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Abstract
Modern neural network libraries all take as a001
hyperparameter a random seed, typically used002
to determine the initial state of the model pa-003
rameters. This position piece argues that there004
are some safe uses for random seeds: as part005
of the hyperparameter search to select a good006
model, creating an ensemble of several mod-007
els, or measuring the sensitivity of the training008
algorithm to the random seed hyperparameter.009
It argues that some uses for random seeds are010
risky: using a fixed random seed for “repli-011
cability” and varying only the random seed012
to create score distributions for performance013
comparison. An analysis of 85 recent publi-014
cations from the ACL Anthology shows that015
more than 50% contain risky uses of random016
seeds.017

1 Introduction018

Modern neural network libraries all take as a hyper-019

parameter a random seed, a number that is used to020

initialize a pseudorandom number generator. That021

generator is typically used to determine the initial022

state of model parameters, but may also affect op-023

timization in other ways, such as selecting which024

units to mask under dropout, or selecting which in-025

stances of the training data go into each minibatch026

during gradient descent. Like any hyperparame-027

ter, neural network random seeds can have a large028

or small impact on model performance depending029

on the specifics of the architecture and the data.030

Thus, it is important to tune the random seed hyper-031

parameter as we would any other hyperparameter032

that affects optimization, such as learning rate or033

regularization strength.034

Such tuning is especially important with the pre-035

trained transformer architectures currently popular036

in NLP (BERT, Devlin et al., 2019; RoBERTa Liu037

et al., 2019; etc.), which are quite sensitive to their038

random seeds (Risch and Krestel, 2020; Dodge039

et al., 2020; Mosbach et al., 2021). Several solu-040

tions to this problem have been proposed, including041

specific optimizer setups (Mosbach et al., 2021), 042

ensemble methods (Risch and Krestel, 2020), and 043

explicitly tuning the random seed like other hyper- 044

parameters (Dodge et al., 2020). 045

The NLP community thus has some awareness 046

of the problems that random seeds present, but it 047

is inconsistent in its approaches to solving those 048

problems. The remainder of this position piece first 049

presents a taxonomy of different ways that neural 050

network random seeds are used in the NLP commu- 051

nity, explaining which uses are safe and which are 052

risky. It then reviews 85 articles recently published 053

in the ACL Anthology, categorizing their random 054

seed uses based on the taxonomy. This analysis 055

shows that more than 50% of the articles include 056

risky uses of random seeds, suggesting that the 057

NLP community still needs a broader discussion 058

about how we approach random seeds. 059

2 A taxonomy of random seed uses 060

This section highlights five common uses of neural 061

network random seeds in the NLP community, and 062

categorizes them as either safe or risky. 063

2.1 Safe use: Model selection 064

The random seed is a hyperparameter of a neu- 065

ral network architecture that determines where in 066

the model parameter space optimization should be- 067

gin. It may also affect optimization by determining 068

the order of minibatches in gradient descent, or 069

through mechanisms like dropout’s random sam- 070

pling of unit activations. As the random seed is 071

a hyperparameter, it can and should be tuned just 072

as other hyperparameters are. Unlike some other 073

hyperparameters, there is no intuitive explanation 074

of why one random seed would be better or worse 075

than another, so the typical strategy is to try a num- 076

ber of randomly selected seeds. For example: 077

Instead, we compensate for the inher- 078

ent randomness of the network by train- 079
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ing multiple models with randomized ini-080

tializations and use as the final model081

the one which achieved the best perfor-082

mance on the validation set. . . (Björne083

and Salakoski, 2018)084

The test results are derived from the 1-085

best random seed on the validation set.086

(Kuncoro et al., 2020)087

2.2 Safe use: Ensemble creation088

Ensemble methods are an effective way of com-089

bining multiple machine-learning models to make090

better predictions (Rokach, 2010). A common ap-091

proach to creating neural network ensembles is to092

train the same architecture with different random093

seeds, and have the resulting models vote (Perrone094

and Cooper, 1995). For example:095

In order to improve the stability of the096

RNNs, we ensemble five distinct models,097

each initialized with a different random098

seed. (Nicolai et al., 2017)099

Our model is composed of the ensemble100

of 8 single models. The hyperparameters101

and the training procedure used in each102

single model are the same except the ran-103

dom seed. (Yang and Wang, 2019)104

2.3 Safe use: Sensitivity analysis105

Sometimes it is useful to demonstrate how sensitive106

a neural network architecture is to a particular hy-107

perparameter. For example, Santurkar et al. (2018)108

shows that batch normalization makes neural net-109

work architectures less sensitive to the learning rate110

hyperparameter. Similarly, it may be useful to show111

how sensitive neural network architectures are to112

their random seed hyperparameter. For example:113

We next (§3.3) examine the expected vari-114

ance in attention-produced weights by115

initializing multiple training sequences116

with different random seeds. . . (Wiegr-117

effe and Pinter, 2019)118

Our model shows a lower standard de-119

viation on each task, which means our120

model is less sensitive to random seeds121

than other models. (Hua et al., 2021)122

2.4 Risky use: Single fixed seed123

NLP articles sometimes pick a single fixed random124

seed, claiming that this is done to improve consis-125

tency or replicability. For example:126

An arbitrary but fixed random seed was 127

used for each run to ensure reproducibil- 128

ity. . . (Le and Fokkens, 2018) 129

For consistency, we used the same set 130

of hyperparameters and a fixed random 131

seed across all experiments. (Lin et al., 132

2020) 133

Why is this risky? First, fixing the random seed 134

does not guarantee replicability. For example, the 135

tensorflow library has a history of producing dif- 136

ferent results even given the same random seeds, 137

especially on GPUs (Two Sigma, 2017; Kanwar 138

et al., 2021). Second, not tuning the random seed 139

hyperparameter has the same drawbacks as not tun- 140

ing any other hyperparameter: performance will be 141

an underestimate of the performance the architec- 142

ture is capable of with a tuned model. 143

What should one do instead? The random 144

seed should be tuned as any other hyperparameter. 145

Dodge et al. (2020), for example, show that doing 146

so leads to simpler models exceeding the published 147

results of more complex state-of-the-art models on 148

multiple GLUE tasks (Wang et al., 2018). If com- 149

pute resources are scarce, it is reasonable to restrict 150

the space of hyperparameters explored (and thus 151

the number of random seeds explored). This can 152

be done with techniques such as random hyperpa- 153

rameter search (Bergstra and Bengio, 2012) where 154

n hyperparameter settings are sampled from the 155

space of all hyperparameter settings (with random 156

seeds treated the same as all other hyperparameters) 157

and the value of n is tuned to match the availability 158

of compute resources. In an extremely resource- 159

limited scenario, this could result in selecting only 160

a single value of the random seed or only a single 161

value of some other hyperparameter. This might 162

be acceptable given the constraints, especially if 163

accompanied by an explicit acknowledgement of 164

the risks of underestimating performance. 165

2.5 Risky use: Performance comparison 166

It is a good idea to compare not just the point es- 167

timate of a single model’s performance, but distri- 168

butions of model performance, as comparing per- 169

formance distributions may result in more reliable 170

conclusions (Reimers and Gurevych, 2017; Dodge 171

et al., 2019; Radosavovic et al., 2020). However, 172

it has sometimes been suggested that such distri- 173

butions can be obtained by training the same ar- 174

chitecture and varying only the random seed. For 175

example: 176
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We re-ran both implementations multi-177

ple times, each time only changing the178

seed value of the random number genera-179

tor. . . The score distribution. . . (Reimers180

and Gurevych, 2017)181

Indeed, the best approach is to stop re-182

porting single-value results, and instead183

report the distribution of results from a184

range of seeds. (Crane, 2018)185

Why is this risky? If the goal is to compare the186

best possible model trainable from one architecture187

to the best possible model trainable from another188

architecture, as in the case of leaderboard compar-189

isons, then varying random seeds is generating a190

bunch of suboptimal models for that comparison.191

If the goal is to compare the family of models that192

result from training one architecture to the family193

of models that result from training another archi-194

tecture, then varying only the random seed is gen-195

erating a small biased slice of the family, since the196

family consists of the model variations across all197

hyperparameter settings, not just random seeds.198

What should one do instead? If the goal is to199

compare the best possible models trainable from200

different architectures, then the random seed needs201

to be tuned just as we would for any other hyper-202

parameter. It’s still a good idea to compare distri-203

butions, rather than point estimates, so standard204

statistical techniques can be applied. For example,205

bootstrap samples may be drawn from the test set,206

and evaluating a model on each of those samples207

will give a distribution over the model’s expected208

performance (Dror et al., 2018). Comparing these209

distributions will give a statistically sound estimate210

of whether the best model found for one neural211

network architecture outperforms the best model212

found for another. If the goal is instead to compare213

families of models, then it makes sense to train214

many versions of the same architecture, but they215

should be sampled to vary across all hyperparam-216

eters, not just the random seed hyperparameter1.217

Comparing these distributions will give a statisti-218

cally sound estimate of whether one architecture219

(and not just the best-tuned instance of that archi-220

tecture) is better than another.221

1Occasionally, the random seed might be the only hyperpa-
rameter, e.g., an extreme black box machine-learning scenario
where the only way to get model variants is to vary the order
in which training data instances are fed to the model. In such
cases, it would be acceptable to vary only the random seed.

Type Purpose Count

Safe Model selection 12
Safe Ensemble creation 13
Safe Sensitivity analysis 12

Safe sub-total 37

Risky Fixed seed 24
Risky Performance comparison 24

Risky sub-total 48

Table 1: Uses of neural network random seeds for 85
ACL Anthology articles.

3 Random seed uses in ACL 222

Having introduced both safe and risky uses of neu- 223

ral network random seeds, we now turn to the cur- 224

rent state of NLP with respect to such seeds. 225

On 29 Jun 2021, I searched the ACL Anthology 226

for articles containing the phrases “random seed” 227

and “neural network”2. The ACL Anthology search 228

interface returns a maximum of 10 pages of results, 229

with 10 results per page, so I collected 100 search 230

results. Non-articles (entire proceedings, author 231

pages, supplementary material) were excluded, as 232

were articles where the random seeds were not 233

used to initialize a neural network (e.g., they were 234

used only for dataset selection). The result was 85 235

articles, from publications between 2015 and 2021. 236

I read each of the articles and categorized its 237

use of random seeds into one of the five purposes 238

introduced in section 2. While it is conceptually 239

possible for an article to fall into more than one 240

category (e.g., having both ensembles and sensi- 241

tivity analysis) the vast majority of articles I read 242

fell into a single category, typically with just a sin- 243

gle sentence where random seed was used. For 244

the tiny fraction of articles where more than one 245

category applied, since my goal only was to get a 246

rough distribution of random seed use, I selected a 247

“primary” category arbitrarily from the categories 248

present. The supplementary material for this ar- 249

ticle includes a spreadsheet detailing each article 250

reviewed, its category of random seed use, and a 251

snippet of text from the article justifying my assign- 252

ment of that category. 253

Table 1 shows the distribution of articles across 254

the different random seed purposes. More than half 255

2https://www.aclweb.org/anthology/
search/?q=%22random+seed%22+%22neural+
network%22
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Figure 1: Uses of neural network random seeds by year for 85 ACL Anthology articles.

of the articles (48) include a risky use of random256

seeds, with 24 using a single fixed seed and 24257

using only random seeds to generate distributions258

for performance comparisons. This suggests that259

NLP researchers are often using neural network260

random seeds without the necessary care.261

One might wonder if the NLP community is262

getting better over time, that is, if risky uses are263

on the decline as NLP researchers become more264

familiar with neural networks research. Figure 1265

shows that this is not the case: though the volume266

of articles that matched the query varies from year267

to year, for most years the number of risky uses268

of random seeds is similar to the number of safe269

uses. This suggests that NLP researchers continue270

to have trouble distinguishing safe from risky uses271

of neural network random seeds.272

4 Discussion273

We have seen that risky uses of neural network ran-274

dom seeds – using only a fixed seed or generating275

performance distributions for model comparisons276

by varying only random seeds – are still widespread277

within the NLP community. The analysis in sec-278

tion 3 is probably a conservative estimate of the279

problem. The query used in the analysis matched280

articles only if they had the explicit phrases “neural281

network” and “random seed” both within the arti-282

cle. That means the search did not return articles283

on neural networks where no “random seed” was284

mentioned, yet in such cases it is likely that a single285

fixed seed was used. Therefore the proportion of286

fixed seed papers in our sample is likely an under-287

estimate of the proportion in the true population3. 288

How do we move the NLP community away 289

from risky uses of neural network random seeds? 290

Hopefully, this article can help to start the neces- 291

sary conversations, but clearly it is not an endpoint 292

in and of itself. Part of the responsibility must 293

fall on mentors in the NLP community, such as 294

university faculty and industry research leads, to 295

ensure that they are training their mentees about 296

these topics. Part of the responsibility will fall on 297

reviewers of NLP articles, who can identify mis- 298

uses of neural network random seeds and flag them 299

for revision. And of course part of the responsibil- 300

ity falls on NLP authors themselves to make sure 301

they understand the nuances of neural network hy- 302

perparameters like random seeds and the ways in 303

which they should and should not be used. 304

5 Conclusion 305

This position piece has introduced a simple taxon- 306

omy of common uses for neural network random 307

seeds in the NLP literature, describing three safe 308

uses (model selection, ensemble creation, and sen- 309

sitivity analysis) and two risky uses (single fixed 310

seed and varying only the random seed to gener- 311

ate distributions for performance comparison). An 312

analysis of 85 articles from the ACL Anthology 313

showed that more than half of these recent NLP 314

articles include risky uses of neural network ran- 315

dom seeds. Hopefully, highlighting this issue can 316

help the NLP community to improve our mentor- 317

ship and training and move away from risky uses 318

of neural network random seeds in the future. 319

3This query also can’t address another interesting issue
that is out of scope for the current article: quantifying how
many articles don’t tune any hyperparameters at all.
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