ[k]Σ̂
−2
[k] Ŵ

T
[k] ▷ Ψ ∈ Rs×s

9 return Ψ

Algorithm 4: QUERYDOT
(G, x, y, ξ,Ψ,Mquery)

1 t := 20 logn
φ2

2 Rquery := Θ(n
1+440ε/φ2

Mquery
· k6

ξ2)

3 for l = 1 to O(log n) do
4 for i = 1 to s do
5 xl(i) :=ESTRWDOT(G,Rquery, t,

Mquery, x, si)

6 yl(i) :=ESTRWDOT(G,Rquery, t,
Mquery, y, si)

7 Let αx (resp. αy) be a vector obtained
by taking entrywise median of xl’s
(resp. yl’s) ▷ αx,αy ∈ Rs

8 return ⟨fx,fy⟩apx = αT
xΨαy

3.2 CLUSTERING ORACLE: ITEM 2 OF THEOREM 3.1

We now present the proof of Item 2 of Theorem 3.1 and give a clustering oracle with the corresponding
space-time trade-off. Item 2, which addresses a sublinear spectral clustering oracle under a poly(k)
conductance gap. Our sublinear spectral clustering oracle closely follows the construction in Shen &
Peng (2023), except that we substitute our new dot product oracle from Section 3.1 in place of theirs.

High-level idea of the algorithm Now we briefly outline the main idea of the oracle. Shen &
Peng (2023) showed that for most vertices in a (k, φ, ε)-clusterable graph, if x, y ∈ V belong to the
same cluster, then ⟨fx,fy⟩ ≈ k

n , otherwise, ⟨fx,fy⟩ ≈ 0. Leveraging this property, we can design a
clustering oracle as follows: it first samples s = k log k

γ vertices to form a set S, and for each pair
u, v ∈ S, it computes the dot product ⟨fu,fv⟩apx using our new dot product oracle. If the value is
large, an edge (u, v) is added to the initially empty similarity graph H = (S, ∅). At query time, the
oracle uses H and its connected components to determine the cluster assignment of vertices. We
provide a full description of the clustering oracle in Appendix G. Now we present the proof of Item 2
in Theorem 3.1 as follows.

Proof of Item 2 in Theorem 3.1. Space and runtime. In the preprocessing phase, CONSTRUCTOR-
ACLE(G, k, φ, ε, γ,M) (Alg. 12) invokes our INITORACLE(G, k, ξ,M) (Alg. 3) one time to get a
matrix Ψ (see line 5 of Alg. 12), then CONSTRUCTORACLE(G, k, φ, ε, γ,M) invokes our QUERY-
DOT(G, u, v, ξ,Ψ,M) O((k2 log2 k)/γ2) times (see lines 6 ∼ 9 of Alg. 12) to get a similarity
graph H . Therefore, CONSTRUCTORACLE(G, k, φ, ε, γ,M) uses Sinit +O((k2 log2 k)/γ2) · Squery
bits of space. Using Theorem 3.2, we get that CONSTRUCTORACLE(G, k, φ, ε, γ,M) uses
O(nO(ε/φ2) ·M · poly(k logn

γ)) bits of space to get matrix Ψ and a similarity graph H .

In the query phase, WHICHCLUSTER(G, x,M) (Alg. 14) invokes SEARCH(H, ℓ, x,M) (Alg. 13)
one time. SEARCH(H, ℓ, x,M) invokes our QUERYDOT(G, u, x, ξ,Ψ,M) O((k log k)/γ) times
(see lines 1 ∼ 2 of Alg. 13) and relies on the similarity graph H (see lines 3 ∼ 6 of Alg.
13). Therefore, WHICHCLUSTER(G, x,M) uses O((k log k)/γ) · Squery bits of space and runs
in O((k log k)/γ) · Tquery time. Using Theorem 3.2, we get that WHICHCLUSTER(G, x,M) uses
O(nO(ε/φ2) ·M · poly(k logn

γ)) bits of space and runs in O(n1+O(ε/φ2) · 1
M · poly(k logn

γφ)) time.

Thus, the oracle constructs a data structure D (including Ψ, similarity graphH etc) usingO(nO(ε/φ2) ·
M · poly(k logn

γ)) bits of space. Using D, any WHICHCLUSTER(G, x) query can be answered by

Alg. 14 in O(n1+O(ε/φ2) · 1
M · poly(k logn

γφ)) time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Correctness. Since the correctness guarantees (i.e., conductance gap and misclassification error) of
the clustering oracle rely on the properties of the dot product oracle, and our dot product oracle satisfies
the same correctness guarantees with the previous one, the correctness of the overall clustering oracle
follows directly from the correctness of the clustering oracle in Shen & Peng (2023).

4 DISTINGUISHING 1-CLUSTER VS. 2-CLUSTER

The algorithm and sketch of its analysis Now we present Alg. 5 for solving the 1-cluster vs. 2-
cluster problem, which is based on estimating the second largest eigenvalue of Mt using a subroutine
ESTCOLLIPROB (Alg. 2) from Section 3.1.

Algorithm 5: DISTINGUISH(G,M)

1 t := 20 logn
φ2 , R := Θ(n

M), s := O(log n)

2 Let IS = {s1, . . . , ss} be the multiset of s indices chosen independently and uniformly at
random from V = {1, . . . , n}

3 G := ESTCOLLIPROB(G,R, t,M, IS)
4 Let v2(nsG) be the second largest eigenvalue of matrix n

sG
5 if

(
v2(

n
sG)

)2
< 0.6 then

6 return “1-cluster”
7 return “2-cluster”

The formal guarantee of this algorithm is given in Theorem 1.2, whose proof is deferred to Appendix H.
Here, we provide a proof sketch.

Consider the case when the input graph G is a φ-expander. By Cheeger’s inequality (Lemma H.1),
we get that the second smallest eigenvalue of L satisfies λ2 ≥ φ2/2. Equivalently, the lazy random
walk matrix M = I − L/2 has its second largest eigenvalue v2(M) ≤ 1 − φ2/4. In contrast, if
G consists of two disjoint φ-expanders of equal size, then λ2 = 0 and hence v2(M) = 1. Setting
t = O(log n/φ2), we obtain that in the 1-cluster case, the contribution of v2(M) ≤ n−10, while in
the 2-cluster case, v2(M) remains exactly 1. Thus, M t exhibits a clear spectral gap between the
two cases. Alg. 5 constructs an approximation G ≈ (M tS)T (M tS) ∈ RO(logn)×O(logn) within
bounded space, where each column of M tS corresponds to the t-step lazy random walk distribution
starting from a vertex in the sampled set IS . The second largest eigenvalue of G closely reflects
that of M t, thereby preserving the above separation (see Lemma H.4 for the formal statement).
Moreover, since G is a small matrix, we can afford to perform an eigen-decomposition on it directly.
Consequently, examining the spectrum of G suffices to distinguish between the 1-cluster and 2-cluster
cases using Õ(M) bits of space and Õ(n/M) time.

The lower bound The lower bound for distingushing 1-cluster vs. 2-cluster is summarized in
Theorem 1.3. The main proof of Theorem 1.3 is presented in Appendix I and comprises two parts.
First, we establish a lower bound for distinguishing between a uniform distribution over all vertices
and two separate uniform distributions each over half of the vertex set. We demonstrate that under a
space constraint of S, the information regarding the underlying case can only increase by O(S/n)
per observation. Consequently, the total number of observations T must satisfy T ·O(S/n) = Ω(1),
which directly implies the space-time trade-off lower bound S · T = Ω(n) (see Theorem I.2).

Second, by analyzing the random walk distributions in the 1-cluster and 2-cluster cases, we observe
that these distributions closely approximate the two aforementioned reference distributions. To finalize
the reduction, it is necessary to demonstrate that deviations from uniformity do not significantly
alter the final memory state distribution. The key challenge lies in the cumulative effect of sampling
distribution discrepancies at each step, which collectively influence the memory state. To quantify
this discrepancy, we adopt the total variation distance as a metric and employ a mathematical
induction argument. This approach shows that the discrepancy in the memory state distribution
does not substantially amplify after each sampling step. Specifically, the incremental increase in
discrepancy is proportional to the difference between the sample distributions and remains controllable.
Consequently, the overall discrepancy is bounded by the sum of these incremental increases and
remains negligible throughout the process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

To evaluate the space-time trade-off of our sublinear spectral clustering oracles, we conducted
experiments in Python on graphs generated from the stochastic block model (SBM) with parameters
n (num of vertices), k (num of clusters), and edge probabilities p (within-cluster) and q (between-
cluster). Experiments were run on a server with an Intel(R) Xeon(R) Platinum 8562Y processor (2.80
GHz) and 768 GB RAM. Each reported data is the average over five independent runs.

We implemented two variants of the poly(k)-conductance-gap clustering oracle3: the original oracle
from Shen & Peng (2023), and our memory-efficient variant that operates within a smaller space.
For each, we recorded the number of words stored in each component of the data structure D as
a proxy for space S, evaluated accuracy (the fraction of vertices correctly classified), the success
rate (i.e., the fraction of successful runs among 5 runs4). Both variants used the same number
of sampled vertices, random walk length, and median-trick repetitions; differences arose only in
space-time-related parameters. We instantiated this setup on an SBM graph with n = 3000, k = 3,
p = 0.07, and q = 0.002, yielding clusters of 1000 vertices each. Additional implementation details
are provided in Appendix J.

Space efficiency Prior sublinear spectral clustering oracles require at least Ω(
√
n) space to construct

data structure D. In contrast, our clustering oracle allows constructing D using substantially less
space, well below

√
n. In this section, we provide experimental evidence to validate this improvement.

Table 1: Comparison of space usage for clustering oracles, with 10400 words used as the baseline.

clustering oracle ours previous

space (# of words) 9900 10100 10400 34840 43888 44383 61223
space (× baseline) 0.95× 0.97× 1× 3.35× 4.22× 4.27× 5.89×

success rate for constructing D 1 1 1 0 0.6 1 1
accuracy 0.9833 0.9900 0.9907 0 0.9860 0.9997 1.0000

Table 1 demonstrate that our clustering oracle achieves high accuracy using substantially less space
(10400 words as 1×). In contrast, the previous clustering oracle requires 4.27 times of the baseline
space to achieve comparable accuracy, and even when given 3.35 times the baseline space, it fails to
construct D successfully (i.e., success rate is 0). These results confirm that our approach significantly
improves space efficiency without compromising accuracy.

Space-time trade-off As established in Theorem 3.1, there is a trade-off between the space S
required to construct D and the query time T , satisfying S · T ≈ Õ(n1+O(ε)), where ε is the small
constant corresponding to the outer conductance.

Figure 1: Space-time trade-off of the sublinear
spectral clustering oracle, showing S, T are in-
versely proportional.

To validate this experimentally, we also mea-
sured S as the total number of words stored to
construct D. We use the total number of random
walks per WHICHCLUSTER query as a proxy
for time T , since this dominates the query cost.
Across all tested parameter settings, the oracle
maintains high accuracy (0.9833 ∼ 1), confirm-
ing the practical validity of the configurations
used.

Figure 1 plots S (y-axis) versus T (x-axis), il-
lustrating the space-time trade-off: memory us-
age decreases as query time increases, and vice
versa, consistent with the theoretical bound.

3We did not experiment with the log(k)-conductance-gap oracle due to its impractical runtime of 2poly(k) ·
n1+O(ε) · 1

M
for constructing D.

4If the available space is too limited, the construction of the similarity graph H may yield either too many or
too few connected components, in which case the construction of D fails.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work is purely theoretical and algorithmic in nature. Our experimental evaluation is conducted
solely on synthetic datasets generated from the stochastic block model (SBM). The research does
not involve human subjects, personal data, or other sensitive information. We do not anticipate any
immediate ethical, societal, or environmental risks arising from our methods or results.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical results are stated
formally in the main text and accompanied by complete proofs in the appendix. The assumptions
underlying our results are explicitly described. For the experimental evaluation, we used standard
stochastic block model (SBM) graphs to ensure reproducibility. Implementation details and parameter
settings are included in Appendix J.

REFERENCES

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 475–486.
IEEE, 2006.

Reid Andersen, Shayan Oveis Gharan, Yuval Peres, and Luca Trevisan. Almost optimal local graph
clustering using evolving sets. Journal of the ACM (JACM), 63(2):1–31, 2016.

Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding well-
connected components in sparse graphs. In Proceedings of the 2019 ACM Symposium on principles
of distributed computing, pp. 461–470, 2019.

Sepehr Assadi, Christian Konrad, Kheeran K Naidu, and Janani Sundaresan. O (log log n) passes is
optimal for semi-streaming maximal independent set. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pp. 847–858, 2024.

Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley interdisciplinary
reviews: Data mining and knowledge discovery, 6(3):115–135, 2016.

Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi Ha-
jiaghayi, Richard M Karp, and Jara Uitto. Massively parallel computation of matching and mis
in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pp. 481–490, 2019.

Tomer Berg, Or Ordentlich, and Ofer Shayevitz. On the memory complexity of uniformity testing. In
Conference on Learning Theory, pp. 3506–3523. PMLR, 2022.

Clément L Canonne and Joy Qiping Yang. Simpler distribution testing with little memory. In 2024
Symposium on Simplicity in Algorithms (SOSA), pp. 406–416. SIAM, 2024.

Pak K Chan, Martine DF Schlag, and Jason Y Zien. Spectral k-way ratio-cut partitioning and
clustering. In Proceedings of the 30th international Design Automation Conference, pp. 749–754,
1993.

Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Testing
graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 497–508. IEEE, 2018.

Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In Proceedings of
the forty-seventh annual ACM symposium on Theory of Computing, pp. 723–732, 2015.

Tamal K Dey, Pan Peng, Alfred Rossi, and Anastasios Sidiropoulos. Spectral concentration and
greedy k-clustering. Computational Geometry, 76:19–32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. Communication and
memory efficient testing of discrete distributions. In Conference on Learning Theory, pp. 1070–
1106. PMLR, 2019.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. Inter-
national journal of computer vision, 59:167–181, 2004.

Sumegha Garg, Pravesh K Kothari, Pengda Liu, and Ran Raz. Memory-sample lower bounds for
learning parity with noise. arXiv preprint arXiv:2107.02320, 2021.

Mohsen Ghaffari and Krzysztof Nowicki. Massively parallel algorithms for minimum cut. In
Proceedings of the 39th Symposium on Principles of Distributed Computing, pp. 119–128, 2020.

Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 1256–1266. SIAM, 2014.

Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, and Christian Sohler. Spectral
clustering oracles in sublinear time. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1598–1617. SIAM, 2021.

Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering.
IEEE transactions on computer-aided design of integrated circuits and systems, 11(9):1074–1085,
1992.

Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pp. 1679–1697. SIAM, 2013.

Michael Kapralov, Akash Kumar, Silvio Lattanzi, and Aida Mousavifar. Learning hierarchical cluster
structure of graphs in sublinear time. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 925–939. SIAM, 2023.

Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Walking randomly, massively,
and efficiently. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 364–377, 2020.

Jiakang Li, Songning Lai, Zhihao Shuai, Yuan Tan, Yifan Jia, Mianyang Yu, Zichen Song, Xiaokang
Peng, Ziyang Xu, Yongxin Ni, et al. A comprehensive review of community detection in graphs.
Neurocomputing, 600:128169, 2024.

Bogdan-Adrian Manghiuc and He Sun. Hierarchical clustering: o(1)-approximation for well-clustered
graphs. Advances in Neural Information Processing Systems, 34:9278–9289, 2021.

Stefan Neumann and Pan Peng. Sublinear-time clustering oracle for signed graphs. In International
Conference on Machine Learning, pp. 16496–16528. PMLR, 2022.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
massively parallel computation model. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2939–2958. SIAM, 2021.

Alberto Paccanaro, James A Casbon, and Mansoor AS Saqi. Spectral clustering of protein sequences.
Nucleic acids research, 34(5):1571–1580, 2006.

Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2953–
2972. SIAM, 2020.

Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 732–742. IEEE, 2017.

Sampriti Roy and Yadu Vasudev. Testing properties of distributions in the streaming model. arXiv
preprint arXiv:2309.03245, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear regression
with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pp. 890–901, 2019.

Ranran Shen and Pan Peng. A sublinear-time spectral clustering oracle with improved preprocessing
time. Advances in Neural Information Processing Systems, 36, 2023.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its
application to nearly linear time graph partitioning. SIAM Journal on computing, 42(1):1–26,
2013.

Yves Van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan Halvorson, Shannon
Reid, Matthew Valasik, James Wo, George E Tita, et al. Community detection using spectral
clustering on sparse geosocial data. SIAM Journal on Applied Mathematics, 73(1):67–83, 2013.

Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab Mirrokni. A local algorithm for finding well-connected
clusters. In International Conference on Machine Learning, pp. 396–404. PMLR, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
The appendix is organized as follows.

• Appendix A provides a statement on our use of LLMs for English writing assistance.
• Appendix B provides additional related works omitted from the main text.
• Appendix C presents supplementary preliminaries.
• Appendix D shows that how our results for d-regular graphs can be extended to d-bounded

graphs.
• Appendix E presents the proofs of Theorem 3.2, which concerns our dot product oracle that

operates under limited memory.
• Appendix F provides the proof of Item 1 in our main result (Theorem 3.1).
• Appendix G describes the sublinear spectral clustering oracle related to Item 2 in our main

result (Theorem 3.1).
• Appendix H presents the proof of Theorem 1.2, which gives the upper bound for distinguish-

ing 1-cluster vs. 2-cluster problem.
• Appendix D presents the proof of Theorem 1.3, which gives the lower bound for distinguish-

ing 1-cluster vs. 2-cluster problem.
• Appendix J provides details on the experimental setup and parameter choices.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we mainly used ChatGPT to assist with English writing.
Specifically, the model was employed to improve the fluency of sentences, check grammar, and
suggest stylistic refinements. We emphasize that all theoretical contributions, proofs, and experimental
results (including code implementation, simulations, and results collection) were developed and
verified solely by the authors without the involvement of LLMs. The use of LLMs did not influence
the research process, methodology, or the originality of the results presented in this paper.

B OTHER RELATED WORK

Property testing Besides the above most directly related work on sublinear spectral clustering
oracles, several other research directions are also relevant to our study. One line of work is property
testing (i.e., testing graph clusterability), where the goal is to quickly distinguish whether a graph
can be partitioned into k clusters with high inner conductance, or whether it is far from having such
clustering. For example, Czumaj et al. (2015) studied testing whether a graph admits a good cluster
structure in the adjacency list query model, providing algorithms with sublinear query time. This
direction was later advanced by Chiplunkar et al. (2018). While property testing algorithms do not
provide explicit cluster assignments, they capture the feasibility of clustering in sublinear resources
and thus serve as an important precursor to oracle-based approaches like ours. For example, Czumaj
et al. (2015) implicitly yields a sublinear spectral clustering oracle under a log n conductance gap.
This was later extended by Peng (2020), who developed a robust oracle capable of handling noise.

Local graph clustering Another line of related work is local graph clustering (Andersen et al.,
2006; Spielman & Teng, 2013; Zhu et al., 2013; Gharan & Trevisan, 2014; Andersen et al., 2016).
The goal of this category is to identify a cluster associated with a given vertex. In this setting, the
algorithm outputs a set of vertices related to the input vertex, and its running time and memory usage
are bounded by the size of the output cluster, up to a weak dependence on n. In particular, when the
graph contains k clusters and n vertices, the complexity can be as large as Ω(n/k).

Grapah problems under limited memory Recently, there has been a surge of work on understand-
ing learning under limited memory. Graph problems inherently require substantial space and time to
compute, and have attracted increasing attention. One line of research focuses on the semi-streaming
model where the algorithm is permitted O(n · poly(log n)) space. Both upper bound algorithms and
lower bound results are proposed for various graph problems, including Maximal Independent Set
(Assadi et al., 2024) and Matching (Kapralov, 2013). There is also significant work on the Massively
Parallel Computation model, where machines have sublinear memory to solve the graph problems

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(Behnezhad et al., 2019; Łącki et al., 2020; Nowicki & Onak, 2021; Assadi et al., 2019; Ghaffari &
Nowicki, 2020).

C SUPPLEMENTARY PRELIMINARIES

For a vector a = (a(1), . . . ,a(n))T , the p-norm (p ≥ 1) of a is defined to be∥a∥p =

(
∑n

i=1 |a(i)|p)
1
p . For any matrix B ∈ Rn×n, we use ∥B∥F =

√∑n
i=1

∑n
j=1 B

2(i, j) to de-

note the Frobenius norm of B, ∥B∥2 = maxx∈Rn,∥x∥2=1 ∥Bx∥2 to denote the spectral norm of B
and B[i] to denote the first i columns of B, 1 ≤ i ≤ n.

Definition C.1 (TV distance). For two probability distributions p, q over [n], the total variance
distance (i.e., TV distance) of p, q is defined to be

dTV(p, q) =
1

2
∥p− q∥1.

Fact C.1. For any vector p ∈ Rn, we have ∥p∥24 ≤ ∥p∥22.

Proof. Let ∥p∥∞ = maxni=1 |p(i)|. Then, we have

∥p∥24 =

√√√√ n∑
i=1

p4(i) ≤

√√√√ n∑
i=1

p2(i) · ∥p∥2∞

=
√
∥p∥2∞

√√√√ n∑
i=1

p2(i)

≤

√√√√ n∑
i=1

p2(i)

√√√√ n∑
i=1

p2(i)

= ∥p∥22.

D FROM d-BOUNDED GRAPHS TO d-REGULAR GRAPHS

Although we state our results for d-regular graphs, they extend naturally to d-bounded graphs, i.e.,
graphs in which every vertex has degree at most d. The extension is straightforward: for a d-bounded
graph G′ = (V,E′), for every x ∈ V , we can add d − dx self-loops with weight 1

2 to x to get a
d-regular graph G = (V,E). Note that the lazy random walk on G is equivalent to the random walk
on G′, with the random walk satisfying that if the walker is currently at x ∈ V , then in the next step
it stays at x with probability 1− dx

2d , or moves to each neighbor of x with probability 1
2dx

.

E PROOF OF THEOREM 3.2

Theorem E.1 (Restate of Theorem 3.2). Let k ≥ 2 be an integer. Let ε, φ ∈ (0, 1) with ε
φ2 ≤ 1

105 . Let
G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph. Let 1

n5 < ξ < 1. Let 1 ≤Minit,Mquery ≤
O(n

1/2−20ε/φ2

k). Then, with probability at least 1 − 2n−100, INITORACLE(G, k, ξ,Minit) (Alg. 3)
computes a sublinear space matrix Ψ of size nO(ε/φ2) · log2 n · (kξ)

O(1), such that the following
property is satisfied:

for every pair of vertices x, y ∈ V , QUERYDOT(G, x, y, ξ,Ψ,Mquery) (Alg. 4) computes an output
value ⟨fx,fy⟩apx such that with probability at least 1− 6n−100:

|⟨fx,fy⟩apx − ⟨fx,fy⟩| ≤
ξ

n
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Moreover, let Tinit, Sinit be the time and space costs of INITORACLE(G, k, ξ,Minit) (Alg.3), and let
Tquery, Squery be those of a single QUERYDOT(G, x, y, ξ,Ψ,Mquery) query (Alg.4). Then we have

• Tinit = (kξ)
O(1) · n1+O(ε/φ2) · log4 n

Minit
· 1
φ2 ,

• Sinit = (kξ)
O(1) · nO(ε/φ2) ·Minit · log4 n

• Tquery = (kξ)
O(1) · n1+O(ε/φ2) · log3 n

Mquery
· 1
φ2 ,

• Squery = (kξ)
O(1) · nO(ε/φ2) ·Mquery · log3 n.

To prove Theorem 3.2, we begin by analyzing Zb defined in Alg. 1. The following lemma shows that
Zb is an unbiased estimator of ⟨M t1x,M

t1x⟩ and quantifies its variance.

Lemma E.1. Let G = (V,E) be a graph. Let R, t,M be integers, where 1 ≤M ≤ R. Let x, y ∈ V
be two vertices. Let M be the random walk transition matrix of G. Let Zb (1 ≤ b ≤ R

M) be the
random variable defined in ESTRWDOT(G,R, t,M, x, y) (see line 6 of Alg. 1). Then, we have

E[Zb] = ⟨M t1x,M
t1y⟩,

Var[Zb] ≤
1

M2
∥M t1x∥2 · ∥M t1y∥2 +

1

M

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)
.

Proof. Run M random walks of length t from x (resp. from y). Let cx(i) (resp. cy(i)) denote
the number of random walks from x (resp. from y) that end at vertex i. It’s clear that we have
p̂x(i) =

cx(i)
M and p̂y(i) =

cy(i)
M (see lines 4 ∼ 5 of Alg. 1). Let px = M t1x (resp. py = M t1y)

be the probability distribution of a length t random walk starting from x (resp. from y). Note that
cx(i) ∼ Binomial(M,px(i)) and cy(i) ∼ Binomial(M,py(i)). According to line 6 of Alg. 1, we
have Zb = ⟨p̂x, p̂y⟩. Therefore, about E[Zb], we have

E[Zb] = ⟨p̂x, p̂y⟩

= E

[
n∑

i=1

p̂x(i)p̂y(i)

]

=
1

M2
·

n∑
i=1

E[cx(i)cy(i)]

=
1

M2
·

n∑
i=1

E[cx(i)]E[cy(i)]

=
1

M2
·

n∑
i=1

Mpx(i)Mpy(i)

=

n∑
i=1

px(i)py(i)

= ⟨px,py⟩ = ⟨M t1x,M
t1y⟩.

About Var[Zb], since Var[Zb] = E[Z2
b]− (E[Zb])

2, it suffices to calculate E[Z2
b] to get Var[Zb].

E[Z2
b] = E

[
⟨p̂x, p̂y⟩2

]
= E

(n∑
i=1

p̂x(i)p̂y(i)

)2


= E

 n∑
i=1

n∑
j=1

p̂x(i)p̂y(i)p̂x(j)p̂y(j)


15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

=
1

M4

n∑
i=1

n∑
j=1

E [cx(i)cy(i)cx(j)cy(j)]

=
1

M4

n∑
i=1

n∑
j=1

E [cx(i)cx(j)] · E [cy(i)cy(j)]

=
1

M4

n∑
i=1

E
[
c2x(i)

]
· E
[
c2y(i)

]
+

1

M4

n∑
i=1

n∑
j=1,j ̸=i

E [cx(i)cx(j)] · E [cy(i)cy(j)].

For convenience, we use A1 to denote 1
M4

∑n
i=1 E

[
c2x(i)

]
· E
[
c2y(i)

]
and A2 to denote

1
M4

∑n
i=1

∑n
j=1,j ̸=i E [cx(i)cx(j)] · E [cy(i)cy(j)].

Since cx(i) ∼ Binomial(M,px(i)), we have E[cx(i)] = Mpx(i) and E[c2x(i)] = Var[cx(i)] +
(E[cx(i)])2 =Mpx(i)(1− px(i)) +M2p2

x(i) =M [px(i) + (M − 1)p2
x(i)]. Therefore, we have

A1 =
1

M4

n∑
i=1

E
[
c2x(i)

]
· E
[
c2y(i)

]
=

1

M4

n∑
i=1

M
[
px(i) + (M − 1)p2

x(i)
]
·M

[
py(i) + (M − 1)p2

y(i)
]

=
1

M2

n∑
i=1

px(i)py(i) + (M − 1)
(
pxp

2
y(i) + p2

x(i)py(i)
)
+ (M − 1)2p2

x(i)p
2
y(i)

=
1

M2
⟨px,py⟩+

M − 1

M2

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)
+

(M − 1)2

M2
⟨p2

x,p
2
y⟩,

where with a slight abuse of notation, we use ⟨px, p2y⟩ to denote
∑n

i=1 px(i)p
2
y(i), and we use ⟨p2x, p2y⟩

to denote
∑n

i=1 p
2
x(i)p

2
y(i).

To calculate A2, we need to calculate E[cx(i)cx(j)] where i ̸= j. We define Xi
a as follows:

Xi
a =

{
1, The a-th random walk from x ends at i
0, otherwise

.

So we have E[cx(i)cx(j)] = E
[∑M

a=1X
i
a

∑M
a=1X

j
a

]
=
∑M

a=1

∑M
b=1 E[Xi

aX
j
b]. For all a = b and

i ̸= j, we have E[Xi
aX

j
b = 0], since for a single random walk, it cannot ends at i and j the same

time. For all a ̸= b and i ̸= j, we have E[Xi
aX

j
b] = px(i)px(j). So we can get E[cx(i)cx(j)] =

M(M − 1)px(i)px(j). By the same augment, we get that for all i ̸= j, E[cy(i)cy(j)] =M(M −
1)py(i)py(j). Therefore,

A2 =
1

M4

n∑
i=1

n∑
j=1,j ̸=i

E [cx(i)cx(j)] · E [cy(i)cy(j)]

=
1

M4

n∑
i=1

n∑
j=1,j ̸=i

M(M − 1)px(i)px(j) ·M(M − 1)py(i)py(j)

=
(M − 1)2

M2

m∑
i=1

n∑
j=1,j ̸=i

px(i)py(i) · px(j)py(j)

=
(M − 1)2

M2

 n∑
i=1

n∑
j=1

px(i)py(i) · px(j)py(j)−
n∑

i=1

p2
x(i)p

2
y(i)


=

(M − 1)2

M2

 n∑
i=1

px(i)py(i)

n∑
j=1

px(j)py(j)− ⟨p2
x,p

2
y⟩


16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

=
(M − 1)2

M2

(
⟨px,py⟩2 − ⟨p2

x,p
2
y⟩
)
.

Put them together, we get

E[Z2
b] = A1 +A2

=
1

M2
⟨px,py⟩+

M − 1

M2

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)
+

(M − 1)2

M2
⟨p2

x,p
2
y⟩

+
(M − 1)2

M2

(
⟨px,py⟩2 − ⟨p2

x,p
2
y⟩
)

=
1

M2
⟨px,py⟩+

M − 1

M2

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)
+

(M − 1)2

M2
⟨px,py⟩2.

Therefore, we have

Var[Zb] = E[Z2
b]− (E[Zb])

2

=
1

M2
⟨px,py⟩+

M − 1

M2

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)
+

(M − 1)2

M2
⟨px,py⟩2 − ⟨px,py⟩2

=
1

M2
⟨px,py⟩+

M − 1

M2

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)
+

1− 2M

M2
⟨px,py⟩2

≤ 1

M2
⟨px,py⟩+

1

M

(
⟨px,p

2
y⟩+ ⟨p2

x,py⟩
)

=
1

M2

n∑
i=1

px(i)py(i) +
1

M

(
n∑

i=1

px(i)p
2
y(i) +

n∑
i=1

p2
x(i)py(i)

)

≤ 1

M2
∥px∥2 · ∥py∥2 +

1

M

(
∥px∥2 · ∥py∥24 + ∥px∥24 · ∥py∥2

)
≤ 1

M2
∥px∥2 · ∥py∥2 +

1

M

(
∥px∥2 · ∥py∥22 + ∥px∥22 · ∥py∥2

)
,

where the second-to-last inequality uses the Cauchy–Schwarz inequality and the last one follows
from Fact C.1.

Building on Lemma E.1, we now consider the estimator Z obtained by averaging B = R/M
independent copies of Zb. The following lemma shows that Z remains an unbiased estimator with
variance reduced by a factor of B = R/M .

Lemma E.2. Let G = (V,E) be a graph. Let R, t,M be integers, where 1 ≤ M ≤ R. Let
x, y ∈ V be two vertices. Let M be the random walk transition matrix of G. Let Z be the output of
ESTRWDOT(G,R, t,M, x, y) (Alg. 1). Then, we have

E[Z] = ⟨M t1x,M
t1y⟩,

Var[Z] ≤ 1

R

[
1

M
∥M t1x∥2 · ∥M t1y∥2 +

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)]
.

Proof. According to Alg. 1, we know that Z = 1
B

∑B
b=1 Zb, where B = R

M . Therefore, us-
ing Lemma E.1, we have E[Z] = 1

B

∑B
b=1 E[Zb] = ⟨M t1x,M

t1y⟩ and

Var[Z] =
1

B2

B∑
b=1

Var[Zb]

=
1

B
Var[Zb]

=
M

R
Var[Zb]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

≤ M

R

[
1

M2
∥M t1x∥2 · ∥M t1y∥2 +

1

M

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)]
=

1

R

[
1

M
∥M t1x∥2 · ∥M t1y∥2 +

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)]
.

Lemma E.3 shows that, with suitable input parameters, ESTRWDOT(G,R, t,M, x, y) (Alg. 1)
approximates the dot product of the random walk distributions from any two vertices x, y ∈ V within
an error of σerr.

Lemma E.3. Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let G = (V,E) be a d-regular and
(k, φ, ε)-clusterable graph. Let M be the random walk transition matrix of G. Let Z be the output
of ESTRWDOT(G,R, t,M, x, y) (Alg. 1). Let σerr > 0. Let c > 1 be a large enough constant. For

any t ≥ 20 logn
φ2 and any x, y ∈ V , if R ≥ c·k2n−1+40ε/φ2

σ2
errM

and 1 ≤ M ≤ O(n
1/2−20ε/φ2

k), then with
probability at least 0.99, we have

|Z − ⟨M t1x,M
t1y⟩| ≤ σerr.

Moreover, ESTRWDOT(G,R, t,M, x, y) runs in O(Rt) time and uses O(M · log n) bits of space.

Remark E.1. The success probability of Lemma E.3 can be boosted up to 1− n−100 using median
trick, i.e., by taking the median of O(log n) independent runs.

To prove Lemma E.3, we need the following lemma in Gluch et al. (2021).

Lemma E.4 (Lemma 22 in Gluch et al. (2021)). Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let
G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph. Let M be the random walk transition
matrix of G. For any t ≥ 20 logn

φ2 and any x ∈ V we have

∥M t1x∥2 ≤ O(k · n−1/2+(20ε/φ2)).

Now we are ready to prove Lemma E.3.

Proof of Lemma E.3. Correctness. By Lemma E.2 and Lemma E.4, we can get that

Var[Z] ≤ 1

R

[
1

M
∥M t1x∥2 · ∥M t1y∥2 +

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)]
=

1

R

(
O(k2 · n−1+40ε/φ2

)

M
+O(k3 · n−3/2+60ε/φ2

)

)
.

Using Chebyshev’s inequality, we have

Pr[|Z − ⟨M t1x,M
t1y⟩| ≥ σerr] = Pr[|Z − E[Z]| ≥ σerr]

≤ Var[Z]

σ2
err

≤ 1

σ2
err

· 1

R

(
O(k2 · n−1+40ε/φ2

)

M
+O(k3 · n−3/2+60ε/φ2

)

)

≤ 1

σ2
err

· 1

R
·O

(
k2 · n−1+40ε/φ2

M

)

≤ 1

100
,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where the second-to-last inequality holds by M ≤ O
(

n1/2−20ε/φ2

k

)
. And the last inequality holds by

our choice of

R ≥ c · k2n−1+40ε/φ2

σ2
errM

,

where c is a large enough constant that cancels the constant hidden in O
(

k2·n−1+40ε/φ2

M

)
.

Runtime and space. Algorithm ESTRWDOT(G,R, t,M, x, y) (Alg. 1) performs B = R
M bathches

(i.e., B = R
M iterations of the for-loop). In each batch, it runs M random walks of length t,

which requires O(Mt) time and O(M) words of space to store the O(M) endpoints of the walks.
Computing the dot product of two probability distributions takes O(M) time, since each distribution
has at mostM nonzero entries. Therefore, the runtime and space per batch areO(Mt+M) = O(Mt)
time and O(M) words, respectively. Moreover, the space used within each batch can be reused across
batches. Consequently, the overall runtime and space complexity of ESTRWDOT(G,R, t,M, x, y)
(Alg. 1) are B ·O(Mt) = R

M ·O(Mt) = O(Rt) and O(M) words (i.e., O(M · log n) bits of space,
since each endpoint can be stored in log n bits), respectively.

Lemma E.5 states that, under appropriate input parameters, the output G of our algorithm EST-
COLLIPROB (G,R, t,M, IS) (Alg. 2) is close to (M tS)T (M tS) in spectral norm, where
(M tS)T (M tS) is the Gram matrix of the random walk distributions from vertices in the sam-
ple set.

Lemma E.5. Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let G = (V,E) be a d-regular and (k, φ, ε)-
clusterable graph. Let M be the random walk transition matrix of G. Let IS = {s1, . . . , ss} be
a multiset of s indices chosen from {1, . . . , n}. Let S ∈ Rn×s be the matrix whose i-th column
equals 1si . Let G ∈ Rs×s be the output of ESTCOLLIPROB (G,R, t,M, IS) (Alg. 2). Let σerr > 0.

Let c > 1 be a large enough constant. For any t ≥ 20 logn
φ2 , if R ≥ c·k2n−1+40ε/φ2

σ2
errM

and 1 ≤ M ≤

O
(

n1/2−20ε/φ2

k

)
, then with probability at least 1− n−100, we have

∥G − (M tS)T (M tS)∥2 ≤ s · σerr.

Moreover, ESTCOLLIPROB (G,R, t,M, IS) runs inO(Rt·log n·s2) time and usesO(M ·log2 n·s2)
bits of space.

Proof. Correctness. Note that in line 5 of Alg. 2, we get Gl(i, j) :=ESTRWDOT(G,R, t,M, si, sj)

(Alg. 1). Since t ≥ 20 logn
φ2 , R ≥ c·k2n−1+40ε/φ2

σ2
errM

and 1 ≤ M ≤ O
(

n1/2−20ε/φ2

k

)
, then

by Lemma E.3, with probability at least 0.99, for all i, j ∈ [s], we have

|Gl(i, j)− ⟨M t1si ,M
t1sj ⟩| = |Gl(i, j)− (M t1si)

T (M t1sj)| ≤ σerr.

Note that in line 6 of Alg. 2, we define G as a matrix obtained by taking the entrywises median of
Gl’s over O(log n) runs. Thus with probability at least 1− n−100 (see Remark E.1), for all i, j ∈ [s],
we have

|G(i, j)− (M t1si)
T (M t1sj)| ≤ σerr,

which implies
∥G − (M tS)T (M tS)∥F≤ s · σerr.

Moreover, we have

∥G − (M tS)T (M tS)∥2≤ ∥G − (M tS)T (M tS)∥F≤ s · σerr.

Runtime and space. In Alg. 2, Alg. 1 is called log n · s2 times. Since the runtime and space of Alg. 1
are O(Rt) and O(M log n) bits, respectively, the runtime and space of Alg. 2 are O(Rt · log n · s2)
and O(M · log2 n · s2) bits, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Recall that we use (M t1x)
T (M tS)(ns · W̃[k]Σ̃

−4
[k] W̃

T
[k])(M

tS)T (M t1y) to estimate
⟨fx,fy⟩. Lemma E.6 states that under appropriate parameters, Alg. 3 outputs a matrix
Ψ = n

s · Ŵ[k]Σ̂
−2
[k] Ŵ

T
[k] which, with high probability, is spectrally close to n

s · W̃[k]Σ̃
−4
[k] W̃

T
[k]. The

proof of Lemma E.6 is analogous to that of Lemma 24 in Gluch et al. (2021). Nevertheless, for
completeness, we provide a concise proof here.
Lemma E.6. Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let G = (V,E) be a d-regular and (k, φ, ε)-
clusterable graph. Let M be the random walk transition matrix of G. Let IS = {s1, . . . , ss}
be a multiset of s indices chosen independently and uniformly at random form V = {1, . . . , n}.
Let S ∈ Rn×s be the matrix whose i-th column equals 1si . Let G ∈ Rs×s be the output of
ESTCOLLIPROB (G,R, t,M, IS) (Alg. 2). Let

√
n
s ·M tS = Ũ Σ̃W̃T be an SVD of

√
n
s ·M tS

where Ũ ∈ Rn×n, Σ̃ ∈ Rn×n, W̃ ∈ Rs×n. Let n
s · G = Ŵ Σ̂ŴT be an eigendecomposition of n

s · G.
Let 1

n8 < ξ < 1. Let c1 > 1 and c2 > 1 be two large enough constants. For any t ≥ 20 logn
φ2 , if

ε
φ2 ≤ 1

105 , s ≥ c1 · n240ε/φ
2 · log n · k4, R ≥ c2·k6·n1+760ε/φ2

M ·ξ2 and 1 ≤M ≤ O
(

n1/2−20ε/φ2

k

)
, then

with probability at least 1− 2 · n−100, matrices Σ̂−2
[k] and Σ̃−4

[k] exist and we have

∥W̃[k]Σ̃
−4
[k] W̃

T
[k] − Ŵ[k]Σ̂

−2
[k] Ŵ

T
[k]∥2 < ξ.

Equipped with Lemma E.5, to prove Lemma E.6, we also need the following lemmas.

Lemma E.7 (Lemma 18 in Gluch et al. (2021)). Let Ã, Â ∈ Rn×n be symmetric matrices with
eigendecomposition Ã = Ỹ Γ̃Ỹ T and Â = Ŷ Γ̂Ŷ T . Let the eigenvalues of Ã be 1 ≥ γ1 ≥ · · · ≥
γn ≥ 0. Suppose that ∥Ã− Â∥2 ≤ γk

100 and γk+1 <
γk

4 . Then we have

∥Ỹ[k]Γ̃−1
[k] Ỹ

T
[k] − Ŷ[k]Γ̂

−1
[k] Ŷ

T
[k]∥2 ≤ 16∥Ã− Â∥2 + 4γk+1

γ2k
.

Lemma E.8 (Lemma 28 in Gluch et al. (2021)). Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let
G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph. Let M be the random walk transition
matrix of G. Let IS = {s1, . . . , ss} be a multiset of s indices chosen independently and uniformly at
random form V = {1, . . . , n}. Let S ∈ Rn×s be the matrix whose i-th column equals 1si . Let c > 1

be a large enough constant. For any t ≥ 20 logn
φ2 , if ε

φ2 ≤ 1
105 and s ≥ c · n240ε/φ2 · log n · k4, then

with probability at least 1− n−100, we have

• vk
(
n
s · (M tS)(M tS)T

)
= vk

(
n
s · (M tS)T (M tS)

)
≥ n−80ε/φ2

2 ,
• vk+1

(
n
s · (M tS)(M tS)T

)
≤ n−9.

Lemma E.9 (Weyl’s Inequality). Let A,B ∈ Rn×n be symmetric matrices. Let α1, . . . , αn and
β1, . . . , βn be the eigenvalues of A and B respectively. Then for any i ∈ [n], we have

|αi − βi| ≤ ∥A−B∥2.

Now we are ready to prove Lemma E.6.

Proof of Lemma E.6. Let c3 > 1 be a large enough constant and let σerr =
ξ·n−1−360ε/φ2

c3·k2 . Let c be a
constant from Lemma E.5. By the assumption of the lemma for a large enough constant c2 > 1, we
have

R ≥ c2 · k6 · n1+760ε/φ2

M · ξ2
≥ c · k2n−1+40ε/φ2

σ2
errM

.

Thus we can apply Lemma E.5. Hence, with probability at least 1− n−100, we have

∥G − (M tS)T (M tS)∥2 ≤ s · σerr.

Let Ã = n
s · (M tS)T (M tS) = W̃ Σ̃2W̃T and Â = n

s · G. Thus, we have Ã2 =(
n
s · (M tS)T (M tS)

)2
= W̃ Σ̃4W̃T and Â2 =

(
n
s · G

)2
= Ŵ Σ̂2ŴT . To use Lemma E.7, we

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

have to bound ∥Ã2 − Â2∥2 =
(
n
s

)2 ∥((M tS)T (M tS)
)2 −G2∥2. Using the triangle inequality and

sub-multiplicativity of spectral norm and the above ∥G − (M tS)T (M tS)∥2 ≤ s · σerr bound, we
can get that

∥
(
(M tS)T (M tS)

)2 − G2∥2 ≤ (s · σerr)
2 + 2 · s · σerr∥(M tS)T (M tS)∥2.

Note that ∥(M tS)T (M tS)∥2 ≤ ∥(M tS)T (M tS)∥F =
√∑s

i=1

∑s
j=1 ((M

t1si)
T (M t1sj))

2,

by Cauchy Schwarz inequality and Lemma E.4, we can get that ∥(M tS)T (M tS)∥2 ≤ O(s · k2 ·
n−1+40ε/φ2

). Put them together and by the choice of σerr =
ξ·n−1−360ε/φ2

c3·k2 , we have that

∥Ã2 − Â2∥2 ≤ O

(
ξ · n−320ε/φ2

c3

)
.

Moreover, let c1 be the constant from Lemma E.8, since s ≥ c1 ·n240ε/φ
2 · log n · k4, by Lemma E.8,

with probability at least 1− n−100, we have

vk

(
Ã2
)
= vk

((n
s
· (M tS)T (M tS)

)2)
≥

(
n−80ε/φ2

2

)2

=
n−160ε/φ2

4
,

and

vk+1

(
Ã2
)
= vk+1

((n
s
· (M tS)T (M tS)

)2)
≤ (n−9)2 = n−18.

By Weyl’s inequality, we have that vk(Â2) ≥ vk(Ã
2)−∥Ã2−Â2∥2 ≥ n−160ε/φ2

4 −O(ξ·n
−320ε/φ2

c3
) >

0, so Σ̂−2
[k] exists. Moreover, since Ã2, Â2 are symmetric matrices, ∥Ã2 − Â2∥2 ≤ vk(Ã

2)
100 and

vk+1(Ã
2) < vk(Ã

2)
4 , by Lemma E.7, we have that

∥W̃[k]Σ̃
−4
[k] W̃

T
[k] − Ŵ[k]Σ̂

−2
[k] Ŵ

T
[k]∥2 ≤ 16∥Ã2 − Â2∥2 + 4vk+1(Ã

2)

vk(Ã2)2

≤
O

(
ξ·n−320ε/φ2

c3

)
+ 4n−18

n−320ε/φ2

16

≤ O

(
ξ

c3

)
+ 64n−17

≤ ξ.
1

n8
≤ ξ

Moreover, both Lemma E.5 and Lemma E.8 fail with probability at most n−100, by union bound, we
can get that the above inequality holds with probability at least 1− 2n−100.

The following lemma shows that the output value ⟨fx,fy⟩apx of Alg. 4 is close to

(M t1x)
T (M tS)

(
n
s · W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)T (M t1y). The proof follows from the proof of

Lemma 29 in Gluch et al. (2021). Nevertheless, for completeness, we provide a concise proof
here.
Lemma E.10. Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let G = (V,E) be a d-regular and
(k, φ, ε)-clusterable graph. Let M be the random walk transition matrix ofG. Let IS = {s1, . . . , ss}
be a multiset of s indices chosen independently and uniformly at random form V = {1, . . . , n}.
Let S ∈ Rn×s be the matrix whose i-th column equals 1si . Let

√
n
s · M tS = Ũ Σ̃W̃T be an

SVD of
√

n
s · M tS where Ũ ∈ Rn×n, Σ̃ ∈ Rn×n, W̃ ∈ Rs×n. Let 1

n6 < ξ < 1 and 1 ≤
Minit ≤ O

(
n1/2−20ε/φ2

k

)
. Let t ≥ 20 logn

φ2 . Let c > 1 be a large enough constant. Let s ≥

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

c · n240ε/φ2 · log n · k4. Let Ψ denote the matrix constructed by INITORACLE (G, k, ξ,Minit) (Alg.
3).

Let x, y ∈ V . Let ⟨fx,fy⟩apx ∈ R denote the value returned by QUERYDOT (G, x, y, ξ,Ψ,Mquery)

(Alg. 4). If ε
φ2 ≤ 1

105 , Alg. 3 succeeds and 1 ≤Mquery ≤ O
(

n1/2−20ε/φ2

k

)
, then with probability at

least 1− 5n−100 matrix Σ̃−4
[k] exists and we have∣∣∣⟨fx,fy⟩apx − (M t1x)

T (M tS)
(n
s
· W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)T (M t1y)

∣∣∣ < ξ

n
.

Proof. Note that in line 8 of Alg. 4, ⟨fx,fy⟩apx is defined as αT
xΨαy, where in line 8 of Alg. 3,

Ψ ∈ Rs×s is defined to be Ψ = n
s · Ŵ[k]Σ̂

−2
[k] Ŵ

T
[k] and αx,αy ∈ Rs are vectors obtained by taking

entriwise median over all O(log n) runs (see lines 3 ∼ 7 of Alg. 4).

For any vertex x ∈ V , we use px to denote px = M t1x. We then define

ax = pT
x (M

tS), A =
n

s
· W̃[k]Σ̃

−4
[k] W̃

T
[k],ay = (M tS)Tpx,

ex = αT
x − ax, E = Ψ−A, ey = αy − ay.

Then by triangle inequality, we have∣∣∣αTΨαy − pT
x (M

tS)
(n
s
· W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)Tpy

∣∣∣
= |(ax + ex)(A+ E)(ay + ey)− axAay|
≤ ∥ex∥2∥E∥2∥ey∥2 + ∥ex∥2∥A∥2∥ey∥2 + ∥ax∥2∥E∥2∥ey∥2
+ ∥ax∥2∥A∥2∥ey∥2 + ∥ax∥2∥E∥2∥ay∥2 + ∥ex∥2∥A∥2∥ay∥2 + ∥ax∥2∥E∥2∥ay∥2.

In the following, we bound ∥ax∥2, ∥ay∥2, ∥E∥2, ∥A∥2, ∥ex∥2 and ∥ex∥2.

Let c′ > 1 be a constant and let ξ′ = ξ

c′·k4·n80ε/φ2 . Thus for large enough constant c, we have

s ≥ c1 · n240ε/φ
2 · log n · k4 and Rinit = Θ(n

1+920ε/φ2

Minit
· k14

ξ2) ≥ c2k
6·n1+760ε/φ2

Minit·ξ′2 as in line 2 of Alg.

3, hence, by Lemma E.6 applied with ξ′ we have that with probability at least 1− 2n−100, Σ̂−2
[k] and

Σ̃−4
[k] exist and we have

∥E∥2 =
n

s
· ∥Ŵ[k]Σ̂

−2
[k] Ŵ

T
[k] − W̃[k]Σ̃

−4
[k] W̃

T
[k]∥2 <

n

s
· ξ′ = ξ · n

c′ · k4 · n80ε/φ2 · s
. (1)

Moreover, according to the proof of Lemma 29 in Gluch et al. (2021), we have that, with probability
at least 1− n−100,

∥A∥2 ≤ 4 · n1+160ε/φ2

s
. (2)

And with probability 1, we have

∥ax∥2 ≤ O(
√
s · k2 · n−1+40ε/φ2

) (3)

and

∥ay∥2 ≤ O(
√
s · k2 · n−1+40ε/φ2

). (4)

Now we need to bound ex and ey. Recall that ex = αT
x − pT

x (M
tS), where αx ∈ Rs is obtained

by taking entrywise median over all xl’s. Note that in line 5 of Alg. 4, xl(i) is the output of
ESTRWDOT (G,Rquery, t,Mquery, x, si) (Alg. 1). Let c3 be a constant infront of R in Lemma E.3.

Let σerr =
ξ

c′·k2·n1+200ε/φ2 . Thus by our choice of Rquery = Θ(n
1+440ε/φ2

Mquery
· k6

ξ2) in line 2 of Alg. 4,
the prerequisites of Lemma E.3 are satisfied:

Rquery = Θ

(
n1+440ε/φ2

Mquery
· k

6

ξ2

)
≥ c3 · k2n−1+40ε/φ2

σ2
err ·Mquery

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus we can apply Lemma E.3. Hence, for any 1 ≤ i ≤ s with probability at least 0.99, we have

|xl(i)− pT
xpsi | ≤ σerr.

Since we are running O(log n) rounds to compute xl’s and αx is obtained by taking entrywise
median, we can get that with probability at least 1− n−100 for all z ∈ IS (see Remark E.1), we have

|αx(z)− pT
xpz| ≤ σerr.

Therefore, with probability at least 1− n−100, we can get

∥ex∥2 = ∥αT
x − pT

x (M
tS)∥2 ≤

√
s · σerr =

√
s · ξ

c′ · k2 · n1+200ε/φ2 . (5)

Using the same analysis, with probability at least 1− n−100, we can get that

∥ey∥2 = ∥αy − (M tS)Tpy∥2 ≤
√
s · σerr =

√
s · ξ

c′ · k2 · n1+200ε/φ2 . (6)

Putting (1),(2),(3),(4),(5),(6) together and for large enough n, we can get∣∣∣αTΨαy − pT
x (M

tS)
(n
s
· W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)Tpy

∣∣∣
≤ ∥ex∥2∥E∥2∥ey∥2 + ∥ex∥2∥A∥2∥ey∥2 + ∥ax∥2∥E∥2∥ey∥2
+ ∥ax∥2∥A∥2∥ey∥2 + ∥ax∥2∥E∥2∥ay∥2 + ∥ex∥2∥A∥2∥ay∥2 + ∥ax∥2∥E∥2∥ay∥2

≤ O(
ξ

c′ · n
)

≤ ξ

n
.

The last inequality holds by setting c′ be a large enough constant to cancel the hidden constant of
O(ξ

c′·n).

Using union bound, if Alg. 3 succeeds, then the above inequality holds with probability at least
1− 2n−100 − n−100 − 2n−100 = 1− 5n−100.

Having Lemma E.3 and Lemma E.10, to prove Theorem 3.2, we also need the following lemma.

Lemma E.11 (Lemma 19 in Gluch et al. (2021)). Let k ≥ 2 be an integer and φ, ε ∈ (0, 1). Let
G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph. Let M be the random walk transition
matrix of G. Let IS = {s1, . . . , ss} be a multiset of s indices chosen independently and uniformly
at random form V = {1, . . . , n}. Let S ∈ Rn×s be the matrix whose i-th column equals 1si . Let√

n
s ·M tS = Ũ Σ̃W̃T be an SVD of

√
n
s ·M tS where Ũ ∈ Rn×n, Σ̃ ∈ Rn×n, W̃ ∈ Rs×n. Let

1
n6 < ξ < 1 and t ≥ 20 logn

φ2 . Let c > 1 be a large enough constant. Let s ≥ c·n480ε/φ2 ·log n·k8/ξ2.

If ε
φ2 ≤ 1

105 , then with probability at least 1− n−100, matrix Σ̃−4
[k] exists and we have∣∣∣1T

xU[k]U
T
[k]1y − (M1x)

T (M tS)
(n
s
· W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)T (M1y)

∣∣∣ ≤ ξ

n
.

Now we are ready to prove Theorem 3.2.

Poof of Theorem 3.2. Correctness. Equipped with Lemma E.10, based on the correctness proof of
Theorem 2 in Gluch et al. (2021), we can directly obtain the correctness.

Note that in line 3 of Alg. 3, we set s = O(n480ε/φ
2 · log n ·k8/ξ2), and in line 4 of Alg. 3, we sample

s indices independently and uniformly at random form V = {1, . . . , n} to get IS = {s1, . . . , ss}.
Recall that M is the random walk transition matrix of G. Let S ∈ Rn×s be the matrix whose
i-th column is 1si . Let

√
n
s ·M tS = Ũ Σ̃W̃T be an SVD of

√
n
s ·M tS where Ũ ∈ Rn×n, Σ̃ ∈

Rn×n, W̃ ∈ Rs×n.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Recall that for any vertex x ∈ V , we define fx = UT
[k]1x (see Definition 2.1), thus we have

⟨fx,fy⟩ = fT
x fy = (UT

[k]1x)
TUT

[k]1y = 1T
xU[k]U

T
[k]1y. For convenience, let us denote B =

(M t1x)
T (M tS)

(
n
s · W̃[k]Σ̃

−4
[k] W̃

T
[k]

)
(M tS)T (M t1y). By trangle inequality, we have

|⟨fx,fy⟩apx − ⟨fx,fy⟩| = |⟨fx,fy⟩apx −B +B − ⟨fx,fy⟩|
≤ |⟨fx,fy⟩apx −B|+ |B − ⟨fx,fy⟩|
= |⟨fx,fy⟩apx −B|+ |B − ⟨1T

xU[k]U
T
[k]1y⟩|.

Let ξ′ = ξ
2 . Let c′ be a constant in front of s form Lemma E.10. Since s = O(n480ε/φ

2 · log n ·
k8/ξ2) ≥ c′ · n240ε/φ2 · log n · k4, then by Lemma E.10, with probability at least 1− 5n−100, we
have |⟨fx,fy⟩apx −B| ≤ ξ′

n = ξ
2n .

Let c be a constant in front of s form Lemma E.11. Since s = O(n480ε/φ
2 · log n · k8/ξ2) ≥

c · n480ε/φ2 · log n · k8/ξ′2 and ε
φ2 ≤ 1

105 , then by Lemma E.11, with probability at least 1− n−100,

we have |B − ⟨1T
xU[k]U

T
[k]1y⟩| ≤ ξ′

n = ξ
2n .

Therefore, by union bound, with probability at least 1− 5n−100 − n−100 = 1− 6n−100 , we have
|⟨fx,fy⟩apx − ⟨fx,fy⟩| ≤ ξ

2n + ξ
2n = ξ

n .

Runtime and space of INITORACLE. Algorithm INITORACLE(G, k, ξ,Minit) (Alg. 3) calls EST-
COLLIPROB(G,Rinit, t,Minit, IS) (Alg. 2) to get G (see line 5 of Alg. 3). According to Lemma E.5,
ESTCOLLIPROB(G,Rinit, t,Minit, IS) runs inO(Rinit ·t · log n ·s2) time and usesO(Minit · log2 n ·s2)
bits of space. Then in line 7 of INITORACLE, it computes the SVD of matrix G in s3 time
and it uses s2 · log n bits of space to store Ψ ∈ Rn×n. Thus overall INITORACLE runs in
O(Rinit · t · log n · s2 + s3) time and uses O(Minit · log2 n · s2 + s2 · log n) bits of space. By

the choice of t := 20 logn
φ2 , Rinit := Θ(n

1+920ε/φ2

Minit
· k14

ξ2) and s := O(n480·ε/φ
2 · log n · k8/ξ2) as in

INITORACLE, we get that INITORACLE runs in Tinit = (kξ)
O(1) · n1+O(ε/φ2) · 1

Minit
· log4 n · 1

φ2 time

and uses Sinit = (kξ)
O(1) · nO(ε/φ2) ·Minit · log4 n bits of space.

Runtime and space of QUERYDOT. In QUERYDOT (Alg. 4), in lines 3 ∼ 6, it calls ESTRW-
DOT(G,Rquery, t,Mquery, x, si) (Alg. 1) for O(log n · s) times. According to Lemma E.3, ESTRW-
DOT(G,Rquery, t,Mquery, x, si) runs in O(Rquery · t) time and uses O(Mquery · log n) bits of space.
Moreover, in line 9 of QUERYDOT, it returns ⟨fx,fy⟩apx = αT

xΨαy, which can be computed in
O(s2) time, since we can compute a = αT

xΨ in s2 time and then we compute aαy in s2 time. Thus
overall QUERYDOT runs in O(log n · s ·Rquery · t+ s2) time and O(log2 n · s ·Mquery) bits of space.

By the choice of t := 20 logn
φ2 , Rquery := Θ(n

1+440ε/φ2

Mquery
· k6

ξ2) and s := O(n480·ε/φ
2 · log n · k8/ξ2) as

in QUERYDOT, we get that QUERYDOT runs in Tquery = (kξ)
O(1) · n1+O(ε/φ2) · 1

Mquery
· log3 n · 1

φ2

time and uses Squery = (kξ)
O(1) · nO(ε/φ2) ·Mquery · log3 n bits of space.

F PROOF OF ITEM 1 IN THEOREM 3.1

In this section, we first present an algorithm for computing the spectral dot product in a subspace,
which will serve as a building block for the sublinear spectral clustering oracle that relies on a log(k)
conductance gap. Next, we introduce the sublinear spectral clustering oracle, originally proposed in
Gluch et al. (2021), corresponding to Item 1 in Theorem 3.1. Finally, we provide the proof of Item 1
in Theorem 3.1.

F.1 DOT PRODUCT ORACLE ON SUBSPACE

Note that the clustering oracle in Gluch et al. (2021) relies on cluster centers:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Definition F.1 (Cluster center). For a vertex set C ⊂ V , the cluster center of C is defined to be

µC =
1

|C|
∑
x∈C

fx.

They proved that if x ∈ Ci, then fx is close to µCi
, which means ⟨fx, µC⟩ ≥ c · ∥µC∥22, where c is

a constant. Therefore, the key idea behind the clustering oracle in Gluch et al. (2021) is to sample
a subset of vertices and enumerate possible k-partition in order to obtain a good approximation
µ̂1, . . . , µ̂k to the true cluster centers µ1, . . . , µk (see lines 6 ∼ 11 of Alg. 7). When answering an
arbitrary WHICHCLUSTER (G, x) query, the oracle assigns the x to the cluster whose center is close
to fx while other cluster centers are not close to fx (see line 5 of Alg. 11).

In fact, their clustering algorithm uses hyperplane partitioning, which requires computing dot products
in the subspace (i.e., ⟨fx,Πµ⟩). Therefore, we first present the algorithm that computes the dot
products in the subspace based on our improved version. We highlight that this (i.e., Alg. 6) is not
our contribution.

Algorithm 6: DOTPRODUCTORACLEONSUBSPACE(G, x, y, ξ,Ψ,M,B1, . . . , Br)

1 Let X ∈ Rr×r,hx ∈ Rr,hy ∈ Rr

2 Let ξ′ = Θ(ξ · n−80ε/φ2 · k−6)
3 for i, j ∈ [r] do
4 X(i, j) := 1

|Bi||Bj | ·
∑

zi∈Bi

∑
zj∈Bj

QUERYDOT(G, zi, zj , ξ
′,Ψ,M)

5 for i ∈ [r] do
6 hx(i) :=

1
|Bi| ·

∑
zi∈Bi

QUERYDOT(G, zi, x, ξ
′,Ψ,M)

7 hy(i) :=
1

|Bi| ·
∑

zi∈Bi
QUERYDOT(G, zi, y, ξ

′,Ψ,M)

8 return ⟨fx, Π̂fy⟩apx := QUERYDOT(G, x, y, ξ′,Ψ,M)− hT
xX

−1hy

In the following, we will give some informal theorem and corollaries about Alg. 6. Note that the
only modification we make to Alg. 6 is to replace SPECTRALDOTPRODUCT with our improved
version. Since our dot product oracle provides the same correctness guarantees as the original one, the
correctness of the theorem and corollaries concerning Alg. 6 follows immediately from the proof of
Theorem 6 in Gluch et al. (2021). Therefore, we focus on analyzing the time and space complexities.

Theorem F.1 (Informal). Let k ≥ be an integer, φ, 1
n5 < ξ < 1 and ε

φ2 be smaller than a positive
absolute constant. Let G = (V,E) be a d-regular and (k, φ, ε)-clusterable graph with C1, . . . , Ck.

Let r ∈ [k]. Let B1, . . . , Br denote multisets of vertices. Let b = maxi∈[r] |Bi|. Let µ̂i =
1

|Bi|
∑

x∈Bi
fx. Let Π̂ is defined as a orthogonal projection onto the span ({µ̂1, . . . , µ̂r})⊥. Then

for all x, y ∈ V , we have

1
∣∣∣⟨fx, Π̂fy⟩apx − ⟨fx, Π̂fy⟩

∣∣∣ ≤ ξ
n , where ⟨fx, Π̂fy⟩apx is the output of Alg. 6,

2 Alg. 6 runs in b2 · (kξ)
O(1) · n1+O(ε/φ2) · 1

M · log3 n · 1
φ2 time,

3 Alg. 6 uses b2 · (kξ)
O(1) · nO(ε/φ2) ·M · log3 n bits of space.

Proof. In lines 3 ∼ 4 of Alg. 6, to compute X , Alg. 6 calls QUERYDOT for r2 ·b2 ≤ k2 ·b2 times. In
lines 5 ∼ 7 of Alg. 6, to compute hx,hy , Alg. 6 calls QUERYDOT for r · b ≤ k · b times. To compute
X−1, it takes r3 ≤ k3 time. Therefore, Alg. 6 runs in k2 ·b2 ·Tquery+k ·b ·Tquery+k

3 time and it uses
k2 ·b2 ·Squery+k ·b ·Squery+k

2 bits of space. Note that Tquery = (k
ξ′)

O(1) ·n1+O(ε/φ2) · 1
M · log3 n · 1

φ2

and Squery = (k
ξ′)

O(1) ·nO(ε/φ2) ·M · log3 n, where ξ′ = Θ(ξ ·n−80ε/φ2 ·k−6). Therefore, we get that

Alg. 6 runs in b2 ·(kξ)
O(1) ·n1+O(ε/φ2) · 1

M ·log3 n· 1
φ2 time and uses b2 ·(kξ)

O(1) ·nO(ε/φ2) ·M ·log3 n
bits of space.

Corollary F.1. There exists an algorithm that

1 returns a value ⟨fx, Π̂µ̂⟩apx such that
∣∣∣⟨fx, Π̂µ̂⟩apx − ⟨fx, Π̂µ̂⟩

∣∣∣ ≤ ξ
n ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2 runs in b3 · (kξ)
O(1) · n1+O(ε/φ2) · 1

M · log3 n · 1
φ2 time,

3 uses b3 · (kξ)
O(1) · nO(ε/φ2) ·M · log3 n bits of space.

Proof. One can compute ⟨fx, Π̂µ̂⟩apx := 1
|B| ·
∑

y∈B DOTPRODUCTORACLEONSUBSPACE(G, x, y,

ξ,Ψ,M,B1, . . . , Br) (Alg. 6). Therefore, the algorithm that computes ⟨fx, Π̂µ̂⟩apx calls Alg. 6 b
times, which ends the proof.

Corollary F.2. There exists an algorithm that

1 returns a value ∥Π̂µ̂∥2apx such that
∣∣∣∥Π̂µ̂∥2apx − ∥Π̂µ̂∥2

∣∣∣ ≤ ξ
n ,

2 runs in b4 · (kξ)
O(1) · n1+O(ε/φ2) · 1

M · log3 n · 1
φ2 time,

3 uses b4 · (kξ)
O(1) · nO(ε/φ2) ·M · log3 n bits of space.

Proof. One can compute ∥Π̂µ̂∥2apx = (Π̂µ̂)T (Π̂µ̂) = µ̂T Π̂T Π̂µ̂ = µ̂T Π̂µ̂ = ⟨µ̂, Π̂µ̂⟩ =
1

|B| ·
∑

x∈B⟨fx, Π̂µ̂⟩apx. Therefore, the algorithm that computes ∥Π̂µ̂∥2apx calls the algorithm in
Corollary F.1 b times, which ends the proof.

F.2 SUBLINEAR SPECTRAL CLUSTERING ORACLE

Now we present the sublinear spectral clustering oracle with a log(k) gap between inner and outer
conductance, originally proposed in Gluch et al. (2021), and adapt it by incorporating our dot product
oracle, which operates with very little memory.

Algorithm 7 finds some cluster centers that reflects the clustering structure of the input graph.

Algorithm 7: FINDCENTERS(G,M)

1 INITORACLE(G, k, 10−6 ·
√
ε

φ ,M)

2 s1 := Θ
(

φ2

ε k
5 log2 k log(1/η)

)
, s2 := Θ

(
φ4

ε2 k
5 log2 k log(1/η)

)
3 for t ∈ [1 . . . log(2/η)] do
4 S :=Random samples of vertices of V of size s = Θ(φ

2

ε k
4 log k)

5 for (P1, P2, . . . , Pk) ∈PARTITION (S) do
6 for i = 1 to k do
7 µ̂i :=

1
|Pi|

∑
x∈Pi

fx

8 (r, C) := COMPUTERORDEREDPARTITION(G, (µ̂1, . . . , µ̂k)), s1, s2,M)
9 if r =TRUE then

10 return C

Algorithm 8: COMPUTEORDEREDPARTITION(G, (µ̂1, . . . , µ̂k), s1, s2,M)
1 S := {µ̂1, . . . , µ̂k}
2 for i = 1 to ⌈log k⌉ do
3 Ti := ∅
4 for µ̂ ∈ S do
5 ψ :=OUTERCONDUCTANCE(G, µ̂, (T1, . . . , Ti−1), S, s1, s2,M)
6 if ψ ≤ O(ε

φ2 · log k) then
7 Ti := Ti ∪ {µ̂}

8 S := S\Ti
9 if S = ∅ then

10 return (TRUE, (T1, . . . , Ti))

11 return (FALSE,⊥)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 9: OUTERCONDUCTANCE(G, µ̂, (T1, . . . , Tb), S, s1, s2,M)
1 cnt := 0
2 for t = 1 to s1 do
3 x ∼UNIFORM{1 . . . n}
4 if ISINSIDE(x, µ̂, (T1, . . . , Tb), S,M) then
5 cnt := cnt + 1

6 if n
s1

· cnt < minp∈[k] |Cp|/2 then
7 return ∞
8 e := 0, a := 0
9 for t = 1 to s2 do

10 x ∼ UNIFORM{1 . . . n}
11 y ∼ UNIFORM{w ∈ N (u)}
12 if ISINSIDE(x, µ̂, (T1, . . . , Tb), S,M) then
13 a := a+ 1
14 if ¬ISINSIDE(y, µ̂, (T1, . . . , Tb), S,M) then
15 e := e+ 1

16 return e
a

Algorithm 10: ISINSIDE(x, µ̂, (T1, . . . , Tb), S,M)
1 for i = 1 to b do
2 Let Π be the projection onto the span (∪j<iTj)

⊥

3 Let Si = (∪j≥iTj) ∪ S
4 for µ̂i ∈ Ti do
5 if x ∈ Capx

Πµ̂i,0.93
\ ∪µ̂′∈Si\{µ̂i} C

apx
Πµ̂′,0.93 then

6 return FALSE

7 Let Π be the projection onto the span (∪j≤bTj)
⊥

8 if x ∈ Capx
Πµ̂,0.93\ ∪µ̂′∈S\{µ̂} C

apx
Πµ̂′,0.93 then

9 return TRUE

10 return FALSE

Algorithm 11 corresponds to the query phase of the clustering oracle where it is used to assign
vertices to clusters based on cluster centers.

Algorithm 11: HYPERPLANEPARTITIONING(x, (T1, . . . , Tb),M)
1 for i = 1 to b do
2 Let Π be the projection onto the span (∪j<iTj)

⊥

3 Let Si = (∪j≥iTj)
4 for µ̂ ∈ Ti do
5 if x ∈ Capx

Πµ̂,0.93\ ∪µ̂′∈Si\{µ̂} C
apx
Πµ̂′,0.93 then

6 return µ̂

F.3 DEFERRED PROOF

Theorem F.2 (Restate of Item 1 in Theorem 3.1). Let k ≥ 2 be an integer, φ, ε ∈ (0, 1) and
h1(k, φ), h2(k, ε) and h3(k, φ, ε) be three functions. Let ε ≪ h1(k, φ). Let G = (V,E) be a

d-regular and (k, φ, ε)-clusterable graph with C1, . . . , Ck. Let nc·ε/φ
2 ≤ M ≤ O

(
n1/2−O(ε/φ2)

k

)
be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral
clustering oracle that:

• constructs a data structure D using Õφ

(
h2(k) · nO(ε/φ2) ·M

)
bits of space,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• answers any WHICHCLUSTER query using D in Õφ

(
h2(k) · n1+O(ε/φ2) · 1

M

)
time,

• has O (h3(k, φ, ε)) |Ci| misclassification error for each i ∈ [k],

where we use Oφ suppresses dependence on φ and Õ hides all poly(log n) factors and:

1 if h1(k, φ) = φ3

log k , then h2(k, ε) =
(
k
ε

)O(1)
and h3(k, φ, ε) = ε

φ3 · log k.

Proof. Space and runtime. In the preprocessing phase, as line 1 of FINDCENTERS (Alg. 7), it
invokes INITORACLE(G, k, ξ,M) one time to get a matrix Ψ, which takes Sinit bits of space according
to Theorem 3.2. Then it samples s = φ2

ε k
4 log k vertices and tests all the possible k-partitions of the

sample set. For each partition, it invokes Alg. 8 one time. Each run of Alg. 8 invokes Alg. 9 k log k
times. Each run of Alg. 9 invokes Alg. 10 (s1 + s2) times. Each run of Alg. 10 computes Capx

Πµ̂,0.93

about kO(1) times, where Capx
Πµ̂,0.93 = {x ∈ V,

⟨fx,Πµ̂⟩apx

∥Πµ̂∥2
apx

≥ 0.93}. According to Corollary F.1 and

Corollary F.2, computing ⟨fx,Πµ̂⟩apx

∥Πµ̂∥2
apx

takes s4 · (kφε)O(1) ·nO(ε/φ2) ·Mquery · log3 n bits of space, where

we set ξ = 10−6 ·
√
ε

φ . Therefore, Alg. 7 uses Sinit+k log k ·(s1+s2)·s4 ·(kφε)O(1) ·nO(ε/φ2) ·Mquery ·

log3 n bits of space. By setting s1 := Θ
(

φ2

ε k
5 log2 k log(1/η)

)
, s2 := Θ

(
φ4

ε2 k
5 log2 k log(1/η)

)
,

η = O(log n) and Mquery = M , we get that Alg. 7 uses (kφε)O(1) · nO(ε/φ2) ·M · poly(log n) bits
of space to get a matrix Ψ and a collection of vertex sets C that represents the cluster centers.

In the query phase, HYPERPLANEPARTITIONING (Alg. 11) computes Capx
Πµ̂,0.93 about kO(1) times,

where Capx
Πµ̂,0.93 = {x ∈ V,

⟨fx,Πµ̂⟩apx

∥Πµ̂∥2
apx

≥ 0.93}. According to Corollary F.1 and Corollary F.2,

computing ⟨fx,Πµ̂⟩apx

∥Πµ̂∥2
apx

takes s4 · (kφε)O(1) · nO(ε/φ2) ·M · log3 n bits of space and s4 · (kε)
O(1) ·

n1+O(ε/φ2) · 1
M · log3 n · 1

φ2 time, where we set ξ = 10−6 ·
√
ε

φ . By setting s = φ2

ε k
4 log k, we get

that Alg. 11 takes (kφε)O(1) · nO(ε/φ2) ·M · poly(log n) bits of space and (kφε)O(1) · n1+O(ε/φ2) ·
1
M · poly(log n) time.

Thus, the clustering oracle constructs a data structure D (including matrix Ψ, cluster centers C and
other information used by the query phase) using (kφε)O(1) · nO(ε/φ2) ·M · poly(log n) bits of space.
Using D, any WHICHCLUSTER query can be answered by Alg. 11 in (kφε)O(1) · n1+O(ε/φ2) · 1

M ·
poly(log n) time.

Correctness. We highlight that the sublinear spectral clustering oracle is not our contribution. Note
that the only modification we make to the clustering oracle is to replace the dot product oracle used
in the original work (Gluch et al., 2021) with our improved oracle. Since the correctness guarantees
(i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of
the dot product oracle, and our dot product oracle satisfies the same correctness guarantees with the
previous one, the correctness of the overall clustering oracle follows directly from the correctness of
the clustering oracle in Gluch et al. (2021).

G SUBLINEAR CLUSTERING ORACLE RELATED TO ITEM 2 IN THEOREM 3.1

In this section, we present the sublinear spectral clustering oracle with a poly(k) gap between inner
and outer conductance, originally proposed in Shen & Peng (2023), and adapt it by incorporating our
dot product oracle, which operates with very little memory.

Algorithm 12 first initializes our dot product oracle to get a matrix Ψ (see line 5). It then leverages
our dot product oracle to estimate ⟨fx,fy⟩ for all pairs of vertices x, y in the sample set S, which are
subsequently used to construct a similarity graph H (see lines 6 ∼ 9).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Algorithm 12: CONSTRUCTORACLE(G, k, φ, ε, γ,M)

1 Let ξ =
√
γ

1000 and let s = 10·k log k
γ

2 Let θ = 0.96(1− 4
√
ε

φ)γkn −
√
k

n (ε
φ2)

1/6 − ξ
n

3 Sample a set S of s vertices independently and uniformly at random from V
4 Generate a similarity graph H = (S, ∅)
5 Let Ψ = INITORACLE(G, k, ξ,M)
6 for any u, v ∈ S do
7 Let ⟨fu,fv⟩apx = QUERYDOT(G, u, v, ξ,Ψ,M)
8 if ⟨fu,fv⟩apx ≥ θ then
9 Add an edge (u, v) to the similarity graph H

10 if H has exactly k connected components then
11 Label the connected components with 1, 2, . . . , k (we write them as S1, . . . , Sk)
12 Label x ∈ S with i if x ∈ Si

13 Return H and the vertex labeling ℓ
14 else
15 return fail

Algorithm 13: SEARCHINDEX(H, ℓ, x,M)
1 for any vertex u ∈ S do
2 Let ⟨fu,fx⟩apx = QUERYDOT(G, u, x, ξ,Ψ,M)
3 if there exists a unique index 1 ≤ i ≤ k such that ⟨fu,fx⟩apx ≥ θ for all u ∈ Si then
4 return index i
5 else
6 return outlier

Algorithm 14 corresponds to the query phase of the sublinear spectral clustering oracle, where it
answers any WHICHCLUSTER query using matrix Ψ and similarity graph H .

Algorithm 14: WHICHCLUSTER(G, x,M)
1 if preprocessing phase fails then
2 return fail
3 if SEARCHINDEX(H, ℓ, x,M) return outlier then
4 return a random index∈ [k]
5 else
6 return SEARCHINDEX(H, ℓ, x,M)

H PROOF OF THEOREM 1.2

Theorem H.1 (Restate of Theorem 1.2). For any trade-off parameter 1 ≤M ≤ O(
√
n), there exists

an algorithm (Alg. 5) that, with probability at least 1 − 2n−100, solves the 1-cluster vs. 2-cluster
problem. Moreover, the algorithm:

• uses Õ(M) bits of space,
• runs in Õ

(
n
M

)
time.

To prove Theorem 1.2, we need the following lemmas.

Lemma H.1 (Cheeger’s inequality). In holds for any graph G that

λ2
2

≤ ϕ(G) ≤
√

2λ2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lemma H.2 bounds the ℓ2-norm of the t-step random walk distribution starting from any vertex x in
a d-regular graph, distinguishing between the case where the graph is a single φ-expander and the
case where it consists of two disjoint φ-expanders.
Lemma H.2 (Expander related version of Lemma E.4). Let φ ∈ (0, 1). Let G be a d-regular graph.
Let M be the random walk transition matrix of G. For any t ≥ 20 logn

φ2 and any x ∈ V ,

1 if G is a φ-expander of size n, then ∥M t1x∥2 ≤
√

2
n ,

2 if G is the disjoint union of two identical φ-expanders of size n/2, then ∥M t1x∥2 ≤
√

3
n .

Proof. Item 1. Let L be the normalized Laplacian matrix of G. Recall that we use 0 = λ1 ≤
· · · ≤ λn ≤ 2 to denote the eigenvalues of L and we use u1, . . . ,un to denote the corresponding
eigenvectors, where u1, . . . ,un form an orthonormal basis of Rn and u1(x) =

1√
n

for any x ∈ V .

Note that M = I − L
2 . Hence, the eigenvalues of M are given by 1 = 1− λ1

2 ≥ · · · ≥ 1− λn

2 ≥ 0,
and the corresponding eigenvectors are still u1, . . . ,un. For convenience, we relabel the eigenvalues
of M as 1 = v1(M) = (1 − λ1

2) ≥ v2(M) = (1 − λ2

2) ≥ · · · ≥ vn(M) = (1 − λn

2) ≥ 0.
Moreover, we can write that 1x =

∑n
i=1 αiui. Note that uT

j 1x =
∑n

i=1 αiu
T
j ui = αj . Therefore,

αj corresponds to uT
j 1x = uj(x). Now, we have

M t1x = M t
n∑

i=1

αiui =

n∑
i=1

αiM
tui =

n∑
i=1

αi (vi(M))
t
ui.

Thus, we have

∥M t1x∥22 = (M t1x)
T (M t1x) =

n∑
i=1

α2
i (vi(M))

2t

= α2
1 (v1(M))

2t
+

n∑
i=2

α2
i (vi(M))

2t

≤ 1

n
+ (v2(M))

2t ·
n∑

i=2

α2
i

≤ 1

n
+ (v2(M))

2t · (n− 1).

Since G is a φ-expander, according to Cheeger’s inequality (Lemma H.1), we get that λ2 ≥ φ2

2 .
Therefore, for any t ≥ 20 logn

φ2 , we have

v2(M)2t =

(
1− λ2

2

)2t

≤
(
1− φ2

4

) 4
φ2 ·10 logn

≤ 1

n10
.

Combine above results together, we get that

∥M t1x∥22 ≤ 1

n
+

1

n10
· (n− 1) =

1

n
+

1

n9
≤ 2

n
.

Item 2. We use C1, C2 to denote the two φ-expanders in G. Since C1 and C2 are disconnected, the
normalized Laplacian matrix L of G can be written in block-diagonal form as

L =

(
LC1

0
0 LC2

)
,

where LC1
∈ Rn

2 ×n
2 and LC2

∈ Rn
2 ×n

2 are the normalized Laplacian matrix of C1 and C2,
respectively. For LCi

, we use 0 = λCi
1 ≤ · · · ≤ λCi

n/2 ≤ 2 to denote the eigenvalues of LCi
and

we use uCi
1 , . . . ,uCi

n/2 ∈ Rn
2 ×n

2 to denote the corresponding eigenvectors, where uCi
1 , . . . ,uCi

n/2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

from an orthonormal basis of Rn
2 ×n

2 and uCi
1 (x) =

√
2
n for any x ∈ V . Therefore, the eigenvalues

of L are given by 0 = λ1 ≤ · · · ≤ λn/2 ≤ 2, each of which has multiplicity two, where λi =

λC1
i = λC2

i . For λi, we use u2i−1,u2i ∈ Rn to denote the corresponding eigenvectors, where
u2i−1 = ((uC1

i)T , 0, . . . , 0)T and u2i = (0, . . . , 0, (uC2
i)T)T . Note that M = I − L

2 . Hence, the
eigenvalues of M are given by 1 = 1− λ1

2 ≥ · · · ≥ 1− λn/2

2 ≥ 0, each of which has multiplicity two,
and the corresponding eigenvectors are still u1, . . . ,un. For convenience, we relabel the eigenvalues
of M as 1 = v1(M) = v2(M) = (1− λ1

2) ≥ v3(M) = v4(M) = (1− λ2

2) ≥ · · · ≥ vn−1(M) =

vn(M) = (1− λn/2

2) ≥ 0.

Similar to the proof of item 1, we get

∥M t1x∥22 = (M t1x)
T (M t1x) =

n∑
i=1

α2
i (vi(M))

2t

= α2
1 + α2

2 +

n∑
i=3

α2
i (vi(M))

2t

≤ 2

n
+ (v3(M))

2t ·
n∑

i=3

α2
i

≤ 2

n
+ (v3(M))

2t · (n− 2).

Since C1 and C2 both are φ-expander, according to Cheeger’s inequality (Lemma H.1), we get that
λC1
2 = λC2

2 ≥ φ2

2 . Therefore, for any t ≥ 20 logn
φ2 , we have

(v3(M))2t =

(
1− λ2

2

)2t

=

(
1− λC1

2

2

)2t

≤
(
1− φ2

4

) 4
φ2 ·10 logn

≤ 1

n10
.

Combine above results together, we get that

∥M t1x∥22 ≤ 2

n
+

1

n10
· (n− 2) =

2

n
+

1

n9
≤ 3

n
.

The following lemma shows that, under appropriate parameters, Alg. 1 can estimate the dot product
of the random walk distributions from any two vertices up to σerr, whether the graph is a single
φ-expander or consists of two disjoint φ-expanders.
Lemma H.3 (Expander related version of Lemma E.3). Let φ ∈ (0, 1). Let G = (V,E) be
either a d-regular φ-expander with size n or the disjoint union of two identical d-regular φ-
expander of size n/2. Let M be the random walk transition matrix of G. Let Z be the output
of ESTRWDOT(G,R, t,M, x, y) (Alg. 1). Let σerr > 0. Let c > 1 be a large enough constant. For
any t ≥ 20 logn

φ2 and any x, y ∈ V , if R ≥ c·n−1

σ2
errM

and 1 ≤ M ≤ O(n1/2), then with probability at
least 0.99, we have

|Z − ⟨M t1x,M
t1y⟩| ≤ σerr.

Moreover, ESTRWDOT(G,R, t,M, x, y) runs in O(Rt) time and uses O(M · log n) bits of space.

Proof. Runtime and space. See the proof of Lemma E.3.

Correctness.

By Lemma E.2 and Lemma H.2, we can get that

Var[Z] ≤ 1

R

[
1

M
∥M t1x∥2 · ∥M t1y∥2 +

(
∥M t1x∥2 · ∥M t1y∥22 + ∥M t1x∥22 · ∥M t1y∥2

)]

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

=
1

R

(
O(n−1)

M
+O(n−3/2)

)
.

Using Chebyshev’s inequality, we have

Pr[|Z − ⟨M t1x,M
t1y⟩| ≥ σerr] = Pr[|Z − E[Z]| ≥ σerr]

≤ Var[Z]

σ2
err

≤ 1

σ2
err

· 1

R

(
O(n−1)

M
+O(n−3/2)

)
≤ 1

σ2
err

· 1

R
·O
(
n−1

M

)
M ≤ O

(
n1/2

)
≤ 1

100
.

The last inequality holds by our choice of R as follows, where c is a large enough constant that
cancels the constant hidden in O

(
n−1

M

)
:

R ≥ c · n−1

σ2
errM

.

Lemma H.4 asserts that, under suitable parameters, the output G of ESTCOLLIPROB (Alg. 2)
approximates (M tS)T (M tS) in spectral norm, where the latter is the Gram matrix of the random
walk distributions from sampled vertices, and this holds whether the graph is a single φ-expander or
two disjoint φ-expanders.
Lemma H.4 (Expander related version of Lemma E.5). Let φ ∈ (0, 1). Let G = (V,E) be either
a d-regular φ-expander with size n or the disjoint union of two identical d-regular φ-expander of
size n/2. Let M be the random walk transition matrix of G. Let IS = {s1, . . . , ss} be a multiset of
s indices chosen from {1, . . . , n}. Let S ∈ Rn×s be the matrix whose i-th column equals 1si . Let
G ∈ Rs×s be the output of ESTCOLLIPROB (G,R, t,M, IS) (Alg. 2). Let σerr > 0. Let c > 1 be
a large enough constant. For any t ≥ 20 logn

φ2 , if R ≥ c·n−1

σ2
errM

and 1 ≤ M ≤ O
(
n1/2

)
, then weith

probability 1− n−100, we have

∥G − (M tS)T (M tS)∥2 ≤ s · σerr.

Moreover, ESTCOLLIPROB (G,R, t,M, IS) runs inO(Rt·log n·s2) time and usesO(M ·log2 n·s2)
bits of space.

Proof. Note that we have established Lemma H.3, which is an analogue of Lemma E.3 for graph that
is either a φ-expander of size n or the disjoint union of two identical φ-expanders of size n/2. Since
the proof of Lemma E.5 relies only on Lemma E.3, the same augment immediately yields Lemma H.4,
the corresponding analogue of Lemma E.5.

Lemma H.5 demonstrates that (M tS)(M tS)T has a clear spectral gap between the 1-cluster and
2-cluster cases.
Lemma H.5 (Expander related version of Lemma E.8). Let φ ∈ (0, 1). Let G be a d-regular graph.
Let M be the random walk transition matrix of G. Let IS = {s1, . . . , ss} be a multiset of s indices
chosen independently and uniformly at random form V = {1, . . . , n}. Let S ∈ Rn×s be the matrix
whose i-th column equals 1si . For any t ≥ 20 logn

φ2 , with probability at least 1− n−100, we have

1 if G is a φ-expander of size n and s ≥ 1, then v2
(
n
s · (M tS)(M tS)T

)
≤ n−9,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

2 if G is the disjoint union of two identical φ-expanders of size n/2 and s ≥ c · log n, where
c > 1 is a large enough constant, then v2

(
n
s · (M tS)(M tS)T

)
≥ 0.99.

To prove Lemma H.5, we need the following lemma.
Lemma H.6 (Lemma 21 in Gluch et al. (2021)). Let A ∈ Rn×n be a matrix. Let b =

maxℓ∈{1,...,n} ∥(A1ℓ)(A1ℓ)
T ∥2. Let 0 < ξ < 1. Let s ≥ 40n2b2 logn

ξ2 . Let IS = {s1, . . . , ss}
be a multiset of s indices chosen independently and uniformly at random form V = {1, . . . , n}. Let
S ∈ Rn×s be the matrix whose i-th column equals 1si . Then we have

Pr
[
∥AAT − n

s
(AS)(AS)T ∥2 ≥ ξ

]
≤ n−100.

Proof of Lemma H.5. Item 1. The proof follows directly from the proof of item 2 of Lemma 28 in
Gluch et al. (2021).

Item 2. Let A = (M t)(M t)T = M2t, we get v2(A) = v2(M)2t. Since G is the disjoint union of
two identical φ-expanders, G has two connected components. Therefore, the normalized Laplacian
matrix L of G has two smallest eigenvalues equal to 0. Consequently, since M = I − L

2 , the two
largest eigenvalues of M are 1− 0

2 = 1. Thus, v2(A) = 1.

Let Ã = n
s · (M tS)(M tS)T . By Item 2 in Lemma H.2, we have b = ∥(M t1x)(M

t1x)
T ∥2 ≤

∥M t1x∥22 ≤ 3
n . Let ξ = 1

100 . Therefore, for a large enough constant c > 1, we have s = c · log n ≥
40n2b2 logn

(1
100)

2 . Thus, according to Lemma H.6, we get that with probability at least 1− n−100,

∥A− Ã∥2 ≤ 1

100
.

By Weyl’s inequality (Lemma E.9), we get that v2(Ã) ≥ v2(A)− ∥Ã∥2 ≥ 1− 1
100 = 0.99.

The proof of Lemma H.7 follows directly from the proof of Lemma 24 in Gluch et al. (2021).
Nevertheless, for the sake of completeness, we provide a concise proof here.
Lemma H.7 (Expander related version of Lemma E.6). Let φ ∈ (0, 1). Let G = (V,E) be a d-
regular graph. Let IS = {s1, . . . , ss} be a multiset of s indices chosen independently and uniformly at
random form V = {1, . . . , n}. Let G ∈ Rs×s be the output of ESTCOLLIPROB (G,R, t,M, IS) (Alg.
2). Let c1 > 1 be a large enough constant. For any t ≥ 20 logn

φ2 , if R ≥ c1·n
M and 1 ≤M ≤ O

(
n1/2

)
,

then with probability at least 1− 2 · n−100,

1 if G is a φ-expander of size n and s ≥ 1, then v2
((

n
sG
)2)

=
(
v2(

n
sG)

)2
< 0.001,

2 if G is the disjoint union of two identical φ-expanders of size n/2 and s ≥ c2 · log n, where

c2 > 1 is a large enough constant, then v2
((

n
sG
)2)

=
(
v2(

n
sG)

)2
> 0.95.

Proof. Let M be the random walk transition matrix of G. Let S ∈ Rn×s be the matrix whose i-th
column equals 1si . Let

√
n
s ·M tS = Ũ Σ̃W̃T be an SVD of

√
n
s ·M tS where Ũ ∈ Rn×n, Σ̃ ∈

Rn×n, W̃ ∈ Rs×n. Let n
s · G = Ŵ Σ̂ŴT be an eigendecomposition of n

s · G.

Item 1. Let σerr =
0.0001

n . Let c be the constant from Lemma H.4. By the assumption of the lemma,
we have

R =
c1 · n
M

≥ c · 108 · n
M

=
c · n−1

σ2
errM

.

Thus we can apply Lemma H.4. Hence, with probability at least 1− n−100, we have

∥G − (M tS)T (M tS)∥2 ≤ s · σerr.

Let Ã = n
s · (M tS)T (M tS) = W̃ Σ̃2W̃T and Â = n

s · G. Thus, we have Ã2 =(
n
s · (M tS)T (M tS)

)2
= W̃ Σ̃4W̃T and Â2 =

(
n
s · G

)2
= Ŵ Σ̂2ŴT . Moreover, we have

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

∥Ã2 − Â2∥2 =
(
n
s

)2 ∥((M tS)T (M tS)
)2 − G2∥2. Using the triangle inequality and sub-

multiplicativity of spectral norm and the above ∥G − (M tS)T (M tS)∥2 ≤ s · σerr bound, we
can get that

∥
(
(M tS)T (M tS)

)2 − G2∥2 ≤ (s · σerr)
2 + 2 · s · σerr∥(M tS)T (M tS)∥2.

Note that ∥(M tS)T (M tS)∥2 ≤ ∥(M tS)T (M tS)∥F =
√∑s

i=1

∑s
j=1 ((M

t1si)
T (M t1sj))

2,

by Cauchy Schwarz inequality and Item 1 of Lemma H.2, we can get that ∥(M tS)T (M tS)∥2 ≤ s· 2n .
Put them together and by the choice of σerr =

0.0001
n , we have that

∥Ã2 − Â2∥2 ≤
(n
s

)2
·
(
s2σ2

err + 2 · s · σerr · s ·
2

n

)
= n2σ2

err + 4nσerr ≤ 0.00005.

Moreover, since s ≥ 1, by Item 1 of Lemma H.5, with probability at least 1− n−100, we have

v2

(
Ã2
)
= v2

((n
s
· (M tS)T (M tS)

)2)
≤ (n−9)2 = n−18.

By Weyl’s inequality, we have that

v2(Â
2) ≤ v2(Ã

2) + ∥Ã2 − Â2∥2 ≤ n−18 + 0.0005 ≤ 0.001.

Item 2. By the same augment of the proof of Item 1 and Item 2 of Lemma H.2, we can get that
∥(M tS)T (M tS)∥2 ≤ s · 3

n . Thus, by the choice of σerr =
0.0001

n , we have that

∥Ã2 − Â2∥2 ≤
(n
s

)2
·
(
s2σ2

err + 2 · s · σerr · s ·
3

n

)
= n2σ2

err + 6nσerr ≤ 0.0007.

Moreover, since s ≥ c2 · log n, by Item 2 of Lemma H.5, with probability at least 1−n−100, we have

v2

(
Ã2
)
= v2

((n
s
· (M tS)T (M tS)

)2)
≥ (0.99)2 > 0.98.

By Weyl’s inequality, we have that

v2(Â
2) ≥ v2(Ã

2)− ∥Ã2 − Â2∥2 ≥ 0.98− 0.0007 > 0.95.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Correctness. By the promise in the theorem statement, the input d-regular
graph G = (V,E) is guaranteed to be either a φ-expander or the disjoint union of two identical
φ-expanders, each of size n/2. We run algorithm DISTINGUISH(G,M) (Alg. 5) to distinguish
the above two cases. Note that the choices of t, s, and R are made so that all the assumptions
required by Lemma H.7 are satisfied. Therefore, by Lemma H.7, we get that in case (i) (when G is
a φ-expander), with probability at least 1 − 2n−100, (v2(ns G))

2 < 0.001 < 0.6; in case (ii), with
probability at least 1− 2n−100, (v2(nsG))

2 > 0.95 > 0.6. Therefore, we get that, with probability at
least 1− 2n−100, algorithm DISTINGUISH correctly distinguishes which case holds.

Space and runtime. According to Lemma H.4, getting matrix G requires O(R · t · log n · s2) time
and O(M · log2 n · s2) bits of space. Computing (nsG)

2 requires O(s3) time and O(s2 · log n) bits
of space. Therefore, the overall runtime and space complexity are O(R · t · log n · s2 + s3) and
O(M · log2 n ·s2+s2 log n) bits, respectively. By setting t = 20 logn

φ2 , R = Θ(n
M) and s = O(log n),

we get that DISTINGUISH(G,M) runs in n · 1
M · poly(log n) · 1

φ2 time and uses M · poly(log n) bits
of space.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

I PROOF OF THEOREM 1.3

Theorem I.1 (Restate of Theorem 1.3). Any algorithm that correctly solves the 1-cluster vs. 2-cluster
problem with error at most 1/3 using only random walk oracles must satisfy T · S ≥ Ω(n), where T
and S denote the time complexity and space complexity of the algorithm, respectively.

Before we start the proof of Theorem 1.3, we would first introduce some basic definitions in
information theory.

I.1 BASIC DEFINITIONS

Definition I.1 (Entropy). Given a random variable X taking values in the set X and distributed
according to p : X → [0, 1], the entropy of X is defined as

H(X) := −
∑
x∈X

p(x) log p(x).

In the special case where X has only two possible outcoms, the entropy is given by

H2(X) := −p log p− (1− p) log(1− p).

The entropy of a random variable quantifies the average level of uncertainty or information associated
with the random variable. Note that for the special case of H2, we have the following property:

Lemma I.1.

1−H2

(
1

2
+ a

)
=

1

2 ln 2

∞∑
l=1

(2a)2l

l(2l − 1)
= O

(
a2
)
.

Given the outcome of another random variable Y , we can also quantify this randomness using
conditional entropy.

Definition I.2 (Conditional entropy). Given random variables X and Y taking values in sets X and
Y , respectively, with joint distribution p : X × Y → [0, 1], the conditional entropy of X given Y is
defined as

H(X | Y) = H(X,Y)−H(Y) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)
.

Furthermore, the amount of information that is shared between two random variables is called mutual
information.

Definition I.3 (Mutual Information). Given random variables X and Y taking values in X and Y ,
respectively, the mutual information between X and Y is defined as

I(X;Y) = H(X)−H(X | Y) = H(Y)−H(Y | X).

Similarly, given a random variable Z taking values in Z , the conditional mutual information of X
and Y given Z is defined as

I(X;Y | Z) = H(X | Z)−H(X | Y, Z).

Our proof will also use the following key properties of mutual information.

Lemma I.2 (Data Processing Inequality). Given random variables X,Y and Z taking values in sets
X ,Y and Z , respectively, such that X ⊥ Z | Y . Then

I(X;Z) ≤ I(X;Y).

Lemma I.3 (Chain Rule). Given random variables X,Y and Z taking values in sets X ,Y and Z ,
respectively, we have

I(X;Y, Z) = I(X;Z) + I(X;Y | Z).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

I.2 HARD INSTANCE I

To prove Theorem 1.3, we first consider the following Hard Instance, inspired by Diakonikolas et al.
(2019) and commonly used in uniformity testing. Note that in our construction, at each time t, the
player is allowed to pick a Wt ∈ [2n]. The proof of Theorem I.2 then follows from the proof of
Theorem 23 in Diakonikolas et al. (2019).

Definition I.4 (Hard Instance I). Let X be a uniformly random bit. Based on X , the adversary
chooses the distribution p on [2n] bins as follows:

• X = 0 : Pick p = U2n, where U2n is the uniform distribution on [2n].
• X = 1 : We construct two sets as follows: Pair the bins as {1, 2}, {3, 4}, · · · , {2n− 1, 2n}.

Now on each pair {2i− 1, 2i} pick a random Yi ∈ {±1}. If Yi = 1, we put bin 2i− 1 to
set 1 and bin 2i to set 2; otherwise, we put bin 2i to set 1 and bin 2i− 1 to set 2. Each time,
the player picks Wt ∈ [2n]. If Wt belongs to set 1, we have Zt = 1; otherwise, Zt = −1.
The distribution is then

(p2i−1, p2i) =

(
1 + YiZt

2n
,
1− YiZt

2n

)
.

We have the space-time tradeoff of this instance to be

Theorem I.2. Let A be an algorithm that detects the Hard Instance I with error at most 1/3. The
algorithm can access the samples in a single-pass streaming fashion using M bits of space and T
samples. Furthermore, at each step, the algorithm may choose which set to sample by specifying Wt.
We then have T ·M = Ω(n).

Remark I.1. In Theorem I.2, we use M to denote the space complexity because S is already used in
the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will
denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem I.2. In either case, we can think of the output of p as being a pair (C, V), where C
is an element of [n] is chosen uniformly, and V ∈ {0, 1} is a fair coin if X = 0 and has bias YCZt if
X = 1.

Let s1, . . . , sT be the observed samples from p. Let Mt denote the bits stored in the memory after
the algorithm sees the t-th sample st.

Since the algorithm A learns X with probability at least 2/3 after viewing T samples, we know
that I (X;MT) > Ω(1). On the other hand, Mt is computed from (Mt−1, st) without using any
information about X . More formally, X ⊥ Mt | (Mt−1, st) and therefore we can use the data
processing inequality (Lemma I.2) and chain rule (Lemma I.3) to get:

I (X;Mt) ≤ I (X;Mt−1, st) = I (X;Mt−1) + I (X; st |Mt−1) .

Since irrespective of X,C is uniform over the pairs of bins, we note that C is independent of X even
when conditioned on the memory M . Moreover, player’s choice of Wt is computed only from Mt−1.
Thus,

I (X; st |Mt−1) = I (X;CtVt |Mt−1) = I (X;Vt |Mt−1Ct) = I (X;Vt |Mt−1CtWt) .

Let αt−1 = Pr [X = 1 |Mt−1CtWt] and thus Pr [X = 0 |Mt−1CtWt] = 1− αt−1.

We have that

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Pr [Vt = 0 | X = 0,Mt−1, Ct,Wt] =
1

2
,

Pr [Vt = 0 | X = 1,Mt−1, Ct, Zt] =
1 + E [ZtYCt

|Mt−1,Wt]

2
,

Pr [Vt = 0 |Mt−1, Ct] = (1− αt−1)
1

2
+ αt−1

1 + E [ZtYCt
|Mt−1,Wt]

2

=
1

2
+
αt−1E [ZtYCt

|Mt−1,Wt]

2
.

We can calculate

I (X;Vt |Mt−1CtWt) = H (Vt |Mt−1CtWt)−H (Vt |Mt−1CtWtX)

=H2 (Pr [Vt = 0 |Mt−1, Ct,Wt])

− {Pr [X = 1 |Mt−1CtWt]H2 (Pr [Vt = 0 | X = 1,Mt−1, Ct,Wt])

+Pr [X = 0 |Mt−1CtWt]H2 (Pr [Vt = 0 | X = 0,Mt−1, Ct,Wt])}

=H2

(
1

2
+
αt−1E [ZtYCt

|Mt−1,Wt]

2

)
− αt−1H2

(
1

2
+

E [ZtYCt
|Mt−1,Wt]

2

)
− (1− αt−1)H2

(
1

2

)
=αt−1

[
1−H2

(
1

2
+

E [ZtYCt
|Mt−1,Wt]

2

)]
−
[
1−H2

(
1

2
+
αt−1E [ZtYCt

|Mt−1,Wt]

2

)]
=Θ(1)

[
αt−1

(
E [ZtYCt |Mt−1,Wt]

2

)2

−
(
αt−1E [ZtYCt |Mt−1,Wt]

2

)2
]

=Θ(1)αt−1 (1− αt−1)E [ZtYCt
|Mt−1,Wt]

2

≤O(1)E [ZtYCt
|Mt−1,Wt]

2
.

Since Ct is uniformly random, we have that

I (X;Vt |Mt−1CtWt) =
1

n
·

n∑
j=1

O(1)E [ZtYj |Mt−1,Wt]
2
.

Now to bound this part, note that we first have H (Mt−1,Wt) ≤ M that
I (ZtY1 . . . ZtYn;Mt−1,Wt) ≤ M . At the same time, notice that Zt is just flipping the
value of Y1, . . . , Yn and thus H (ZtY1 . . . ZtYn) = H (Y1 . . . Yn) = n. Thus we have

H (ZtY1 . . . ZtYn |Mt−1,Wt) = H (ZtY1 . . . ZtYn)− I (ZtY1 . . . ZtYn;Mt−1,Wt) ≥ n−M.

On the other hand, we have that

n∑
i=1

H (ZtYi |Mt−1,Wt) ≥ H (ZtY1 . . . ZtYn |Mt−1,Wt) ≥ n−M.

Thus,

M ≥
n∑

i=1

[1−H (ZtYi |Mt−1,Wt)] = Θ

(
n∑

i=1

E [ZtYi |Mt−1,Wt]
2

)
,

where the equality comes from the fact that if Pr [ZtYi = 1 |Mt−1,Wt] =
1
2 + β, then

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E [ZtYi |Mt−1,Wt] = Pr [ZtYi = 1 |Mt−1,Wt] (+1) + Pr [ZtYi = −1 |Mt−1,Wt] (−1)

=

(
1

2
+ β

)
−
(
1

2
− β

)
= 2β.

We finally have that

Ω(1) ≤ I (MT ;X) =

T−1∑
t=0

I (Mt+1;X)− I (Mt;X)

=

T−1∑
t=0

I (Mt, St+1;X)− I (Mt;X)

=

T−1∑
t=0

I (St+1;X |Mt)

=

T−1∑
t=0

I (Vt+1;X |Mt, Ct+1,Wt+1)

= O(1)
T ·M
n

.

We conclude that T ·M ≥ Ω(n).

I.3 HARD INSTANCE II

For the graph problems, we would consider the following Hard Instance.

Definition I.5 (Hard Instance II). Let X be a uniformly random bit. Let φ ∈ (0, 1) with φ = Ω(1),
and let d = O(1). Based on X , the adversary chooses a d-regular graph G on 2n vertices as follows:

• X = 0 : Pick the graph to be a φ-expander on 2n vertices.
• X = 1 : We construct two sets as follows: Pair bins the as {1, 2}, {3, 4}, · · · , {2n− 1, 2n}.

Now on each pair {2i− 1, 2i} pick a random Yi ∈ {±1}. If Yi = 1, we put vertex 2i− 1 to
set 1 and vertex 2i to set 2; otherwise, we put vertex 2i to set 1 and vertex 2i− 1 to set 2.
The graph is then composed of two identical φ-expanders over set 1 and set 2.

We would assume that the algorithm has access to the graph only via the random walk queries.

Definition I.6 (Random walk queries). In a random walk query, the algorithm specifies a starting
vertex x in G. The query then returns the endpoint of a random walk of length O(log n) starting from
x.

We have the properties of a random walk for a φ-expander as follows:

Lemma I.4. AssumeG = (V,E) is a d-regular φ-expander on n vertices. Let M be the lazy random
walk transition matrix of G. Let M t1x be the probability distribution of a random walk with length
O(logn

φ2) starting from vertex x ∈ V . Let π = (1n , . . . ,
1
n)

T ∈ Rn be the uniform distribution over n
vertices. We have that dTV(M

t1x, π) ≤ 0.01
n2 .

To prove Lemma I.4, we first introduce the definition of mixing time.

Definition I.7 (Mixing time). Let G = (V,E) be a d-regular graph on n vertices. Let M be the lazy
random walk transition matrix of G. Let mt = M tm0, where m0 is a distribution over [n]. Let
π = (1n , . . . ,

1
n)

T be the stationary distribution of G. Then the mixing time τε(M) is defined to be
the smallest t such that for any m0, dTV(mx, π) ≤ ε.

Proof of Lemma I.4. Note that π = (1n , . . . ,
1
n)

T ∈ Rn is the stationary distribution of G. Accord-
ing to spectral graph theory, we have τε(M) = O(1

ϕ(G)2) log(
n
ε). Let ε = 0.01

n2 . Note that G

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

is a φ-expander, we have that ϕ(G) = φ (see Definition 1.1). Therefore, according to the defi-
nition of mixing time, we get that for t = τε(M) = O(1

φ2 log(
n

0.01
n2

)) = O(logn
φ2), we have that

dTV(M
t1, π) ≤ 0.01

n2 .

With the above results, we would show the space-time trade-off of identifying Hard Instance II.

Theorem I.3 (Variant of Theorem 1.3). Let A be an algorithm which detects the Hard Instance II
with error probability at most 1/3. The algorithm can perform T random walk queries using M bits
of space. We have M · T = Ω(n).

Remark I.2. In Theorem I.3, we use M to denote the space complexity because S is already used in
the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will
denote the space of the algorithm by S in subsequent discussions.

Proof of Theorem I.3. We would reduce this problem to the Hard Instance I. Assume we have an
algorithm A that solves the Hard Instance II. We would show how it can be used to solve Hard
Instance I. At each time, the algorithm would choose to make a random walk query starting from
vertex i. We would then set Wt to the Hard Instance I and get the feedback sample st. We would
feed st to the algorithm A and then to the next round. Finally, after T rounds, we would output the
results of A.

To prove the correctness, we need to show that the total variation distance is O(1) between the history
generated by Hard Instance I: (s1,m1, . . . , sT ,mT) and the history generated by Hard Instance II:
(s′1,m

′
1, . . . , s

′
T ,m

′
T). We would prove by math induction.

Now for dTV((mt, st), (mt
′, s′t)), we consider any fixed x ∈ [2n],m ∈ [M] that

|p(mt = m, st = x)− p(m′
t = m, s′t = x)|

=
∣∣∣ ∑
(m̃,x̃)

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)· (mt−1 = m̃, st−1 = x̃)

−
∑
(m̃,x̃)

p(m′
t = m, s′t = x|m′

t−1 = m̃, s′t−1 = x̃) · p(m′
t−1 = m̃, s′t−1 = x̃)

∣∣∣
≤
∣∣∣ ∑
(m̃,x̃)

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)

·
(
p(mt−1 = m̃, st−1 = x̃)− p(m′

t−1 = m̃, s′t−1 = x̃)
) ∣∣∣

+
∣∣∣ ∑
(m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃)

·
(
p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)− p(m′

t = m, s′t = x|m′
t−1 = m̃, s′t−1 = x̃)

) ∣∣∣.
Now for the first part, we have∑

(m,x)

∣∣∣ ∑
(m̃,x̃)

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)

·
(
p(mt−1 = m̃, st−1 = x̃)− p(m′

t−1 = m̃, s′t−1 = x̃)
) ∣∣∣

≤
∑
(m,x)

∑
(m̃,x̃)

(
p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)

·
∣∣p(mt−1 = m̃, st−1 = x̃)− p(m′

t−1 = m̃, s′t−1 = x̃)
∣∣)

=
∑
(m̃,x̃)

(∣∣p(mt−1 = m̃, st−1 = x̃)− p(m′
t−1 = m̃, s′t−1 = x̃)

∣∣
39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

·
∑
(m,x)

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)
)

=
∑
(m̃,x̃)

∣∣p(mt−1 = m̃, st−1 = x̃)− p(m′
t−1 = m̃, s′t−1 = x̃)

∣∣
= 2dTV((mt−1, st−1), (m

′
t−1, s

′
t−1)).

For the second part, we notice that

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)− p(m′
t = m, s′t = x|m′

t−1 = m̃, s′t−1 = x̃)

= p(mt = m|st = x,mt−1 = m̃, st−1 = x̃) · p(st = x|mt−1 = m̃, st−1 = x̃)

− p(m′
t = m|s′t = x,m′

t−1 = m̃, s′t−1 = x̃) · p(s′t = x|m′
t−1 = m̃, s′t−1 = x̃).

Note that since we are using the same algorithm, when fixing mt−1 and st, the update of mt and m′
t

is the same, and thus

p(mt = m, st = x|mt−1 = m̃, st−1 = x̃)− p(m′
t = m, s′t = x|m′

t−1 = m̃, s′t−1 = x̃)

= p(mt = m|st = x,mt−1 = m̃) ·
(
p(st = x|mt−1 = m̃)− p(s′t = x|m′

t−1 = m̃)
)
.

Moreover, by the property of lazy random walk (Lemma I.4), we should have that for any m̃,

1

2

∑
x

∣∣p(st = x|mt−1 = m̃)− p(s′t = x|m′
t−1 = m̃)

∣∣ ≤ 0.01

n2
.

Summing over all (m,x), we have the second part is bounded by

∑
(m,x)

∣∣∣ ∑
(m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃) · p(mt = m|st = x,mt−1 = m̃)

·
(
p(st = x|mt−1 = m̃)− p(s′t = x|m′

t−1 = m̃)
) ∣∣∣

≤
∑

(m,x,m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃) · p(mt = m|st = x,mt−1 = m̃)

·
∣∣p(st = x|mt−1 = m̃)− p(s′t = x|m′

t−1 = m̃)
∣∣

=
∑

(x,m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃)

∣∣p(st = x|mt−1 = m̃)− p(s′t = x|m′
t−1 = m̃)

∣∣
·
∑
m

p(mt = m|st = x,mt−1 = m̃)

=
∑

(x,m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃)

∣∣p(st = x|mt−1 = m̃)− p(s′t = x|m′
t−1 = m̃)

∣∣
=
∑
(m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃) ·

∑
x

∣∣p(st = x|mt−1 = m̃)− p(s′t = x|m′
t−1 = m̃)

∣∣
≤ 2× 0.01

n2

∑
(m̃,x̃)

p(m′
t−1 = m̃, s′t−1 = x̃)

= 2× 0.01

n2
.

Combining the results, we have

dTV((mt, st), (mt
′, s′t)) =

1

2

∑
(m,x)

|p(mt = m, st = x)− p(m′
t = m, s′t = x)|

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

≤ dTV((mt−1, st−1), (m
′
t−1, s

′
t−1)) +

0.01

n2
.

Moreover, for the initial points, we have that

dTV(s1, s
′
1) ≤

0.01

n2
.

Since m1,m
′
1 are merely a function of s1, s′1, we have that

dTV(m1,m
′
1) ≤

0.01

n2
.

Therefore
dTV((m1, s1), (m1

′, s′1)) ≤ dTV(s1, s
′
1) + dTV(m1,m

′
1) ≤

0.02

n2
,

dTV((mt, st), (mt
′, s′t)) ≤

0.01(1 + t)

n2
.

This means that

dTV(mT ,m
′
T) ≤ dTV((mT , sT), (mT

′, s′T)) ≤
0.01(1 + T)

n2
≤ 0.01,

where we use the fact that T ≤ O(n2) since otherwise we can get the output using constant space.

Now note that the output result is only the function of mT . Since the total variation distance of mT is
bounded, the correctness can still be guaranteed using the uniform distribution rather than the random
walk distribution.

J EXPERIMENTAL DETAILS

Accuracy Let C1, . . . , Ck be the ground-truth clustering and let Ĉ1, . . . , Ĉk be the clusters pro-
duced by the oracle, where Ĉi = {x ∈ V |WHICHCLUSTER(G, x) = i}. The accuracy is defined as
1
n ·maxπ

∑k
i=1 |Ci ∩ Ĉπ(i)|, where π : [k] → [k] is a permutation.

Implementation details In our experiments, we implemented three main components: (i) the new
dot product oracle proposed in this paper (Alg. 3 and Alg. 4), (ii) the original dot product oracle
in Gluch et al. (2021), and (iii) the spectral clustering oracle relies on a poly(k) conductance gap
itself. The clustering oracle relies on accurate dot product estimates to function correctly; hence, we
first needed to identify parameters that ensure reliable dot product estimation performance. These
parameters include (i) sdot, the number of sampled vertices in dot product oracle, (ii) t, the random
walk length and (iii) l, the number of repetitions in the median trick, and a set of space-time-related
parameters.

(a) unsuitable parameter values: Rinit = Rquery = 40 (b) suitable parameter values: Rinit = Rquery = 80

Figure 2: Effect of parameter settings on the original dot product oracle. (a): an unsuitable configura-
tion where the estimated spectral dot products for intra-cluster and inter-cluster pairs overlap. (b): a
suitable configuration where a clear gap emerges between the two distributions.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

For the original dot product oracle in Gluch et al. (2021), Rinit, Rquery are the space-time-related
parameters. We set Rinit and Rquery according to the theoretical guarantee, which states that the oracle
works when Rinit = Rquery = O(

√
n). Following the implementation details in Shen & Peng (2023),

we explored multiple parameter configurations for sdot, t, l, Rinit = Rquery. For each configuration,
we initialized the dot product oracle with the corresponding parameters, sampled a subset of vertex
pairs, computed their estimated spectral dot products, and plotted the density graphs (see Figure 2).
The presence of a clear gap (see Figure 2b) in the density graph was used as the criterion for selecting
suitable parameter values. In fact, for a graph with parameters n = 3000, k = 3, p = 0.07, and
q = 0.002, we found that sdot = 20, t = 20, l = 20, and Rinit = Rquery ≥ 80 provided reliable
estimates. And we make 80× 80 a concrete instantiation of O(

√
n)×O(

√
n) = O(n).

For the new dot product oracle, we set sdot = 20, t = 20 and l = 20 like above. The space-time-
related parameters Minit =Mquery serve as inputs, corresponding to Rour

init = Rour
query = 80×80

Minit
= 6400

Minit

(see line 2 of Alg. 3 and Alg. 4). In our experiments, we varied Minit =Mquery in the range [30, 80].

Finally, for the clustering oracle itself, we determined the number of sampled vertices s (see line
3 of Alg. 12) through extensive testing of multiple candidate values, and selected s = 21 for all
experiments. Additionally, we set a threshold θ (see line 8 of Alg. 12) to construct similarity graph;
based on the density plots of estimated dot products (see Figure 2b), we chose θ ≈ 0.0005.

42

	Introduction
	Main results
	Technical overview
	Related work

	Preliminaries
	Spectral clustering oracles with little memory
	Dot product oracle with little memory
	Clustering oracle: itm:main-case2 of thrm:main

	Distinguishing 1-cluster vs. 2-cluster
	Experiments
	The use of Large Language Models (LLMs)
	Other related work
	Supplementary preliminaries
	From d-bounded graphs to d-regular graphs
	Proof of thrm:bounded-space-dot-product-oracle
	Proof of itm:main-case1 in thrm:main
	Dot product oracle on subspace
	Sublinear spectral clustering oracle
	Deferred proof

	Sublinear clustering oracle related to itm:main-case2 in thrm:main
	Proof of thrm:distinguish
	Proof of thrm:distinguishlower
	Basic definitions
	Hard Instance I
	Hard Instance II

	Experimental details

