

000 001 002 003 004 005 SUBLINEAR SPECTRAL CLUSTERING ORACLE WITH 006 LITTLE MEMORY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 We study the problem of designing *sublinear spectral clustering oracles* for well-
012 clusterable graphs. Such an oracle is an algorithm that, given query access to
013 the adjacency list of a graph G , first constructs a compact data structure \mathcal{D} that
014 captures the clustering structure of G . Once built, \mathcal{D} enables sublinear time
015 responses to $\text{WHICHCLUSTER}(G, x)$ queries for any vertex x . A major limitation
016 of existing oracles is that constructing \mathcal{D} requires $\Omega(\sqrt{n})$ memory, which becomes
017 a bottleneck for massive graphs and memory-limited settings. In this paper, we
018 break this barrier and establish a memory-time trade-off for sublinear spectral
019 clustering oracles. Specifically, for well-clusterable graphs, we present oracles that
020 construct \mathcal{D} using much smaller than $O(\sqrt{n})$ memory (e.g., $O(n^{0.01})$) while still
021 answering membership queries in sublinear time. We also characterize the trade-
022 off frontier between memory usage S and query time T , showing, for example,
023 that $S \cdot T = \tilde{O}(n)$ for clusterable graphs with a logarithmic conductance gap,
024 and we show that this trade-off is nearly optimal (up to logarithmic factors) for a
025 natural class of approaches. Finally, to complement our theory, we validate the
026 performance of our oracles through experiments on synthetic networks.
027

028 1 INTRODUCTION 029

030 A central task in graph analysis is to uncover communities, which are groups of vertices that are more
031 densely connected internally than externally. This problem, known as *graph clustering*, has long
032 been a cornerstone of graph theory and algorithms (Hagen & Kahng, 1992; Chan et al., 1993; Ng
033 et al., 2001; Czumaj et al., 2015; Peng, 2020). Beyond its theoretical significance, graph clustering
034 underlies diverse applications, ranging from community detection in networks (Van Gennip et al.,
035 2013; Bedi & Sharma, 2016; Li et al., 2024) to bioinformatics (Paccanaro et al., 2006) and image
036 segmentation (Shi & Malik, 2000; Felzenszwalb & Huttenlocher, 2004).

037 Despite their importance, most graph clustering algorithms are impractical for large graphs, as they
038 require reading the entire input, spending $\Omega(n)$ time, and/or building data structures of size $\Omega(n)$,
039 where n is the number of vertices. Even when only a few cluster memberships are needed, these
040 methods still carry out full global computations, making them unsuitable for massive graphs where
041 both time and memory (or space) matter – but memory is the primary bottleneck.

042 From a systems perspective, this memory bottleneck is especially pressing. Many realistic environments
043 severely restrict available working memory: streaming models limit algorithms to a single
044 pass with sublinear space; cloud-based platforms often impose high storage and data-transfer costs,
045 making it infeasible to materialize the entire graph; and GPUs and TPUs offer massive compute but
046 only modest on-chip memory relative to dataset size. In all these settings, the primary challenge is to
047 fit a compact representation of the clustering structure into limited fast memory. Thus, developing
048 memory-efficient clustering algorithms is not only a theoretical pursuit but also a practical necessity
049 for analyzing trillion-edge graphs in modern computing environments.

050 These considerations have motivated the study of *local* clustering oracles that run in sublinear time
051 and space. Our focus is on *sublinear spectral clustering oracles* (Peng, 2020; Gluch et al., 2021;
052 Shen & Peng, 2023), which construct a compact data structure \mathcal{D} from query access to the adjacency
053 list of the graph. Once built, \mathcal{D} enables efficient evaluation of $\text{WHICHCLUSTER}(G, x)$ queries,
that is, determining the cluster assignment of any vertex x without incurring the global $\Omega(n)$ costs.

Importantly, these oracles return consistent assignments (with a fixed random seed) and closely approximate the ground-truth clustering, thereby making local access to clustering information both theoretically sound and practically useful.

Several recent works (Peng, 2020; Gluch et al., 2021; Shen & Peng, 2023) demonstrate that such oracles are possible under planted clustering assumptions, supporting cluster membership queries in both sublinear time and sublinear space. However, all existing sublinear spectral clustering oracles require at least $\Omega(\sqrt{n})$ space. In particular, Peng (Peng, 2020) constructs an oracle using $\tilde{\Theta}(\sqrt{n})$ space, while both Gluch et al. (Gluch et al., 2021) and Shen et al. (Shen & Peng, 2023) require $\Omega(n^{1-\delta})$ space for any $\delta \leq \frac{1}{2}$, which is again at least \sqrt{n} . We refer to [Table 1](#) and Section 1.3 for more details. For truly massive graphs, this requirement is prohibitive, as limited working memory and frequent main-memory access quickly dominate the overall cost. This raises the central question:

Is it possible to design a spectral clustering oracle that breaks the $\Omega(\sqrt{n})$ space barrier – can we use substantially less memory while still achieving sublinear query time? If so, what kinds of trade-offs between space and query efficiency can be realized?

To the best of our knowledge, the question of establishing a space-time trade-off for sublinear spectral clustering oracle has not been explicitly studied in the prior literature. This challenge is reminiscent of recent work on space-time trade-offs in learning, beginning with Raz (2017)’s result on parity learning and later extended to tasks such as linear regression (Sharan et al., 2019) and noisy parity (Garg et al., 2021). In the area of distribution testing, a series of works (Diakonikolas et al., 2019; Berg et al., 2022; Roy & Vasudev, 2023; Canonne & Yang, 2024) have established sharp space-time trade-offs for fundamental problems such as uniformity testing and closeness testing. Much like in these learning problems and in recent advances on distribution testing, the central question for sublinear spectral clustering is how far memory usage can be reduced without making query times impractically large.

In this paper, we give [the first](#) sublinear spectral clustering oracles with little memory (i.e., much less than $O(\sqrt{n})$) and a trade-off between memory usage S and query time T satisfying $S \cdot T \approx \tilde{O}(n)$ (for a class of well clusterable graphs). We show that this trade-off is nearly optimal (up to logarithmic factors) for a natural class of approaches. In the following, we first present some basic definitions.

Basic definitions We measure cluster connectivity using conductance, a widely studied metric (e.g., (Chiplunkar et al., 2018; Dey et al., 2019; Manghiuc & Sun, 2021; Shen & Peng, 2023)). Let $G = (V, E)$ be an undirected graph. For any vertex $v \in V$, let d_v denote the degree of v in G . For any subset $C \subseteq V$, let $\text{vol}(C) = \sum_{v \in C} d_v$ denote the volume of C . For any two subsets $S, C \subseteq V$, let $E(S, C)$ denote the set of edges between S and C .

Definition 1.1 (Outer and inner conductance). For any non-empty subset $C \subseteq V$, the *outer conductance* and *inner conductance* of C is defined to be

$$\phi_{\text{out}}(C, V) = |E(C, V \setminus C)| / \text{vol}(C), \quad \phi_{\text{in}}(C) = \min_{S \subseteq C, 0 < \text{vol}(S) \leq \text{vol}(C)/2} \phi_{\text{out}}(S, C).$$

Specially, the *conductance* of graph G is defined to be $\phi(G) = \min_{C \subseteq V, 0 < \text{vol}(C) \leq \text{vol}(G)/2} \phi_{\text{out}}(C, V)$.

Intuitively, inner (resp. outer) conductance captures the internal (resp. external) connectivity of a cluster. A “good” cluster exhibits both large inner conductance and small outer conductance. Based on the definition of conductance, we give the formal definition of the input graph which is assumed to have a planted clustering structure (see Definition 1.3).

Definition 1.2 (k -partition). Let $G = (V, E)$ be a graph. A *k -partition* of V is a collection of k disjoint subsets C_1, \dots, C_k such that $\bigcup_{i=1}^k C_i = V$.

Definition 1.3 ($((k, \varphi, \varepsilon)$ -clusterable graph). Let $k \geq 2$ be an integer and let $\varphi \in (0, 1)$ and $\varepsilon \in [0, 1)$. Let $G = (V, E)$ be a graph. If there exists a k -partition of V , denoted by C_1, \dots, C_k , such that for all $i \in [k]$, $\phi_{\text{in}}(C_i) \geq \varphi$, $\phi_{\text{out}}(C_i, V) \leq \varepsilon$ and for all $i, j \in [k]$, one has $\frac{|C_i|}{|C_j|} \in O(1)$, then we call G is a $((k, \varphi, \varepsilon)$ -clusterable graph.

We work in the *adjacency list model*, where the algorithm can query any neighbor of a specified vertex in constant time.

108
109

110 1.1 MAIN RESULTS

111
112
113
114
115
116

Sublinear spectral clustering oracle A key contribution of this work is a spectral clustering oracle that operates with very little memory and provides an explicit trade-off between memory and query time. Given a $(k, \varphi, \varepsilon)$ -clusterable graph, the goal of a clustering oracle is to build a data structure \mathcal{D} in sublinear time such that, for any vertex x , the oracle can answer $\text{WHICHCLUSTER}(G, x)$ in sublinear time. Moreover, the clustering induced by answering $\text{WHICHCLUSTER}(G, x)$ for all x should have a small misclassification error, that is, only a small fraction of vertices are assigned to the wrong clusters compared to the ground truth.

117
118
119
120

In what follows, we state our main theorem in the simplified setting where $\varphi = \Omega(1)$ and $d, k = O(1)$. The full general statement appears in Theorem 3.1. [Table 1](#) shows comparison of results. While we state our results for d -regular graphs, they naturally extend to **d -bounded** graphs, i.e., graphs in which every vertex has degree at most d (see Section D).

121
122
123
124

Theorem 1.1 (Informal main result). *Suppose $\varphi = \Omega(1)$, $d, k = O(1)$, and $\varepsilon \leq h(d, k, \varphi)$ for some function h . Let $G = (V, E)$ be a d -regular $(k, \varphi, \varepsilon)$ -clusterable graph with clusters C_1, \dots, C_k . Let $n^{\Theta(\varepsilon)} \leq M \leq O(n^{1/2-O(\varepsilon)})$ be a trade-off parameter. Then there exists a sublinear spectral clustering oracle that:*

125
126
127
128

- constructs a data structure \mathcal{D} using $\tilde{O}(n^{O(\varepsilon)} \cdot M)$ bits of space,
- answers any WHICHCLUSTER query in $\tilde{O}(n^{1+O(\varepsilon)}/M)$ time,
- misclassifies at most $O(\varepsilon^{1/3})|C_i|$ vertices in each cluster C_i , $i \in [k]$.

129
130
131
132
133
134
135
136

Note that the space S used to build \mathcal{D} and the query time T satisfy the trade-off $S \cdot T = \tilde{O}(n^{1+O(\varepsilon)})$. The oracle is built upon a new subroutine `ESTCOLLI`PROB (Alg. 2) for estimating the collision probability of two random walk distributions with asymptotically space-time trade-off. In particular, when $\varepsilon \ll 1/\log n$, this simplifies to $S \cdot T = \tilde{O}(n)$. The theorem establishes a trade-off: larger space S yields faster queries, while smaller S slows them down. Unlike prior oracles that require at least $\Omega(\sqrt{n})$ space, our method operates with substantially less space, often far below \sqrt{n} , thereby breaking the \sqrt{n} space barrier.

137
138
139
140
141
142

[Table 1](#): Comparison of our results (Theorem 3.1) with previous work in terms of space usage, query time and misclassification error. We use O_φ to suppress dependence on φ and \tilde{O} to hide all $\text{poly}(\log n)$ factors. Here $\delta \in (0, \frac{1}{2}]$ is a constant and $n^{c \cdot \varepsilon / \varphi^2} \leq M \leq O(\frac{n^{1/2-O(\varepsilon) / \varphi^2}}{k})$ is a trade-off parameter. Note that previous oracles require at least $\Omega(\sqrt{n})$ space usage while our oracle operates within much less space.

143
144
145
146
147
148
149
150
151

work	space usage	query time	misclassification error
Peng (2020)	$\tilde{O}_\varphi(\sqrt{n} \cdot \text{poly}(\frac{k}{\varepsilon}))$	$\tilde{O}_\varphi(\sqrt{n} \cdot \text{poly}(\frac{k}{\varepsilon}))$	$O(kn\sqrt{\varepsilon})$
Gluch et al. (2021)	$\tilde{O}_\varphi(n^{1-\delta+O(\varepsilon)} \cdot \text{poly}(\frac{k}{\varepsilon}))$	$\tilde{O}_\varphi(n^{\delta+O(\varepsilon)} \cdot \text{poly}(\frac{k}{\varepsilon}))$	$O(\log k \cdot \varepsilon) C_i ^\dagger$
our (Item 1)	$\tilde{O}_\varphi(n^{O(\varepsilon)} \cdot M \cdot \text{poly}(\frac{k}{\varepsilon}))$	$\tilde{O}_\varphi(n^{1+O(\varepsilon)} \cdot \frac{1}{M} \cdot \text{poly}(\frac{k}{\varepsilon}))$	$O(\log k \cdot \varepsilon) C_i ^\dagger$
Shen & Peng (2023)	$\tilde{O}_\varphi(n^{1-\delta+O(\varepsilon)} \cdot \text{poly}(k))$	$\tilde{O}_\varphi(n^{\delta+O(\varepsilon)} \cdot \text{poly}(k))$	$O(\text{poly}(k) \cdot \varepsilon^{1/3}) C_i ^\dagger$
our (Item 2)	$\tilde{O}_\varphi(n^{O(\varepsilon)} \cdot M \cdot \text{poly}(k))$	$\tilde{O}_\varphi(n^{1+O(\varepsilon)} \cdot \frac{1}{M} \cdot \text{poly}(k))$	$O(\text{poly}(k) \cdot \varepsilon^{1/3}) C_i ^\dagger$

† for each cluster C_i , $i \in [k]$.

152
153
154
155

Moreover, we stress that, under either clustering framework, introducing a space constraint affects only the space usage and query time; the algorithmic guarantees (e.g., the misclassification error) remain *identical* to those achieved by the corresponding clustering oracles without space limitations.

156
157
158
159
160
161

Distinguishing 1-cluster vs. 2-cluster As a corollary of our main result, we obtain a sublinear algorithm for distinguishing between a single-cluster expander and a graph consisting of two disjoint clusters. Formally, let $\varphi = \Omega(1)$ and $d = O(1)$. Consider the following promise problem: the input is a d -regular graph $G = (V, E)$ that is guaranteed to be in one of two cases: (i) G is a φ -expander on n vertices (i.e., $(1, \varphi, 0)$ -clusterable); or (ii) G is the disjoint union of two identical φ -expanders, each on $n/2$ vertices (i.e., $(2, \varphi, 0)$ -clusterable). The goal of the 1-cluster vs. 2-cluster problem is to determine which case holds.

162 We address this problem with an ESTCOLLI_{PROB}-based algorithm, yielding the following result.
 163

164 **Theorem 1.2** (Upper bound). *For any trade-off parameter $1 \leq M \leq O(\sqrt{n})$, there exists an*
 165 *algorithm (Alg. 5) that, with probability at least $1 - 2n^{-100}$, solves the 1-cluster vs. 2-cluster*
 166 *problem. Moreover, the algorithm:*

167 • uses $\tilde{O}(M)$ bits of space,
 168 • runs in $\tilde{O}\left(\frac{n}{M}\right)$ time.
 169

170 We complement this with a lower bound for distinguishing between the two cases when the graph
 171 can only be accessed through random walk queries.

172 **Definition 1.4** (Random walk queries). *For any specified starting vertex x , a random walk query*
 173 *returns the endpoint of an $O(\log n)$ -step random walk starting from x .*

174 **Theorem 1.3** (Lower bound). *Any algorithm that correctly solves the 1-cluster vs. 2-cluster problem*
 175 *with error at most $1/3$ using only random walk oracles must satisfy $S \cdot T \geq \Omega(n)$, where S and T*
 176 *denote the space complexity and time complexity of the algorithm, respectively.*

177 Note that a random walk query can be simulated with $O(\log n)$ adjacency-list queries, so our upper
 178 bound matches the lower bound up to $\text{poly}(\log n)$ factors. Since the ESTCOLLI_{PROB}-based approach
 179 solves the 1-cluster vs. 2-cluster problem, our lower bound indicates that its trade-off is nearly tight.
 180 This, in turn, suggests that the space-time trade-off of our clustering oracle is essentially tight, at least
 181 for approaches based on collision probability estimation.
 182

183 1.2 TECHNICAL OVERVIEW

184 **Sublinear spectral clustering oracle** To obtain sublinear spectral clustering oracles that rely on
 185 a $\log(k)$ or $\text{poly}(k)$ conductance gap, a key primitive is the estimation of the dot product $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$,
 186 where \mathbf{f}_x is the spectral embedding of $x \in V$ (see Definition 2.1). Suppose there exists an algorithm
 187 that estimates such dot products using S space and T time. We can then design a clustering oracle
 188 based on this primitive, which uses $\tilde{O}(\text{poly}(k) \cdot S)$ space to construct a data structure \mathcal{D} and answers
 189 WHICHCLUSTER queries in $\tilde{O}(\text{poly}(k) \cdot T)$ time (see Section 3.2). Thus, the central task is to
 190 understand the space-time trade-off for dot product estimation, as it directly determines the efficiency
 191 of the resulting clustering oracle.
 192

193 Indeed, the previous $\Omega(\sqrt{n})$ space bottleneck in constructing \mathcal{D} arises precisely from this dot
 194 product estimation step, rather than from the clustering procedure itself. This observation motivates
 195 our technical improvements. In particular, the dot product estimation algorithm of Gluch et al.
 196 (2021) does not directly compute $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$ for arbitrary vertex pairs. Instead, it applies a sequence
 197 of transformations and shows that estimating $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$ can be reduced to computing the collision
 198 probability $(\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{1}_y) = \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle$, where \mathbf{M} is the random walk transition matrix
 199 of G and $\mathbf{1}_s$ is the indicator vector of vertex s .
 200

201 Previous dot product oracle estimates $\langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle$ by performing $R \approx \sqrt{n}$ independent random
 202 walks of length $t = O\left(\frac{\log n}{\varphi^2}\right)$ from each vertex x and y , respectively. The endpoints of these walks
 203 are stored to construct empirical distributions, whose dot product is then computed. This approach
 204 requires $O(R)$ words of space and $O(Rt)$ time, tightly coupling space usage with computation time.
 205 In particular, to ensure sufficient accuracy, R must be at least $\Omega(\sqrt{n})$, which implies that the space
 206 usage cannot be reduced below $O(\sqrt{n})$.

207 To reduce the memory requirement below $O(\sqrt{n})$ and achieve a more flexible trade-off between space
 208 and time, we propose a batch-based estimation strategy. The idea behind this approach is inspired
 209 by Canonne & Yang (2024), where a similar batching technique is used to design memory-efficient
 210 algorithms for uniformity testing under memory constraints. **While the underlying technique is**
 211 **inspired by prior work, we are the first to apply this idea in the graph setting to rigorously analyze**
 212 **random walks.** Specifically, we partition the total of R random walks into $B = R/M$ batches. In
 213 each batch, M walks of length t are performed from each vertex, and only the endpoints within the
 214 batch are stored to construct empirical distributions. The batch-level dot product is computed, and the
 215 final estimate is obtained by averaging over all batches. This approach reduces the space requirement
 to $O(M)$ words while keeping the total number of walks. By choosing M smaller than $O(\sqrt{n})$, we

216 can achieve a space-time trade-off satisfies $M \cdot R \approx n$. This allows for efficient estimation of the dot
217 product even under memory constraints.
218

219 **Distinguishing 1-cluster vs. 2-cluster** The core idea of our algorithm (Alg. 5) for distinguishing
220 the 1-cluster vs. 2-cluster is to reduce the task to detecting a spectral gap in the random walk
221 operator. Specifically, we set $t = O(\log n / \varphi^2)$ so that in the 1-cluster case, the second largest
222 eigenvalue of \mathbf{M}^t becomes negligibly small, while in the 2-cluster case it remains exactly 1. To
223 capture this behavior within bounded space, we avoid storing \mathbf{M}^t explicitly and instead construct a
224 compact surrogate matrix \mathcal{G} using the batch-based strategy described above. This surrogate preserves
225 the essential spectral information of \mathbf{M}^t , so that the separation between the two cases is faithfully
226 reflected in the spectrum of \mathcal{G} . Consequently, analyzing \mathcal{G} suffices to distinguish between the 1-cluster
227 and 2-cluster cases using only $O(M)$ space.
228

229 To prove the lower bound, we note that analyzing the distribution of random walks of the two cases
230 reveals a fundamental discrepancy: in the 1-cluster case, this distribution converges to uniformity
231 over the entire set of points; whereas in the 2-cluster case, it decomposes into two separate uniform
232 distributions, each concentrated over half of the points. Under a sublinear space constraint, the
233 algorithm cannot store enough indices to reliably identify which cluster a given sample belongs
234 to. We formalize this via the information-theoretic framework for distribution-testing lower bounds
235 of Diakonikolas et al. (2019), showing that each observation provides only limited distinguishing
236 information. Consequently, any algorithm requires a sufficient number of observations to achieve
237 statistical confidence, implying the stated space-time trade-off lower bound.
238

239 **A key novelty of our approach is a new reduction that connects random-walk-based graph clustering
240 with space-bounded distribution testing.** We construct paired hard instances and show how any
241 random-walk algorithm for distinguishing 1-cluster vs. 2-cluster instances can be simulated in the
242 distribution-testing setting. The key technical contribution is an inductive coupling argument ensuring
243 that the random-walk histories remain indistinguishable in total-variation distance. This reduction is
244 new and is what enables our space-time lower bound.
245

246 1.3 RELATED WORK

247 Peng (2020) (see also (Czumaj et al., 2015)) provided a robust sublinear spectral clustering oracle
248 that constructs a data structure using $O(\sqrt{n} \cdot \text{poly}(\frac{k \log n}{\varepsilon}))$ bits of space¹ and answers any WHICH-
249 CLUSTER(G, x) in $O(\sqrt{n} \cdot \text{poly}(\frac{k \log n}{\varepsilon}))$ time. This oracle relies on a $\text{poly}(k) \log n$ conductance gap
250 between inner and outer conductance and misclassifies at most $O(kn\sqrt{\varepsilon})$ vertices. Gluch et al. (2021)
251 (resp. Shen & Peng (2023)²) gave a sublinear spectral clustering oracle that constructs a data structure
252 using $O(n^{1-\delta+O(\varepsilon)} \cdot \text{poly}(\frac{k \log n}{\varepsilon}))$ (resp. $O(n^{1-\delta+O(\varepsilon)} \cdot \text{poly}(k \log n))$) bits of space and answers
253 any WHICHCLUSTER(G, x) in $O(n^{\delta+O(\varepsilon)} \cdot \text{poly}(\frac{k \log n}{\varepsilon}))$ (resp. $O(n^{\delta+O(\varepsilon)} \cdot \text{poly}(k \log n))$) time,
254 where $\delta \in (0, \frac{1}{2}]$. These two oracles have different conductance gap and misclassification error.
255

256 Recently, Neumann & Peng (2022) studied designing sublinear spectral clustering oracles for signed
257 graph. Kapralov et al. (2023) studied designing sublinear hierarchical clustering oracle for graphs
258 exhibiting hierarchical structure. We defer other related works to Section B due to page constraint.
259 Moreover, all omitted proofs are provided in the appendix.
260

261 2 PRELIMINARIES

262 Let $G = (V, E)$ denote an unweighted, undirected d -regular graph with n vertices, where $V =$
263 $\{1, 2, \dots, n\}$. Let $i \in [n]$ denote $1 \leq i \leq n$. For a graph $G = (V, E)$, let $\mathbf{A} \in \mathbb{R}^{n \times n}$ denote the
264 adjacency matrix of G , where $\mathbf{A}(i, j) = 1$ if $(i, j) \in E$, and $\mathbf{A}(i, j) = 0$ otherwise, $i, j \in [n]$. Let
265 $\mathbf{D} \in \mathbb{R}^{n \times n}$ denote a diagonal matrix, where $\mathbf{D}(i, i) = d_i$, $i \in [n]$. Let $\mathbf{L} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A})\mathbf{D}^{-1} =$
266 $\mathbf{I} - \frac{\mathbf{A}}{d}$ denote the normalized Laplacian matrix of G , where $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the identity matrix. For
267

268 ¹Although the paper does not explicitly state the space complexity, it can be directly inferred from the
269 algorithm description.

²Shen & Peng (2023) stated their result for $\delta = 1/2$. Since their algorithm relies on the dot product oracle in
Gluch et al. (2021), the guarantee extends naturally to any $\delta \in (0, \frac{1}{2}]$.

L , we use $0 = \lambda_1 \leq \dots \leq \lambda_n \leq 2$ to denote its eigenvalues and $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^n$ to denote the corresponding eigenvectors. Without loss of generality, we assume $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ forms an orthonormal basis of \mathbb{R}^n . Let $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_n) \in \mathbb{R}^{n \times n}$. Based on \mathbf{U} , we give the definition of spectral embedding (see Definition 2.1). Moreover, let $\mathbf{M} = \frac{1}{2}(\mathbf{I} + \frac{\mathbf{A}}{d}) = \mathbf{I} - \frac{\mathbf{L}}{2}$ denote the transition matrix of lazy random walk on G . That is, if the walker is currently at a vertex $x \in V$, then in the next step it stays at x with probability $\frac{1}{2}$, or moves to each neighbor of x with probability $\frac{1}{2d_x}$.

Let $\mathbf{a} \in \mathbb{R}^n$ denote a column vector (unless otherwise stated). For any two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, we use $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}$ to denote the dot product of \mathbf{a} and \mathbf{b} . For any $x \in V$, let $\mathbf{1}_x \in \mathbb{R}^n$ denote the indicator vector of x , where $\mathbf{1}_x(i) = 1$ if $i = x$ and 0 otherwise. For any symmetric matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$, we use $v_i(\mathbf{B})$ to denote the i -th largest eigenvalues of \mathbf{B} .

Definition 2.1 (spectral embedding). Let $G = (V, E)$ be a graph. For any vertex $x \in V$, we use $\mathbf{f}_x \in \mathbb{R}^k$ to denote the *spectral embedding* of x , where $\mathbf{f}_x = \mathbf{U}_{[k]}^T \mathbf{1}_x = (\mathbf{u}_1(x), \dots, \mathbf{u}_k(x))^T$.

Definition 2.2 (φ -expander). Let $G = (V, E)$ be a graph. Let $\varphi \in (0, 1)$. Let $\phi(G)$ denote the conductance of G (see Definition 1.1). If $\phi(G) \geq \varphi$, then we call G a φ -expander.

The supplementary preliminaries are deferred to Section C.

3 SPECTRAL CLUSTERING ORACLES WITH LITTLE MEMORY

In this section, we present and prove our main algorithmic result, stated in the theorem below. We emphasize that the resulting algorithms exhibit different trade-offs between the conductance gap (φ vs. ε), the misclassification ratio, and the corresponding space-time bounds, depending on the clustering framework employed, either that of Gluch et al. (2021) or Shen & Peng (2023).

Theorem 3.1. Let $k \geq 2$ be an integer, $\varphi, \varepsilon \in (0, 1)$ and $h_1(k, \varphi), h_2(k, \varepsilon)$ and $h_3(k, \varphi, \varepsilon)$ be three functions. Let $\varepsilon \ll h_1(k, \varphi)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph with C_1, \dots, C_k . Let $n^{c \cdot \varepsilon / \varphi^2} \leq M \leq O(\frac{n^{1/2 - O(\varepsilon / \varphi^2)}}{k})$ be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral clustering oracle that, with probability at least 0.9:

- constructs a data structure \mathcal{D} using $\tilde{O}_\varphi(h_2(k) \cdot n^{O(\varepsilon / \varphi^2)} \cdot M)$ bits of space,
- answers any WHICHCLUSTER query using \mathcal{D} in $\tilde{O}_\varphi(h_2(k) \cdot n^{1+O(\varepsilon / \varphi^2)} \cdot \frac{1}{M})$ time,
- has $O(h_3(k, \varphi, \varepsilon)) |C_i|$ misclassification error for each $i \in [k]$,

where we use O_φ to suppress dependence on φ and \tilde{O} to hide all $\text{poly}(\log n)$ factors and:

- 1 if $h_1(k, \varphi) = \frac{\varphi^3}{\log k}$, then $h_2(k, \varepsilon) = (\frac{k}{\varepsilon})^{O(1)}$ and $h_3(k, \varphi, \varepsilon) = \frac{\varepsilon}{\varphi^3} \cdot \log k$;
- 2 if $h_1(k, \varphi) = \frac{\varphi^2 \cdot \gamma^3}{k^{\frac{9}{2}} \cdot \log^3 k}$, then $h_2(k) = (\frac{k}{\gamma})^{O(1)}$ and $h_3(k, \varphi, \varepsilon) = (\frac{\varepsilon}{\varphi^2})^{\frac{1}{3}} \cdot k^{\frac{3}{2}}$, where $\gamma \in (0.001, 1]$ is a constant such that for all $i \in [k]$, $\gamma \frac{n}{k} \leq |C_i| \leq \frac{n}{\gamma k}$.

This section is organized as follows. In Section 3.1, we present our dot product oracle with little memory and the corresponding algorithms. In Section 3.2, we provide the proof of Item 2 of Theorem 3.1. The proof of the remaining case, Item 1, is deferred to Section F.

3.1 DOT PRODUCT ORACLE WITH LITTLE MEMORY

Recall that \mathbf{f}_x denotes the spectral embedding of vertex x (see Definition 2.1). Our objective in this section is to design a dot product oracle that approximates $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$ while achieving a favorable space-time trade-off and ensuring small approximation error. The following theorem states the performance guarantees of our oracle. Proof is deferred to Section E.

Theorem 3.2. Let $k \geq 2$ be an integer. Let $\varepsilon, \varphi \in (0, 1)$ with $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let $\frac{1}{n^5} < \xi < 1$. Let $1 \leq M_{\text{init}}, M_{\text{query}} \leq O(\frac{n^{1/2 - 20\varepsilon / \varphi^2}}{k})$. Then, with probability at least $1 - 2n^{-100}$, INITORACLE($G, k, \xi, M_{\text{init}}$) (Alg. 3) computes a sublinear space matrix Ψ of size $n^{O(\varepsilon / \varphi^2)} \cdot \log^2 n \cdot (\frac{k}{\xi})^{O(1)}$, such that the following property is satisfied:

324 for every pair of vertices $x, y \in V$, $\text{QUERYDOT}(G, x, y, \xi, \Psi, M_{\text{query}})$ (Alg. 4) computes an output
 325 value $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}}$ such that with probability at least $1 - 6n^{-100}$:

$$327 \quad |\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| \leq \frac{\xi}{n}. \\ 328$$

329 Moreover, let $S_{\text{init}}, T_{\text{init}}$ be the space and time costs of $\text{INITORACLE}(G, k, \xi, M_{\text{init}})$ (Alg. 3), and let
 330 $S_{\text{query}}, T_{\text{query}}$ be those of a single $\text{QUERYDOT}(G, x, y, \xi, \Psi, M_{\text{query}})$ query (Alg. 4). Then we have

331 $\bullet S_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{init}} \cdot \log^4 n, \quad T_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{\log^4 n}{M_{\text{init}}} \cdot \frac{1}{\varphi^2},$
 332 $\bullet S_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n, \quad T_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{\log^3 n}{M_{\text{query}}} \cdot \frac{1}{\varphi^2}.$

335 Note that to ensure that $\text{INITORACLE}(G, k, \xi, M_{\text{init}})$ (Alg. 3) and $\text{QUERYDOT}(G, x, y, \xi, \Psi, M_{\text{query}})$
 336 (Alg. 4) run in sublinear time, it is required that $M_{\text{init}}, M_{\text{query}} \geq n^{c \cdot \varepsilon/\varphi^2}$, where c is a constant that is
 337 larger than the constant hidden in $O(\cdot)$ -term of $n^{1+O(\varepsilon/\varphi^2)}$ in both T_{init} and T_{query} .

339 For initializing the dot product oracle, the previous dot product oracle in Gluch et al. (2021) requires
 340 at least $\tilde{\Omega}(\sqrt{n})$ bits of space, whereas our proposed oracle can perform accurate estimation using at
 341 most $\tilde{O}(\sqrt{n})$ bits of space, thus breaking the \sqrt{n} barrier.

342 **The algorithm** Algorithm 1 estimates the collision probability (i.e., $\langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle$) of the
 343 random walk distributions from two given vertices within a bounded space $\tilde{O}(M)$. This bounded-
 344 space guarantee is achieved through our batch technique, and we are the first to apply this idea in the
 345 graph setting for analyzing random walks. Algorithm 2 computes an estimate of the Gram matrix
 346 $(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})$ corresponding to the random walk distributions from a set S of vertices, where
 347 $\mathbf{S} \in \mathbb{R}^{n \times |S|}$ is a matrix whose i -th column is an indicator vector $\mathbf{1}_v$ for $v \in S$, while operating
 348 within a bounded space $\tilde{O}(M \cdot |S|^2)$. The formal guarantees of these two procedures are stated
 349 in Lemma 3.1 and Lemma E.5, respectively.

351 **Lemma 3.1.** Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and
 352 $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . Let Z be the output
 353 of $\text{ESTRWDOT}(G, R, t, M, x, y)$ (Alg. 1). Let $\sigma_{\text{err}} > 0$. Let $c > 1$ be a large enough constant. For
 354 any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x, y \in V$, if $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k})$, then with
 355 probability at least 0.99, we have

$$356 \quad |Z - \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle| \leq \sigma_{\text{err}}. \\ 357$$

359 Moreover, $\text{ESTRWDOT}(G, R, t, M, x, y)$ runs in $O(Rt)$ time and uses $O(M \cdot \log n)$ bits of space.

360 **Algorithm 1: ESTRWDOT**
 361 (G, R, t, M, x, y)

363 1 $Z := 0, B := \frac{R}{M} \triangleright B$: number of batch
 364 2 **for** $b = 1$ to B **do**
 365 3 Run M independent random walks of
 366 length t starting from x (resp. from
 367 y)
 368 4 Define $\hat{p}_x(i)$ (resp. $\hat{p}_y(i)$) as the
 369 fraction of random walks from x
 370 (resp. from y) that end at i
 371 5 $Z_b := \langle \hat{p}_x, \hat{p}_y \rangle, Z := Z + Z_b$
 372 6 $Z := \frac{Z}{B}$
 373 7 **return** Z

360 **Algorithm 2: ESTCOLLIPROB**
 361 (G, R, t, M, I_S)

363 1 $s := |I_S| = |\{s_1, \dots, s_s\}|$
 364 2 **for** $l = 1$ to $O(\log n)$ **do**
 365 3 **for** $i = 1$ to s **do**
 366 4 **for** $j = i$ to s **do**
 367 5 $\mathcal{G}_l(j, i) := \mathcal{G}_l(i, j) :=$
 368 $\text{ESTRWDOT}(G, R, t, M, s_i, s_j)$
 369
 370 6 Let \mathcal{G} be a matrix obtained by taking the
 371 entrywise median of \mathcal{G}_l 's
 372 7 **return** \mathcal{G}

375 Algorithm 3 initializes the dot product oracle by constructing a compact matrix Ψ within approx-
 376 imately bounded space $\tilde{O}(M)$. Then Algorithm 4 leverages Ψ to estimate $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$ while still
 377 operating under the same bounded space. The formal guarantees of these two procedures are stated
 in Theorem 3.2.

378
379 **Algorithm 3: INITORACLE**
380 $(G, k, \xi, M_{\text{init}})$
381 1 $t := \frac{20 \log n}{\varphi^2}$
382 2 $R_{\text{init}} := \Theta\left(\frac{n^{1+920\epsilon/\varphi^2}}{M_{\text{init}}} \cdot \frac{k^{14}}{\xi^2}\right)$
383 3 $s := O(n^{480\cdot\epsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2)$
384 4 Let $I_S = \{s_1, \dots, s_s\}$ be the multiset of
385 s indices chosen i.u.r. from
386 $V = \{1, \dots, n\}$
387 5 $\mathcal{G} :=$
388 ESTCOLLIORB(G, R_{init} , t , M_{init} , I_S)
389 6 Let $\frac{n}{s} \cdot \mathcal{G} := \widehat{W} \widehat{\Sigma} \widehat{W}^T$ be the
390 eigendecomposition of $\frac{n}{s} \cdot \mathcal{G}$
391 7 **if** $\widehat{\Sigma}^{-1}$ exists **then**
392 8 $\Psi := \frac{n}{s} \cdot \widehat{W}_{[k]} \widehat{\Sigma}_{[k]}^{-2} \widehat{W}_{[k]}^T \triangleright \Psi \in \mathbb{R}^{s \times s}$
393 9 **return** Ψ
394
395

396
397 **Algorithm 4: QUERYDOT**
398 $(G, x, y, \xi, \Psi, M_{\text{query}})$
399 1 $t := \frac{20 \log n}{\varphi^2}$
400 2 $R_{\text{query}} := \Theta\left(\frac{n^{1+440\epsilon/\varphi^2}}{M_{\text{query}}} \cdot \frac{k^6}{\xi^2}\right)$
401 3 **for** $l = 1$ to $O(\log n)$ **do**
402 4 **for** $i = 1$ to s **do**
403 5 $\mathbf{x}_l(i) := \text{ESTRWDOT}(G, R_{\text{query}}, t, M_{\text{query}}, x, s_i)$
404 6 $\mathbf{y}_l(i) := \text{ESTRWDOT}(G, R_{\text{query}}, t, M_{\text{query}}, y, s_i)$
405 7 Let α_x (resp. α_y) be a vector obtained
406 by taking entrywise median of \mathbf{x}_l 's
407 (resp. \mathbf{y}_l 's) $\triangleright \alpha_x, \alpha_y \in \mathbb{R}^s$
408 8 **return** $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} = \alpha_x^T \Psi \alpha_y$
409
410

3.2 CLUSTERING ORACLE: ITEM 2 OF THEOREM 3.1

We now present the proof of Item 2 of Theorem 3.1 and give a clustering oracle with the corresponding space-time trade-off. Item 2, which addresses a sublinear spectral clustering oracle under a $\text{poly}(k)$ conductance gap. Our sublinear spectral clustering oracle closely follows the construction in Shen & Peng (2023), except that we substitute our new dot product oracle from Section 3.1 in place of theirs.

High-level idea of the algorithm Now we briefly outline the main idea of the oracle. Shen & Peng (2023) showed that for most vertices in a (k, φ, ϵ) -clusterable graph, if $x, y \in V$ belong to the same cluster, then $\langle \mathbf{f}_x, \mathbf{f}_y \rangle \approx \frac{k}{n}$, otherwise, $\langle \mathbf{f}_x, \mathbf{f}_y \rangle \approx 0$. Leveraging this property, we can design a clustering oracle as follows: it first samples $s = \frac{k \log k}{\gamma}$ vertices to form a set S , and for each pair $u, v \in S$, it computes the dot product $\langle \mathbf{f}_u, \mathbf{f}_v \rangle_{\text{apx}}$ using our new dot product oracle. If the value is large, an edge (u, v) is added to the initially empty similarity graph $H = (S, \emptyset)$. At query time, the oracle uses H and its connected components to determine the cluster assignment of vertices. We provide a full description of the clustering oracle in Section G. Now we present the proof of Item 2 in Theorem 3.1 as follows.

Proof of Item 2 in Theorem 3.1. Space and runtime. In the preprocessing phase, CONSTRUCTORACLE($G, k, \varphi, \epsilon, \gamma, M$) (Alg. 12) invokes our INITORACLE(G, k, ξ, M) (Alg. 3) one time to get a matrix Ψ (see line 5 of Alg. 12), then CONSTRUCTORACLE($G, k, \varphi, \epsilon, \gamma, M$) invokes our QUERYDOT(G, u, v, ξ, Ψ, M) $O((k^2 \log^2 k)/\gamma^2)$ times (see lines 6 ~ 9 of Alg. 12) to get a similarity graph H . Therefore, CONSTRUCTORACLE($G, k, \varphi, \epsilon, \gamma, M$) uses $S_{\text{init}} + O((k^2 \log^2 k)/\gamma^2) \cdot S_{\text{query}}$ bits of space. Using Theorem 3.2, we get that CONSTRUCTORACLE($G, k, \varphi, \epsilon, \gamma, M$) uses $O(n^{O(\epsilon/\varphi^2)} \cdot M \cdot \text{poly}(\frac{k \log n}{\gamma}))$ bits of space to get matrix Ψ and a similarity graph H .

In the query phase, WHICHCLUSTER(G, x, M) (Alg. 14) invokes SEARCH(H, ℓ, x, M) (Alg. 13) one time. SEARCH(H, ℓ, x, M) invokes our QUERYDOT(G, u, x, ξ, Ψ, M) $O((k \log k)/\gamma)$ times (see lines 1 ~ 2 of Alg. 13) and relies on the similarity graph H (see lines 3 ~ 6 of Alg. 13). Therefore, WHICHCLUSTER(G, x, M) uses $O((k \log k)/\gamma) \cdot S_{\text{query}}$ bits of space and runs in $O((k \log k)/\gamma) \cdot T_{\text{query}}$ time. Using Theorem 3.2, we get that WHICHCLUSTER(G, x, M) uses $O(n^{O(\epsilon/\varphi^2)} \cdot M \cdot \text{poly}(\frac{k \log n}{\gamma}))$ bits of space and runs in $O(n^{1+O(\epsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \text{poly}(\frac{k \log n}{\gamma \varphi}))$ time.

Thus, the oracle constructs a data structure \mathcal{D} (including Ψ , similarity graph H etc) using $O(n^{O(\epsilon/\varphi^2)} \cdot M \cdot \text{poly}(\frac{k \log n}{\gamma}))$ bits of space. Using \mathcal{D} , any WHICHCLUSTER(G, x) query can be answered by Alg. 14 in $O(n^{1+O(\epsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \text{poly}(\frac{k \log n}{\gamma \varphi}))$ time.

Correctness. Since the correctness guarantees (i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of the dot product oracle, and our dot product oracle satisfies

432 the same correctness guarantees with the previous one, the correctness of the overall clustering oracle
 433 follows directly from the correctness of the clustering oracle in Shen & Peng (2023). \square
 434

436 4 DISTINGUISHING 1-CLUSTER VS. 2-CLUSTER

438 **The algorithm and sketch of its analysis** Now we present Alg. 5 for solving the 1-cluster vs. 2-
 439 cluster problem, which is based on estimating the second largest eigenvalue of \mathbf{M}^t using a subroutine
 440 ESTCOLLIPROB (Alg. 2) from Section 3.1.
 441

442 **Algorithm 5: DISTINGUISH(G, M)**

```

444 1  $t := \frac{20 \log n}{\varphi^2}, R := \Theta(\frac{n}{M}), s := O(\log n)$ 
445 2 Let  $I_S = \{s_1, \dots, s_s\}$  be the multiset of  $s$  indices chosen independently and uniformly at
446 random from  $V = \{1, \dots, n\}$ 
447 3  $\mathcal{G} := \text{ESTCOLLIPROB}(G, R, t, M, I_S)$ 
448 4 Let  $v_2(\frac{n}{s}\mathcal{G})$  be the second largest eigenvalue of matrix  $\frac{n}{s}\mathcal{G}$ 
449 5 if  $(v_2(\frac{n}{s}\mathcal{G}))^2 < 0.6$  then
450   6   return “1-cluster”
451 7 return “2-cluster”

```

453
 454 The formal guarantee of this algorithm is given in Theorem 1.2, whose proof is deferred to Section H.
 455 Here, we provide a proof sketch.

456 Consider the case when the input graph G is a φ -expander. By Cheeger’s inequality (Lemma H.1),
 457 we get that the second smallest eigenvalue of \mathbf{L} satisfies $\lambda_2 \geq \varphi^2/2$. Equivalently, the lazy random
 458 walk matrix $\mathbf{M} = \mathbf{I} - \mathbf{L}/2$ has its second largest eigenvalue $v_2(\mathbf{M}) \leq 1 - \varphi^2/4$. In contrast, if
 459 G consists of two disjoint φ -expanders of equal size, then $\lambda_2 = 0$ and hence $v_2(\mathbf{M}) = 1$. Setting
 460 $t = O(\log n/\varphi^2)$, we obtain that in the 1-cluster case, the contribution of $v_2(\mathbf{M}) \leq n^{-10}$, while in
 461 the 2-cluster case, $v_2(\mathbf{M})$ remains exactly 1. Thus, \mathbf{M}^t exhibits a clear spectral gap between the
 462 two cases. Alg. 5 constructs an approximation $\mathcal{G} \approx (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}) \in \mathbb{R}^{O(\log n) \times O(\log n)}$ within
 463 bounded space, where each column of $\mathbf{M}^t \mathbf{S}$ corresponds to the t -step lazy random walk distribution
 464 starting from a vertex in the sampled set I_S . The second largest eigenvalue of \mathcal{G} closely reflects
 465 that of \mathbf{M}^t , thereby preserving the above separation (see Lemma H.4 for the formal statement).
 466 Moreover, since \mathcal{G} is a small matrix, we can afford to perform an eigen-decomposition on it directly.
 467 Consequently, examining the spectrum of \mathcal{G} suffices to distinguish between the 1-cluster and 2-cluster
 468 cases using $\tilde{O}(M)$ bits of space and $\tilde{O}(n/M)$ time.

469 **The lower bound** The lower bound for distinguishing 1-cluster vs. 2-cluster is summarized in
 470 Theorem 1.3. The main proof of Theorem 1.3 is presented in Section I and comprises two parts. First,
 471 we establish a lower bound for distinguishing between a uniform distribution over all vertices and
 472 two separate uniform distributions each over half of the vertex set. We demonstrate that under a
 473 space constraint of S , the information regarding the underlying case can only increase by $O(S/n)$
 474 per observation. Consequently, the total number of observations T must satisfy $T \cdot O(S/n) = \Omega(1)$,
 475 which directly implies the space-time trade-off lower bound $S \cdot T = \Omega(n)$ (see Theorem I.2).

476 Second, by analyzing the random walk distributions in the 1-cluster and 2-cluster cases, we observe
 477 that these distributions closely approximate the two aforementioned reference distributions. To finalize
 478 the reduction, it is necessary to demonstrate that deviations from uniformity do not significantly
 479 alter the final memory state distribution. The key challenge lies in the cumulative effect of sampling
 480 distribution discrepancies at each step, which collectively influence the memory state. To quantify
 481 this discrepancy, we adopt the total variation distance as a metric and employ a mathematical
 482 induction argument. This approach shows that the discrepancy in the memory state distribution
 483 does not substantially amplify after each sampling step. Specifically, the incremental increase in
 484 discrepancy is proportional to the difference between the sample distributions and remains controllable.
 485 Consequently, the overall discrepancy is bounded by the sum of these incremental increases and
 486 remains negligible throughout the process.

486 **5 EXPERIMENTS**
 487

488 To evaluate the space-time trade-off of our sublinear spectral clustering oracles, we conducted
 489 experiments in Python on graphs generated from the stochastic block model (SBM) with parameters
 490 n (num of vertices), k (num of clusters), and edge probabilities p (within-cluster) and q (between-
 491 cluster). Experiments were run on a server with an Intel(R) Xeon(R) Platinum 8562Y processor (2.80
 492 GHz) and 768 GB RAM. Each reported data is the average over five independent runs.

493 We implemented two variants of the $\text{poly}(k)$ -conductance-gap clustering oracle³: the original oracle
 494 from Shen & Peng (2023), and our memory-efficient variant that operates within a smaller space.
 495 For each, we recorded the number of words stored in each component of the data structure \mathcal{D} as
 496 a proxy for space S , evaluated accuracy (the fraction of vertices correctly classified), the success
 497 rate (i.e., the fraction of successful runs among 5 runs⁴). Both variants used the same number
 498 of sampled vertices, random walk length, and median-trick repetitions; differences arose only in
 499 space-time-related parameters. We instantiated this setup on an SBM graph with $n = 3000$, $k = 3$,
 500 $p = 0.07$, and $q = 0.002$, yielding clusters of 1000 vertices each. Additional implementation details
 501 are provided in Section J.

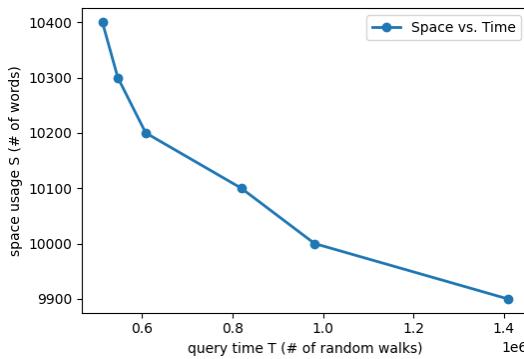
502 **Space efficiency** Prior sublinear spectral clustering oracles require at least $\Omega(\sqrt{n})$ space to construct
 503 data structure \mathcal{D} . In contrast, our clustering oracle allows constructing \mathcal{D} using substantially less
 504 space, well below \sqrt{n} . In this section, we provide experimental evidence to validate this improvement.

505 Table 2: Comparison of space usage for clustering oracles, with 10400 words used as the baseline.
 506

clustering oracle	ours			previous			
space (# of words)	9900	10100	10400	34840	43888	44383	61223
space (\times baseline)	0.95 \times	0.97 \times	1\times	3.35\times	4.22 \times	4.27\times	5.89 \times
success rate for constructing \mathcal{D}	1	1	1	0	0.6	1	1
accuracy	0.9833	0.9900	0.9907	0	0.9860	0.9997	1.0000

513 Table 2 demonstrate that our clustering oracle achieves high accuracy using substantially less space
 514 (10400 words as $1\times$). In contrast, the previous clustering oracle requires 4.27 times of the baseline
 515 space to achieve comparable accuracy, and even when given 3.35 times the baseline space, it fails to
 516 construct \mathcal{D} successfully (i.e., success rate is 0). These results confirm that our approach significantly
 517 improves space efficiency without compromising accuracy.

518 **Space-time trade-off** As established in Theorem 3.1, there is a trade-off between the space S
 519 required to construct \mathcal{D} and the query time T , satisfying $S \cdot T \approx \tilde{O}(n^{1+O(\varepsilon)})$, where ε is the small
 520 constant corresponding to the outer conductance.



533 Figure 1: Space-time trade-off of the sublinear
 534 spectral clustering oracle, showing S, T are in-
 535 versely proportional.
 536

522 To validate this experimentally, we also mea-
 523 sured S as the total number of words stored to
 524 construct \mathcal{D} . We use the total number of random
 525 walks per WHICHCLUSTER query as a proxy
 526 for time T , since this dominates the query cost.
 527 Across all tested parameter settings, the oracle
 528 maintains high accuracy ($0.9833 \sim 1$), confirming
 529 the practical validity of the configurations
 530 used.

531 Figure 1 plots S (y-axis) versus T (x-axis), il-
 532 lustrating the space-time trade-off: memory us-
 533 age decreases as query time increases, and vice
 534 versa, consistent with the theoretical bound.

537 ³We did not experiment with the $\log(k)$ -conductance-gap oracle due to its impractical runtime of $2^{\text{poly}(k)}$.
 538 $n^{1+O(\varepsilon)} \cdot \frac{1}{M}$ for constructing \mathcal{D} .

539 ⁴If the available space is too limited, the construction of the similarity graph H may yield either too many or
 540 too few connected components, in which case the construction of \mathcal{D} fails.

540
541
ETHICS STATEMENT542
543
544
545
This work is purely theoretical and algorithmic in nature. Our experimental evaluation is conducted
solely on synthetic datasets generated from the stochastic block model (SBM). The research does
not involve human subjects, personal data, or other sensitive information. We do not anticipate any
immediate ethical, societal, or environmental risks arising from our methods or results.546
547
548
REPRODUCIBILITY STATEMENT549
550
551
552
553
We have taken several steps to ensure the reproducibility of our work. All theoretical results are stated
formally in the main text and accompanied by complete proofs in the appendix. The assumptions
underlying our results are explicitly described. For the experimental evaluation, we used standard
stochastic block model (SBM) graphs to ensure reproducibility. Implementation details and parameter
settings are included in Section J.554
555
556
REFERENCES557
558
Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS'06), pp. 475–486.
IEEE, 2006.561
562
Reid Andersen, Shayan Oveis Gharan, Yuval Peres, and Luca Trevisan. Almost optimal local graph
clustering using evolving sets. *Journal of the ACM (JACM)*, 63(2):1–31, 2016.563
564
Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding well-
connected components in sparse graphs. In *Proceedings of the 2019 ACM Symposium on principles
of distributed computing*, pp. 461–470, 2019.567
568
Sepehr Assadi, Christian Konrad, Kheeran K Naidu, and Janani Sundaresan. $O(\log \log n)$ passes is
optimal for semi-streaming maximal independent set. In *Proceedings of the 56th Annual ACM
Symposium on Theory of Computing*, pp. 847–858, 2024.570
571
Punam Bedi and Chhavi Sharma. Community detection in social networks. *Wiley interdisciplinary
reviews: Data mining and knowledge discovery*, 6(3):115–135, 2016.573
574
Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi Ha-
jiaghayi, Richard M Karp, and Jara Uitto. Massively parallel computation of matching and mis
in sparse graphs. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing*, pp. 481–490, 2019.577
578
Tomer Berg, Or Ordentlich, and Ofer Shayevitz. On the memory complexity of uniformity testing. In
Conference on Learning Theory, pp. 3506–3523. PMLR, 2022.580
581
Clément L Canonne and Joy Qiping Yang. Simpler distribution testing with little memory. In *2024
Symposium on Simplicity in Algorithms (SOSA)*, pp. 406–416. SIAM, 2024.583
584
Pak K Chan, Martine DF Schlag, and Jason Y Zien. Spectral k-way ratio-cut partitioning and
clustering. In *Proceedings of the 30th international Design Automation Conference*, pp. 749–754,
1993.586
587
Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Testing
graph clusterability: Algorithms and lower bounds. In *2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS)*, pp. 497–508. IEEE, 2018.590
591
Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In *Proceedings of
the forty-seventh annual ACM symposium on Theory of Computing*, pp. 723–732, 2015.592
593
Tamal K Dey, Pan Peng, Alfred Rossi, and Anastasios Sidiropoulos. Spectral concentration and
greedy k-clustering. *Computational Geometry*, 76:19–32, 2019.

594 Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. Communication and
 595 memory efficient testing of discrete distributions. In *Conference on Learning Theory*, pp. 1070–
 596 1106. PMLR, 2019.

597

598 Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. *Inter-
 599 national journal of computer vision*, 59:167–181, 2004.

600 Sumegha Garg, Pravesh K Kothari, Pengda Liu, and Ran Raz. Memory-sample lower bounds for
 601 learning parity with noise. *arXiv preprint arXiv:2107.02320*, 2021.

602

603 Mohsen Ghaffari and Krzysztof Nowicki. Massively parallel algorithms for minimum cut. In
 604 *Proceedings of the 39th Symposium on Principles of Distributed Computing*, pp. 119–128, 2020.

605 Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In *Proceedings of the
 606 twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pp. 1256–1266. SIAM, 2014.

607

608 Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, and Christian Sohler. Spectral
 609 clustering oracles in sublinear time. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete
 610 Algorithms (SODA)*, pp. 1598–1617. SIAM, 2021.

611 Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering.
 612 *IEEE transactions on computer-aided design of integrated circuits and systems*, 11(9):1074–1085,
 613 1992.

614

615 Michael Kapralov. Better bounds for matchings in the streaming model. In *Proceedings of the
 616 twenty-fourth annual ACM-SIAM symposium on Discrete algorithms*, pp. 1679–1697. SIAM, 2013.

617 Michael Kapralov, Akash Kumar, Silvio Lattanzi, and Aida Mousavifar. Learning hierarchical cluster
 618 structure of graphs in sublinear time. In *Proceedings of the 2023 Annual ACM-SIAM Symposium
 619 on Discrete Algorithms (SODA)*, pp. 925–939. SIAM, 2023.

620 Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Walking randomly, massively,
 621 and efficiently. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
 622 Computing*, pp. 364–377, 2020.

623

624 Jiakang Li, Songning Lai, Zhihao Shuai, Yuan Tan, Yifan Jia, Mianyang Yu, Zichen Song, Xiaokang
 625 Peng, Ziyang Xu, Yongxin Ni, et al. A comprehensive review of community detection in graphs.
 626 *Neurocomputing*, 600:128169, 2024.

627 Bogdan-Adrian Manghiuc and He Sun. Hierarchical clustering: $o(1)$ -approximation for well-clustered
 628 graphs. *Advances in Neural Information Processing Systems*, 34:9278–9289, 2021.

629

630 Stefan Neumann and Pan Peng. Sublinear-time clustering oracle for signed graphs. In *International
 631 Conference on Machine Learning*, pp. 16496–16528. PMLR, 2022.

632

633 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 634 *Advances in neural information processing systems*, 14, 2001.

635 Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
 636 massively parallel computation model. In *Proceedings of the 2021 ACM-SIAM Symposium on
 637 Discrete Algorithms (SODA)*, pp. 2939–2958. SIAM, 2021.

638

639 Alberto Paccanaro, James A Casbon, and Mansoor AS Saqi. Spectral clustering of protein sequences.
 640 *Nucleic acids research*, 34(5):1571–1580, 2006.

641

642 Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs. In
 643 *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 2953–
 2972. SIAM, 2020.

644

645 Ran Raz. A time-space lower bound for a large class of learning problems. In *2017 IEEE 58th
 646 Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 732–742. IEEE, 2017.

647

648 Sampatti Roy and Yadu Vasudev. Testing properties of distributions in the streaming model. *arXiv
 649 preprint arXiv:2309.03245*, 2023.

648 Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear regression
649 with small error. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of*
650 *Computing*, pp. 890–901, 2019.

651

652 Ranran Shen and Pan Peng. A sublinear-time spectral clustering oracle with improved preprocessing
653 time. *Advances in Neural Information Processing Systems*, 36, 2023.

654

655 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. *IEEE Transactions on*
656 *pattern analysis and machine intelligence*, 22(8):888–905, 2000.

657

658 Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its
659 application to nearly linear time graph partitioning. *SIAM Journal on computing*, 42(1):1–26,
660 2013.

661

662 Yves Van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan Halvorson, Shannon
663 Reid, Matthew Valasik, James Wo, George E Tita, et al. Community detection using spectral
664 clustering on sparse geosocial data. *SIAM Journal on Applied Mathematics*, 73(1):67–83, 2013.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 704 705 Appendix

706 The appendix is organized as follows.
707
708
709
710
711
712
713
714
715
716
717
718
719
720

- 721 • Section A provides a statement on our use of LLMs for English writing assistance.
722
- 723 • Section B provides additional related works omitted from the main text.
724
- 725 • Section C presents supplementary preliminaries.
726
- 727 • Section D shows that how our results for d -regular graphs can be extended to d -bounded
728 graphs.
729
- 730 • Section E presents the proofs of Theorem 3.2, which concerns our dot product oracle that
731 operates under limited memory.
732
- 733 • Section F provides the proof of Item 1 in our main result (Theorem 3.1).
734
- 735 • Section G describes the sublinear spectral clustering oracle related to Item 2 in our main
736 result (Theorem 3.1).
737
- 738 • Section H presents the proof of Theorem 1.2, which gives the upper bound for distinguishing
739 1-cluster vs. 2-cluster problem.
740
- 741 • Section D presents the proof of Theorem 1.3, which gives the lower bound for distinguishing
742 1-cluster vs. 2-cluster problem.
743
- 744 • Section J provides details on the experimental setup and parameter choices.
745

721 A THE USE OF LARGE LANGUAGE MODELS (LLMs) 722

723 During the preparation of this manuscript, we mainly used ChatGPT to assist with English writing.
724 Specifically, the model was employed to improve the fluency of sentences, check grammar, and
725 suggest stylistic refinements. We emphasize that all theoretical contributions, proofs, and experimental
726 results (including code implementation, simulations, and results collection) were developed and
727 verified solely by the authors without the involvement of LLMs. The use of LLMs did not influence
728 the research process, methodology, or the originality of the results presented in this paper.
729

730 B OTHER RELATED WORK 731

732 **Property testing** Besides the above most directly related work on sublinear spectral clustering
733 oracles, several other research directions are also relevant to our study. One line of work is property
734 testing (i.e., *testing graph clusterability*), where the goal is to quickly distinguish whether a graph
735 can be partitioned into k clusters with high inner conductance, or whether it is far from having such
736 clustering. For example, Czumaj et al. (2015) studied testing whether a graph admits a good cluster
737 structure in the adjacency list query model, providing algorithms with sublinear query time. This
738 direction was later advanced by Chiplunkar et al. (2018). While property testing algorithms do not
739 provide explicit cluster assignments, they capture the feasibility of clustering in sublinear resources
740 and thus serve as an important precursor to oracle-based approaches like ours. For example, Czumaj
741 et al. (2015) implicitly yields a sublinear spectral clustering oracle under a $\log n$ conductance gap.
742 This was later extended by Peng (2020), who developed a robust oracle capable of handling noise.
743

744 **Local graph clustering** Another line of related work is *local graph clustering* (Andersen et al.,
745 2006; Spielman & Teng, 2013; Zhu et al., 2013; Gharan & Trevisan, 2014; Andersen et al., 2016).
746 The goal of this category is to identify a cluster associated with a given vertex. In this setting, the
747 algorithm outputs a set of vertices related to the input vertex, and its running time and memory usage
748 are bounded by the size of the output cluster, up to a weak dependence on n . In particular, when the
749 graph contains k clusters and n vertices, the complexity can be as large as $\Omega(n/k)$.
750

751 **Graph problems under limited memory** Recently, there has been a surge of work on understanding
752 learning under limited memory. Graph problems inherently require substantial space and time to
753 compute, and have attracted increasing attention. One line of research focuses on the semi-streaming
754 model where the algorithm is permitted $O(n \cdot \text{poly}(\log n))$ space. Both upper bound algorithms and
755 lower bound results are proposed for various graph problems, including Maximal Independent Set
(Assadi et al., 2024) and Matching (Kapralov, 2013). There is also significant work on the Massively
Parallel Computation model, where machines have sublinear memory to solve the graph problems
756

(Behnezhad et al., 2019; Łącki et al., 2020; Nowicki & Onak, 2021; Assadi et al., 2019; Ghaffari & Nowicki, 2020).

C SUPPLEMENTARY PRELIMINARIES

For a vector $\mathbf{a} = (\mathbf{a}(1), \dots, \mathbf{a}(n))^T$, the p -norm ($p \geq 1$) of \mathbf{a} is defined to be $\|\mathbf{a}\|_p = (\sum_{i=1}^n |\mathbf{a}(i)|^p)^{\frac{1}{p}}$. For any matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$, we use $\|\mathbf{B}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n \mathbf{B}^2(i, j)}$ to denote the Frobenius norm of \mathbf{B} , $\|\mathbf{B}\|_2 = \max_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2=1} \|\mathbf{B}\mathbf{x}\|_2$ to denote the spectral norm of \mathbf{B} and $\mathbf{B}_{[i]}$ to denote the first i columns of \mathbf{B} , $1 \leq i \leq n$.

Definition C.1 (TV distance). For two probability distributions \mathbf{p}, \mathbf{q} over $[n]$, the *total variance distance* (i.e., TV distance) of \mathbf{p}, \mathbf{q} is defined to be

$$d_{\text{TV}}(\mathbf{p}, \mathbf{q}) = \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_1.$$

Fact C.1. For any vector $\mathbf{p} \in \mathbb{R}^n$, we have $\|\mathbf{p}\|_4^2 \leq \|\mathbf{p}\|_2^2$.

Proof. Let $\|\mathbf{p}\|_\infty = \max_{i=1}^n |\mathbf{p}(i)|$. Then, we have

$$\begin{aligned} \|\mathbf{p}\|_4^2 &= \sqrt{\sum_{i=1}^n \mathbf{p}^4(i)} \leq \sqrt{\sum_{i=1}^n \mathbf{p}^2(i) \cdot \|\mathbf{p}\|_\infty^2} \\ &= \sqrt{\|\mathbf{p}\|_\infty^2} \sqrt{\sum_{i=1}^n \mathbf{p}^2(i)} \\ &\leq \sqrt{\sum_{i=1}^n \mathbf{p}^2(i)} \sqrt{\sum_{i=1}^n \mathbf{p}^2(i)} \\ &= \|\mathbf{p}\|_2^2. \end{aligned}$$

□

D FROM d -BOUNDED GRAPHS TO d -REGULAR GRAPHS

Although we state our results for d -regular graphs, they extend naturally to d -bounded graphs, i.e., graphs in which every vertex has degree at most d . The extension is straightforward: for a d -bounded graph $G' = (V, E')$, for every $x \in V$, we can add $d - d_x$ self-loops with weight $\frac{1}{2}$ to x to get a d -regular graph $G = (V, E)$. Note that the lazy random walk on G is equivalent to the random walk on G' , with the random walk satisfying that if the walker is currently at $x \in V$, then in the next step it stays at x with probability $1 - \frac{d_x}{2d}$, or moves to each neighbor of x with probability $\frac{1}{2d_x}$.

E PROOF OF THEOREM 3.2

Theorem E.1 (Restate of Theorem 3.2). Let $k \geq 2$ be an integer. Let $\varepsilon, \varphi \in (0, 1)$ with $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let $\frac{1}{n^5} < \xi < 1$. Let $1 \leq M_{\text{init}}, M_{\text{query}} \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$. Then, with probability at least $1 - 2n^{-100}$, $\text{INITORACLE}(G, k, \xi, M_{\text{init}})$ (Alg. 3) computes a sublinear space matrix Ψ of size $n^{O(\varepsilon/\varphi^2)} \cdot \log^2 n \cdot (\frac{k}{\xi})^{O(1)}$, such that the following property is satisfied:

for every pair of vertices $x, y \in V$, $\text{QUERYDOT}(G, x, y, \xi, \Psi, M_{\text{query}})$ (Alg. 4) computes an output value $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}}$ such that with probability at least $1 - 6n^{-100}$:

$$|\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| \leq \frac{\xi}{n}.$$

810 Moreover, let $T_{\text{init}}, S_{\text{init}}$ be the time and space costs of $\text{INITORACLE}(G, k, \xi, M_{\text{init}})$ (Alg.3), and let
 811 $T_{\text{query}}, S_{\text{query}}$ be those of a single $\text{QUERYDOT}(G, x, y, \xi, \Psi, M_{\text{query}})$ query (Alg.4). Then we have
 812

- 813 • $T_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{\log^4 n}{M_{\text{init}}} \cdot \frac{1}{\varphi^2}$,
- 814 • $S_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{init}} \cdot \log^4 n$
- 815 • $T_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{\log^3 n}{M_{\text{query}}} \cdot \frac{1}{\varphi^2}$,
- 816 • $S_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n$.

817
 818 To prove Theorem 3.2, we begin by analyzing Z_b defined in Alg. 1. The following lemma shows that
 819 Z_b is an unbiased estimator of $\langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_x \rangle$ and quantifies its variance.
 820

821 **Lemma E.1.** *Let $G = (V, E)$ be a graph. Let R, t, M be integers, where $1 \leq M \leq R$. Let $x, y \in V$
 822 be two vertices. Let \mathbf{M} be the random walk transition matrix of G . Let Z_b ($1 \leq b \leq \frac{R}{M}$) be the
 823 random variable defined in $\text{ESTRWDOT}(G, R, t, M, x, y)$ (see line 6 of Alg. 1). Then, we have*

$$824 \mathbb{E}[Z_b] = \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle,$$

$$825 \text{Var}[Z_b] \leq \frac{1}{M^2} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + \frac{1}{M} (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2).$$

826 *Proof.* Run M random walks of length t from x (resp. from y). Let $\mathbf{c}_x(i)$ (resp. $\mathbf{c}_y(i)$) denote
 827 the number of random walks from x (resp. from y) that end at vertex i . It's clear that we have
 828 $\widehat{\mathbf{p}}_x(i) = \frac{\mathbf{c}_x(i)}{M}$ and $\widehat{\mathbf{p}}_y(i) = \frac{\mathbf{c}_y(i)}{M}$ (see lines 4 ~ 5 of Alg. 1). Let $\mathbf{p}_x = \mathbf{M}^t \mathbf{1}_x$ (resp. $\mathbf{p}_y = \mathbf{M}^t \mathbf{1}_y$)
 829 be the probability distribution of a length t random walk starting from x (resp. from y). Note that
 830 $\mathbf{c}_x(i) \sim \text{Binomial}(M, \mathbf{p}_x(i))$ and $\mathbf{c}_y(i) \sim \text{Binomial}(M, \mathbf{p}_y(i))$. According to line 6 of Alg. 1, we
 831 have $Z_b = \langle \widehat{\mathbf{p}}_x, \widehat{\mathbf{p}}_y \rangle$. Therefore, about $\mathbb{E}[Z_b]$, we have
 832

$$\begin{aligned} 833 \mathbb{E}[Z_b] &= \langle \widehat{\mathbf{p}}_x, \widehat{\mathbf{p}}_y \rangle \\ 834 &= \mathbb{E} \left[\sum_{i=1}^n \widehat{\mathbf{p}}_x(i) \widehat{\mathbf{p}}_y(i) \right] \\ 835 &= \frac{1}{M^2} \cdot \sum_{i=1}^n \mathbb{E}[\mathbf{c}_x(i) \mathbf{c}_y(i)] \\ 836 &= \frac{1}{M^2} \cdot \sum_{i=1}^n \mathbb{E}[\mathbf{c}_x(i)] \mathbb{E}[\mathbf{c}_y(i)] \\ 837 &= \frac{1}{M^2} \cdot \sum_{i=1}^n M \mathbf{p}_x(i) M \mathbf{p}_y(i) \\ 838 &= \sum_{i=1}^n \mathbf{p}_x(i) \mathbf{p}_y(i) \\ 839 &= \langle \mathbf{p}_x, \mathbf{p}_y \rangle = \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle. \end{aligned}$$

840 About $\text{Var}[Z_b]$, since $\text{Var}[Z_b] = \mathbb{E}[Z_b^2] - (\mathbb{E}[Z_b])^2$, it suffices to calculate $\mathbb{E}[Z_b^2]$ to get $\text{Var}[Z_b]$.
 841

$$\begin{aligned} 842 \mathbb{E}[Z_b^2] &= \mathbb{E} [\langle \widehat{\mathbf{p}}_x, \widehat{\mathbf{p}}_y \rangle^2] \\ 843 &= \mathbb{E} \left[\left(\sum_{i=1}^n \widehat{\mathbf{p}}_x(i) \widehat{\mathbf{p}}_y(i) \right)^2 \right] \\ 844 &= \mathbb{E} \left[\sum_{i=1}^n \sum_{j=1}^n \widehat{\mathbf{p}}_x(i) \widehat{\mathbf{p}}_y(i) \widehat{\mathbf{p}}_x(j) \widehat{\mathbf{p}}_y(j) \right] \end{aligned}$$

$$\begin{aligned}
&= \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} [\mathbf{c}_x(i) \mathbf{c}_y(i) \mathbf{c}_x(j) \mathbf{c}_y(j)] \\
&= \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} [\mathbf{c}_x(i) \mathbf{c}_x(j)] \cdot \mathbb{E} [\mathbf{c}_y(i) \mathbf{c}_y(j)] \\
&= \frac{1}{M^4} \sum_{i=1}^n \mathbb{E} [\mathbf{c}_x^2(i)] \cdot \mathbb{E} [\mathbf{c}_y^2(i)] + \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \mathbb{E} [\mathbf{c}_x(i) \mathbf{c}_x(j)] \cdot \mathbb{E} [\mathbf{c}_y(i) \mathbf{c}_y(j)].
\end{aligned}$$

For convenience, we use A_1 to denote $\frac{1}{M^4} \sum_{i=1}^n \mathbb{E} [\mathbf{c}_x^2(i)] \cdot \mathbb{E} [\mathbf{c}_y^2(i)]$ and A_2 to denote $\frac{1}{M^4} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \mathbb{E} [\mathbf{c}_x(i) \mathbf{c}_x(j)] \cdot \mathbb{E} [\mathbf{c}_y(i) \mathbf{c}_y(j)]$.

Since $\mathbf{c}_x(i) \sim \text{Binomial}(M, \mathbf{p}_x(i))$, we have $\mathbb{E}[\mathbf{c}_x(i)] = M\mathbf{p}_x(i)$ and $\mathbb{E}[\mathbf{c}_x^2(i)] = \text{Var}[\mathbf{c}_x(i)] + (\mathbb{E}[\mathbf{c}_x(i)])^2 = M\mathbf{p}_x(i)(1 - \mathbf{p}_x(i)) + M^2\mathbf{p}_x^2(i) = M[\mathbf{p}_x(i) + (M-1)\mathbf{p}_x^2(i)]$. Therefore, we have

$$\begin{aligned}
A_1 &= \frac{1}{M^4} \sum_{i=1}^n \mathbb{E} [\mathbf{c}_x^2(i)] \cdot \mathbb{E} [\mathbf{c}_y^2(i)] \\
&= \frac{1}{M^4} \sum_{i=1}^n M [\mathbf{p}_x(i) + (M-1)\mathbf{p}_x^2(i)] \cdot M [\mathbf{p}_y(i) + (M-1)\mathbf{p}_y^2(i)] \\
&= \frac{1}{M^2} \sum_{i=1}^n \mathbf{p}_x(i)\mathbf{p}_y(i) + (M-1) (\mathbf{p}_x\mathbf{p}_y^2(i) + \mathbf{p}_x^2(i)\mathbf{p}_y(i)) + (M-1)^2 \mathbf{p}_x^2(i)\mathbf{p}_y^2(i) \\
&= \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{M-1}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) + \frac{(M-1)^2}{M^2} \langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle,
\end{aligned}$$

where with a slight abuse of notation, we use $\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle$ to denote $\sum_{i=1}^n p_x(i)p_y^2(i)$, and we use $\langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle$ to denote $\sum_{i=1}^n p_x^2(i)p_y^2(i)$.

To calculate A_2 , we need to calculate $\mathbb{E}[\mathbf{c}_x(i)\mathbf{c}_x(j)]$ where $i \neq j$. We define X_a^i as follows:

$$X_a^i = \begin{cases} 1, & \text{The } a\text{-th random walk from } x \text{ ends at } i \\ 0, & \text{otherwise} \end{cases}.$$

So we have $\mathbb{E}[\mathbf{c}_x(i)\mathbf{c}_x(j)] = \mathbb{E} \left[\sum_{a=1}^M X_a^i \sum_{a=1}^M X_a^j \right] = \sum_{a=1}^M \sum_{b=1}^M \mathbb{E}[X_a^i X_b^j]$. For all $a = b$ and $i \neq j$, we have $\mathbb{E}[X_a^i X_b^j = 0]$, since for a single random walk, it cannot ends at i and j the same time. For all $a \neq b$ and $i \neq j$, we have $\mathbb{E}[X_a^i X_b^j] = \mathbf{p}_x(i)\mathbf{p}_x(j)$. So we can get $\mathbb{E}[\mathbf{c}_x(i)\mathbf{c}_x(j)] = M(M-1)\mathbf{p}_x(i)\mathbf{p}_x(j)$. By the same augment, we get that for all $i \neq j$, $\mathbb{E}[\mathbf{c}_y(i)\mathbf{c}_y(j)] = M(M-1)\mathbf{p}_y(i)\mathbf{p}_y(j)$. Therefore,

$$\begin{aligned}
A_2 &= \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \mathbb{E} [\mathbf{c}_x(i) \mathbf{c}_x(j)] \cdot \mathbb{E} [\mathbf{c}_y(i) \mathbf{c}_y(j)] \\
&= \frac{1}{M^4} \sum_{i=1}^n \sum_{j=1, j \neq i}^n M(M-1)\mathbf{p}_x(i)\mathbf{p}_x(j) \cdot M(M-1)\mathbf{p}_y(i)\mathbf{p}_y(j) \\
&= \frac{(M-1)^2}{M^2} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \mathbf{p}_x(i)\mathbf{p}_y(i) \cdot \mathbf{p}_x(j)\mathbf{p}_y(j) \\
&= \frac{(M-1)^2}{M^2} \left(\sum_{i=1}^n \sum_{j=1}^n \mathbf{p}_x(i)\mathbf{p}_y(i) \cdot \mathbf{p}_x(j)\mathbf{p}_y(j) - \sum_{i=1}^n \mathbf{p}_x^2(i)\mathbf{p}_y^2(i) \right) \\
&= \frac{(M-1)^2}{M^2} \left(\sum_{i=1}^n \mathbf{p}_x(i)\mathbf{p}_y(i) \sum_{j=1}^n \mathbf{p}_x(j)\mathbf{p}_y(j) - \langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle \right)
\end{aligned}$$

$$= \frac{(M-1)^2}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y \rangle^2 - \langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle).$$

Put them together, we get

$$\begin{aligned} \mathbb{E}[Z_b^2] &= A_1 + A_2 \\ &= \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{M-1}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) + \frac{(M-1)^2}{M^2} \langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle \\ &\quad + \frac{(M-1)^2}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y \rangle^2 - \langle \mathbf{p}_x^2, \mathbf{p}_y^2 \rangle) \\ &= \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{M-1}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) + \frac{(M-1)^2}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle^2. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \text{Var}[Z_b] &= \mathbb{E}[Z_b^2] - (\mathbb{E}[Z_b])^2 \\ &= \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{M-1}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) + \frac{(M-1)^2}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle^2 - \langle \mathbf{p}_x, \mathbf{p}_y \rangle^2 \\ &= \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{M-1}{M^2} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) + \frac{1-2M}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle^2 \\ &\leq \frac{1}{M^2} \langle \mathbf{p}_x, \mathbf{p}_y \rangle + \frac{1}{M} (\langle \mathbf{p}_x, \mathbf{p}_y^2 \rangle + \langle \mathbf{p}_x^2, \mathbf{p}_y \rangle) \\ &= \frac{1}{M^2} \sum_{i=1}^n \mathbf{p}_x(i) \mathbf{p}_y(i) + \frac{1}{M} \left(\sum_{i=1}^n \mathbf{p}_x(i) \mathbf{p}_y^2(i) + \sum_{i=1}^n \mathbf{p}_x^2(i) \mathbf{p}_y(i) \right) \\ &\leq \frac{1}{M^2} \|\mathbf{p}_x\|_2 \cdot \|\mathbf{p}_y\|_2 + \frac{1}{M} (\|\mathbf{p}_x\|_2 \cdot \|\mathbf{p}_y\|_4^2 + \|\mathbf{p}_x\|_4^2 \cdot \|\mathbf{p}_y\|_2) \\ &\leq \frac{1}{M^2} \|\mathbf{p}_x\|_2 \cdot \|\mathbf{p}_y\|_2 + \frac{1}{M} (\|\mathbf{p}_x\|_2 \cdot \|\mathbf{p}_y\|_2^2 + \|\mathbf{p}_x\|_2^2 \cdot \|\mathbf{p}_y\|_2), \end{aligned}$$

where the second-to-last inequality uses the Cauchy–Schwarz inequality and the last one follows from Fact C.1. \square

Building on Lemma E.1, we now consider the estimator Z obtained by averaging $B = R/M$ independent copies of Z_b . The following lemma shows that Z remains an unbiased estimator with variance reduced by a factor of $B = R/M$.

Lemma E.2. *Let $G = (V, E)$ be a graph. Let R, t, M be integers, where $1 \leq M \leq R$. Let $x, y \in V$ be two vertices. Let \mathbf{M} be the random walk transition matrix of G . Let Z be the output of ESTRWDOT(G, R, t, M, x, y) (Alg. 1). Then, we have*

$$\mathbb{E}[Z] = \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle,$$

$$\text{Var}[Z] \leq \frac{1}{R} \left[\frac{1}{M} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2) \right].$$

Proof. According to Alg. 1, we know that $Z = \frac{1}{B} \sum_{b=1}^B Z_b$, where $B = \frac{R}{M}$. Therefore, using Lemma E.1, we have $\mathbb{E}[Z] = \frac{1}{B} \sum_{b=1}^B \mathbb{E}[Z_b] = \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle$ and

$$\begin{aligned} \text{Var}[Z] &= \frac{1}{B^2} \sum_{b=1}^B \text{Var}[Z_b] \\ &= \frac{1}{B} \text{Var}[Z_b] \\ &= \frac{M}{R} \text{Var}[Z_b] \end{aligned}$$

$$\begin{aligned}
&\leq \frac{M}{R} \left[\frac{1}{M^2} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + \frac{1}{M} (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2) \right] \\
&= \frac{1}{R} \left[\frac{1}{M} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2) \right].
\end{aligned}$$

□

Lemma 3.1 shows that, with suitable input parameters, $\text{ESTRWDOT}(G, R, t, M, x, y)$ (Alg. 1) approximates the dot product of the random walk distributions from any two vertices $x, y \in V$ within an error of σ_{err} .

Lemma E.3 (Restatement of Lemma 3.1). *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . Let Z be the output of $\text{ESTRWDOT}(G, R, t, M, x, y)$ (Alg. 1). Let $\sigma_{\text{err}} > 0$. Let $c > 1$ be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x, y \in V$, if $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k})$, then with probability at least 0.99, we have*

$$|Z - \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle| \leq \sigma_{\text{err}}.$$

Moreover, $\text{ESTRWDOT}(G, R, t, M, x, y)$ runs in $O(Rt)$ time and uses $O(M \cdot \log n)$ bits of space.

Remark E.1. The success probability of Lemma 3.1 can be boosted up to $1 - n^{-100}$ using median trick, i.e., by taking the median of $O(\log n)$ independent runs.

To prove Lemma 3.1, we need the following lemma in Gluch et al. (2021).

Lemma E.4 (Lemma 22 in Gluch et al. (2021)). *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x \in V$ we have*

$$\|\mathbf{M}^t \mathbf{1}_x\|_2 \leq O(k \cdot n^{-1/2+(20\varepsilon/\varphi^2)}).$$

Now we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. Correctness. By Lemma E.2 and Lemma E.4, we can get that

$$\begin{aligned}
\text{Var}[Z] &\leq \frac{1}{R} \left[\frac{1}{M} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2) \right] \\
&= \frac{1}{R} \left(\frac{O(k^2 \cdot n^{-1+40\varepsilon/\varphi^2})}{M} + O(k^3 \cdot n^{-3/2+60\varepsilon/\varphi^2}) \right).
\end{aligned}$$

Using Chebyshev's inequality, we have

$$\begin{aligned}
\Pr[|Z - \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle| \geq \sigma_{\text{err}}] &= \Pr[|Z - \mathbb{E}[Z]| \geq \sigma_{\text{err}}] \\
&\leq \frac{\text{Var}[Z]}{\sigma_{\text{err}}^2} \\
&\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \left(\frac{O(k^2 \cdot n^{-1+40\varepsilon/\varphi^2})}{M} + O(k^3 \cdot n^{-3/2+60\varepsilon/\varphi^2}) \right) \\
&\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \cdot O\left(\frac{k^2 \cdot n^{-1+40\varepsilon/\varphi^2}}{M}\right) \\
&\leq \frac{1}{100},
\end{aligned}$$

1026 where the second-to-last inequality holds by $M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$. And the last inequality holds by
 1027 our choice of
 1028

$$1029 \quad R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M},$$

$$1030$$

1031 where c is a large enough constant that cancels the constant hidden in $O\left(\frac{k^2 \cdot n^{-1+40\varepsilon/\varphi^2}}{M}\right)$.
 1032

1033 **Runtime and space.** Algorithm ESTRWDOT(G, R, t, M, x, y) (Alg. 1) performs $B = \frac{R}{M}$ batches
 1034 (i.e., $B = \frac{R}{M}$ iterations of the for-loop). In each batch, it runs M random walks of length t ,
 1035 which requires $O(Mt)$ time and $O(M)$ words of space to store the $O(M)$ endpoints of the walks.
 1036 Computing the dot product of two probability distributions takes $O(M)$ time, since each distribution
 1037 has at most M nonzero entries. Therefore, the runtime and space per batch are $O(Mt+M) = O(Mt)$
 1038 time and $O(M)$ words, respectively. Moreover, the space used within each batch can be reused across
 1039 batches. Consequently, the overall runtime and space complexity of ESTRWDOT(G, R, t, M, x, y)
 1040 (Alg. 1) are $B \cdot O(Mt) = \frac{R}{M} \cdot O(Mt) = O(Rt)$ and $O(M)$ words (i.e., $O(M \cdot \log n)$ bits of space,
 1041 since each endpoint can be stored in $\log n$ bits), respectively. \square
 1042

1043 Lemma E.5 states that, under appropriate input parameters, the output \mathcal{G} of our algorithm EST-
 1044 COLLIPIRB (G, R, t, M, I_S) (Alg. 2) is close to $(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})$ in spectral norm, where
 1045 $(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})$ is the Gram matrix of the random walk distributions from vertices in the sam-
 1046 ple set.

1047 **Lemma E.5.** *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -
 1048 clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . Let $I_S = \{s_1, \dots, s_s\}$ be
 1049 a multiset of s indices chosen from $\{1, \dots, n\}$. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column
 1050 equals $\mathbf{1}_{s_i}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPIRB (G, R, t, M, I_S) (Alg. 2). Let $\sigma_{\text{err}} > 0$.
 1051 Let $c > 1$ be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq$
 1052 $O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then with probability at least $1 - n^{-100}$, we have*

$$1053 \quad \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}.$$

$$1054$$

1055 Moreover, ESTCOLLIPIRB (G, R, t, M, I_S) runs in $O(Rt \cdot \log n \cdot s^2)$ time and uses $O(M \cdot \log^2 n \cdot s^2)$
 1056 bits of space.
 1057

1058 **Proof. Correctness.** Note that in line 5 of Alg. 2, we get $\mathcal{G}_l(i, j) := \text{ESTRWDOT}(G, R, t, M, s_i, s_j)$
 1059 (Alg. 1). Since $t \geq \frac{20 \log n}{\varphi^2}$, $R \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then
 1060 by Lemma 3.1, with probability at least 0.99, for all $i, j \in [s]$, we have

$$1061 \quad |\mathcal{G}_l(i, j) - \langle \mathbf{M}^t \mathbf{1}_{s_i}, \mathbf{M}^t \mathbf{1}_{s_j} \rangle| = |\mathcal{G}_l(i, j) - (\mathbf{M}^t \mathbf{1}_{s_i})^T (\mathbf{M}^t \mathbf{1}_{s_j})| \leq \sigma_{\text{err}}.$$

$$1062$$

1063 Note that in line 6 of Alg. 2, we define \mathcal{G} as a matrix obtained by taking the entrywises median of
 1064 \mathcal{G}_l 's over $O(\log n)$ runs. Thus with probability at least $1 - n^{-100}$ (see Remark E.1), for all $i, j \in [s]$, we have
 1065

$$1066 \quad |\mathcal{G}(i, j) - (\mathbf{M}^t \mathbf{1}_{s_i})^T (\mathbf{M}^t \mathbf{1}_{s_j})| \leq \sigma_{\text{err}},$$

$$1067$$

1068 which implies
 1069

$$1070 \quad \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_F \leq s \cdot \sigma_{\text{err}}.$$

$$1071$$

1072 Moreover, we have
 1073

$$1074 \quad \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_F \leq s \cdot \sigma_{\text{err}}.$$

$$1075$$

1076 **Runtime and space.** In Alg. 2, Alg. 1 is called $\log n \cdot s^2$ times. Since the runtime and space of Alg. 1
 1077 are $O(Rt)$ and $O(M \log n)$ bits, respectively, the runtime and space of Alg. 2 are $O(Rt \cdot \log n \cdot s^2)$
 1078 and $O(M \cdot \log^2 n \cdot s^2)$ bits, respectively. \square
 1079

1080 Recall that we use $(\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{S}) (\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T) (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{1}_y)$ to estimate
1081 $\langle \mathbf{f}_x, \mathbf{f}_y \rangle$. Lemma E.6 states that under appropriate parameters, Alg. 3 outputs a matrix
1082 $\Psi = \frac{n}{s} \cdot \widehat{W}_{[k]} \widehat{\Sigma}_{[k]}^{-2} \widehat{W}_{[k]}^T$ which, with high probability, is spectrally close to $\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T$. The
1083 proof of Lemma E.6 is analogous to that of Lemma 24 in Gluch et al. (2021). Nevertheless, for
1084 completeness, we provide a concise proof here.
1085

1086 **Lemma E.6.** *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -
1087 clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . Let $I_S = \{s_1, \dots, s_s\}$
1088 be a multiset of s indices chosen independently and uniformly at random from $V = \{1, \dots, n\}$.
1089 Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of
1090 ESTCOLLIPROB (G, R, t, M, I_S) (Alg. 2). Let $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$
1091 where $\widetilde{U} \in \mathbb{R}^{n \times n}$, $\widetilde{\Sigma} \in \mathbb{R}^{n \times n}$, $\widetilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{n}{s} \cdot \mathcal{G} = \widehat{W} \widehat{\Sigma} \widehat{W}^T$ be an eigendecomposition of $\frac{n}{s} \cdot \mathcal{G}$.
1092 Let $\frac{1}{n^8} < \xi < 1$. Let $c_1 > 1$ and $c_2 > 1$ be two large enough constants. For any $t \geq \frac{20 \log n}{\varphi^2}$, if
1093 $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, $s \geq c_1 \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, $R \geq \frac{c_2 \cdot k^6 \cdot n^{1+760\varepsilon/\varphi^2}}{M \cdot \xi^2}$ and $1 \leq M \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then
1094 with probability at least $1 - 2 \cdot n^{-100}$, matrices $\widehat{\Sigma}_{[k]}^{-2}$ and $\widetilde{\Sigma}_{[k]}^{-4}$ exist and we have
1095*

$$\|\widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T - \widehat{W}_{[k]} \widehat{\Sigma}_{[k]}^{-2} \widehat{W}_{[k]}^T\|_2 < \xi.$$

1096 Equipped with Lemma E.5, to prove Lemma E.6, we also need the following lemmas.
1097

1098 **Lemma E.7** (Lemma 18 in Gluch et al. (2021)). *Let $\widetilde{A}, \widehat{A} \in \mathbb{R}^{n \times n}$ be symmetric matrices with
1099 eigendecomposition $\widetilde{A} = \widetilde{Y} \widetilde{\Gamma} \widetilde{Y}^T$ and $\widehat{A} = \widehat{Y} \widehat{\Gamma} \widehat{Y}^T$. Let the eigenvalues of \widetilde{A} be $1 \geq \gamma_1 \geq \dots \geq$
1100 $\gamma_n \geq 0$. Suppose that $\|\widetilde{A} - \widehat{A}\|_2 \leq \frac{\gamma_k}{100}$ and $\gamma_{k+1} < \frac{\gamma_k}{4}$. Then we have*

$$\|\widetilde{Y}_{[k]} \widetilde{\Gamma}_{[k]}^{-1} \widetilde{Y}_{[k]}^T - \widehat{Y}_{[k]} \widehat{\Gamma}_{[k]}^{-1} \widehat{Y}_{[k]}^T\|_2 \leq \frac{16\|\widetilde{A} - \widehat{A}\|_2 + 4\gamma_{k+1}}{\gamma_k^2}.$$

1101 **Lemma E.8** (Lemma 28 in Gluch et al. (2021)). *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let
1102 $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition
1103 matrix of G . Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen independently and uniformly at
1104 random from $V = \{1, \dots, n\}$. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Let $c > 1$
1105 be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$ and $s \geq c \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, then
1106 with probability at least $1 - n^{-100}$, we have*

- 1107 • $v_k\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T\right) = v_k\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\right) \geq \frac{n^{-80\varepsilon/\varphi^2}}{2}$,
- 1108 • $v_{k+1}\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T\right) \leq n^{-9}$.

1109 **Lemma E.9** (Weyl's Inequality). *Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Let $\alpha_1, \dots, \alpha_n$ and
1110 β_1, \dots, β_n be the eigenvalues of A and B respectively. Then for any $i \in [n]$, we have*

$$|\alpha_i - \beta_i| \leq \|A - B\|_2.$$

1111 Now we are ready to prove Lemma E.6.
1112

1113 *Proof of Lemma E.6.* Let $c_3 > 1$ be a large enough constant and let $\sigma_{\text{err}} = \frac{\xi \cdot n^{-1-360\varepsilon/\varphi^2}}{c_3 \cdot k^2}$. Let c be a
1114 constant from Lemma E.5. By the assumption of the lemma for a large enough constant $c_2 > 1$, we
1115 have

$$1116 R \geq \frac{c_2 \cdot k^6 \cdot n^{1+760\varepsilon/\varphi^2}}{M \cdot \xi^2} \geq \frac{c \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 M}.$$

1117 Thus we can apply Lemma E.5. Hence, with probability at least $1 - n^{-100}$, we have

$$1118 \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}.$$

1119 Let $\widetilde{A} = \frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}) = \widetilde{W} \widetilde{\Sigma}^2 \widetilde{W}^T$ and $\widehat{A} = \frac{n}{s} \cdot \mathcal{G}$. Thus, we have $\widetilde{A}^2 =$
1120 $(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 = \widetilde{W} \widetilde{\Sigma}^4 \widetilde{W}^T$ and $\widehat{A}^2 = (\frac{n}{s} \cdot \mathcal{G})^2 = \widehat{W} \widehat{\Sigma}^2 \widehat{W}^T$. To use Lemma E.7, we

1134 have to bound $\|\tilde{A}^2 - \hat{A}^2\|_2 = \left(\frac{n}{s}\right)^2 \|((\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 - \mathcal{G}^2\|_2$. Using the triangle inequality and
 1135 sub-multiplicativity of spectral norm and the above $\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}$ bound, we
 1136 can get that
 1137

$$1138 \quad \|((\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 - \mathcal{G}^2\|_2 \leq (s \cdot \sigma_{\text{err}})^2 + 2 \cdot s \cdot \sigma_{\text{err}} \|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2.$$

1140 Note that $\|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq \|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_F = \sqrt{\sum_{i=1}^s \sum_{j=1}^s ((\mathbf{M}^t \mathbf{1}_{s_i})^T (\mathbf{M}^t \mathbf{1}_{s_j}))^2}$,
 1141 by Cauchy Schwarz inequality and Lemma E.4, we can get that $\|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq O(s \cdot k^2 \cdot$
 1142 $n^{-1+40\varepsilon/\varphi^2})$. Put them together and by the choice of $\sigma_{\text{err}} = \frac{\xi \cdot n^{-1-360\varepsilon/\varphi^2}}{c_3 \cdot k^2}$, we have that
 1143

$$1145 \quad \|\tilde{A}^2 - \hat{A}^2\|_2 \leq O\left(\frac{\xi \cdot n^{-320\varepsilon/\varphi^2}}{c_3}\right).$$

1148 Moreover, let c_1 be the constant from Lemma E.8, since $s \geq c_1 \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, by Lemma E.8,
 1149 with probability at least $1 - n^{-100}$, we have
 1150

$$1151 \quad v_k(\tilde{A}^2) = v_k\left(\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\right)^2\right) \geq \left(\frac{n^{-80\varepsilon/\varphi^2}}{2}\right)^2 = \frac{n^{-160\varepsilon/\varphi^2}}{4},$$

1154 and

$$1155 \quad v_{k+1}(\tilde{A}^2) = v_{k+1}\left(\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\right)^2\right) \leq (n^{-9})^2 = n^{-18}.$$

1158 By Weyl's inequality, we have that $v_k(\hat{A}^2) \geq v_k(\tilde{A}^2) - \|\tilde{A}^2 - \hat{A}^2\|_2 \geq \frac{n^{-160\varepsilon/\varphi^2}}{4} - O\left(\frac{\xi \cdot n^{-320\varepsilon/\varphi^2}}{c_3}\right) >$
 1159 0, so $\hat{\Sigma}_{[k]}^{-2}$ exists. Moreover, since \tilde{A}^2, \hat{A}^2 are symmetric matrices, $\|\tilde{A}^2 - \hat{A}^2\|_2 \leq \frac{v_k(\tilde{A}^2)}{100}$ and
 1160 $v_{k+1}(\tilde{A}^2) < \frac{v_k(\tilde{A}^2)}{4}$, by Lemma E.7, we have that
 1161

$$1163 \quad \|\tilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \tilde{W}_{[k]}^T - \hat{W}_{[k]} \hat{\Sigma}_{[k]}^{-2} \hat{W}_{[k]}^T\|_2 \leq \frac{16\|\tilde{A}^2 - \hat{A}^2\|_2 + 4v_{k+1}(\tilde{A}^2)}{v_k(\tilde{A}^2)^2} \\ 1164 \quad \leq \frac{O\left(\frac{\xi \cdot n^{-320\varepsilon/\varphi^2}}{c_3}\right) + 4n^{-18}}{\frac{n^{-320\varepsilon/\varphi^2}}{16}} \\ 1165 \quad \leq O\left(\frac{\xi}{c_3}\right) + 64n^{-17} \\ 1166 \quad \leq \xi. \\ 1167 \quad \frac{1}{n^8} \leq \xi$$

1174 Moreover, both Lemma E.5 and Lemma E.8 fail with probability at most n^{-100} , by union bound, we
 1175 can get that the above inequality holds with probability at least $1 - 2n^{-100}$. \square
 1176

1177 The following lemma shows that the output value $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}}$ of Alg. 4 is close to
 1178 $(\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \tilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \tilde{W}_{[k]}^T\right) (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{1}_y)$. The proof follows from the proof of
 1179 Lemma 29 in Gluch et al. (2021). Nevertheless, for completeness, we provide a concise proof
 1180 here.
 1181

1182 **Lemma E.10.** *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let $G = (V, E)$ be a d -regular and
 1183 $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition matrix of G . Let $I_S = \{s_1, \dots, s_s\}$
 1184 be a multiset of s indices chosen independently and uniformly at random from $V = \{1, \dots, n\}$.
 1185 Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \tilde{U} \tilde{\Sigma} \tilde{W}^T$ be an
 1186 SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$ where $\tilde{U} \in \mathbb{R}^{n \times n}$, $\tilde{\Sigma} \in \mathbb{R}^{n \times n}$, $\tilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{1}{n^6} < \xi < 1$ and $1 \leq$
 1187 $M_{\text{init}} \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$. Let $t \geq \frac{20 \log n}{\varphi^2}$. Let $c > 1$ be a large enough constant. Let $s \geq$*

1188 $c \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$. Let Ψ denote the matrix constructed by INITORACLE $(G, k, \xi, M_{\text{init}})$ (Alg. 3).

1190 Let $x, y \in V$. Let $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} \in \mathbb{R}$ denote the value returned by QUERYDOT $(G, x, y, \xi, \Psi, M_{\text{query}})$ (Alg. 4). If $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, Alg. 3 succeeds and $1 \leq M_{\text{query}} \leq O\left(\frac{n^{1/2-20\varepsilon/\varphi^2}}{k}\right)$, then with probability at least $1 - 5n^{-100}$ matrix $\tilde{\Sigma}_{[k]}^{-4}$ exists and we have

$$1195 \quad \left| \langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - (\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{1}_y) \right| < \frac{\xi}{n}.$$

1198 *Proof.* Note that in line 8 of Alg. 4, $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}}$ is defined as $\boldsymbol{\alpha}_x^T \Psi \boldsymbol{\alpha}_y$, where in line 8 of Alg. 3, $\Psi \in \mathbb{R}^{s \times s}$ is defined to be $\Psi = \frac{n}{s} \cdot \widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-2} \widetilde{W}_{[k]}^T$ and $\boldsymbol{\alpha}_x, \boldsymbol{\alpha}_y \in \mathbb{R}^s$ are vectors obtained by taking entrywise median over all $O(\log n)$ runs (see lines 3 ~ 7 of Alg. 4).

1201 For any vertex $x \in V$, we use \mathbf{p}_x to denote $\mathbf{p}_x = \mathbf{M}^t \mathbf{1}_x$. We then define

$$1203 \quad \mathbf{a}_x = \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S}), A = \frac{n}{s} \cdot \widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T, \mathbf{a}_y = (\mathbf{M}^t \mathbf{S})^T \mathbf{p}_x,$$

$$1205 \quad \mathbf{e}_x = \boldsymbol{\alpha}_x^T - \mathbf{a}_x, \quad E = \Psi - A, \quad \mathbf{e}_y = \boldsymbol{\alpha}_y - \mathbf{a}_y.$$

1206 Then by triangle inequality, we have

$$1208 \quad \left| \boldsymbol{\alpha}^T \Psi \boldsymbol{\alpha}_y - \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T \mathbf{p}_y \right|$$

$$1209 = |(\mathbf{a}_x + \mathbf{e}_x)(A + E)(\mathbf{a}_y + \mathbf{e}_y) - \mathbf{a}_x A \mathbf{a}_y|$$

$$1210 \leq \|\mathbf{e}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2$$

$$1211 + \|\mathbf{a}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2.$$

1213 In the following, we bound $\|\mathbf{a}_x\|_2, \|\mathbf{a}_y\|_2, \|E\|_2, \|A\|_2, \|\mathbf{e}_x\|_2$ and $\|\mathbf{e}_y\|_2$.

1215 Let $c' > 1$ be a constant and let $\xi' = \frac{\xi}{c' \cdot k^4 \cdot n^{80\varepsilon/\varphi^2}}$. Thus for large enough constant c , we have
1216 $s \geq c_1 \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$ and $R_{\text{init}} = \Theta\left(\frac{n^{1+920\varepsilon/\varphi^2}}{M_{\text{init}}} \cdot \frac{k^{14}}{\xi'^2}\right) \geq \frac{c_2 k^6 \cdot n^{1+760\varepsilon/\varphi^2}}{M_{\text{init}} \cdot \xi'^2}$ as in line 2 of Alg.
1217 3, hence, by Lemma E.6 applied with ξ' we have that with probability at least $1 - 2n^{-100}$, $\tilde{\Sigma}_{[k]}^{-2}$ and
1218 $\tilde{\Sigma}_{[k]}^{-4}$ exist and we have

$$1221 \quad \|E\|_2 = \frac{n}{s} \cdot \|\widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-2} \widetilde{W}_{[k]}^T - \widetilde{W}_{[k]} \tilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T\|_2 < \frac{n}{s} \cdot \xi' = \frac{\xi \cdot n}{c' \cdot k^4 \cdot n^{80\varepsilon/\varphi^2} \cdot s}. \quad (1)$$

1223 Moreover, according to the proof of Lemma 29 in Gluch et al. (2021), we have that, with probability
1224 at least $1 - n^{-100}$,

$$1226 \quad \|A\|_2 \leq \frac{4 \cdot n^{1+160\varepsilon/\varphi^2}}{s}. \quad (2)$$

1228 And with probability 1, we have

$$1230 \quad \|\mathbf{a}_x\|_2 \leq O(\sqrt{s} \cdot k^2 \cdot n^{-1+40\varepsilon/\varphi^2}) \quad (3)$$

1231 and

$$1233 \quad \|\mathbf{a}_y\|_2 \leq O(\sqrt{s} \cdot k^2 \cdot n^{-1+40\varepsilon/\varphi^2}). \quad (4)$$

1234 Now we need to bound \mathbf{e}_x and \mathbf{e}_y . Recall that $\mathbf{e}_x = \boldsymbol{\alpha}_x^T - \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S})$, where $\boldsymbol{\alpha}_x \in \mathbb{R}^s$ is obtained
1235 by taking entrywise median over all \mathbf{x}_l 's. Note that in line 5 of Alg. 4, $\mathbf{x}_l(i)$ is the output of
1236 ESTRWDOT $(G, R_{\text{query}}, t, M_{\text{query}}, x, s_i)$ (Alg. 1). Let c_3 be a constant in front of R in Lemma 3.1.
1237 Let $\sigma_{\text{err}} = \frac{\xi}{c' \cdot k^2 \cdot n^{1+200\varepsilon/\varphi^2}}$. Thus by our choice of $R_{\text{query}} = \Theta\left(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\text{query}}} \cdot \frac{k^6}{\xi^2}\right)$ in line 2 of Alg. 4,
1238 the prerequisites of Lemma 3.1 are satisfied:

$$1240 \quad R_{\text{query}} = \Theta\left(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\text{query}}} \cdot \frac{k^6}{\xi^2}\right) \geq \frac{c_3 \cdot k^2 n^{-1+40\varepsilon/\varphi^2}}{\sigma_{\text{err}}^2 \cdot M_{\text{query}}}.$$

1242 Thus we can apply Lemma 3.1. Hence, for any $1 \leq i \leq s$ with probability at least 0.99, we have
 1243

$$1244 |\mathbf{x}_l(i) - \mathbf{p}_x^T \mathbf{p}_{s_i}| \leq \sigma_{\text{err}}. \\ 1245$$

1246 Since we are running $O(\log n)$ rounds to compute \mathbf{x}_l 's and $\boldsymbol{\alpha}_x$ is obtained by taking entrywise
 1247 median, we can get that with probability at least $1 - n^{-100}$ for all $z \in I_S$ (see Remark E.1), we have
 1248

$$1249 |\boldsymbol{\alpha}_x(z) - \mathbf{p}_x^T \mathbf{p}_z| \leq \sigma_{\text{err}}. \\ 1250$$

1251 Therefore, with probability at least $1 - n^{-100}$, we can get
 1252

$$1253 \|\mathbf{e}_x\|_2 = \|\boldsymbol{\alpha}_x^T - \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S})\|_2 \leq \sqrt{s} \cdot \sigma_{\text{err}} = \frac{\sqrt{s} \cdot \xi}{c' \cdot k^2 \cdot n^{1+200\varepsilon/\varphi^2}}. \\ 1254$$

1255 Using the same analysis, with probability at least $1 - n^{-100}$, we can get that
 1256

$$1257 \|\mathbf{e}_y\|_2 = \|\boldsymbol{\alpha}_y - (\mathbf{M}^t \mathbf{S})^T \mathbf{p}_y\|_2 \leq \sqrt{s} \cdot \sigma_{\text{err}} = \frac{\sqrt{s} \cdot \xi}{c' \cdot k^2 \cdot n^{1+200\varepsilon/\varphi^2}}. \\ 1258$$

1259 Putting (1),(2),(3),(4),(5),(6) together and for large enough n , we can get
 1260

$$1261 \left| \boldsymbol{\alpha}^T \Psi \boldsymbol{\alpha}_y - \mathbf{p}_x^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T \mathbf{p}_y \right| \\ 1262 \leq \|\mathbf{e}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{e}_y\|_2 \\ 1263 + \|\mathbf{a}_x\|_2 \|A\|_2 \|\mathbf{e}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{e}_x\|_2 \|A\|_2 \|\mathbf{a}_y\|_2 + \|\mathbf{a}_x\|_2 \|E\|_2 \|\mathbf{a}_y\|_2 \\ 1264 \leq O\left(\frac{\xi}{c' \cdot n}\right) \\ 1265 \leq \frac{\xi}{n}. \\ 1266$$

1269 The last inequality holds by setting c' be a large enough constant to cancel the hidden constant of
 1270 $O(\frac{\xi}{c' \cdot n})$.
 1271

1272 Using union bound, if Alg. 3 succeeds, then the above inequality holds with probability at least
 1273 $1 - 2n^{-100} - n^{-100} - 2n^{-100} = 1 - 5n^{-100}$. \square
 1274

1275 Having Lemma 3.1 and Lemma E.10, to prove Theorem 3.2, we also need the following lemma.
 1276

1277 **Lemma E.11** (Lemma 19 in Gluch et al. (2021)). *Let $k \geq 2$ be an integer and $\varphi, \varepsilon \in (0, 1)$. Let
 1278 $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph. Let \mathbf{M} be the random walk transition
 1279 matrix of G . Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen independently and uniformly
 1280 at random from $V = \{1, \dots, n\}$. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Let
 1281 $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$ where $\widetilde{U} \in \mathbb{R}^{n \times n}$, $\widetilde{\Sigma} \in \mathbb{R}^{n \times n}$, $\widetilde{W} \in \mathbb{R}^{s \times n}$. Let
 1282 $\frac{1}{n^6} < \xi < 1$ and $t \geq \frac{20 \log n}{\varphi^2}$. Let $c > 1$ be a large enough constant. Let $s \geq c \cdot n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8 / \xi^2$.
 1283 If $\frac{\varepsilon}{\varphi^2} \leq \frac{1}{10^5}$, then with probability at least $1 - n^{-100}$, matrix $\widetilde{\Sigma}_{[k]}^{-4}$ exists and we have
 1284*

$$1285 \left| \mathbf{1}_x^T \mathbf{U}_{[k]} \mathbf{U}_{[k]}^T \mathbf{1}_y - (\mathbf{M} \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{W}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{W}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T (\mathbf{M} \mathbf{1}_y) \right| \leq \frac{\xi}{n}. \\ 1286$$

1287 Now we are ready to prove Theorem 3.2.
 1288

1289 *Proof of Theorem 3.2. Correctness.* Equipped with Lemma E.10, based on the correctness proof of
 1290 Theorem 2 in Gluch et al. (2021), we can directly obtain the correctness.
 1291

1292 Note that in line 3 of Alg. 3, we set $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8 / \xi^2)$, and in line 4 of Alg. 3, we sample
 1293 s indices independently and uniformly at random from $V = \{1, \dots, n\}$ to get $I_S = \{s_1, \dots, s_s\}$.
 1294 Recall that \mathbf{M} is the random walk transition matrix of G . Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose
 1295 i -th column is $\mathbf{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \widetilde{U} \widetilde{\Sigma} \widetilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$ where $\widetilde{U} \in \mathbb{R}^{n \times n}$, $\widetilde{\Sigma} \in \mathbb{R}^{n \times n}$, $\widetilde{W} \in \mathbb{R}^{s \times n}$.
 1296

1296 Recall that for any vertex $x \in V$, we define $\mathbf{f}_x = \mathbf{U}_{[k]}^T \mathbf{1}_x$ (see Definition 2.1), thus we have
1297 $\langle \mathbf{f}_x, \mathbf{f}_y \rangle = \mathbf{f}_x^T \mathbf{f}_y = (\mathbf{U}_{[k]}^T \mathbf{1}_x)^T \mathbf{U}_{[k]}^T \mathbf{1}_y = \mathbf{1}_x^T \mathbf{U}_{[k]} \mathbf{U}_{[k]}^T \mathbf{1}_y$. For convenience, let us denote $\mathbf{B} =$
1298 $(\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{S}) \left(\frac{n}{s} \cdot \widetilde{\mathbf{W}}_{[k]} \widetilde{\Sigma}_{[k]}^{-4} \widetilde{\mathbf{W}}_{[k]}^T \right) (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{1}_y)$. By triangle inequality, we have
1299

$$\begin{aligned} 1301 |\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| &= |\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \mathbf{B} + \mathbf{B} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| \\ 1302 &\leq |\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \mathbf{B}| + |\mathbf{B} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| \\ 1303 &= |\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \mathbf{B}| + |\mathbf{B} - \langle \mathbf{1}_x^T \mathbf{U}_{[k]} \mathbf{U}_{[k]}^T \mathbf{1}_y \rangle|. \\ 1304 \end{aligned}$$

1305 Let $\xi' = \frac{\xi}{2}$. Let c' be a constant in front of s from Lemma E.10. Since $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2) \geq c' \cdot n^{240\varepsilon/\varphi^2} \cdot \log n \cdot k^4$, then by Lemma E.10, with probability at least $1 - 5n^{-100}$, we
1306 have $|\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \mathbf{B}| \leq \frac{\xi'}{n} = \frac{\xi}{2n}$.
1307

1308 Let c be a constant in front of s from Lemma E.11. Since $s = O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2) \geq$
1309 $c \cdot n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2$ and $\frac{\xi}{\varphi^2} \leq \frac{1}{10^5}$, then by Lemma E.11, with probability at least $1 - n^{-100}$, we
1310 have $|\mathbf{B} - \langle \mathbf{1}_x^T \mathbf{U}_{[k]} \mathbf{U}_{[k]}^T \mathbf{1}_y \rangle| \leq \frac{\xi'}{n} = \frac{\xi}{2n}$.
1311

1312 Therefore, by union bound, with probability at least $1 - 5n^{-100} - n^{-100} = 1 - 6n^{-100}$, we have
1313 $|\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} - \langle \mathbf{f}_x, \mathbf{f}_y \rangle| \leq \frac{\xi}{2n} + \frac{\xi}{2n} = \frac{\xi}{n}$.
1314

1315 **Runtime and space of INITORACLE.** Algorithm INITORACLE($G, k, \xi, M_{\text{init}}$) (Alg. 3) calls EST-
1316 COLLIPIRB($G, R_{\text{init}}, t, M_{\text{init}}, I_S$) (Alg. 2) to get \mathcal{G} (see line 5 of Alg. 3). According to Lemma E.5,
1317 ESTCOLLIPIRB($G, R_{\text{init}}, t, M_{\text{init}}, I_S$) runs in $O(R_{\text{init}} \cdot t \cdot \log n \cdot s^2)$ time and uses $O(M_{\text{init}} \cdot \log^2 n \cdot s^2)$
1318 bits of space. Then in line 7 of INITORACLE, it computes the SVD of matrix \mathcal{G} in s^3 time
1319 and it uses $s^2 \cdot \log n$ bits of space to store $\Psi \in \mathbb{R}^{n \times n}$. Thus overall INITORACLE runs in
1320 $O(R_{\text{init}} \cdot t \cdot \log n \cdot s^2 + s^3)$ time and uses $O(M_{\text{init}} \cdot \log^2 n \cdot s^2 + s^2 \cdot \log n)$ bits of space. By
1321 the choice of $t := \frac{20 \log n}{\varphi^2}$, $R_{\text{init}} := \Theta(\frac{n^{1+920\varepsilon/\varphi^2}}{M_{\text{init}}} \cdot \frac{k^{14}}{\xi^2})$ and $s := O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2)$ as in
1322 INITORACLE, we get that INITORACLE runs in $T_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M_{\text{init}}} \cdot \log^4 n \cdot \frac{1}{\varphi^2}$ time
1323 and uses $S_{\text{init}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{init}} \cdot \log^4 n$ bits of space.
1324

1325 **Runtime and space of QUERYDOT.** In QUERYDOT (Alg. 4), in lines 3 ~ 6, it calls ESTRW-
1326 DOT($G, R_{\text{query}}, t, M_{\text{query}}, x, s_i$) (Alg. 1) for $O(\log n \cdot s)$ times. According to Lemma 3.1, ESTRW-
1327 DOT($G, R_{\text{query}}, t, M_{\text{query}}, x, s_i$) runs in $O(R_{\text{query}} \cdot t)$ time and uses $O(M_{\text{query}} \cdot \log n)$ bits of space.
1328 Moreover, in line 9 of QUERYDOT, it returns $\langle \mathbf{f}_x, \mathbf{f}_y \rangle_{\text{apx}} = \boldsymbol{\alpha}_x^T \Psi \boldsymbol{\alpha}_y$, which can be computed in
1329 $O(s^2)$ time, since we can compute $\boldsymbol{a} = \boldsymbol{\alpha}_x^T \Psi$ in s^2 time and then we compute $\boldsymbol{a} \boldsymbol{\alpha}_y$ in s^2 time. Thus
1330 overall QUERYDOT runs in $O(\log n \cdot s \cdot R_{\text{query}} \cdot t + s^2)$ time and $O(\log^2 n \cdot s \cdot M_{\text{query}})$ bits of space.
1331 By the choice of $t := \frac{20 \log n}{\varphi^2}$, $R_{\text{query}} := \Theta(\frac{n^{1+440\varepsilon/\varphi^2}}{M_{\text{query}}} \cdot \frac{k^6}{\xi^2})$ and $s := O(n^{480\varepsilon/\varphi^2} \cdot \log n \cdot k^8/\xi^2)$ as
1332 in QUERYDOT, we get that QUERYDOT runs in $T_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M_{\text{query}}} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$
1333 time and uses $S_{\text{query}} = (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n$ bits of space.
1334

□

1339 F PROOF OF ITEM 1 IN THEOREM 3.1

1340 In this section, we first present an algorithm for computing the spectral dot product in a subspace,
1341 which will serve as a building block for the sublinear spectral clustering oracle that relies on a $\log(k)$
1342 conductance gap. Next, we introduce the sublinear spectral clustering oracle, originally proposed in
1343 Gluch et al. (2021), corresponding to Item 1 in Theorem 3.1. Finally, we provide the proof of Item 1
1344 in Theorem 3.1.
1345

1346 F.1 DOT PRODUCT ORACLE ON SUBSPACE

1347 Note that the clustering oracle in Gluch et al. (2021) relies on cluster centers:
1348

1350

1351 **Definition F.1** (Cluster center). For a vertex set $C \subset V$, the *cluster center* of C is defined to be

1352

1353

1354

1355

1356

1357

1358

1359

1360

They proved that if $x \in C_i$, then \mathbf{f}_x is close to μ_{C_i} , which means $\langle \mathbf{f}_x, \mu_C \rangle \geq c \cdot \|\mu_C\|_2^2$, where c is a constant. Therefore, the key idea behind the clustering oracle in Gluch et al. (2021) is to sample a subset of vertices and enumerate possible k -partition in order to obtain a good approximation $\hat{\mu}_1, \dots, \hat{\mu}_k$ to the true cluster centers μ_1, \dots, μ_k (see lines 6 ~ 11 of Alg. 7). When answering an arbitrary WHICHCLUSTER(G, x) query, the oracle assigns the x to the cluster whose center is close to \mathbf{f}_x while other cluster centers are not close to \mathbf{f}_x (see line 5 of Alg. 11).

1361

1362

1363

1364

In fact, their clustering algorithm uses hyperplane partitioning, which requires computing dot products in the subspace (i.e., $\langle \mathbf{f}_x, \Pi\mu \rangle$). Therefore, we first present the algorithm that computes the dot products in the subspace based on our improved version. We highlight that this (i.e., Alg. 6) is not our contribution.

1365

1366

Algorithm 6: DOTPRODUCTORACLEONSUBSPACE($G, x, y, \xi, \Psi, M, B_1, \dots, B_r$)

1367

1 Let $\mathbf{X} \in \mathbb{R}^{r \times r}, \mathbf{h}_x \in \mathbb{R}^r, \mathbf{h}_y \in \mathbb{R}^r$

2 Let $\xi' = \Theta(\xi \cdot n^{-80\varepsilon/\varphi^2} \cdot k^{-6})$

3 **for** $i, j \in [r]$ **do**

4 $\mathbf{X}(i, j) := \frac{1}{|B_i||B_j|} \cdot \sum_{z_i \in B_i} \sum_{z_j \in B_j} \text{QUERYDOT}(G, z_i, z_j, \xi', \Psi, M)$

5 **for** $i \in [r]$ **do**

6 $\mathbf{h}_x(i) := \frac{1}{|B_i|} \cdot \sum_{z_i \in B_i} \text{QUERYDOT}(G, z_i, x, \xi', \Psi, M)$

7 $\mathbf{h}_y(i) := \frac{1}{|B_i|} \cdot \sum_{z_i \in B_i} \text{QUERYDOT}(G, z_i, y, \xi', \Psi, M)$

8 **return** $\langle \mathbf{f}_x, \hat{\Pi} \mathbf{f}_y \rangle_{\text{apx}} := \text{QUERYDOT}(G, x, y, \xi', \Psi, M) - \mathbf{h}_x^T \mathbf{X}^{-1} \mathbf{h}_y$

1376

1377

1378

1379

1380

1381

In the following, we will give some informal theorem and corollaries about Alg. 6. Note that the only modification we make to Alg. 6 is to replace SPECTRALDOTPRODUCT with our improved version. Since our dot product oracle provides the same correctness guarantees as the original one, the correctness of the theorem and corollaries concerning Alg. 6 follows immediately from the proof of Theorem 6 in Gluch et al. (2021). Therefore, we focus on analyzing the time and space complexities.

1382

1383

1384

1385

1386

1387

Theorem F.1 (Informal). Let $k \geq$ be an integer, $\varphi, \frac{1}{n^5} < \xi < 1$ and $\frac{\varepsilon}{\varphi^2}$ be smaller than a positive absolute constant. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph with C_1, \dots, C_k .

Let $r \in [k]$. Let B_1, \dots, B_r denote multisets of vertices. Let $b = \max_{i \in [r]} |B_i|$. Let $\hat{\mu}_i = \frac{1}{|B_i|} \sum_{x \in B_i} \mathbf{f}_x$. Let $\hat{\Pi}$ is defined as a orthogonal projection onto the span $(\{\hat{\mu}_1, \dots, \hat{\mu}_r\})^\perp$. Then for all $x, y \in V$, we have

1388

1389

1390

1391

1392

$$1 \quad \left| \langle \mathbf{f}_x, \hat{\Pi} \mathbf{f}_y \rangle_{\text{apx}} - \langle \mathbf{f}_x, \hat{\Pi} \mathbf{f}_y \rangle \right| \leq \frac{\xi}{n}, \text{ where } \langle \mathbf{f}_x, \hat{\Pi} \mathbf{f}_y \rangle_{\text{apx}} \text{ is the output of Alg. 6.}$$

$$2 \quad \text{Alg. 6 runs in } b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2} \text{ time,}$$

$$3 \quad \text{Alg. 6 uses } b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n \text{ bits of space.}$$

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Proof. In lines 3 ~ 4 of Alg. 6, to compute \mathbf{X} , Alg. 6 calls QUERYDOT for $r^2 \cdot b^2 \leq k^2 \cdot b^2$ times. In lines 5 ~ 7 of Alg. 6, to compute $\mathbf{h}_x, \mathbf{h}_y$, Alg. 6 calls QUERYDOT for $r \cdot b \leq k \cdot b$ times. To compute \mathbf{X}^{-1} , it takes $r^3 \leq k^3$ time. Therefore, Alg. 6 runs in $k^2 \cdot b^2 \cdot T_{\text{query}} + k \cdot b \cdot T_{\text{query}} + k^3$ time and it uses $k^2 \cdot b^2 \cdot S_{\text{query}} + k \cdot b \cdot S_{\text{query}} + k^2$ bits of space. Note that $T_{\text{query}} = (\frac{k}{\xi'})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ and $S_{\text{query}} = (\frac{k}{\xi'})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$, where $\xi' = \Theta(\xi \cdot n^{-80\varepsilon/\varphi^2} \cdot k^{-6})$. Therefore, we get that Alg. 6 runs in $b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ time and uses $b^2 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$ bits of space. \square

Corollary F.1. There exists an algorithm that

$$1 \quad \text{return a value } \langle \mathbf{f}_x, \hat{\Pi} \hat{\mu} \rangle_{\text{apx}} \text{ such that } \left| \langle \mathbf{f}_x, \hat{\Pi} \hat{\mu} \rangle_{\text{apx}} - \langle \mathbf{f}_x, \hat{\Pi} \hat{\mu} \rangle \right| \leq \frac{\xi}{n},$$

1404 2 runs in $b^3 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ time,
 1405 3 uses $b^3 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$ bits of space.

1407

1408 *Proof.* One can compute $\langle \mathbf{f}_x, \widehat{\Pi}\widehat{\mu} \rangle_{\text{apx}} := \frac{1}{|B|} \cdot \sum_{y \in B} \text{DOTPRODUCTORACLEONSUBSPACE}(G, x, y, \xi, \Psi, M, B_1, \dots, B_r)$ (Alg. 6). Therefore, the algorithm that computes $\langle \mathbf{f}_x, \widehat{\Pi}\widehat{\mu} \rangle_{\text{apx}}$ calls Alg. 6 b times, which ends the proof. \square

1412 **Corollary F.2.** *There exists an algorithm that*

1413 1 returns a value $\|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2$ such that $\left| \|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2 - \|\widehat{\Pi}\widehat{\mu}\|^2 \right| \leq \frac{\xi}{n}$,
 1414 2 runs in $b^4 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ time,
 1415 3 uses $b^4 \cdot (\frac{k}{\xi})^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$ bits of space.

1416

1417 *Proof.* One can compute $\|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2 = (\widehat{\Pi}\widehat{\mu})^T (\widehat{\Pi}\widehat{\mu}) = \widehat{\mu}^T \widehat{\Pi}^T \widehat{\Pi}\widehat{\mu} = \widehat{\mu}^T \widehat{\Pi}\widehat{\mu} = \langle \widehat{\mu}, \widehat{\Pi}\widehat{\mu} \rangle = \frac{1}{|B|} \cdot \sum_{x \in B} \langle \mathbf{f}_x, \widehat{\Pi}\widehat{\mu} \rangle_{\text{apx}}$. Therefore, the algorithm that computes $\|\widehat{\Pi}\widehat{\mu}\|_{\text{apx}}^2$ calls the algorithm in Corollary F.1 b times, which ends the proof. \square

1418

1419 F.2 SUBLINEAR SPECTRAL CLUSTERING ORACLE

1420

1421 Now we present the sublinear spectral clustering oracle with a $\log(k)$ gap between inner and outer
 1422 conductance, originally proposed in Gluch et al. (2021), and adapt it by incorporating our dot product
 1423 oracle, which operates with very little memory.

1424 Algorithm 7 finds some cluster centers that reflects the clustering structure of the input graph.

1425 **Algorithm 7:** FINDCENTERS(G, M)

1426 1 INITORACLE($G, k, 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{\varphi}, M$)
 1427 2 $s_1 := \Theta\left(\frac{\varphi^2}{\varepsilon} k^5 \log^2 k \log(1/\eta)\right)$, $s_2 := \Theta\left(\frac{\varphi^4}{\varepsilon^2} k^5 \log^2 k \log(1/\eta)\right)$
 1428 3 **for** $t \in [1 \dots \log(2/\eta)]$ **do**
 1429 4 $S :=$ Random samples of vertices of V of size $s = \Theta(\frac{\varphi^2}{\varepsilon} k^4 \log k)$
 1430 5 **for** $(P_1, P_2, \dots, P_k) \in \text{PARTITION}(S)$ **do**
 1431 6 **for** $i = 1$ to k **do**
 1432 7 $\widehat{\mu}_i := \frac{1}{|P_i|} \sum_{x \in P_i} \mathbf{f}_x$
 1433 8 $(r, C) := \text{COMPUTEROORDEREDPARTITION}(G, (\widehat{\mu}_1, \dots, \widehat{\mu}_k)), s_1, s_2, M)$
 1434 9 **if** $r = \text{TRUE}$ **then**
 1435 10 $\text{return } C$

1436

1437 **Algorithm 8:** COMPUTEOORDEREDPARTITION($G, (\widehat{\mu}_1, \dots, \widehat{\mu}_k), s_1, s_2, M$)

1438 1 $S := \{\widehat{\mu}_1, \dots, \widehat{\mu}_k\}$
 1439 2 **for** $i = 1$ to $\lceil \log k \rceil$ **do**
 1440 3 $T_i := \emptyset$
 1441 4 **for** $\widehat{\mu} \in S$ **do**
 1442 5 $\psi := \text{OUTERCONDUCTANCE}(G, \widehat{\mu}, (T_1, \dots, T_{i-1}), S, s_1, s_2, M)$
 1443 6 **if** $\psi \leq O(\frac{\varepsilon}{\varphi^2} \cdot \log k)$ **then**
 1444 7 $T_i := T_i \cup \{\widehat{\mu}\}$
 1445 8 $S := S \setminus T_i$
 1446 9 **if** $S = \emptyset$ **then**
 1447 10 $\text{return } (\text{TRUE}, (T_1, \dots, T_i))$
 1448
 11 **return** (FALSE, \perp)

1458

Algorithm 9: OUTERCONDUCTANCE($G, \widehat{\mu}, (T_1, \dots, T_b), S, s_1, s_2, M$)

```

1460 1 cnt := 0
1461 2 for  $t = 1$  to  $s_1$  do
1462 3    $x \sim \text{UNIFORM}\{1 \dots n\}$ 
1463 4   if ISINSIDE( $x, \widehat{\mu}, (T_1, \dots, T_b), S, M$ ) then
1464 5     cnt := cnt + 1
1465 6   if  $\frac{n}{s_1} \cdot \text{cnt} < \min_{p \in [k]} |C_p|/2$  then
1466 7     return  $\infty$ 
1467 8    $e := 0, a := 0$ 
1468 9   for  $t = 1$  to  $s_2$  do
1469 10     $x \sim \text{UNIFORM}\{1 \dots n\}$ 
1470 11     $y \sim \text{UNIFORM}\{w \in \mathcal{N}(u)\}$ 
1471 12    if ISINSIDE( $x, \widehat{\mu}, (T_1, \dots, T_b), S, M$ ) then
1472 13       $a := a + 1$ 
1473 14      if  $\neg \text{ISINSIDE}(y, \widehat{\mu}, (T_1, \dots, T_b), S, M)$  then
1474 15         $e := e + 1$ 
1475 16 return  $\frac{e}{a}$ 

```

1477

Algorithm 10: ISINSIDE($x, \widehat{\mu}, (T_1, \dots, T_b), S, M$)

```

1479 1 for  $i = 1$  to  $b$  do
1480 2   Let  $\Pi$  be the projection onto the span  $(\cup_{j < i} T_j)^\perp$ 
1481 3   Let  $S_i = (\cup_{j \geq i} T_j) \cup S$ 
1482 4   for  $\widehat{\mu}_i \in T_i$  do
1483 5     if  $x \in C_{\Pi\widehat{\mu}_i, 0.93}^{\text{apx}} \setminus \cup_{\widehat{\mu}' \in S_i \setminus \{\widehat{\mu}_i\}} C_{\Pi\widehat{\mu}', 0.93}^{\text{apx}}$  then
1484 6       return FALSE
1485
1486 7   Let  $\Pi$  be the projection onto the span  $(\cup_{j \leq b} T_j)^\perp$ 
1487 8   if  $x \in C_{\Pi\widehat{\mu}, 0.93}^{\text{apx}} \setminus \cup_{\widehat{\mu}' \in S \setminus \{\widehat{\mu}\}} C_{\Pi\widehat{\mu}', 0.93}^{\text{apx}}$  then
1488 9     return TRUE
1489 10 return FALSE

```

1491

Algorithm 11 corresponds to the query phase of the clustering oracle where it is used to assign vertices to clusters based on cluster centers.

1493

Algorithm 11: HYPERPLANEPARTITIONING($x, (T_1, \dots, T_b), M$)

```

1495 1 for  $i = 1$  to  $b$  do
1496 2   Let  $\Pi$  be the projection onto the span  $(\cup_{j < i} T_j)^\perp$ 
1497 3   Let  $S_i = (\cup_{j \geq i} T_j)$ 
1498 4   for  $\widehat{\mu} \in T_i$  do
1499 5     if  $x \in C_{\Pi\widehat{\mu}, 0.93}^{\text{apx}} \setminus \cup_{\widehat{\mu}' \in S_i \setminus \{\widehat{\mu}\}} C_{\Pi\widehat{\mu}', 0.93}^{\text{apx}}$  then
1500 6       return  $\widehat{\mu}$ 

```

1502

1503

F.3 DEFERRED PROOF

1504

Theorem F.2 (Restate of Item 1 in Theorem 3.1). *Let $k \geq 2$ be an integer, $\varphi, \varepsilon \in (0, 1)$ and $h_1(k, \varphi), h_2(k, \varepsilon)$ and $h_3(k, \varphi, \varepsilon)$ be three functions. Let $\varepsilon \ll h_1(k, \varphi)$. Let $G = (V, E)$ be a d -regular and $(k, \varphi, \varepsilon)$ -clusterable graph with C_1, \dots, C_k . Let $n^{c \cdot \varepsilon / \varphi^2} \leq M \leq O\left(\frac{n^{1/2 - O(\varepsilon / \varphi^2)}}{k}\right)$ be a trade-off parameter, where c is a large enough constant. There exists a sublinear spectral clustering oracle that:*

1511

- constructs a data structure \mathcal{D} using $\widetilde{O}_\varphi\left(h_2(k) \cdot n^{O(\varepsilon / \varphi^2)} \cdot M\right)$ bits of space,

1512 • answers any WHICHCLUSTER query using \mathcal{D} in $\tilde{O}_\varphi\left(h_2(k) \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M}\right)$ time,
 1513 • has $O(h_3(k, \varphi, \varepsilon))|C_i|$ misclassification error for each $i \in [k]$,

1515 where we use O_φ to suppress dependence on φ and \tilde{O} to hide all $\text{poly}(\log n)$ factors and:

1517 1 if $h_1(k, \varphi) = \frac{\varphi^3}{\log k}$, then $h_2(k, \varepsilon) = \left(\frac{k}{\varepsilon}\right)^{O(1)}$ and $h_3(k, \varphi, \varepsilon) = \frac{\varepsilon}{\varphi^3} \cdot \log k$.
 1518

1521 **Proof. Space and runtime.** In the preprocessing phase, as line 1 of FINDCENTERS (Alg. 7), it
 1522 invokes INITORACLE(G, k, ξ, M) one time to get a matrix Ψ , which takes S_{init} bits of space according
 1523 to Theorem 3.2. Then it samples $s = \frac{\varphi^2}{\varepsilon} k^4 \log k$ vertices and tests all the possible k -partitions of the
 1524 sample set. For each partition, it invokes Alg. 8 one time. Each run of Alg. 8 invokes Alg. 9 $k \log k$
 1525 times. Each run of Alg. 9 invokes Alg. 10 $(s_1 + s_2)$ times. Each run of Alg. 10 computes $C_{\Pi\hat{\mu}, 0.93}^{\text{apx}}$
 1526 about $k^{O(1)}$ times, where $C_{\Pi\hat{\mu}, 0.93}^{\text{apx}} = \{x \in V, \frac{\langle f_x, \Pi\hat{\mu} \rangle_{\text{apx}}}{\|\Pi\hat{\mu}\|_{\text{apx}}^2} \geq 0.93\}$. According to Corollary F.1 and
 1527 Corollary F.2, computing $\frac{\langle f_x, \Pi\hat{\mu} \rangle_{\text{apx}}}{\|\Pi\hat{\mu}\|_{\text{apx}}^2}$ takes $s^4 \cdot \left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot \log^3 n$ bits of space, where
 1528 we set $\xi = 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{\varphi}$. Therefore, Alg. 7 uses $S_{\text{init}} + k \log k \cdot (s_1 + s_2) \cdot s^4 \cdot \left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M_{\text{query}} \cdot$
 1529 $\log^3 n$ bits of space. By setting $s_1 := \Theta\left(\frac{\varphi^2}{\varepsilon} k^5 \log^2 k \log(1/\eta)\right)$, $s_2 := \Theta\left(\frac{\varphi^4}{\varepsilon^2} k^5 \log^2 k \log(1/\eta)\right)$,
 1530 $\eta = O(\log n)$ and $M_{\text{query}} = M$, we get that Alg. 7 uses $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \text{poly}(\log n)$ bits
 1531 of space to get a matrix Ψ and a collection of vertex sets C that represents the cluster centers.
 1532

1533 In the query phase, HYPERPLANEPARTITIONING (Alg. 11) computes $C_{\Pi\hat{\mu}, 0.93}^{\text{apx}}$ about $k^{O(1)}$ times,
 1534 where $C_{\Pi\hat{\mu}, 0.93}^{\text{apx}} = \{x \in V, \frac{\langle f_x, \Pi\hat{\mu} \rangle_{\text{apx}}}{\|\Pi\hat{\mu}\|_{\text{apx}}^2} \geq 0.93\}$. According to Corollary F.1 and Corollary F.2,
 1535 computing $\frac{\langle f_x, \Pi\hat{\mu} \rangle_{\text{apx}}}{\|\Pi\hat{\mu}\|_{\text{apx}}^2}$ takes $s^4 \cdot \left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \log^3 n$ bits of space and $s^4 \cdot \left(\frac{k}{\varepsilon}\right)^{O(1)} \cdot$
 1536 $n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \log^3 n \cdot \frac{1}{\varphi^2}$ time, where we set $\xi = 10^{-6} \cdot \frac{\sqrt{\varepsilon}}{\varphi}$. By setting $s = \frac{\varphi^2}{\varepsilon} k^4 \log k$, we get
 1537 that Alg. 11 takes $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \text{poly}(\log n)$ bits of space and $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot \text{poly}(\log n)$ time.
 1538

1539 Thus, the clustering oracle constructs a data structure \mathcal{D} (including matrix Ψ , cluster centers C and
 1540 other information used by the query phase) using $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{O(\varepsilon/\varphi^2)} \cdot M \cdot \text{poly}(\log n)$ bits of space.
 1541 Using \mathcal{D} , any WHICHCLUSTER query can be answered by Alg. 11 in $\left(\frac{k\varphi}{\varepsilon}\right)^{O(1)} \cdot n^{1+O(\varepsilon/\varphi^2)} \cdot \frac{1}{M} \cdot$
 1542 $\text{poly}(\log n)$ time.
 1543

1544 **Correctness.** We highlight that the sublinear spectral clustering oracle is not our contribution. Note
 1545 that the only modification we make to the clustering oracle is to replace the dot product oracle used
 1546 in the original work (Gluch et al., 2021) with our improved oracle. Since the correctness guarantees
 1547 (i.e., conductance gap and misclassification error) of the clustering oracle rely on the properties of
 1548 the dot product oracle, and our dot product oracle satisfies the same correctness guarantees with the
 1549 previous one, the correctness of the overall clustering oracle follows directly from the correctness of
 1550 the clustering oracle in Gluch et al. (2021).
 1551

□

1558 G SUBLINEAR CLUSTERING ORACLE RELATED TO ITEM 2 IN THEOREM 3.1

1559 In this section, we present the sublinear spectral clustering oracle with a $\text{poly}(k)$ gap between inner
 1560 and outer conductance, originally proposed in Shen & Peng (2023), and adapt it by incorporating our
 1561 dot product oracle, which operates with very little memory.
 1562

1563 Algorithm 12 first initializes our dot product oracle to get a matrix Ψ (see line 5). It then leverages
 1564 our dot product oracle to estimate $\langle f_x, f_y \rangle$ for all pairs of vertices x, y in the sample set S , which are
 1565 subsequently used to construct a similarity graph H (see lines 6 ~ 9).

1566 **Algorithm 12:** CONSTRUCTORACLE($G, k, \varphi, \varepsilon, \gamma, M$)
1567
1568 1 Let $\xi = \frac{\sqrt{\gamma}}{1000}$ and let $s = \frac{10 \cdot k \log k}{\gamma}$
1569 2 Let $\theta = 0.96(1 - \frac{4\sqrt{\varepsilon}}{\varphi})\frac{\gamma k}{n} - \frac{\sqrt{k}}{n}(\frac{\varepsilon}{\varphi^2})^{1/6} - \frac{\xi}{n}$
1570 3 Sample a set S of s vertices independently and uniformly at random from V
1571 4 Generate a similarity graph $H = (S, \emptyset)$
1572 5 Let $\Psi = \text{INITORACLE}(G, k, \xi, M)$
1573 6 **for** any $u, v \in S$ **do**
1574 7 Let $\langle f_u, f_v \rangle_{\text{apx}} = \text{QUERYDOT}(G, u, v, \xi, \Psi, M)$
1575 8 **if** $\langle f_u, f_v \rangle_{\text{apx}} \geq \theta$ **then**
1576 9 Add an edge (u, v) to the similarity graph H
1577
1578 10 **if** H has exactly k connected components **then**
1579 11 Label the connected components with $1, 2, \dots, k$ (we write them as S_1, \dots, S_k)
1580 12 Label $x \in S$ with i if $x \in S_i$
1581 13 Return H and the vertex labeling ℓ
1582 14 **else**
1583 15 **return** **fail**
1584
1585

1586 **Algorithm 13:** SEARCHINDEX(H, ℓ, x, M)
1587
1588 1 **for** any vertex $u \in S$ **do**
1589 2 Let $\langle f_u, f_x \rangle_{\text{apx}} = \text{QUERYDOT}(G, u, x, \xi, \Psi, M)$
1590 3 **if** there exists a unique index $1 \leq i \leq k$ such that $\langle f_u, f_x \rangle_{\text{apx}} \geq \theta$ for all $u \in S_i$ **then**
1591 4 **return** index i
1592 5 **else**
1593 6 **return** **outlier**
1594
1595 Algorithm 14 corresponds to the query phase of the sublinear spectral clustering oracle, where it
1596 answers any WHICHCLUSTER query using matrix Ψ and similarity graph H .
1597
1598 **Algorithm 14:** WHICHCLUSTER(G, x, M)
1599
1600 1 **if** preprocessing phase **fails** **then**
1601 2 **return** **fail**
1602 3 **if** SEARCHINDEX(H, ℓ, x, M) **return** **outlier** **then**
1603 4 **return** a random index $\in [k]$
1604 5 **else**
1605 6 **return** SEARCHINDEX(H, ℓ, x, M)
1606
1607 H PROOF OF THEOREM 1.2
1608
1609 **Theorem H.1** (Restate of Theorem 1.2). *For any trade-off parameter $1 \leq M \leq O(\sqrt{n})$, there exists
1610 an algorithm (Alg. 5) that, with probability at least $1 - 2n^{-100}$, solves the 1-cluster vs. 2-cluster
1611 problem. Moreover, the algorithm:*
1612 • uses $\tilde{O}(M)$ bits of space,
1613 • runs in $\tilde{O}(\frac{n}{M})$ time.
1614
1615 To prove Theorem 1.2, we need the following lemmas.
1616
1617 **Lemma H.1** (Cheeger's inequality). *In holds for any graph G that*
1618
1619
$$\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

1620 Lemma H.2 bounds the ℓ_2 -norm of the t -step random walk distribution starting from any vertex x in
 1621 a d -regular graph, distinguishing between the case where the graph is a single φ -expander and the
 1622 case where it consists of two disjoint φ -expanders.

1623 **Lemma H.2** (Expander related version of Lemma E.4). *Let $\varphi \in (0, 1)$. Let G be a d -regular graph.
 1624 Let \mathbf{M} be the random walk transition matrix of G . For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x \in V$,*

$$1626 \quad \begin{aligned} & \text{if } G \text{ is a } \varphi\text{-expander of size } n, \text{ then } \|\mathbf{M}^t \mathbf{1}_x\|_2 \leq \sqrt{\frac{2}{n}}, \\ & \text{if } G \text{ is the disjoint union of two identical } \varphi\text{-expanders of size } n/2, \text{ then } \|\mathbf{M}^t \mathbf{1}_x\|_2 \leq \sqrt{\frac{3}{n}}. \end{aligned}$$

1630 *Proof.* **Item 1.** Let \mathbf{L} be the normalized Laplacian matrix of G . Recall that we use $0 = \lambda_1 \leq$
 1631 $\dots \leq \lambda_n \leq 2$ to denote the eigenvalues of \mathbf{L} and we use $\mathbf{u}_1, \dots, \mathbf{u}_n$ to denote the corresponding
 1632 eigenvectors, where $\mathbf{u}_1, \dots, \mathbf{u}_n$ form an orthonormal basis of \mathbb{R}^n and $\mathbf{u}_1(x) = \frac{1}{\sqrt{n}}$ for any $x \in V$.
 1633 Note that $\mathbf{M} = \mathbf{I} - \frac{\mathbf{L}}{2}$. Hence, the eigenvalues of \mathbf{M} are given by $1 = 1 - \frac{\lambda_1}{2} \geq \dots \geq 1 - \frac{\lambda_n}{2} \geq 0$,
 1634 and the corresponding eigenvectors are still $\mathbf{u}_1, \dots, \mathbf{u}_n$. For convenience, we relabel the eigenvalues
 1635 of \mathbf{M} as $1 = v_1(\mathbf{M}) = (1 - \frac{\lambda_1}{2}) \geq v_2(\mathbf{M}) = (1 - \frac{\lambda_2}{2}) \geq \dots \geq v_n(\mathbf{M}) = (1 - \frac{\lambda_n}{2}) \geq 0$.
 1636 Moreover, we can write that $\mathbf{1}_x = \sum_{i=1}^n \alpha_i \mathbf{u}_i$. Note that $\mathbf{u}_j^T \mathbf{1}_x = \sum_{i=1}^n \alpha_i \mathbf{u}_j^T \mathbf{u}_i = \alpha_j$. Therefore,
 1637 α_j corresponds to $\mathbf{u}_j^T \mathbf{1}_x = \mathbf{u}_j(x)$. Now, we have

$$1640 \quad \mathbf{M}^t \mathbf{1}_x = \mathbf{M}^t \sum_{i=1}^n \alpha_i \mathbf{u}_i = \sum_{i=1}^n \alpha_i \mathbf{M}^t \mathbf{u}_i = \sum_{i=1}^n \alpha_i (v_i(\mathbf{M}))^t \mathbf{u}_i.$$

1643 Thus, we have

$$1644 \quad \begin{aligned} \|\mathbf{M}^t \mathbf{1}_x\|_2^2 &= (\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{1}_x) = \sum_{i=1}^n \alpha_i^2 (v_i(\mathbf{M}))^{2t} \\ 1645 &= \alpha_1^2 (v_1(\mathbf{M}))^{2t} + \sum_{i=2}^n \alpha_i^2 (v_i(\mathbf{M}))^{2t} \\ 1646 &\leq \frac{1}{n} + (v_2(\mathbf{M}))^{2t} \cdot \sum_{i=2}^n \alpha_i^2 \\ 1647 &\leq \frac{1}{n} + (v_2(\mathbf{M}))^{2t} \cdot (n-1). \end{aligned}$$

1655 Since G is a φ -expander, according to Cheeger's inequality (Lemma H.1), we get that $\lambda_2 \geq \frac{\varphi^2}{2}$.
 1656 Therefore, for any $t \geq \frac{20 \log n}{\varphi^2}$, we have

$$1657 \quad v_2(\mathbf{M})^{2t} = \left(1 - \frac{\lambda_2}{2}\right)^{2t} \leq \left(1 - \frac{\varphi^2}{4}\right)^{\frac{4}{\varphi^2} \cdot 10 \log n} \leq \frac{1}{n^{10}}.$$

1662 Combine above results together, we get that

$$1663 \quad \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \leq \frac{1}{n} + \frac{1}{n^{10}} \cdot (n-1) = \frac{1}{n} + \frac{1}{n^9} \leq \frac{2}{n}.$$

1666 **Item 2.** We use C_1, C_2 to denote the two φ -expanders in G . Since C_1 and C_2 are disconnected, the
 1667 normalized Laplacian matrix \mathbf{L} of G can be written in block-diagonal form as

$$1668 \quad \mathbf{L} = \begin{pmatrix} \mathbf{L}_{C_1} & 0 \\ 0 & \mathbf{L}_{C_2} \end{pmatrix},$$

1671 where $\mathbf{L}_{C_1} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ and $\mathbf{L}_{C_2} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ are the normalized Laplacian matrix of C_1 and C_2 ,
 1672 respectively. For \mathbf{L}_{C_i} , we use $0 = \lambda_1^{C_i} \leq \dots \leq \lambda_{n/2}^{C_i} \leq 2$ to denote the eigenvalues of \mathbf{L}_{C_i} and
 1673 we use $\mathbf{u}_1^{C_i}, \dots, \mathbf{u}_{n/2}^{C_i} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ to denote the corresponding eigenvectors, where $\mathbf{u}_1^{C_i}, \dots, \mathbf{u}_{n/2}^{C_i}$

from an orthonormal basis of $\mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$ and $\mathbf{u}_1^{C_i}(x) = \sqrt{\frac{2}{n}}$ for any $x \in V$. Therefore, the eigenvalues of \mathbf{L} are given by $0 = \lambda_1 \leq \dots \leq \lambda_{n/2} \leq 2$, each of which has multiplicity two, where $\lambda_i = \lambda_i^{C_1} = \lambda_i^{C_2}$. For λ_i , we use $\mathbf{u}_{2i-1}, \mathbf{u}_{2i} \in \mathbb{R}^n$ to denote the corresponding eigenvectors, where $\mathbf{u}_{2i-1} = ((\mathbf{u}_i^{C_1})^T, 0, \dots, 0)^T$ and $\mathbf{u}_{2i} = (0, \dots, 0, (\mathbf{u}_i^{C_2})^T)^T$. Note that $\mathbf{M} = \mathbf{I} - \frac{\mathbf{L}}{2}$. Hence, the eigenvalues of \mathbf{M} are given by $1 = 1 - \frac{\lambda_1}{2} \geq \dots \geq 1 - \frac{\lambda_{n/2}}{2} \geq 0$, each of which has multiplicity two, and the corresponding eigenvectors are still $\mathbf{u}_1, \dots, \mathbf{u}_n$. For convenience, we relabel the eigenvalues of \mathbf{M} as $1 = v_1(\mathbf{M}) = v_2(\mathbf{M}) = (1 - \frac{\lambda_1}{2}) \geq v_3(\mathbf{M}) = v_4(\mathbf{M}) = (1 - \frac{\lambda_2}{2}) \geq \dots \geq v_{n-1}(\mathbf{M}) = v_n(\mathbf{M}) = (1 - \frac{\lambda_{n/2}}{2}) \geq 0$.

Similar to the proof of item 1, we get

$$\begin{aligned} \|\mathbf{M}^t \mathbf{1}_x\|_2^2 &= (\mathbf{M}^t \mathbf{1}_x)^T (\mathbf{M}^t \mathbf{1}_x) = \sum_{i=1}^n \alpha_i^2 (v_i(\mathbf{M}))^{2t} \\ &= \alpha_1^2 + \alpha_2^2 + \sum_{i=3}^n \alpha_i^2 (v_i(\mathbf{M}))^{2t} \\ &\leq \frac{2}{n} + (v_3(\mathbf{M}))^{2t} \cdot \sum_{i=3}^n \alpha_i^2 \\ &\leq \frac{2}{n} + (v_3(\mathbf{M}))^{2t} \cdot (n-2). \end{aligned}$$

Since C_1 and C_2 both are φ -expander, according to Cheeger's inequality (Lemma H.1), we get that $\lambda_2^{C_1} = \lambda_2^{C_2} \geq \frac{\varphi^2}{2}$. Therefore, for any $t \geq \frac{20 \log n}{\varphi^2}$, we have

$$(v_3(\mathbf{M}))^{2t} = \left(1 - \frac{\lambda_2}{2}\right)^{2t} = \left(1 - \frac{\lambda_2^{C_1}}{2}\right)^{2t} \leq \left(1 - \frac{\varphi^2}{4}\right)^{\frac{4}{\varphi^2} \cdot 10 \log n} \leq \frac{1}{n^{10}}.$$

Combine above results together, we get that

$$\|\mathbf{M}^t \mathbf{1}_x\|_2^2 \leq \frac{2}{n} + \frac{1}{n^{10}} \cdot (n-2) = \frac{2}{n} + \frac{1}{n^9} \leq \frac{3}{n}.$$

□

The following lemma shows that, under appropriate parameters, Alg. 1 can estimate the dot product of the random walk distributions from any two vertices up to σ_{err} , whether the graph is a single φ -expander or consists of two disjoint φ -expanders.

Lemma H.3 (Expander related version of Lemma 3.1). *Let $\varphi \in (0, 1)$. Let $G = (V, E)$ be either a d -regular φ -expander with size n or the disjoint union of two identical d -regular φ -expander of size $n/2$. Let \mathbf{M} be the random walk transition matrix of G . Let Z be the output of $\text{ESTRWDOT}(G, R, t, M, x, y)$ (Alg. 1). Let $\sigma_{\text{err}} > 0$. Let $c > 1$ be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$ and any $x, y \in V$, if $R \geq \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O(n^{1/2})$, then with probability at least 0.99, we have*

$$|Z - \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle| \leq \sigma_{\text{err}}.$$

Moreover, $\text{ESTRWDOT}(G, R, t, M, x, y)$ runs in $O(Rt)$ time and uses $O(M \cdot \log n)$ bits of space.

Proof. Runtime and space. See the proof of Lemma 3.1.

Correctness.

By Lemma E.2 and Lemma H.2, we can get that

$$\text{Var}[Z] \leq \frac{1}{R} \left[\frac{1}{M} \|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2 + (\|\mathbf{M}^t \mathbf{1}_x\|_2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2^2 + \|\mathbf{M}^t \mathbf{1}_x\|_2^2 \cdot \|\mathbf{M}^t \mathbf{1}_y\|_2) \right]$$

$$= \frac{1}{R} \left(\frac{O(n^{-1})}{M} + O(n^{-3/2}) \right).$$

Using Chebyshev's inequality, we have

$$\begin{aligned} \Pr[|Z - \langle \mathbf{M}^t \mathbf{1}_x, \mathbf{M}^t \mathbf{1}_y \rangle| \geq \sigma_{\text{err}}] &= \Pr[|Z - \mathbb{E}[Z]| \geq \sigma_{\text{err}}] \\ &\leq \frac{\text{Var}[Z]}{\sigma_{\text{err}}^2} \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \left(\frac{O(n^{-1})}{M} + O(n^{-3/2}) \right) \\ &\leq \frac{1}{\sigma_{\text{err}}^2} \cdot \frac{1}{R} \cdot O\left(\frac{n^{-1}}{M}\right) \quad M \leq O\left(n^{1/2}\right) \\ &\leq \frac{1}{100}. \end{aligned}$$

The last inequality holds by our choice of R as follows, where c is a large enough constant that cancels the constant hidden in $O\left(\frac{n^{-1}}{M}\right)$:

$$R \geq \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}.$$

□

Lemma H.4 asserts that, under suitable parameters, the output \mathcal{G} of ESTCOLLIPROB (Alg. 2) approximates $(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})$ in spectral norm, where the latter is the Gram matrix of the random walk distributions from sampled vertices, and this holds whether the graph is a single φ -expander or two disjoint φ -expanders.

Lemma H.4 (Expander related version of Lemma E.5). *Let $\varphi \in (0, 1)$. Let $G = (V, E)$ be either a d -regular φ -expander with size n or the disjoint union of two identical d -regular φ -expanders of size $n/2$. Let \mathbf{M} be the random walk transition matrix of G . Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen from $\{1, \dots, n\}$. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G, R, t, M, I_S) (Alg. 2). Let $\sigma_{\text{err}} > 0$. Let $c > 1$ be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $R \geq \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}$ and $1 \leq M \leq O(n^{1/2})$, then with probability $1 - n^{-100}$, we have*

$$\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}.$$

Moreover, ESTCOLLIPROB (G, R, t, M, I_S) runs in $O(Rt \cdot \log n \cdot s^2)$ time and uses $O(M \cdot \log^2 n \cdot s^2)$ bits of space.

Proof. Note that we have established Lemma H.3, which is an analogue of Lemma 3.1 for graph that is either a φ -expander of size n or the disjoint union of two identical φ -expanders of size $n/2$. Since the proof of Lemma E.5 relies only on Lemma 3.1, the same augment immediately yields Lemma H.4, the corresponding analogue of Lemma E.5. □

Lemma H.5 demonstrates that $(\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T$ has a clear spectral gap between the 1-cluster and 2-cluster cases.

Lemma H.5 (Expander related version of Lemma E.8). *Let $\varphi \in (0, 1)$. Let G be a d -regular graph. Let \mathbf{M} be the random walk transition matrix of G . Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen independently and uniformly at random from $V = \{1, \dots, n\}$. Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. For any $t \geq \frac{20 \log n}{\varphi^2}$, with probability at least $1 - n^{-100}$, we have*

$$1 \text{ if } G \text{ is a } \varphi\text{-expander of size } n \text{ and } s \geq 1, \text{ then } v_2\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T\right) \leq n^{-9},$$

1782 2 if G is the disjoint union of two identical φ -expanders of size $n/2$ and $s \geq c \cdot \log n$, where
 1783 $c > 1$ is a large enough constant, then $v_2\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T\right) \geq 0.99$.
 1784

1785 To prove Lemma H.5, we need the following lemma.

1786 **Lemma H.6** (Lemma 21 in Gluch et al. (2021)). *Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix. Let $b =$
 1787 $\max_{\ell \in \{1, \dots, n\}} \|(\mathbf{A} \mathbf{1}_\ell)(\mathbf{A} \mathbf{1}_\ell)^T\|_2$. Let $0 < \xi < 1$. Let $s \geq \frac{40n^2 b^2 \log n}{\xi^2}$. Let $I_S = \{s_1, \dots, s_s\}$
 1788 be a multiset of s indices chosen independently and uniformly at random from $V = \{1, \dots, n\}$. Let
 1789 $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th column equals $\mathbf{1}_{s_i}$. Then we have*
 1790

$$1791 \Pr \left[\left\| \mathbf{A} \mathbf{A}^T - \frac{n}{s} (\mathbf{A} \mathbf{S})(\mathbf{A} \mathbf{S})^T \right\|_2 \geq \xi \right] \leq n^{-100}.$$

1793 *Proof of Lemma H.5.* **Item 1.** The proof follows directly from the proof of item 2 of Lemma 28 in
 1794 Gluch et al. (2021).

1795 **Item 2.** Let $A = (\mathbf{M}^t)(\mathbf{M}^t)^T = \mathbf{M}^{2t}$, we get $v_2(A) = v_2(\mathbf{M})^{2t}$. Since G is the disjoint union of
 1796 two identical φ -expanders, G has two connected components. Therefore, the normalized Laplacian
 1797 matrix \mathbf{L} of G has two smallest eigenvalues equal to 0. Consequently, since $\mathbf{M} = I - \frac{\mathbf{L}}{2}$, the two
 1798 largest eigenvalues of \mathbf{M} are $1 - \frac{0}{2} = 1$. Thus, $v_2(A) = 1$.

1799 Let $\tilde{A} = \frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})(\mathbf{M}^t \mathbf{S})^T$. By Item 2 in Lemma H.2, we have $b = \|(\mathbf{M}^t \mathbf{1}_x)(\mathbf{M}^t \mathbf{1}_x)^T\|_2 \leq$
 1800 $\|\mathbf{M}^t \mathbf{1}_x\|_2^2 \leq \frac{3}{n}$. Let $\xi = \frac{1}{100}$. Therefore, for a large enough constant $c > 1$, we have $s = c \cdot \log n \geq$
 1801 $\frac{40n^2 b^2 \log n}{(\frac{1}{100})^2}$. Thus, according to Lemma H.6, we get that with probability at least $1 - n^{-100}$,

$$1802 \|\mathbf{A} - \tilde{A}\|_2 \leq \frac{1}{100}.$$

1803 By Weyl's inequality (Lemma E.9), we get that $v_2(\tilde{A}) \geq v_2(A) - \|\tilde{A}\|_2 \geq 1 - \frac{1}{100} = 0.99$. \square

1804 The proof of Lemma H.7 follows directly from the proof of Lemma 24 in Gluch et al. (2021).
 1805 Nevertheless, for the sake of completeness, we provide a concise proof here.

1806 **Lemma H.7** (Expander related version of Lemma E.6). *Let $\varphi \in (0, 1)$. Let $G = (V, E)$ be a d -
 1807 regular graph. Let $I_S = \{s_1, \dots, s_s\}$ be a multiset of s indices chosen independently and uniformly at
 1808 random from $V = \{1, \dots, n\}$. Let $\mathcal{G} \in \mathbb{R}^{s \times s}$ be the output of ESTCOLLIPROB (G, R, t, M, I_S) (Alg.
 1809 2). Let $c_1 > 1$ be a large enough constant. For any $t \geq \frac{20 \log n}{\varphi^2}$, if $R \geq \frac{c_1 \cdot n}{M}$ and $1 \leq M \leq O(n^{1/2})$,
 1810 then with probability at least $1 - 2 \cdot n^{-100}$,*

1811 1 if G is a φ -expander of size n and $s \geq 1$, then $v_2\left(\left(\frac{n}{s} \mathcal{G}\right)^2\right) = (v_2(\frac{n}{s} \mathcal{G}))^2 < 0.001$,
 1812 2 if G is the disjoint union of two identical φ -expanders of size $n/2$ and $s \geq c_2 \cdot \log n$, where
 1813 $c_2 > 1$ is a large enough constant, then $v_2\left(\left(\frac{n}{s} \mathcal{G}\right)^2\right) = (v_2(\frac{n}{s} \mathcal{G}))^2 > 0.95$.

1814 *Proof.* Let \mathbf{M} be the random walk transition matrix of G . Let $\mathbf{S} \in \mathbb{R}^{n \times s}$ be the matrix whose i -th
 1815 column equals $\mathbf{1}_{s_i}$. Let $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S} = \tilde{U} \tilde{\Sigma} \tilde{W}^T$ be an SVD of $\sqrt{\frac{n}{s}} \cdot \mathbf{M}^t \mathbf{S}$ where $\tilde{U} \in \mathbb{R}^{n \times n}$, $\tilde{\Sigma} \in$
 1816 $\mathbb{R}^{n \times n}$, $\tilde{W} \in \mathbb{R}^{s \times n}$. Let $\frac{n}{s} \cdot \mathcal{G} = \tilde{W} \tilde{\Sigma} \tilde{W}^T$ be an eigendecomposition of $\frac{n}{s} \cdot \mathcal{G}$.

1817 **Item 1.** Let $\sigma_{\text{err}} = \frac{0.0001}{n}$. Let c be the constant from Lemma H.4. By the assumption of the lemma,
 1818 we have

$$1819 R = \frac{c_1 \cdot n}{M} \geq \frac{c \cdot 10^8 \cdot n}{M} = \frac{c \cdot n^{-1}}{\sigma_{\text{err}}^2 M}.$$

1820 Thus we can apply Lemma H.4. Hence, with probability at least $1 - n^{-100}$, we have

$$1821 \|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}.$$

1822 Let $\tilde{A} = \frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}) = \tilde{W} \tilde{\Sigma}^2 \tilde{W}^T$ and $\hat{A} = \frac{n}{s} \cdot \mathcal{G}$. Thus, we have $\tilde{A}^2 =$
 1823 $(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 = \tilde{W} \tilde{\Sigma}^4 \tilde{W}^T$ and $\hat{A}^2 = (\frac{n}{s} \cdot \mathcal{G})^2 = \tilde{W} \tilde{\Sigma}^2 \tilde{W}^T$. Moreover, we have

1836 $\|\tilde{A}^2 - \hat{A}^2\|_2 = \left(\frac{n}{s}\right)^2 \|((\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 - \mathcal{G}^2\|_2$. Using the triangle inequality and sub-
 1837 multiplicativity of spectral norm and the above $\|\mathcal{G} - (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \sigma_{\text{err}}$ bound, we
 1838 can get that
 1839

$$1840 \quad \|((\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S}))^2 - \mathcal{G}^2\|_2 \leq (s \cdot \sigma_{\text{err}})^2 + 2 \cdot s \cdot \sigma_{\text{err}} \|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2.$$

1841
 1842 Note that $\|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq \|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_F = \sqrt{\sum_{i=1}^s \sum_{j=1}^s ((\mathbf{M}^t \mathbf{1}_{s_i})^T (\mathbf{M}^t \mathbf{1}_{s_j}))^2}$,
 1843 by Cauchy Schwarz inequality and Item 1 of Lemma H.2, we can get that $\|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \frac{2}{n}$.
 1844 Put them together and by the choice of $\sigma_{\text{err}} = \frac{0.0001}{n}$, we have that
 1845

$$1846 \quad \|\tilde{A}^2 - \hat{A}^2\|_2 \leq \left(\frac{n}{s}\right)^2 \cdot \left(s^2 \sigma_{\text{err}}^2 + 2 \cdot s \cdot \sigma_{\text{err}} \cdot s \cdot \frac{2}{n}\right) = n^2 \sigma_{\text{err}}^2 + 4n \sigma_{\text{err}} \leq 0.00005.$$

1847 Moreover, since $s \geq 1$, by Item 1 of Lemma H.5, with probability at least $1 - n^{-100}$, we have
 1848

$$1849 \quad v_2(\tilde{A}^2) = v_2\left(\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\right)^2\right) \leq (n^{-9})^2 = n^{-18}.$$

1850 By Weyl's inequality, we have that
 1851

$$1852 \quad v_2(\hat{A}^2) \leq v_2(\tilde{A}^2) + \|\tilde{A}^2 - \hat{A}^2\|_2 \leq n^{-18} + 0.0005 \leq 0.001.$$

1853 **Item 2.** By the same augment of the proof of Item 1 and Item 2 of Lemma H.2, we can get that
 1854 $\|(\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\|_2 \leq s \cdot \frac{3}{n}$. Thus, by the choice of $\sigma_{\text{err}} = \frac{0.0001}{n}$, we have that
 1855

$$1856 \quad \|\tilde{A}^2 - \hat{A}^2\|_2 \leq \left(\frac{n}{s}\right)^2 \cdot \left(s^2 \sigma_{\text{err}}^2 + 2 \cdot s \cdot \sigma_{\text{err}} \cdot s \cdot \frac{3}{n}\right) = n^2 \sigma_{\text{err}}^2 + 6n \sigma_{\text{err}} \leq 0.0007.$$

1857 Moreover, since $s \geq c_2 \cdot \log n$, by Item 2 of Lemma H.5, with probability at least $1 - n^{-100}$, we have
 1858

$$1859 \quad v_2(\tilde{A}^2) = v_2\left(\left(\frac{n}{s} \cdot (\mathbf{M}^t \mathbf{S})^T (\mathbf{M}^t \mathbf{S})\right)^2\right) \geq (0.99)^2 > 0.98.$$

1860 By Weyl's inequality, we have that
 1861

$$1862 \quad v_2(\hat{A}^2) \geq v_2(\tilde{A}^2) - \|\tilde{A}^2 - \hat{A}^2\|_2 \geq 0.98 - 0.0007 > 0.95.$$

1863 \square

1864 Now we are ready to prove Theorem 1.2.
 1865

1866 **Proof of Theorem 1.2. Correctness.** By the promise in the theorem statement, the input d -regular
 1867 graph $G = (V, E)$ is guaranteed to be either a φ -expander or the disjoint union of two identical
 1868 φ -expanders, each of size $n/2$. We run algorithm DISTINGUISH(G, M) (Alg. 5) to distinguish
 1869 the above two cases. Note that the choices of t , s , and R are made so that all the assumptions
 1870 required by Lemma H.7 are satisfied. Therefore, by Lemma H.7, we get that in case (i) (when G is
 1871 a φ -expander), with probability at least $1 - 2n^{-100}$, $(v_2(\frac{n}{s}\mathcal{G}))^2 < 0.001 < 0.6$; in case (ii), with
 1872 probability at least $1 - 2n^{-100}$, $(v_2(\frac{n}{s}\mathcal{G}))^2 > 0.95 > 0.6$. Therefore, we get that, with probability at
 1873 least $1 - 2n^{-100}$, algorithm DISTINGUISH correctly distinguishes which case holds.
 1874

1875 **Space and runtime.** According to Lemma H.4, getting matrix \mathcal{G} requires $O(R \cdot t \cdot \log n \cdot s^2)$ time
 1876 and $O(M \cdot \log^2 n \cdot s^2)$ bits of space. Computing $(\frac{n}{s}\mathcal{G})^2$ requires $O(s^3)$ time and $O(s^2 \cdot \log n)$ bits
 1877 of space. Therefore, the overall runtime and space complexity are $O(R \cdot t \cdot \log n \cdot s^2 + s^3)$ and
 1878 $O(M \cdot \log^2 n \cdot s^2 + s^2 \log n)$ bits, respectively. By setting $t = \frac{20 \log n}{\varphi^2}$, $R = \Theta(\frac{n}{M})$ and $s = O(\log n)$,
 1879 we get that DISTINGUISH(G, M) runs in $n \cdot \frac{1}{M} \cdot \text{poly}(\log n) \cdot \frac{1}{\varphi^2}$ time and uses $M \cdot \text{poly}(\log n)$ bits
 1880 of space.
 1881

1882 \square

1890 I PROOF OF THEOREM 1.3

1892 **Theorem I.1** (Restate of Theorem 1.3). *Any algorithm that correctly solves the 1-cluster vs. 2-cluster*
 1893 *problem with error at most 1/3 using only random walk oracles must satisfy $T \cdot S \geq \Omega(n)$, where T*
 1894 *and S denote the time complexity and space complexity of the algorithm, respectively.*

1896 Before we start the proof of Theorem 1.3, we would first introduce some basic definitions in
 1897 information theory.

1899 I.1 BASIC DEFINITIONS

1901 **Definition I.1** (Entropy). Given a random variable X taking values in the set \mathcal{X} and distributed
 1902 according to $p : \mathcal{X} \rightarrow [0, 1]$, the *entropy* of X is defined as

$$1903 H(X) := - \sum_{x \in \mathcal{X}} p(x) \log p(x).$$

1906 In the special case where X has only two possible outcomes, the entropy is given by
 1907

$$1908 H_2(X) := -p \log p - (1-p) \log(1-p).$$

1910 The entropy of a random variable quantifies the average level of uncertainty or information associated
 1911 with the random variable. Note that for the special case of H_2 , we have the following property:

1912 **Lemma I.1.**

$$1914 1 - H_2 \left(\frac{1}{2} + a \right) = \frac{1}{2 \ln 2} \sum_{l=1}^{\infty} \frac{(2a)^{2l}}{l(2l-1)} = O(a^2).$$

1916 Given the outcome of another random variable Y , we can also quantify this randomness using
 1917 conditional entropy.

1919 **Definition I.2** (Conditional entropy). Given random variables X and Y taking values in sets \mathcal{X} and
 1920 \mathcal{Y} , respectively, with joint distribution $p : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$, the *conditional entropy* of X given Y is
 1921 defined as

$$1922 H(X | Y) = H(X, Y) - H(Y) = - \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(y)}.$$

1925 Furthermore, the amount of information that is shared between two random variables is called mutual
 1926 information.

1927 **Definition I.3** (Mutual Information). Given random variables X and Y taking values in \mathcal{X} and \mathcal{Y} ,
 1928 respectively, the *mutual information* between X and Y is defined as

$$1930 I(X; Y) = H(X) - H(X | Y) = H(Y) - H(Y | X).$$

1932 Similarly, given a random variable Z taking values in \mathcal{Z} , the *conditional mutual information* of X
 1933 and Y given Z is defined as

$$1934 I(X; Y | Z) = H(X | Z) - H(X | Y, Z).$$

1936 Our proof will also use the following key properties of mutual information.

1938 **Lemma I.2** (Data Processing Inequality). *Given random variables X, Y and Z taking values in sets*
 1939 *\mathcal{X}, \mathcal{Y} and \mathcal{Z} , respectively, such that $X \perp Z | Y$. Then*

$$1940 I(X; Z) \leq I(X; Y).$$

1942 **Lemma I.3** (Chain Rule). *Given random variables X, Y and Z taking values in sets \mathcal{X}, \mathcal{Y} and \mathcal{Z} ,*
 1943 *respectively, we have*

$$1943 I(X; Y, Z) = I(X; Z) + I(X; Y | Z).$$

1944
1945

I.2 HARD INSTANCE I

1946
1947
1948
1949

To prove Theorem 1.3, we first consider the following Hard Instance, inspired by Diakonikolas et al. (2019) and commonly used in uniformity testing. Note that in our construction, at each time t , the player is allowed to pick a $W_t \in [2n]$. The proof of Theorem I.2 then follows from the proof of Theorem 23 in Diakonikolas et al. (2019).

1950
1951
1952

Definition I.4 (Hard Instance I). Let X be a uniformly random bit. Based on X , the adversary chooses the distribution p on $[2n]$ bins as follows:

1953
1954
1955
1956
1957
1958
1959

- $X = 0$: Pick $p = U_{2n}$, where U_{2n} is the uniform distribution on $[2n]$.
- $X = 1$: We construct two sets as follows: Pair the bins as $\{1, 2\}, \{3, 4\}, \dots, \{2n-1, 2n\}$. Now on each pair $\{2i-1, 2i\}$ pick a random $Y_i \in \{\pm 1\}$. If $Y_i = 1$, we put bin $2i-1$ to set 1 and bin $2i$ to set 2; otherwise, we put bin $2i$ to set 1 and bin $2i-1$ to set 2. Each time, the player picks $W_t \in [2n]$. If W_t belongs to set 1, we have $Z_t = 1$; otherwise, $Z_t = -1$. The distribution is then

1960
1961
1962

$$(p_{2i-1}, p_{2i}) = \left(\frac{1 + Y_i Z_t}{2n}, \frac{1 - Y_i Z_t}{2n} \right).$$

1963

We have the space-time tradeoff of this instance to be

1964
1965
1966
1967
1968

Theorem I.2. Let \mathcal{A} be an algorithm that detects the Hard Instance I with error at most $1/3$. The algorithm can access the samples in a single-pass streaming fashion using M bits of space and T samples. Furthermore, at each step, the algorithm may choose which set to sample by specifying W_t . We then have $T \cdot M = \Omega(n)$.

1969
1970
1971

Remark I.1. In Theorem I.2, we use M to denote the space complexity because S is already used in the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will denote the space of the algorithm by \mathbf{S} in subsequent discussions.

1972
19731974
1975
1976

Proof of Theorem I.2. In either case, we can think of the output of p as being a pair (C, V) , where C is an element of $[n]$ is chosen uniformly, and $V \in \{0, 1\}$ is a fair coin if $X = 0$ and has bias $Y_C Z_t$ if $X = 1$.

1977
1978
1979

Let s_1, \dots, s_T be the observed samples from p . Let M_t denote the bits stored in the memory after the algorithm sees the t -th sample s_t .

1980
1981
1982
1983

Since the algorithm \mathcal{A} learns X with probability at least $2/3$ after viewing T samples, we know that $I(X; M_T) > \Omega(1)$. On the other hand, M_t is computed from (M_{t-1}, s_t) without using any information about X . More formally, $X \perp M_t \mid (M_{t-1}, s_t)$ and therefore we can use the data processing inequality (Lemma I.2) and chain rule (Lemma I.3) to get:

1984
1985
1986
1987

$$I(X; M_t) \leq I(X; M_{t-1}, s_t) = I(X; M_{t-1}) + I(X; s_t \mid M_{t-1}).$$

1988
1989
1990
1991
1992
1993

Since irrespective of X , C is uniform over the pairs of bins, we note that C is independent of X even when conditioned on the memory M . Moreover, player's choice of W_t is computed only from M_{t-1} . Thus,

1994
1995
1996
1997

$$I(X; s_t \mid M_{t-1}) = I(X; C_t V_t \mid M_{t-1}) = I(X; V_t \mid M_{t-1} C_t) = I(X; V_t \mid M_{t-1} C_t W_t).$$

Let $\alpha_{t-1} = \Pr[X = 1 \mid M_{t-1} C_t W_t]$ and thus $\Pr[X = 0 \mid M_{t-1} C_t W_t] = 1 - \alpha_{t-1}$.

We have that

$$\begin{aligned}
& \Pr[V_t = 0 \mid X = 0, M_{t-1}, C_t, W_t] = \frac{1}{2}, \\
& \Pr[V_t = 0 \mid X = 1, M_{t-1}, C_t, Z_t] = \frac{1 + \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}, \\
& \Pr[V_t = 0 \mid M_{t-1}, C_t] = (1 - \alpha_{t-1}) \frac{1}{2} + \alpha_{t-1} \frac{1 + \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2} \\
& = \frac{1}{2} + \frac{\alpha_{t-1} \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}.
\end{aligned}$$

We can calculate

$$\begin{aligned}
I(X; V_t \mid M_{t-1} C_t W_t) &= H(V_t \mid M_{t-1} C_t W_t) - H(V_t \mid M_{t-1} C_t W_t X) \\
&= H_2(\Pr[V_t = 0 \mid M_{t-1}, C_t, W_t]) \\
&\quad - \{\Pr[X = 1 \mid M_{t-1} C_t W_t] H_2(\Pr[V_t = 0 \mid X = 1, M_{t-1}, C_t, W_t]) \\
&\quad + \Pr[X = 0 \mid M_{t-1} C_t W_t] H_2(\Pr[V_t = 0 \mid X = 0, M_{t-1}, C_t, W_t])\} \\
&= H_2\left(\frac{1}{2} + \frac{\alpha_{t-1} \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right) - \alpha_{t-1} H_2\left(\frac{1}{2} + \frac{\mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right) \\
&\quad - (1 - \alpha_{t-1}) H_2\left(\frac{1}{2}\right) \\
&= \alpha_{t-1} \left[1 - H_2\left(\frac{1}{2} + \frac{\mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right)\right] - \left[1 - H_2\left(\frac{1}{2} + \frac{\alpha_{t-1} \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right)\right] \\
&= \Theta(1) \left[\alpha_{t-1} \left(\frac{\mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right)^2 - \left(\frac{\alpha_{t-1} \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]}{2}\right)^2\right] \\
&= \Theta(1) \alpha_{t-1} (1 - \alpha_{t-1}) \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]^2 \\
&\leq O(1) \mathbb{E}[Z_t Y_{C_t} \mid M_{t-1}, W_t]^2.
\end{aligned}$$

Since C_t is uniformly random, we have that

$$I(X; V_t \mid M_{t-1} C_t W_t) = \frac{1}{n} \cdot \sum_{j=1}^n O(1) \mathbb{E}[Z_t Y_j \mid M_{t-1}, W_t]^2.$$

Now to bound this part, note that we first have $H(M_{t-1}, W_t) \leq M$ that $I(Z_t Y_1 \dots Z_t Y_n; M_{t-1}, W_t) \leq M$. At the same time, notice that Z_t is just flipping the value of Y_1, \dots, Y_n and thus $H(Z_t Y_1 \dots Z_t Y_n) = H(Y_1 \dots Y_n) = n$. Thus we have

$$H(Z_t Y_1 \dots Z_t Y_n \mid M_{t-1}, W_t) = H(Z_t Y_1 \dots Z_t Y_n) - I(Z_t Y_1 \dots Z_t Y_n; M_{t-1}, W_t) \geq n - M.$$

On the other hand, we have that

$$\sum_{i=1}^n H(Z_t Y_i \mid M_{t-1}, W_t) \geq H(Z_t Y_1 \dots Z_t Y_n \mid M_{t-1}, W_t) \geq n - M.$$

Thus,

$$M \geq \sum_{i=1}^n [1 - H(Z_t Y_i \mid M_{t-1}, W_t)] = \Theta\left(\sum_{i=1}^n \mathbb{E}[Z_t Y_i \mid M_{t-1}, W_t]^2\right),$$

where the equality comes from the fact that if $\Pr[Z_t Y_i = 1 \mid M_{t-1}, W_t] = \frac{1}{2} + \beta$, then

2052
 2053
 2054
$$\mathbb{E}[Z_t Y_i | M_{t-1}, W_t] = \Pr[Z_t Y_i = 1 | M_{t-1}, W_t] (+1) + \Pr[Z_t Y_i = -1 | M_{t-1}, W_t] (-1)$$

 2055
$$= \left(\frac{1}{2} + \beta\right) - \left(\frac{1}{2} - \beta\right) = 2\beta.$$

 2056
 2057

2058 We finally have that
 2059

2060
 2061
$$\Omega(1) \leq I(M_T; X) = \sum_{t=0}^{T-1} I(M_{t+1}; X) - I(M_t; X)$$

 2062
 2063
$$= \sum_{t=0}^{T-1} I(M_t, S_{t+1}; X) - I(M_t; X)$$

 2064
 2065
$$= \sum_{t=0}^{T-1} I(S_{t+1}; X | M_t)$$

 2066
 2067
$$= \sum_{t=0}^{T-1} I(V_{t+1}; X | M_t, C_{t+1}, W_{t+1})$$

 2068
 2069
$$= O(1) \frac{T \cdot M}{n}.$$

 2070
 2071
 2072
 2073
 2074

2075 We conclude that $T \cdot M \geq \Omega(n)$. □
 2076

2077 I.3 HARD INSTANCE II

2079 For the graph problems, we would consider the following Hard Instance.

2080 **Definition I.5** (Hard Instance II). *Let X be a uniformly random bit. Let $\varphi \in (0, 1)$ with $\varphi = \Omega(1)$,
 2081 and let $d = O(1)$. Based on X , the adversary chooses a d -regular graph G on $2n$ vertices as follows:*

2082

- 2083 • $X = 0$: Pick the graph to be a φ -expander on $2n$ vertices.
- 2084 • $X = 1$: We construct two sets as follows: Pair bins the as $\{1, 2\}, \{3, 4\}, \dots, \{2n-1, 2n\}$.
 2085 Now on each pair $\{2i-1, 2i\}$ pick a random $Y_i \in \{\pm 1\}$. If $Y_i = 1$, we put vertex $2i-1$ to
 2086 set 1 and vertex $2i$ to set 2; otherwise, we put vertex $2i$ to set 1 and vertex $2i-1$ to set 2.
 2087 The graph is then composed of two identical φ -expanders over set 1 and set 2.

2088 We would assume that the algorithm has access to the graph only via the random walk queries.

2089 **Definition I.6** (Random walk queries). For any specified starting vertex x , a random walk query
 2090 returns the endpoint of an $O(\log n)$ -step random walk starting from x .

2092 We have the properties of a random walk for a φ -expander as follows:

2093 **Lemma I.4.** *Assume $G = (V, E)$ is a d -regular φ -expander on n vertices. Let \mathbf{M} be the lazy random
 2094 walk transition matrix of G . Let $\mathbf{M}^t \mathbf{1}_x$ be the probability distribution of a random walk with length
 2095 $O(\frac{\log n}{\varphi^2})$ starting from vertex $x \in V$. Let $\pi = (\frac{1}{n}, \dots, \frac{1}{n})^T \in \mathbb{R}^n$ be the uniform distribution over n
 2096 vertices. We have that $d_{\text{TV}}(\mathbf{M}^t \mathbf{1}_x, \pi) \leq \frac{0.01}{n^2}$.*

2098 To prove Lemma I.4, we first introduce the definition of mixing time.

2099 **Definition I.7** (Mixing time). Let $G = (V, E)$ be a d -regular graph on n vertices. Let \mathbf{M} be the lazy
 2100 random walk transition matrix of G . Let $\mathbf{m}_t = \mathbf{M}^t \mathbf{m}_0$, where \mathbf{m}_0 is a distribution over $[n]$. Let
 2101 $\pi = (\frac{1}{n}, \dots, \frac{1}{n})^T$ be the stationary distribution of G . Then the *mixing time* $\tau_\varepsilon(\mathbf{M})$ is defined to be
 2102 the smallest t such that for any \mathbf{m}_0 , $d_{\text{TV}}(\mathbf{m}_x, \pi) \leq \varepsilon$.

2104 **Proof of Lemma I.4.** Note that $\pi = (\frac{1}{n}, \dots, \frac{1}{n})^T \in \mathbb{R}^n$ is the stationary distribution of G . According
 2105 to spectral graph theory, we have $\tau_\varepsilon(\mathbf{M}) = O(\frac{1}{\phi(G)^2} \log(\frac{n}{\varepsilon}))$. Let $\varepsilon = \frac{0.01}{n^2}$. Note that G

2106 is a φ -expander, we have that $\phi(G) = \varphi$ (see Definition 1.1). Therefore, according to the defi-
 2107 nition of mixing time, we get that for $t = \tau_\varepsilon(\mathbf{M}) = O(\frac{1}{\varphi^2} \log(\frac{n}{0.01})) = O(\frac{\log n}{\varphi^2})$, we have that
 2108 $d_{\text{TV}}(\mathbf{M}^t \mathbf{1}, \pi) \leq \frac{0.01}{n^2}$. □
 2109

2110 With the above results, we would show the space-time trade-off of identifying Hard Instance II.
 2111

2112 **Theorem I.3** (Variant of Theorem 1.3). *Let \mathcal{A} be an algorithm which detects the Hard Instance II
 2113 with error probability at most $1/3$. The algorithm can perform T random walk queries using M bits
 2114 of space. We have $M \cdot T = \Omega(n)$.*
 2115

2116 **Remark I.2.** *In Theorem I.3, we use M to denote the space complexity because S is already used in
 2117 the proof to refer to a sampling-related quantity. For consistency with the rest of the paper, we will
 2118 denote the space of the algorithm by \mathbf{S} in subsequent discussions.*
 2119

2120 *Proof of Theorem I.3.* We would reduce this problem to the Hard Instance I. Assume we have an
 2121 algorithm \mathcal{A} that solves the Hard Instance II. We would show how it can be used to solve Hard
 2122 Instance I. At each time, the algorithm would choose to make a random walk query starting from
 2123 vertex i . We would then set W_t to the Hard Instance I and get the feedback sample s_t . We would
 2124 feed s_t to the algorithm \mathcal{A} and then to the next round. Finally, after T rounds, we would output the
 2125 results of \mathcal{A} .

2126 To prove the correctness, we need to show that the total variation distance is $O(1)$ between the history
 2127 generated by Hard Instance I: $(s_1, m_1, \dots, s_T, m_T)$ and the history generated by Hard Instance II:
 2128 $(s'_1, m'_1, \dots, s'_T, m'_T)$. We would prove by math induction.

2129 Now for $d_{\text{TV}}((m_t, s_t), (m'_t, s'_t))$, we consider any fixed $x \in [2n], m \in [M]$ that
 2130

$$\begin{aligned}
 & |p(m_t = m, s_t = x) - p(m'_t = m, s'_t = x)| \\
 &= \left| \sum_{(\tilde{m}, \tilde{x})} p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \cdot (m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \right. \\
 &\quad \left. - \sum_{(\tilde{m}, \tilde{x})} p(m'_t = m, s'_t = x | m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \right| \\
 &\leq \left| \sum_{(\tilde{m}, \tilde{x})} p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \right. \\
 &\quad \cdot (p(m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})) \left. \right| \\
 &\quad + \left| \sum_{(\tilde{m}, \tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \right. \\
 &\quad \cdot (p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_t = m, s'_t = x | m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})) \left. \right|.
 \end{aligned}$$

2148 Now for the first part, we have

$$\begin{aligned}
 & \sum_{(m, x)} \left| \sum_{(\tilde{m}, \tilde{x})} p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \right. \\
 &\quad \cdot (p(m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})) \left. \right| \\
 &\leq \sum_{(m, x)} \sum_{(\tilde{m}, \tilde{x})} \left(p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \right. \\
 &\quad \cdot |p(m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})| \left. \right) \\
 &= \sum_{(\tilde{m}, \tilde{x})} \left(|p(m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})| \right)
 \end{aligned}$$

$$\begin{aligned}
& \cdot \sum_{(m,x)} p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \Big) \\
&= \sum_{(\tilde{m}, \tilde{x})} |p(m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x})| \\
&= 2d_{\text{TV}}((m_{t-1}, s_{t-1}), (m'_{t-1}, s'_{t-1})).
\end{aligned}$$

For the second part, we notice that

$$\begin{aligned}
& p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_t = m, s'_t = x | m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \\
&= p(m_t = m | s_t = x, m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \cdot p(s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) \\
&\quad - p(m'_t = m | s'_t = x, m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(s'_t = x | m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}).
\end{aligned}$$

Note that since we are using the same algorithm, when fixing m_{t-1} and s_t , the update of m_t and m'_t is the same, and thus

$$\begin{aligned}
& p(m_t = m, s_t = x | m_{t-1} = \tilde{m}, s_{t-1} = \tilde{x}) - p(m'_t = m, s'_t = x | m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \\
&= p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \cdot (p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})).
\end{aligned}$$

Moreover, by the property of lazy random walk (Lemma I.4), we should have that for any \tilde{m} ,

$$\frac{1}{2} \sum_x |p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})| \leq \frac{0.01}{n^2}.$$

Summing over all (m, x) , we have the second part is bounded by

$$\begin{aligned}
& \sum_{(m,x)} \left| \sum_{(\tilde{m}, \tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \right. \\
&\quad \cdot \left. (p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})) \right| \\
&\leq \sum_{(m,x,\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \\
&\quad \cdot |p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})| \\
&= \sum_{(x,\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) |p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})| \\
&\quad \cdot \sum_m p(m_t = m | s_t = x, m_{t-1} = \tilde{m}) \\
&= \sum_{(x,\tilde{m},\tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) |p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})| \\
&= \sum_{(\tilde{m}, \tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \cdot \sum_x |p(s_t = x | m_{t-1} = \tilde{m}) - p(s'_t = x | m'_{t-1} = \tilde{m})| \\
&\leq 2 \times \frac{0.01}{n^2} \sum_{(\tilde{m}, \tilde{x})} p(m'_{t-1} = \tilde{m}, s'_{t-1} = \tilde{x}) \\
&= 2 \times \frac{0.01}{n^2}.
\end{aligned}$$

Combining the results, we have

$$d_{\text{TV}}((m_t, s_t), (m'_t, s'_t)) = \frac{1}{2} \sum_{(m,x)} |p(m_t = m, s_t = x) - p(m'_t = m, s'_t = x)|$$

$$\leq d_{\text{TV}}((m_{t-1}, s_{t-1}), (m'_{t-1}, s'_{t-1})) + \frac{0.01}{n^2}.$$

Moreover, for the initial points, we have that

$$d_{\text{TV}}(s_1, s'_1) \leq \frac{0.01}{n^2}.$$

Since m_1, m'_1 are merely a function of s_1, s'_1 , we have that

$$d_{\text{TV}}(m_1, m'_1) \leq \frac{0.01}{n^2}.$$

Therefore

$$d_{\text{TV}}((m_1, s_1), (m'_1, s'_1)) \leq d_{\text{TV}}(s_1, s'_1) + d_{\text{TV}}(m_1, m'_1) \leq \frac{0.02}{n^2},$$

$$d_{\text{TV}}((m_t, s_t), (m'_t, s'_t)) \leq \frac{0.01(1+t)}{n^2}.$$

This means that

$$d_{\text{TV}}(m_T, m'_T) \leq d_{\text{TV}}((m_T, s_T), (m'_T, s'_T)) \leq \frac{0.01(1+T)}{n^2} \leq 0.01,$$

where we use the fact that $T \leq O(n^2)$ since otherwise we can get the output using constant space.

Now note that the output result is only the function of m_T . Since the total variation distance of m_T is bounded, the correctness can still be guaranteed using the uniform distribution rather than the random walk distribution. \square

J EXPERIMENTAL DETAILS

Accuracy Let C_1, \dots, C_k be the ground-truth clustering and let $\widehat{C}_1, \dots, \widehat{C}_k$ be the clusters produced by the oracle, where $\widehat{C}_i = \{x \in V \mid \text{WHICHCLUSTER}(G, x) = i\}$. The accuracy is defined as $\frac{1}{n} \cdot \max_{\pi} \sum_{i=1}^k |C_i \cap \widehat{C}_{\pi(i)}|$, where $\pi : [k] \rightarrow [k]$ is a permutation.

Implementation details In our experiments, we implemented three main components: (i) the new dot product oracle proposed in this paper (Alg. 3 and Alg. 4), (ii) the original dot product oracle in Gluch et al. (2021), and (iii) the spectral clustering oracle relies on a $\text{poly}(k)$ conductance gap itself. The clustering oracle relies on accurate dot product estimates to function correctly; hence, we first needed to identify parameters that ensure reliable dot product estimation performance. These parameters include (i) s_{dot} , the number of sampled vertices in dot product oracle, (ii) t , the random walk length and (iii) l , the number of repetitions in the median trick, and a set of space-time-related parameters.

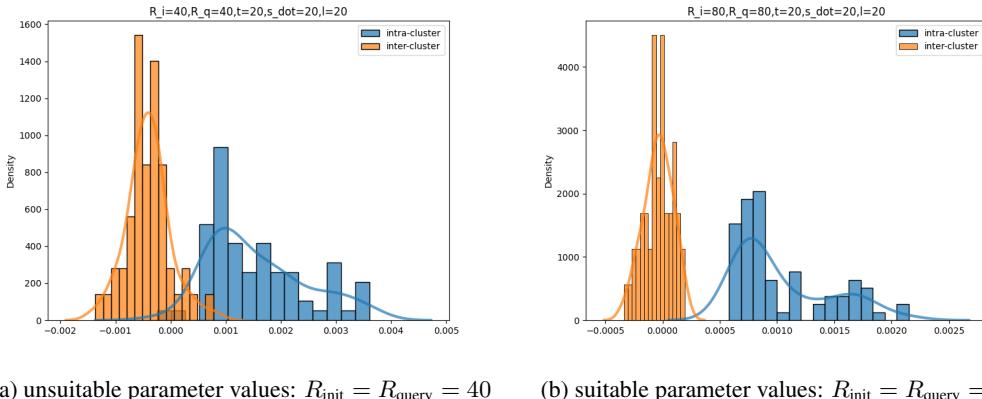


Figure 2: Effect of parameter settings on the original dot product oracle. (a): an unsuitable configuration where the estimated spectral dot products for intra-cluster and inter-cluster pairs overlap. (b): a suitable configuration where a clear gap emerges between the two distributions.

2268 For the original dot product oracle in Gluch et al. (2021), R_{init} , R_{query} are the space-time-related
 2269 parameters. We set R_{init} and R_{query} according to the theoretical guarantee, which states that the oracle
 2270 works when $R_{\text{init}} = R_{\text{query}} = O(\sqrt{n})$. Following the implementation details in Shen & Peng (2023),
 2271 we explored multiple parameter configurations for s_{dot} , t , l , $R_{\text{init}} = R_{\text{query}}$. For each configuration,
 2272 we initialized the dot product oracle with the corresponding parameters, sampled a subset of vertex
 2273 pairs, computed their estimated spectral dot products, and plotted the density graphs (see Figure 2).
 2274 The presence of a clear gap (see Figure 2b) in the density graph was used as the criterion for selecting
 2275 suitable parameter values. In fact, for a graph with parameters $n = 3000$, $k = 3$, $p = 0.07$, and
 2276 $q = 0.002$, we found that $s_{\text{dot}} = 20$, $t = 20$, $l = 20$, and $R_{\text{init}} = R_{\text{query}} \geq 80$ provided reliable
 2277 estimates. And we make 80×80 a concrete instantiation of $O(\sqrt{n}) \times O(\sqrt{n}) = O(n)$.

2278 For the new dot product oracle, we set $s_{\text{dot}} = 20$, $t = 20$ and $l = 20$ like above. The space-time-
 2279 related parameters $M_{\text{init}} = M_{\text{query}}$ serve as inputs, corresponding to $R_{\text{init}}^{\text{our}} = R_{\text{query}}^{\text{our}} = \frac{80 \times 80}{M_{\text{init}}} = \frac{6400}{M_{\text{init}}}$
 2280 (see line 2 of Alg. 3 and Alg. 4). In our experiments, we varied $M_{\text{init}} = M_{\text{query}}$ in the range [30, 80].
 2281

2282 Finally, for the clustering oracle itself, we determined the number of sampled vertices s (see line
 2283 3 of Alg. 12) through extensive testing of multiple candidate values, and selected $s = 21$ for all
 2284 experiments. Additionally, we set a threshold θ (see line 8 of Alg. 12) to construct similarity graph;
 2285 based on the density plots of estimated dot products (see Figure 2b), we chose $\theta \approx 0.0005$.
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321