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Abstract

We introduce the framework of performative rein-
forcement learning where the policy chosen by the
learner affects the underlying reward and transi-
tion dynamics of the environment. Following the
recent literature on performative prediction (Per-
domo et al., 2020), we introduce the concept of
performatively stable policy. We then consider
a regularized version of the reinforcement learn-
ing problem and show that repeatedly optimizing
this objective converges to a performatively sta-
ble policy under reasonable assumptions on the
transition dynamics. Our proof utilizes the dual
perspective of the reinforcement learning prob-
lem and may be of independent interest in ana-
lyzing the convergence of other algorithms with
decision-dependent environments. We then ex-
tend our results for the setting where the learner
just performs gradient ascent steps instead of fully
optimizing the objective, and for the setting where
the learner has access to a finite number of trajec-
tories from the changed environment. For both the
settings, we leverage the dual formulation of per-
formative reinforcement learning, and establish
convergence to a stable solution. Finally, through
extensive experiments on a grid-world environ-
ment, we demonstrate the dependence of conver-
gence on various parameters e.g. regularization,
smoothness, and the number of samples.

1. Introduction

Over the last decade, advances in reinforcement learn-
ing techniques enabled several breakthroughs in Al
These milestones include AlphaGo (Silver et al., 2017),
Pluribus (Brown & Sandholm, 2019), and AlphaS-
tar (Vinyals et al., 2019). Such success stories of reinforce-
ment learning in multi-agent game playing environments
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have naturally led to the adoption of RL in many real-world
scenarios e.g. recommender systems (Aggarwal et al.), and
healthcare (Esteva et al., 2019). However, these critical do-
mains often pose new challenges including the mismatch
between deployed policy and the target environment.

Existing frameworks of reinforcement learning ignore the
fact that a deployed policy might change the underlying
environment (i.e., reward, or probability transition function,
or both). Such a mismatch between the deployed policy
and the environment often arises in practice. For example,
recommender systems often use contextual Markov deci-
sion process to model interaction with a user (Hansen et al.,
2020). In such a contextual MDP, the initial context/user
feature is drawn according a distribution, then the user in-
teracts with the platform according to the context-specific
MDP. However, it has been repeatedly observed that such
recommender systems not only change the user demograph-
ics (i.e. distribution of contexts) but also how they interact
with the platforms (Chaney et al., 2018; Mansoury et al.,
2020). Our second example comes from autonomous vehi-
cles (AV). Even if we ignore the multi-agent aspect of these
learning algorithms, a deployed AV might change how the
pedestrians, and other cars behave, and the resulting envi-
ronment might be quite different from what the designers of
the AV had in mind (Nikolaidis et al., 2017a).

Recently, Perdomo et al. (2020) introduced the notion of
performative prediction, where the predictions made by a
classifier changes the data distribution. However, in the con-
text of reinforcement learning, the situation is different as
the changing transition dynamics introduces additional com-
plexities. If the underlying probability transition function
changes, then the class of feasible policies and/or models
changes with time. This implies that we need a framework
that is more general than the framework of performative
prediction, and can model policy-dependent outcomes in
reinforcement learning.

Our Contributions: In this paper, we introduce the notion
of performative reinforcement learning where the deployed
policy not only changes the reward vector but also the un-
derlying transition probability function. We introduce the
notion of performatively stable policy and show under what
conditions various repeated retraining methods (e.g., pol-
icy optimization, gradient ascent etc.) converges to such a
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stable solution. Our precise contributions are the following.

* We consider a regularized version of the reinforcement
learning problem where the variables are long-term dis-
counted state-action occupancy measures. We show that,
when both the probability transition function and the
reward function changes smoothly in response to the oc-
cupancy measure, repeated optimization of regularized
reinforcement learning converges to a stable solution.

* We then show that if the learner performs repeated pro-
jected gradient ascent steps, then also convergence is
guaranteed provided that the step-size is small enough.
Compared to the supervised learning setting (Perdomo
et al., 2020), the projection step is necessary as the prob-
ability transition function, and hence the space of occu-
pancy measures change with time.

* Next we extend our result to the finite samples setting,
where the learner has access to a collection of samples
from the updated environment. For this setting, we use an
empirical version of the Lagrangian of the regularized RL
problem. We show that repeatedly solving a saddle point
of this empirical Lagrangian (max player corresponds to
the learner) also converges to a stable solution provided
that the number of samples is large enough.

* Finally, we empirically evaluate the effect of various
parameter choices (regularization, smoothness, number
of samples etc.) through extensive experiments on a two-
agent grid-world environment. In this environment, the
first agent performs various types of repeated retraining,
whereas the second agent responds according to a smooth
response function.

Our Techniques: At a high level, our theoretical results
might look similar to the results derived by Perdomo et al.
(2020). However, there are many challenges.

* We repeatedly maximize a regularized objective whose
feasible region is the space of feasible occupancy mea-
sures. As the probability transition function changes
with time, the feasible region of the optimization prob-
lem also changes with time. So ideas from supervised
classification setting (Mendler-Diinner et al., 2020) can-
not be applied directly. Therefore, we look at the dual
problem which is strongly-convex and mapping from
occupancy measure to the corresponding dual optimal
solution turns out to be a contraction. We believe that
the dual perspective on performative prediction might be
useful for analyzing the convergence of other algorithms
with decision-dependent outcomes.

* For performative reinforcement learning, the finite sam-
ple setting is very different than the supervised learning
setting. This is because we do not have independent sam-
ple access from the new environment. At time-step ¢, we
can only access the new model through the policy m; (or
occupancy measure d;). In that sense, the learner faces

an offline reinforcement learning problem where the sam-
ples are collected from the behavior policy m;. This is
also the reason we need an additional overlap assump-
tion, which is often standard in offline reinforcement
learning (Munos & Szepesvari, 2008).

1.1. Related Work:

Perdomo et al. (2020) introduced the notion of performa-
tive prediction. Subsequent papers have considered several
aspects of this framework including optimization (Mendler-
Diinner et al., 2020; Miller et al., 2021), multi-agent sys-
tems (Narang et al., 2022), and population dynamics (Brown
et al., 2020). However, to the best of our knowledge, perfor-
mative prediction in sequential decision making is mostly
unexplored. A possible exception is (Bell et al., 2021)
who consider a setting where the transition and reward of
the underlying MDP depend non-deterministically on the
deployed policy. Since the mapping is non-deterministic,
it doesn’t lead to a notion of equilibrium, and the authors
instead focus on the optimality and convergence of various
RL algorithms.

Stochastic Stackelberg Games: Our work is also closely re-
lated to the literature on stochastic games (Shapley, 1953; Fi-
lar & Vrieze, 2012), and in particular, those that study Stack-
elberg (commitment) strategies (Von Stackelberg, 2010),
where a leader commits a policy to which a follower
(best) responds. While different algorithmic approaches
have been proposed for computing Stackelberg equilibria
(SE) in stochastic games or related frameworks (Vorobey-
chik & Singh, 2012; Letchford et al., 2012; Dimitrakakis
et al., 2017), computing optimal commitment policies has
shown to be a computationally intractable (NP-hard) prob-
lem (Letchford et al., 2012). More recent works have stud-
ied learning SE in stochastic games, both from practical
perspective (Rajeswaran et al., 2020; Mishra et al., 2020;
Huang et al., 2022) and theoretical perspective (Bai et al.,
2021; Zhong et al., 2021). The results in this paper differ
from this line of work in two ways. Firstly, our framework
abstracts the response model of an agent’s effective environ-
ment in that it does not model it through a rational agency
with a utility function. Instead, it is more aligned with the
approaches that learn the response function of the follower
agent (Sinha et al., 2016; Kar et al., 2017; Sessa et al., 2020),
out of which the closest to our work is (Sessa et al., 2020)
that considers repeated games. Secondly, given that we con-
sider solution concepts from performative prediction rather
than SE, we focus on repeated retraining as the algorithm
of interest, rather than bi-level optimization approaches.

Other related work: We also draw a connection to other
RL frameworks. Naturally, this work relates to RL settings
that study non-stationary environments. These include re-
cent learning-theoretic results, such as (Gajane et al., 2018;
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Fei et al., 2020; Domingues et al., 2021; Cheung et al.,
2020; Wei & Luo, 2021) that allow non-stationary rewards
and transitions provided a bounded number or amount of
changes (under no-regret regime), the extensive literature on
learning under adversarial reward functions (e.g., (Even-Dar
et al., 2004; Neu et al., 2012; Dekel & Hazan, 2013; Rosen-
berg & Mansour, 2019)), or the recent works on learning
under corrupted feedback (Lykouris et al., 2021). How-
ever, the setting of this paper is more structured, i.e., the
environment responds to the deployed policy and does not
arbitrarily change. Our work is also broadly related to the
extensive literature on multi-agent RL literature — we refer
the reader to (Zhang et al., 2021) for a selective overview.
A canonical example of a multi-agent setting that closely
relates to the setting of this paper is human-Al cooperation,
where the AI’s policy influences the human behavior (Dimi-
trakakis et al., 2017; Nikolaidis et al., 2017b; Crandall et al.,
2018; Radanovic et al., 2019; Carroll et al., 2019). In fact,
our experiments are inspired by human-Al cooperative in-
teraction. While the algorithmic framework of repeated
retraining has been discussed in some of the works on co-
operative Al (e.g., see (Carroll et al., 2019)), these works
do not provide a formal treatment of the problem at hand.
Finally, this paper also relates to the extensive literature on
offline RL (Levine et al., 2020) as the learner faces an of-
fline RL problem when performing repeated retraining with
finite samples.We utilize the analysis of (Zhan et al., 2022)
to establish finite sample guarantees, under a standard as-
sumption on sample generation (Munos & Szepesvari, 2008;
Farahmand et al., 2010; Xie & Jiang, 2021), and overlap
in occupancy measure (Munos & Szepesvdri, 2008; Zhan
et al., 2022). Note that offline RL has primarily focused on
static RL settings in which the policy of a learner does not
affect the model of the underlying environment.

2. Model

We are primarily concerned with Markov Decision Pro-
cesses (MDPs) with a fixed state space S, action set A,
discount factor v, and starting state distribution p. The re-
ward and the probability transition functions of the MDP
will be functions of the adopted policy. We consider infinite-
horizon setting where the learner’s goal is to minimize the
total sum of discounted rewards. We will write s;, to denote
the state visited at time-step k£ and ay, to denote the action
taken at time-step k. When the learner adopts policy 7, the
underlying MDP has reward function r, and probability
transition function P,. We will write M (7) to denote the
corresponding MDP, i.e., M (7) = (S, A, Py, 7z, p). Note
that only the reward and the transition probability function
change according to the policy .

When an agent adopts policy m and the underlying
MDP is M(x') = (S, A, Py ,ry,p) the probability

of a trajectory 7 = (sg,ar)5s>, is given as P(r) =
p(s0) [Toe s Prr(Skt1|sk, m(sk)). We will write 7 ~ PT,
to denote such a trajectory 7. Given a policy 7 and an un-
derlying MDP M (n") we write V.7, (p) to define the value
function w.r.t. the starting state distribution p. This is de-
fined as follows.

Vi (p) = Erpr, lz Vkrw/(sk-?akﬂpl (D

k=0

Solution Concepts: Given the definition of the value func-
tion eq. (1), we can now define the solution concepts for our
setting. First we define the performative value function of a
policy which is the expected total return of the policy given
the environment changes in response to the policy.

Definition 1 (Performative Value Function). Given a policy
m, and a starting state distribution p € A(S), the per-
formative value function V™ (p) is defined as V' (p) =

Ernpr Do 7' 7r (51, a1)| o).

We now define the performatively optimal policy, which
maximizes performative value function.

Definition 2 (Performatively Optimal Policy). A policy 7 is
performatively optimal if it maximizes performative value
function, i.e., m € argmax_, V7, (p).

We will write 7p to denote the performatively optimal pol-
icy. Although, mp maximizes the performative value func-
tion, it need not be stable, i.e., the policy need not be optimal
with respect to the changed environment M (7p). We next
define the notion of performatively stable policy which cap-
tures this notion of stability.

Definition 3 (Performatively Stable Policy). A policy m
is performatively stable if it satisfies the condition m €
argmax,, V.7 (p).

We will write g to denote the performatively stable policy.
The definition of performatively stable policy implies that
if the underlying MDP is M (7g) then an optimal policy is
ms. This means after deploying the policy 7g in the MDP
M (7g) the environment doesn’t change and the learner is
also optimizing her reward in this stable environment. We
next show that even for an MDP with a single state, these
two solution concepts can be very different.

Example: Consider an MDP with single state s and two
actions a and b. If a policy plays arm a with probability 6
and b with probability 1 — 6§ then we have r(s,a) = 5 — ¢f
and r(s,b) = 1 + €6 for some € < 1. Note that if 05 = 0
then both the actions give same rewards, and the learner
can just play action b. Therefore, a policy that always plays
action b is a stable policy and achieves a reward of 2(17177)
On the other hand, a policy that always plays action a with
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probability § = 1/4 has the performative value function of

0(1/2—c0)  (1—0)(1/2+¢0) 1/2+¢/8
1—7 1—7 11—~

So, for € > 0, a performatively optimal policy can achieve
higher value function than a stable policy.

We will mainly consider with the tabular MDP setting where
the number of states and actions are finite. Even though
solving tabular MDP in classic reinforcement learning prob-
lem is relatively straight-forward, we will see that even the
tabular setting raises many interesting challenges for the
setting of performative reinforcement learning.

Discounted State, Action Occupancy Measure: Note that
it is not a priori clear if there always exists a performa-
tively stable policy (as defined in (2)). This is because
such existence guarantee is usually established through
a fixed-point argument, but the set of optimal solutions
need not be convex. If both 71 and 7 optimizes (2), then
their convex combination might not be optimal. So, in
order to find a stable policy, we instead consider the lin-
ear programming formulation of reinforcement learning.
Given a policy , its long-term discounted state-action occu-
pancy measure in the MDP M (7) is defined as d” (s, a) =
Ernpr [Ypeo "1 {sk = s,ar = a} | p|. Given an occu-
pancy measure d, one can consider the following policy 7¢

which has occupancy measure d.
d {d(sa) if Y _d(s,a) >0
T (a|5> = 2 ai(bvb) a ) 2)

i otherwise

With this definition, we can pose the problem of finding a
performatively stable occupancy measure. An occupancy
measure d is performatively stable if it is the optimal solu-
tion of the following problem.

ds € arg max d(s,a)rq(s,a 3)
S %20 Sza:( )ra(s, a)

s.t. Z d(s,a) = p(s) +- Z d(s',a)Py(s',a,s) Vs

s’,a

With slight abuse of notation we are writing P, as P,a (as
defined in equation (2)). If either the probability transi-
tion function or the reward function changes drastically in
response to the occupancy measure then the optimization
problem 3 need not even have a stable point. Therefore, as is
standard in performative prediction, we make the following
sensitivity assumption regarding the underlying environ-
ment.

Assumption 1. The reward and probability transition map-
pings are (&,, €y )-sensitive i.e. the following holds for any
two occupancy measures d and d’

ra —rarlly <erlld— d/||27 [ Pa— Pally <eplld— d/||2

The motivation behind this assumption comes from multi-
agent systems, particularly the Stackelberg game. Suppose
the leader agent changes her policy and in response, the
follower agents change their policies according to a smooth
response function. Then from the leader’s perspective, the
environmental change is smooth. Furthermore, it is also
possible to state the assumption in terms of policies i.e.
change in the environment is bounded by the change in
policies. This is because similar policies imply similar
state visitations (e.g. see lemma 14.1 in (Agarwal et al.,
2021)). The converse is not always true and our assumption
is weaker.

Suppose reward (ry4) and the transition (P;) are fixed in
eq. (3), then the objective function of eq. (3) is convex (in
fact linear), and the set of optimal solutions is convex, a sim-
ple application of Kakutani fixed point theorem (Glicksberg,
1952) shows that there always exists a performative stable
solution.'

Proposition 1. Suppose assumption (1) holds for some
constants (e,,€p), then the optimization problem 3 always
has a fixed point.

3. Convergence of Repeated Retraining

Even though the optimization problem (3) is guaranteed to
have a stable solution, it is not clear that repeatedly optimiz-
ing this objective converges to such a point. We now con-
sider a regularized version of the optimization problem (3),
and attempt to obtain a stable solution of the regularized
problem. In subsection (3.3) we will show that such a stable
solution guarantees approximate stability with respect to the
original unregularized objective (3).

A2
I}llza())( d(S, CL)’/‘(],(S, (1) - 5 Hd”Q (4)

s.t. Z d(s,a) = p(s) + - Z d(s',a)Py(s',a,s) Vs

s’a

Here A > 0 is a constant that determines the strong-
concavity of the objective. Before analyzing the behavior of
repeatedly optimizing the new objective (4) we discuss two
important issues. First, we consider quadratic regularization
for simplicity, and our results can be easily extended to any
strongly-convex regularizer. In particular, we use the strong
convexity of Lo norm to show that the solution of the opti-
mization problem in (3) forms a contraction mapping. If we
use L; norm then this mapping might not be a contraction.
But note that, the regularized objective in (3) still has a fixed
point since the objective is still concave. So we still believe
that repeated optimization converges to a stable point but we

!The proof of this result and all other results are provided in
the appendix.



Performative Reinforcement Learning

might only have convergence in the limit. Second, we apply
regularization in the occupancy measure space, whereas reg-
ularization in policy space is commonly used (Mnih et al.,
2016). However, value function is generally a non-convex
function of policy and it is not immediately clear whether
the solution of the optimization problem (eq. (3)) in the
policy space also gives a contraction mapping. Since the
performatively stable occupancy measure dg is not known,
a common strategy adopted is repeated policy optimization.
At time ¢, the learner obtains the occupancy measure d;, and
deploys the policy 7; (as defined in eq. (2)). In response,
the environment changes to P, = Py, and r; = rg4,, and the
learning agent solves the following optimization problem to
obtain the next occupancy measure d; .

A 2
rél§3< d(s,a)ri(s,a) — 5 lldll5 ®)

s.t. Zd(s, a) = p(s)+v- Zd(s’,a)Pt(s’,a, s) Vs

s’ a

‘We next show that repeatedly solving the problem (5) con-
verges to a stable point.

Theorem 1. Suppose assumption | holds with A\ >
125%/2(2¢,455¢,) _125%/2(2¢,458¢,)
W' Let = W
6 > 0 we have

. Then for any

de —dsll, <6 Vt>2(1—p)~"In(2/6(1 — 7))

Here we discuss some of the main challenges behind the
proof of this theorem.

* The primal objective function (5) is strongly concave but
the feasible region of the optimization problem changes
with each iteration. So we cannot apply the results from
performative prediction (Perdomo et al., 2020), and in-
stead, look at the dual objective which is A(1 — )2 /\-
strongly convex.

* Although the dual problem is strongly convex, it does not
satisfy Lipschitz continuity w.r.t. P. However, we show
that the norm of the optimal solution of the dual problem
is bounded by O (S/(1 — ~)?) and this is sufficient to
show that the dual objective is Lipschitz-continuous with
respect to P at the dual optimal solution. We show that
the proof argument used in Perdomo et al. (2020) works
if we replace global Lipschitz-continuity by such local
Lipschitz-continuity.

* Finally, we translate back the bound about the dual
solution to a guarantee about the primal solution
(|ld¢ — ds|,) using the strong duality of the optimiza-
tion problem (5). This step crucially uses the quadratic
regularization in the primal.

Here we make several observations regarding the assump-
tions required by Theorem 1. First, Theorem 1 suggests that

for a given sensitivity (e,, €,) and discount factor 7, one can
choose the parameter )\ so that the convergence to a stable
point is guaranteed. Second, for a given value of A and ~ if
the sensitivity is small enough, then repeatedly optimizing
5 converges to a stable point.

3.1. Gradient Ascent Based Algorithm

We now extend our result for the setting where the learner
does not fully solve the optimization problem 5 every itera-
tion. Rather, the learner takes a gradient step with respect
to the changed environment every iteration. Let C; denote
the set of occupancy measures that are compatible with
probability transition function F;.

Ci = {d :Zd(s, a) = p(s)+ ’yZd(s’, a)Pi(s',a,s) Vs

s'a

and d(s,a) > 0 Vs, a} (6)

Then the gradient ascent algorithm first takes a gradient step
according to the objective function r,/d — 3 ||d Hg and then
projects the resulting occupancy measure onto Cy.

di1 = Proje, (dy + 1 (1 — Ady))
= Proje, ((1 = nA)d; +nr) (7

Here Proj.(v) finds a point in C that is closest to v in
Lo-norm. We next show that repeatedly taking projected
gradient ascent steps with appropriate step size 1 converges
to a stable point.
2¢ql.5
Theorem 2. Let A > max {46T, 25, %ﬁ;gﬁ")}, step-
22
sizen = 3 and p = \/ffjj)i (1 + ??Z:‘ji) Suppose

4
assumption 1 holds with €, < min {?, %0_»73) 5 } Then for

any 6 > 0 we have

lde = dslly <6 V> (1—p) " n(2/5(1 7))

Proof Sketch: First, the projection step 7 can be computed
through the following convex program.

.1 2
min o f|d — (1 = nA)de — el ®)
s.t. Z d(s,a) = p(s) +~- Z d(s',a)Pi(s',a,s) Vs

Even though the objective above is convex, its feasible re-
gion changes with time. So we again look at the dual ob-
jective which is strongly concave and has a fixed feasible
region. Given an occupancy measure d;, let GD,(d;) be
the optimal solution of the problem (7). We show that if the
step-size 7 is chosen small enough then the operator GD,, ()
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is a contraction mapping by first proving the corresponding
optimal dual solution forms a contraction, and then using
strong duality to transfer the guarantee back to the primal op-
timal solutions. Finally, we show that the fixed point of the
mapping GD,,(-) indeed coincides with the performatively
stable solution dg.

In order to simplify the proof of Theorem 2, we substituted
7 = 1/ and then chose a suitable value of A. This means
that as €,, ¢, — 0, A needn’t approach zero. However, it is
possible to choose a value of A that goes to zero as €,, €,
approach zero. In particular, this can achieved by setting
n < 1/S and imposing additional constraints on €,. The
proof of Theorem 2 attempts to show that the projected
gradient step results in a contraction with a constant term of
the form y2€2 (1 + 215)?. Now if ) < 1/ then this term
is smaller than 1 when ¢, is small.

3.2. Finite Sample Guarantees

So far we assumed that after deploying the policy corre-
sponding to the occupancy measure d; we observe the up-
dated environment M; = (S, A, P;,r¢,7v). However, in
practice, we do not have access to the true model but only
have access to samples from the updated environment. Our
setting is more challenging than the finite samples setting
considered by Perdomo et al. (2020). Unlike the supervised
learning setting, we do not have access to independent sam-
ples from the new environment. At time ¢ we can deploy
policy m; corresponding to the occupancy measure d;, and
can access trajectories from the new environment M, only
through the policy m,. Therefore, at every step, the learner
faces an offline reinforcement learning problem where the
policy m is a behavioral policy.

A standard assumption in offline reinforcement learning is
overlap in occupancy measure between the behavior policy
and a class of target policies (Munos & Szepesvari, 2008).
Without such overlap, one can get no information regarding
the optimal policy from the trajectories visited by the behav-
ioral policy. We make the following assumption regarding
the overlap in occupancy measure between a deployed pol-
icy and the optimal policy in the changed environment.

Assumption 2. Given an occupancy measure d, let p; be
the optimal occupancy measure maximizing eq. (5), and d
be the occupancy measure of @ in P,. There exists B > 0
S.1.

pa(s, a)

<B Vd
d(s,a)

max
s,a

When there is no performativity, d equals d and the as-
sumption states overlap between the occupancy measure
of the deployed policy and the optimal policy. This is the
standard assumption of single policy coverage in offline

reinforcement learning. When there is performativity, d

can be different than d since the deployed policy ¢ might
have occupancy measure different than d in the changed
model P, and in that case we require overlap between d
and the optimal occupancy measure. Assumption (2) is also
significantly weaker than the uniform coverage assumption
which requires maxy max; , E(s, a) > 0 as it allows the
possibility that d(s,a) = 0 as long as the optimal policy
doesn’t visit state s or never takes action a in state s.

Data: We assume the following model of sample generation
at time ¢. Given the occupancy measure d let the normal-
ized occupancy measure be d: (s, a) = (1—7)d:(s, a). First,
sample a state, action pair (s;,a;) i.i.d as (s;,a;) ~ Jt,
then reward r; ~ 7(s;,a;), and finally the next state
st ~ Pi(-|s;,a;). We have access to m; such tuples at
time ¢ and the data collected at time is given as D, =
{(ss,ai,7;,85) 1", . We would like to point out that this
is a standard model of sample generation in offline rein-
forcement learning (see e.g. (Munos & Szepesvari, 2008;
Farahmand et al., 2010; Xie & Jiang, 2021)).

With finite samples, the learner needs to optimize an em-
pirical version of the optimization problem 5. We follow
the recent literature on offline reinforcement learning (Zhan
et al., 2022) and consider the Lagrangian of eq. (5).

A
L(d, h; My) = d 'y — ) |3 + Z h(s)x

=S d(s,a) + pls) + - S d(s, a) (s 0, 5)

s'a

= 2 + Do hae) + 3 (o, i(<8;,(3)> :

<Tt(57 a) - h(s) + Z Pt(sa a, s’)h(s’))

The above expression motivates the following empirical
version of the Lagrangian.

~ )\ 2 ki d(si,ai)
Ldh M) =2 dI2+S h(s)pls) + Y 20 o
(0.1 M) = =5 11 + 3 ) + 3 FEes

7(siyai) = h(si) + vh(s})
mg(1 —7)

(€))

We repeatedly solve for a saddle point of the objective (9).

(dey1,hies1) = argmax argmin £(d, h; M) (10)
d h

The next theorem provides convergence guarantees of the
repeated optimization procedure (10) provided that the num-
ber of samples is large enough.

Theorem 3 (Informal Statement). Suppose assumption 1

/
holds with \ > %, and assumption 2 holds
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3/2 -
with parameter B. Let i = W For any

& > 0, and error probability p if we repeatedly solve the
optimization problem (10) with number of samples m; >

9] <% In (%))2 then with probability at least
1 — pwe have

lde = dslly < 6t > (1= )" In(2/5(1 = 7))

Proof Sketch:

e We first show that the empirical version of the La-
grangian £(d, h; M,) is close to the true Lagrangian
L(d, h; M) with high probability. This is shown us-
ing the Chernoff-Hoeffding inequality and an e-net ar-
gument over the variables. Here we use the fact that
for the dual variables we can just consider the space

= {h:||h]l, £35/(1—~)?} as the optimal solu-
tion is guaranteed to exist in this space.

* We then show that an optimal saddle point of the
empirical Lagrangian (9) is close to the optimal so-
lution of the true Largrangian. In particular, if
’ﬁ(d, h; M) — L(d, h; Mt)’ < e then we are guaranteed
that ||d¢+1 — GD(d,)||, < O(e). Here GD(d;) denotes
the solution obtained from optimizing the exact function.

* By choosing an appropriate number of samples, we
can make the error term e small enough, and estab-
lish the following recurrence relation: ||d¢+1 — ds||y <
B + B ||d: — ds||, for § < 1/2. The rest of the proof
follows the main idea of the proof of Theorem 3.10 from
(Mendler-Diinner et al., 2020). If ||d; — dgl|, > J then
we get a contraction mapping. On the other hand, if
|ld: — dsl|, < 6 then subsequent iterations cannot move
d; outside of the d-neighborhood of dg.

3.3. Approximating the Unregularized Objective

Theorem (1) shows that repeatedly optimizing objective (4)
converges to a stable policy (say dg) with respect to the
regularized objective (4). Here we show that the solution
dg approximates the performatively stable and performa-
tively optimal policy with respect to the unregularized ob-
jective (3).

Theorem 4. There exists a choice of the regularization
parameter () such that repeatedly optimizing objective (5)
converges to a policy (d? ) with the following guarantee®

max E rqy(s,a)d(s, a)

dec(dy)
-0 (53% +S6)/(1=7)°)

“Here we ignore terms that are logarithmic in S, A, and 1/6.
3C(d) denotes the set of occupancy measures that are feasible
with respect to P(d) = Pj.

Zrdxsadssa ) >

Note that as € = max {e,, €, } converges to zero, the policy
dg also approaches a performatively stable solution with
respect to the original unregularized objective.

Theorem 5 (Informal Statement). Let dpo be the perfor-
matively optimal solution with respect to the unregularized
objective and let ¢ = max{¢,,€,}. Then there exists a
value of )\ such that repeatedly optimizing objective (5)
converges to a policy ( dg ) with the following guarantee

Z ray (5, a)da(s,a) > Z Tdpo (8, a)dpo(s,a)

55/3A1/3€2/3 €S
-0 (mos{ TS )
We again see that as e converges to zero, dy approaches a
performatively optimal solution with respect to the orig-
inal objective. The proof of theorem (5) uses the fol-

lowing bound on the distance between the performatively
stable solution and the optimal solution.Hdg — d}\,o H2 <

0 (% (er (1 + 7\/5) . epﬁ))

‘We believe that the bounds of theorems (5) and (4) can be
improved with more careful analysis. However, the error
bound should grow as v decreases. This is because the di-
ameter (or max L9 norm) of occupancy measure is most
1/(1 — v)? and even in performative prediction such an ap-
proximation bound grows with the diameter of the model.*

4. Experiments

In this section, we experimentally evaluate the performance
of various repeated retraining methods, and determine the
effects of various parameters on convergence. > All experi-
ments are conducted on a grid-world environment proposed
by (Triantafyllou et al., 2021).° We next describe how this
environment is adapted for simulating performative rein-
forcement learning.

Gridworld: We consider the grid-world environment shown
in Figure 3, in which n + 1 agents share control over an
actor. The agents’ objective is to guide the actor from some
initial state S to the terminal state G, while minimizing
their total discounted cost. We will call the first agent the
principal, and the other n agents the followers. In each state,
the agents select their actions simultaneously. The principal
agent, Ay, chooses the direction of the actor’s next move by
taking one of four actions (left, right, up, and down).

Any other agent, A; decides to either intervene or not

*For example, see proposition E.1 (Perdomo et al., 2020),
which is stated for diameter 1 and convex loss function.

’Code source: https://github.com/gradanovic/
icml2023-performative-rl-paper-code

SThe original single-agent version of this environment can be
found in (Voloshin et al., 2019).
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Figure 2: Experimental results for Gridworld. All plots were generated with v = 0.9 and 1000 iterations. We normalized

the distance between iterations ¢ and ¢ + 1 with ¢; = =

[d:|l2

. RPO stands for repeated policy optimization, RGA for

repeated gradient ascent, ROL for repeatedly solving (empirical) Lagrangian and FS for finite samples. The parameters are
A (regularization), 8 (smoothness), 7 (step-size), and m (number of trajectories).

in A;’s action. If the majority of the n follower agents
choose not to intervene, then the actor moves one cell
towards the direction chosen by A;, otherwise it moves
one cell towards the new direction chosen by the major-
ity of the followers. Note that the principal and the fol-
lowers’ policies determine a policy for the actor agent.
The cost at each state is de-
fined according to the grid-world

S S S S S S S S

s H shown in Figure 3. If the ac-
s H tor visits a blank or an S cell,
s H then all the agents receive a small
s H negative reward equal to —0.01.
S H H H If an F' cell is visited, then a
S H H H slightly more increased cost equal
s H c| to —0.02 is imposed and for H

cells a severe penalty of —0.5 is
inflicted. Additionally, whenever
any A; decides to intervene, it
pays an additional cost of —0.05.

Figure 3: Gridworld

Response Model: We implement agent A; as a learner
who performs repeated retraining. The initial policy of
agent A; is an e-optimal single-agent policy (e 0.1)
assuming that no other agent intervenes. Subsequently,
agent A; performs one type of repeated retraining (e.g. gra-
dient ascent).The follower agents, on the other hand, always

respond to the policy of A; according to a response model.
In particular, given a policy of Ay (say 1), we first compute

an optimal ()-value function for agent A;, Q;“m. Note that

Q;Im is computed w.r.t. a perturbed grid-world, and which
was generated by performing a random cell perturbation on
the grid-world of Figure 3. The perturbed grid-worlds are
different for different agents. Then we compute an aver-

age Q-function defined as @*Im = % Z;L;l @;lm. Then
a policy m, adopted by the Boltzmann softmax operator
with parameter 8. Then a policy 5 is determined by the

Boltzmann softmax operator with temperature parameter 3,

BT (s5,0)

ma(a;|s) = Note that the new policy 7o

5, B @ (siay)
effectively plays the role of a changing environment by re-
sponding to the majority of the n follower agents. Addition-
ally, parameter (3 controls the smoothness of the changing
environment, as viewed by A;.

Repeated Policy Optimization: We first consider the sce-
nario where agent A; gets complete knowledge of the up-
dated reward and probability transition function at time ¢. In
our setting, this means that A; decides on 7, all the other
agents respond according to the softmax operator and jointly
determines 7, and then agent A; observes the new policy
wh. This lets A; to compute new probability transition
function P;, and reward function r, and solve optimization
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problem (5). The solution is the new occupancy measure
di™ for Ay, and A; computes new policy 7/ " for time
t + 1 by normalization using eq. (2). Figure 1(a) shows
the convergence results of the repeated policy optimization
for different values of 3, with A fixed to 1. We see that if
the response function of the environment (i.e., the policy
of agent As) is not smooth enough (e.g., for 5 = 200), the
algorithm fails to converge to a stable solution. In figure 1(b)
we fix 5 to 10 and vary the value of parameter A (strength
of regularization). We see that the algorithm converges only
for large enough values of the constant \. Furthermore, we
observe that the convergence is faster as \ increases.

Repeated Gradient Ascent: We now see what happens
if agent A; uses repeated gradient ascent instead of fully
optimizing the objective each iteration. Here also A; fully
observes 75 (hence P; and r;) at time ¢. However, instead of
full optimization, A; performs a projected gradient ascent
step (7) to compute the next occupancy measure dti“. Fig-
ure 1(c) shows the performance of repeated gradient ascent
for different values of the step-size . We observe that when
7 is small (e.g,. n < O(1/))), the learner converges to a
stable solution. But the learner diverges for large n. Ad-
ditionally, the convergence is faster for step-size closer to
1/ (as suggested by Theorem 2). Since, repeated gradient
ascent does not fully solve the optimization problem (5), we
also plot the suboptimality gap of the current solution 1(d).
This is measured as the difference between the objective
value for the best feasible solution (w.r.t. M;) and current
solution (d}), and then normalized by the former. As the
step-size n is varied, we see a trend similar to figure 1(c).

Effect of Finite Samples: Finally, we investigate the sce-
nario where A; does not know 7r§ at time t, and obtains
samples from the new environment M, by deploying 7¢. In
our experiments, instead of sampling from the occupancy
measure, Ay directly samples m trajectories of fixed length
(up to 100) following policy 7%. We considered two ap-
proaches for obtaining the new policy 7r’i+1. First, A; solves
the empirical Lagrangian (9) through an iterative method.
In particular, we use an alternate optimization based method
(algorithm (1)) where h,, is updated through follow the reg-
ularized leader (FTRL) algorithm and d,, is updated through
best response. ’

Second, A; computes estimates of probability transition
function (P;), and reward function (%), and solves eq. (5)
with these estimates. For both versions, we ran our exper-
iments with 20 different seeds, and figures 1(e) and 1(f)
show the average errors along with the standard errors for
the two approaches. For both settings, we observe that as m
increases, the algorithms eventually converge to a smaller

7Since the objective (9) is linear in h and concave in d, standard
arguments (Freund & Schapire, 1996) show that algorithm (1) finds
an e-approximate saddle point in O(SAB/(1 — 7)?e?) iterations.

Algorithm 1 Alternating Optimization for the Empirical
Lagrangian
Set H = % andH = {h: ||h||, < H}.
forn=1,2,.., N do

hn, = argmingcy anl <Vhﬁ(dn/,h;Mt),h> +

n’=1
Blinll3 )

dn = argmax .o d(s,a)<Bds(s,a)Vs,a L(d, hy; My)
end for
Returnd = + Zﬁ[:l dp,.

neighborhood around the stable solution. However, for large
number of samples (m = 500 or 1000), directly solving the
Lagrangian (figure 1(e)) gives improved result.

5. Conclusion

In this work, we introduce the framework of performative
reinforcement learning and study under what conditions
repeated retraining methods (e.g., policy optimization, gra-
dient ascent) converges to a stable policy. In the future, it
would be interesting to extend our framework to handle high
dimensional state-space, and general function approxima-
tion. The main challenge with general function approxima-
tion is that a stable policy might not exist, so the first step
would be to characterize under what conditions there is a
fixed point. Moreover, most RL algorithms with function
approximation work in the policy space. So, another chal-
lenge lies in generalizing optimization problem 5 to handle
representations of states and actions.

Another interesting question is to resolve the hardness of
finding stable policy with respect to the unregularized ob-
jective. To the best of our knowledge, this question is un-
resolved even for performative prediction with just convex
loss function. It could be interesting to explore connections
between our repeated optimization procedure and standard
reinforcement learning methods, e.g., policy gradient meth-
ods (Mnih et al., 2016; Neu et al., 2017). However, we note
that policy gradient methods typically work in the policy
space, and might not even converge to a stable point un-
der changing environments. Finally, for the finite samples
setting, it would be interesting to use offline reinforcement
learning algorithms (Levine et al., 2020) for improving the
speed of convergence to a stable policy.
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A. Additional Information on Experimental Setup and Results

In this section, we provide additional information on the experimental setup (Section A.1), as well as additional experimental
results (Section A.2). We also provide information regarding the total amount of compute time and the type of resources that
were used (Section A.3).

A.1. Additional Information on Experimental Setup

Gridworld: The initial state of the actor in the grid-world is selected uniformly at random from the cells denoted by
S. Additionally, the actor remains at its current cell in case it attempts a move that would lead it outside the grid-world.
Regarding the reward function, all the agents receive a positive reward equal to +1 whenever the actor reaches the terminal
state G.

Response Model: The response model of a follower agent is based on a perturbed grid-world instead of the one in Fig. 3. In
other words, each of the n follower agents sees different cell costs than the ones A; sees. As a result, they might respond to
the policy of Aj, by adopting a policy that performs unnecessary or even harmful interventions w.r.t. the grid-world of Fig.
3. A perturbed grid-world is generated from the grid-world of Fig. 3 with the following procedure. First, G and S cells stay
the same between the two grid-worlds. Then, any blank, F' or H cell remains unchanged with probability 0.7, and with
probability 0.3 we perturb its type to blank , ' or H (the perturbation is done uniformly at random).

A.2. Additional Experimental Results

In this section, we provide additional insights on the interventional policies of the follower agents. The repeated retraining
method we use in these experiments is the repeated policy optimization. More specifically, we present a visual representation
of the limiting environment i.e. the majority of the agents’ policy in the limit, i.e., after the method has converged to a stable
solution. The configurations are set to A = 1, 8 = 5, and we vary discount factor .

As mentioned in Section 4, the policy of the follower agents can be thought of as a changing environment that responds to
the policy updates of A;. To visualize how this environment looks like in the limit, we depict in Figure 6 several limiting
policies of the follower agents. From the Figures 4, and 5 we observe that for smaller discount factor, the majority of the
follower agents tend to intervene closer to the goal state.
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Figure 6: Figures 4, and 5 visualize two instances of the interventional policy of agent A, in the Gridworld environment.
All figures correspond to the majority of the followers’ policy at convergence for various values of the discount factor .
Empty cells denote states where majority of the agents’ most probable action is to not intervene. For cells with a red arrow
the (highest probability) action of the majority of the follower agents is to intervene by forcing the actor to move one cell
towards the direction of the arrow.

A.3. Total Amount of Compute and Type of Resources

All experiments were conducted on a computer cluster with machines equipped with 2 Intel Xeon E5-2667 v2 CPUs with
3.3GHz (16 cores) and 50 GB RAM. Table 1 reports the total computation times for our experiments (Section 4). Note that
at each iteration of the repeated gradient ascent experiment, apart from the gradient step a full solution of the optimization
problem 5 was also computed, in order to report the suboptimality gap.

Repeated Policy Optimization 767 sec

Repeated Gradient Ascent 964 sec

Repeated Policy Optimization with Finite Samples | 33746 sec

Repeated Gradient Ascent with Finite Samples 35396 sec

Table 1: Total computation times for the different experiments described in Section 4.

B. Missing Proofs
B.1. Proof of Convergence of Repeated Maximization (Theorem 1)

Proof. We first compute the dual of the concave optimization problem 5. The Lagrangian is given as

L) = dTr = Sl + SO nGs) ( ~ Y dls,0) +p(s) +7- Sl a)Puls' )

s’ a

At an optimal solution we must have V4£(d, h) = 0, which gives us the following expression for d.

d(s, a) = n(i,a) _@+%Zh@pt(s7a,g) (11)

14
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Substituting the above value of d we get the following dual problem.

min = 1 S A(s)r(s,0) + 3 30 ST (s )P a,9) + S hs)ols)

, 12)
S = 1Y M) YR8 + 3 Y M@ s 8 Pils,0.5)

5,0 5,38

Note that the dual objective is parameterized by reward function r, and probability transition function P; which are the
parameters corresponding to the occupancy measure d;. We will write £(-; M) to denote this dual objective function.

For a given occupancy measure (i.e. d; = d) we will write GD(d) to denote the optimal solution to the primal problem 5.
We first aim to show that the operator GD(-) is a contraction mapping. Consider two occupancy measures d and d. Let
r (resp. 7) be the reward functions in response to the occupancy measure d (resp. d). Similarly, let P (resp. P) be the
probability transition function in response to the occupancy measure d (resp. d).

Let h (resp. h) be the optimal dual solutions corresponding to the occupancy measures d (resp. d)ie. h €
argmax,, L(h'; M) and h € argmax,, L(h'; M). Lemma 2 proves that the objective is A(1 — 7)?/\ strongly con-
vex. Therefore, we have the following two inequalities.

) AT Al —~)? N
L(h; M) — L(h; M) > (h—h) VL(h; M) + % Hh—h ) (13)
- A(l —~)? 112
L(h; M) — L(h: M) > % Hh—h i (14)
These two inequalities give us the following bound.
A(1 = )2 2 A A
—%Hh—h“g > (h— h)TVL(h; M) (15)

We now bound the Lipschitz constant of the term (h — k)T L4 (h; M) with respect to the MDP M. Lemma 3 gives us the
following bound.

45V A .
3 [[r — 7

h

ch(iL;M) —vL(h M)H2 <

4vV/SA  6yVAS

)71
2 2

Now notice that the dual variable  is actually an optimal solution and we can use lemma 4 to bound its norm by %

dde and HP’pH < e
2 2

Furthermore, under assumption 1, we have |7 — 7|, < €, ’d —d H . Substituting these
2

bounds we get the following inequality.

foctian —veiian], = 255 -]« (4T OB fad],
< (e e -,

15
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We now substitute the above bound in equation 15.

_ M Hh_ th > (h—h)TVL(h; M)

=(h—h)" (Vﬁ(ﬁ; M) — VL(h; M)) [As h is optimal for £(-; M)]

> Hh . szQ Hvz:(iz; M) — VL (h; M)H
N (45\/2@ 10752\/>€p> )
2 X M=

Rearranging we get the following inequality.

| =], <
2

A 45V Ae, 10752\/>ep
Al —~)? A Al —

Recall that GD(d) (resp. GD( d)) are the optimal solution corresponding to the primal problem when the deployed occupancy
measure is d (resp. d). Therefore, we can apply lemma 1 to obtain the following bound.

g
2

< (1 N 4e, + 6ep - 3S/(1 — 7)2) 3VAS A (45\/2@ 10752\F6p> ‘

. 4e, + Ge,
HGD(d) - GD(d)H2 <1+ -

) N Al —Aq)? ) A1 —

g <1+ 46T+66p-is/<1 —7)2> m?fv)z <4S<Zer L1095 ﬂep) Ja—d],
=

Now it can be easily verified that if A > 125%/2(1 — v)~%(2¢, + 5S¢,) then 3 = % < 1. This implies that
the operator GD(-) is a contraction mapping and the sequence of iterates {d; };>1 converges to a fixed point. In order to
determine the speed of convergence let us substitute d = d; and d = dg. This gives us ||GD(d;) — dslly < Bllde — dsll5-
As GD(d;) = dy41 we have ||di1 — dgl|, < B|di — dgl|,. After ¢ iterations we have ||d; — ds|, < " ||do — ds|l,-
Therefore, if ¢ > In (||dy — dsl|, /0) /In(1/5) we are guaranteed that ||d; — ds||, < d. Since ||dy — ds|ly < %, the
desired upper bound on the number of iterations becomes the following.

il sl f9) <oy gy (32)

In(1/8) o(1 =)
O
Lemma 1. Consider two state-action occupancy measures d and d. Let \ > 2 (267> + 3¢, ’71” ) Then we have the
2
following bound.
R 4e, + b¢p fLH
e, < (14 22
2 A

Proof. Recall the relationship between the dual and the primal variables.

d(s,a) = ”(‘;’ @) _ @ + } Z h(3)P(s,a,3)

16
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This gives us the following bound on the difference (d(s,a) — d(s,a))?.
. 2 3 . 1 . 2
(dls,0) = d(s,a))” < 55 ((s.0) = 7(5.0))* + 55 (h(s) = h(s))

2
372 R
+ 2L (Z h(s")P(s,a,s") Zh )P(s,a,s )) [By Jensen’s inequality]

2
2

6 / [
+ﬁ (Z(h(s)—h(s))P(s a s))

6 s 2
+ 2 (Z h(s') (P(s a,s') — P(s,a, s’))) [By Jensen’s inequality]

3 1 . 2
< 33 (r(s.0) = 7(s,0)) + 55 (h(s) - h(s))
+ % Hh - }ALHQ + % h ’ Z (P(S, a,s’) — ]5(5 a,s ))2 [By Cauchy-Schwarz inequality]

Now summing over s and a we get the following bound.

A2 3 2 7AS
Ja—dlf < %=+ TG o= ]+ 3l
We now use the assumptions ||r — 7|, < €. ||d — JHz and HP - ]5H2 <ep ‘d— JHz
2, . VA .
o, < 5 aal,+ 252 -], + 52 o], Ja-
2 A 2
Rearranging we get the following bound.
2¢, + 3¢p BHZ . de, + be, iLHZ
<|1 < {1
‘ 2~ A 2~ + A
The last inequality uses the fact that A > 2(2¢, + 3¢, HiLH ). O
2

Lemma 2. The dual objective L, (as defined in 12) is M—strongly convex.

Proof. The derivative of the dual objective £, with respect to h(s) is given as follows.

8(95}:1(2’;) — _%Zn(s a) ’;\/Szl);’f‘t(sl7a)Pt(s’7a,S) +p(s) + %h(s)
(16)

2
Zh %) (Py(s,a,3) + P,(3,a,8)) + ’77 S WGP a,3)Pi(s a, )

s’ a,8

17
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This gives us the following identity.

(vcd(h) —Vﬁd(ﬁ)) (h— 1) Hh—ﬁHz
. } (h(s) ~ H(3)) (Pi(s,a.3) + P& a,5)) (h(3) — B(&)

$,8,a

ZZ 8)Pi(s',a,5)Pi(s',a,5) (h(s) — h(s))

S(ZSS

Let us now define the matrix M, € RS*S with entries M, (s, s') = P;(s,a, s').

(vgd(h)—vcd(ﬁ)) (h—h) th hH

_X (h—h)T (Ma+MJ)(h—h)+72(h—ﬁ)TMJMa(h—ﬁ)

a

_ % Z(h — )T (1d — Y M, — yM] ++2M] M,) (h— h)

>A(1—

-,

The last inequality uses lemma 5. O

Lemma 3. The dual function L4 (as defined in eq. (12)) satisfies the following bound for any h and MDP M, M.

HVEd(h,M) —VLalh, 1\7)H2 <

VA (4”*157 + G54 |h2> |P-2],

Proof. From the expression of the derivative of £, with respect to h (eq. (16)) we get the following bound.

HVLd(h, M) — VLy(h, 1\7)”2 -y {i (r(s,a) — 7(s,a))

S

+ %Z (r(s’,a)P(s’,a,s) —#(s",a)P(s,a, s ) Zh P(3,a,s) — P(3,a,s))

—%Zh(f@’)( (s,a,3) — Psa —l—th ( s’ a,EJ)P(s’,a,s)—P(s’,a,é’)ﬁ(s’,a,s))}

S(lS

s’,a

) A 2
< iiz‘ Ir =715 + % S (Z (r(s',)P(s',a,5) = #(s', ) P(' 5)))

2 5 2

(Zh (3.0, 9) P(g,a,s))) + 5%2 (Z h3)(P(s,a,3) — P(s,a,g)))

- 5% (Z h(3) (P, 0, 3)P(s 0, 5) = P(s' 0, 5)P(sa, s>))

s’,a,s
We now use four bounds to complete the proof. The following bounds use Jensen’s inequality and Cauchy-Schwarz

18
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inequality.

Bound 1 : Z (r(s', a)P(s',a,s) — (s a)P(s, a, s))

s’ a

< Z [r(s',a) —7(s',a)| P(s',a,s) +7(s',a) ‘P(s’, a,s) — P(s',a,s)

s’,a

<=7l + D[P a,8) = Pl sa,9)|

BoundZ:Z Zh P(3,a,s) — P(3,a,s)) <AZZh~)ZZ( 3, a,8) P(g,a,s))2

< awlr -]

Bound3:Z(Zh P(s,a,3) — P(s,a,3) ) <AZZh“} Z( sa,@—ﬁ(s,a,@))Q

< Alln|;

Bound 4 : Z Z h(3) (P(s’,aﬁ)P(s’,ms) - P(s’,a,g)f?(s’,ms))

s’,a,8

< Z Zh(@z Z (Z (P(s’, a,5)P(s',a,s) — P(s',a,3)P(s, a, s)))

s’ a

< SAHh||2ZZ( s',a,3)P(s',a,s) — (s',a,fﬂlf’(s’,a,s)>2

sssa

< SA|nl; ZZ ( s',a,3)(P(s',a,8) — P(s',a,)) + P(s',a,s)(P(s',a,3) — P(s’,a,g)))

sssa

< 2SA|h|3 ZZ’PS a,s) — P(s, as) +’P(s’,a,§)—f3(s’,a,§)‘2

sssa

2
< as?a||nlz||P - P|
2

Using the four upper bounds shown above, we can complete the proof.

—~ 52 R . 2
|Veath,ar) ~ van 50|} < 35 1 — 713+ 2 = (I =l + [P = P )
10A7 2052 A~4
+ iz | - ||+ 2 w3 e -
54 1052A7 10725 A 10A7 2052 Ay
<(A2+ RS Y ol + (R AT g+ 252 i) -
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Lemma 4. The norm of the optimal solution to the dual problem (defined in 12) is bounded by % for any choice of
MDP M.

Proof. The dual objective L is strongly-convex and has a unique solution. The optimal solution can be obtained by setting
the derivative with respect to h to zero. Rearranging the derivative of the dual objective (16) we get the following systems of
equations.

2
h(s ———ZPtsas %ZPt(s’,a,s)Q
+3 h(3) —ZZPt(s a,3) ~ TS " Pi(3,a,8) + fza(s' a,3)Py(s',a, 5)
)\ ) ) )\ ) ) )\ b b b )

S#s a s',a

AZnsa $) = 5 2nils,a)Pi(sa,s)

s’ a

Therefore let us define a matrix B € R®*S and a vector b € R® with the following entries.

B(5,5) = 4 AT Plsas) + X5, Pis a,5)? if
) - “ ~ 2 ~
I3 Pi(s,a,8) — 3>, Pi(3,a,8) + 3 Zs',a Pi(s',a,5)P(s, a,s)

I
>

O
£

)\ Zrt S, Cl S) )\ Tt(SI,CL)Pt(S/,CL, S)

s',a

Then the optimal solution is the solution of the system of equations Bh = b. We now provide a bound on the Lo-norm of
such a solution. For each a, we define matrix M, € RS> with entries M, (s, 3) = Pi(s, a, §). Then the matrix B can be
expressed as follows.

A

2 2
_ Al Ny S T s A=)
B="Id (Ma+Ma)+)\;MaM>

Id
A

A A

a

The last inequality uses lemma 5. Notice that for v < 1 this also shows that the matrix is invertible. We can also bound the
norm of the vector b.

||bH2§Z *+p )\Zpts a, s)

A28
<355 +3||p||2+3/\22 > Pi(s,a,s)

s’ ,a

A28 35 A2 952 A2
<37+3 22 ZZPt(s/,a,S)ST

Therefore, we have the following bound on the optimal value.

b, 38

)‘min(A) o (1 - ’7)2

A", <

Lemma 5. For each a, let the matrix M, € R3*S be defined so that M,(s,s') = P(s,a,s').
)\min <Z Id - 7(Ma + MJ) + VQMJMQ> > A(l - 7)2
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Proof. Let M, = U,%2,U, aT be the Eigen-decomposition of the matrix M,. Then we have
Z Id — (Mg + M) + M My = (1d = yM,) " (Id — yM,)
= Z W(1d = 72)U) " (Ua(ld = 72)U]) = 3 U, (1d =45, U
a

ZIdl— A(1—~)%1d

The last line follows the largest eigenvalue of M, is 1, and therefore the smallest diagonal entry of the matrix (Id — 73, )?
is at least (1 — )2 O

B.2. Proof of Convergence of Repeated Gradient Ascent (Theorem 2)

Proof. The dual of the optimization problem 8 is given as follows.

max h(s) (L —nA)de(s,a) + nre(s, a) Z h(s

heRS o
A
! / / 2
- Es h(s) E,apt(87a,8) ((1—17)\)dt(s,a)—i—nrt(s,a))—5 Es h(s) a7
+- E h(s g h(s")Py(s' a,s) — — E h(s s”)g Py(s,a,s")P(s,a,s")

We will consider the equivalent minimization problem.

in — S h(s) (1 - nA)d h(s
min Z nA)dy(s,a) + nri(s, a)) +Z p(s)

+7-Zh(5)ZPt(S’,a,3) (1 —nN)de(s',a) +nri(s, a) Zh (18)

—7~Zh Zh VPy(s',a,s —|——Zh 5”)ZPt(s,a,s’)Pt(s,a,s”)

s,a

Let us call the above objective function P(-; M) for a given MDP M. Consider two occupancy measures d and d. Letr
(resp. ) be the reward functions in response to the occupancy measure d (resp. d) i.e. r = R(d) and # = R(d). Similarly
let P (resp. P) be the probability transition functions in response to the occupancy measures d (resp. d).

We will write GD(-) to denote the projected gradient ascent step defined in eq. (7). In particular, if we write C to define the
set of occupancy measures feasible with respect to P, then we have

GD(d) = Proje (1 — nA)d + nr) (19)
Note that GD,,(d) is the optimal solution to the primal problem 8 with d; = d. Let h be the corresponding dual optimal
solution. Similarly let h be the optimal dual solution corresponding to the occupancy measure d. Since h is the unique
minimizer of P(-; M) and P(-; M) is A(1 — 27)-strongly convex for any M (lemma 7) we have the following set of
inequalities.
. . . NIt
Ph; M,d) — P(h; M,d) > (h — h)TVP(h; M, d) + A(1 — 7)2/2 Hh - hH2
. 112
Pl M, d) — P(h; M, d) > A(1 —7)?/2 Hh - hH
2

These two inequalities give us the following bound.

CA(L — )2 Hh—iLHZ > (h— h)TVP(h; M, d) (20)
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We now apply lemma 8 to bound the Lipschitz constant of the term (h — }AL)TV’P(}AL; M).

HVP(E; M, d) — VP (h; M, cZ)H2 < 5A(1 —pA)2(1 + 2%92) Hd - CZH2 +502A (1= )2 + 29282) ||r — 73

2(1 —n))?
(1—7)?

< (BA(L —nA)2(1+nel + 29°5%) + 10n°* AS%e})

2
+5v2SA <21_Z)A) + 2% + 1297 (W +4(1 - nA) A(15—7)6>) &

+572SA< 22+ 62 H H >‘

\HHE

2

d

4~

2

2y25 48y*5°
< B 2 2 2 2 a2 2 2
< (5A(1 iy (1 +n%€ + 27757 + (1 — ,y)zep A(l _ 7)6 €p
+ 10n*y2AS%% + 10772725%6;2, + 60’7451462(1(;_277S> ’
50 25’3 2 S

=A2
The last inequality uses lemma 9 and assumption 1. Substituting this bound in equation 20 we get the following inequality.
~ 12 ~ ~
~ A1 — )2 Hh - hH2 > (h— h)TVP(h; M, d)
= (h—h)"VP(h;M,d) — (h— h)"VP(h; M, d)
2 ==, [Pt pr.d) = PGt D, 2~ ] a -],

Rearranging we get the following inequality.

. A
_ < =
h=h 27 Al —~)? )
112 A2
_ < =
= |[p =4, < - ‘
. 112
GD,(d) — GD,(d) )2 A(1 — pA)? + An2e2 + 842 HhHZGg . A2
_ < =
8725 A 8y2SA A%(1 - ‘
The last line uses lemma 6. After rearranging we get the following inequality.
2 12 8’)/2A2
< 2 2.2 2” H 2y ’
HGD —GD,(d )H2 < (4(1 N + el + 892 Bl +

1672€2(1 + 2nS)? v?elS? 8v2A2S8
< (401 = gA)? + a2 P 32(1 — n))2 Hd
_<( A" +4nTe + 1= + 32( n)A(l—)+A(1—
For n = 1/ we get the following bound.

2 2 1692e2(14+2S/0)2  8091S3(2 +€2)  48070S2e2(1 + 25/ )2 )
GD, (d) — &y ()| < 2 4 222 (1 +25/3) 7S (e + ) °SPG L+ 25N\ 1
! Tl T A (1—=7)* A2 (1 =)t (1-7)?®

2

2

If we choose \ > max {4er, 28, W} we get the following condition.

.12 1 64v%¢2 192075522 .
aD,(d) - aD, ()| < 2+ L2 L 2702 D) g
n n 9

2

2

2 (1-y? (1—y)8
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For a contraction mapping we need the following condition.

647%€; 30452 1
-\ "a-71) "2

4 o2
‘We consider two cases. First, if ??154 < 1 then one can show that a sufficient condition is €, < 7S /3. On the other hand,
¢ 30~%52 1—)*
if (1177)4 > 1 then we need ¢, < %.
following.

Combining the two conditions above a sufficient condition for contraction is the

¥S (1—=9)*
37 100935

€p < min{

64722 1920755262

Now if we set y = \/% + F T~y = We get the contraction mapping: HGDn(d) - GDn(CZ)HQ <u Hd - de

Let d* be the fixed point of this contraction mapping. Using d = d; and d=d* we get the following sequence of inequalities.

* * * 2
Hdt+1 —d ”2 SH”dt—d ”2 <. Sﬂt”dl_d HQ S,Udtm
The last inequality uses the fact that for any occupancy measure d we have ||d||, < ||d||; < ﬁ Rearranging we get that as
long as ¢t > In (ﬁ) /In(1/p) we have ||d; — d* ||, < 0.
We now show that the fixed point d* is a stable point. In response to d*, let the probability transition function (resp.
reward function) be P* (resp. d*). Let C* be the set of occupancy measures corresponding to d*. Note that C* is a
convex set. We consider two cases. First, (1 — nA)d* + nr* € C*. Then d* = GD,(d*) = (1 — nA\)d* + nr* and

r* — Xd* = VP(d*; P*,r*) = 0. Since P(-; P*,r*) is a concave function the occupancy measure d* is the optimal point
and is a stable point.

Second, we consider the case when (1 — n\)d* + nr* ¢ C*. Since d* = Proje. ((1 — nA)d* 4+ nr*). Since C* is a convex
set, by the projection theorem (see e.g. (Bertsekas, 2009)) we have the following inequality for any d € C*.

(L =n\)d* +nr* —d*) " (d—d*) <0
= n\d* =) (d—d*) <0
= VP(d*; P*,r*)"(d—d*) >0

This implies that d* maximizes the function P(-; P*,r*) over the set C* and is a stable point. O

Lemma 6. Consider two state-action occupancy measures d and d. Let h (resp. h ) be the dual optimal solutions to the
projection (eq. (18)) corresponding to occupancy measure d; = d (resp. d). Then we have the following inequality.

~ 112 ~ 112 A2 12
HGDn(d) - GDn(d)H2 < (4(1 N AP 4 842 Hh‘ i eg) Hd - dH2 187254 Hh . hH2

Proof. Recall the relationship between the dual and the primal variables.
GD,(d)(s,a) = (1 —nA)d(s,a) +nr(s,a) — h(s) +~ Z h(3)P(s,a,3s)

23



Performative Reinforcement Learning

This gives us the following bound on the difference (GD,(d)(s, a) — GD, (d)(s, a))>.

(GD, (d)(5.0) — GD, (d)(s.))” < 401~ nX)? (d(s,a) — ds a>)2 +d? (r(s,a) — (s, 0))”

+4(h(s)— 5) +dy? (Zh P(s,a,s") Zh (s,a,5) )2
4(1 — pA)? (d(s, a) — d(s, a)) i (r(s, @) — (s, a))?

+4 (h(s) . ﬁ(s))2 + 42 (Z (h(s’) - h(s/)) P(s,a,8") + h(s) (P(s, a,8') — P(s, a, s))> 2
4(1 — pA)? (d(s, a) — d(s, a)>2 + 41 (r(s, @) — (s, a))>

+ 872 (Z (h(y) - B<s')) P(s,a,s') )2 + 872 (Zh ( (s,a,5") — P(s,a,s/))>2
41 = N2 (d(s, 0) — d(s, a))2 + 4 (r(s,a) — 7(s, a))°

2 2 2
2l 3 27 N /
+ 8y Hh hH2+87 HhH2 gs/ (P(s,a,s) P(s,a,s))

Now summing over s and a we get the following bound.

A2 112
< 4(1 - pA)? Hd - dH2 +an? | — 7 + 89254 Hh - hH2

HGD,](d) — GD,(d) z

d—JHQ.

We now use the assumptions || — 7|, < €, ||d — JH and HP — PH < ¢
2 2

2 A2 NP
22 4 842 ||h eg> Hd—dH +8725AHh—hH
2 2 2

HGD —GD,(d )Hz < (4(1—17)\)2

Lemma 7. The objective function P(-; M) (as defined in 18) is A(1 — ~y)-strongly convex.
Proof. The derivative of the objective function P(-; M) with respect to h(s) is given as follows.

672(325)” ) > (1= nN)di(s,a) + nr(s,a)) + p(s) + 7 - Z Pi(s',a,5) (1 = n\)di(s,a) +nr(s, a))
¢ 1)

+ Ah(s) — - Zh (P:(5,a,s) + Pi(s,a, +722h ZPt(g,a,s’)Pt(g,a,s)
This gives us the following identity.

(VP(hs M) - VP Mt))T (h—Th)=A Hh - EH2

=7+ 20 () = MNP ) + il £ )(0) = ()
S0 fﬁ<s'>>§jpt<'s: 0.8)Pi(5,0,5) (h(s) = F(5))
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Now for each action a, we define the following matrix M, € RS> with entries M,(s,s’) = P;(s,a, s). Note that matrix
M, is row-stochastic and has eigenvalues bounded between —1 and 1.

(VP(h; M) — VP(%;Mt))T (h—h)=A Hh ’EHE ey (h=R)T (Z M, + MJ) (h—h)

et (S an )

=(h—h)" > (Id—~y(M, + M, ) ++*M, M,) (h — h)

a

~112
> A(1 - ~)? hth
2

The last line uses lemma 5. O

Lemma 8. The dual function (as defined in 18) satisfies the following guarantee for any h, occupancy measures d, d, and
MDP M, M.

HVP(h; M,d) = VP(h: M, )| < 5A(1—n)2(1+2425?) Hd - CZHj

+ 57 A (L= nA)? +2975%) |Ir — 713
2(1 — nA)?

+5v2SA (
7 (1)

~ (12
+ 2% + 697 |h||§> |P-7| ¢

Proof. From the expression of the derivative of the function P(-; M, d) (21) we have the following bound.

HVP(h; M, d) — VP(h; M, d)

z=§:{—ﬂ—nﬂ§:W@ﬂf—ﬂ&®)

S a

+n(1 —n\) Z(r(s, a) —7(s,a)) + ’}’772 (P(s’7 a,s)r(s,a) — P(s, a,s)i(s, a))

a

+ (1 —nA) Z (P(s’7 a,s)d(s,a) — P(s',a, s)d(s, a))

s’,a

p Z h(3) (P('g, a,8) + P(s,a,3) — P(3,a,s) — P(s,a, g))

s,a

+97 3w Y (P(:s“, a,5')P(s,a,3) — P(3,a,5)P(s, a, 3))
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5(1 —nA)? Z (Z(d(s, a) —d(s, a))) +50%(1 — n\)? Z <Z(r(s7 a) — 7(s, a)))

S a S a

2
+ 57%n Z (Z (s',a,s)r(s,a) — p(s',ms)f(&a)))
+57%(1 —n\)? (Z (s',a,s)d(s,a) — P(s',a, s)cZ(s,a)))
2
+572Z (Zh (5) (P 5,a,5) + P(s,a,3) — P(3,a,s) — P(s7a,§)))

+ 594 Z (Z h(s ( 3,a,8)P(s,a,3) — P(5,a,s")P(s, a,g)))

‘”’M

We now establish several bounds to complete the proof. The bounds mainly use the Cauchy-Schwarz inequality and the
Jensen’s inequality.

Bound 1 :Z (Z (P(s’, a,s)d(s,a) — P(s’,a, s)cf(s, a)))

’
,a

< Z (Z P(s',a,s) (d(s,a) - cZ(s,a)) +d(s,a) (P(s’7a,s) — P(s',a,s)))

§QZ(ZP(S/,¢175) (d(s7 a) — 5(1)) +2Z(sta ( s a,s)p(s',a,s)))
<2ZZ( d(s a))2Z(P(S’,a,S))2

s s’a s’ a

2
—&—222(0?(3, Z(ZPS a,s) — P(s, as))

12 2AS 2
§25Hd—dH2 ,P(S,7QS QZ’PS a,s) (s a,s)

2A8 2

(1—9)?

A2
< QSQAHd—dH + HP—
2

2

Similarly one can establish the following bound.

S

2
Bound 2 :Z (Z (P(s’, a, s)r(s,a) — P(s, a, s)7 (s, a))) < 282A||r — 7|5 + 248 HP - PHZ

s’,a
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Bound 3 : Z(Zh ( 3,a,5) + P(s,a,3) — P(3,a,s) — P(s,a,f@)))

2
<3DhEPYS (Z (p(:;, a,8) + P(s,a,3) — P(3,a,s) — P(s,a,a)>
< AN S (PGas) + Plsa.5) — PE.as) — Pls.ad))

9 ~ 112
<2A||R[5 [|P— P
2 2

Bound 43 (Zh Z( 5,0,5)P(s,a,5) — P(5,a s)P(s,a,?ﬂ))Z
< zs:%:h(s/y Z (Z (PG.a,5)P(s,0,3) — P(,a, s’)P(s,a@)) 2
ik Z (Z P(s,a,5) (P(5,a,5') = P(5.a,5)) + P(5.a,5) (P(s,a,5) = P(s, “57)> |
<2053 (Zf’(”) (PG.a) ‘p(g’a’s/)))Q

+2|h||2Z(ZPsas (P(s.a.) - P<sm))2
<2||h||QZZPsajZ( Sa.s) - PREas))

+2|n S Y P ) (P(s.a.3) ~ Pls.a.9)

<2||h||2HP A ZPsamznhng%( P(s,0,5) - P(s,0.9)
< s P A |
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We now substitute the four bounds above to complete the proof.
— .2 12
VP M d) = VP ML) < 50— wa)?al|d—d| +5n2(1 = mx)2a e - 7))
A2 2AS8
592(1 = N2 (2824 |a - ]| + =
57t ST
NI
+ 5972 (252A||r —#|% + 248 HP - PH2>

2
7L,
2

|7

112 12
+1072|\h||§HP—PH2+2074SA||h||§HP—PH2
A2
< 5A(L— gA)2(1 + 29282) Hd - dH + 5P A (1= A2 + 2928 | — 72

+5725‘A< (1= nAy

D+ 6 ||h|2) |- PH

O

Lemma 9. For any choice of MDP M and occupancy measure d, the Lo-norm of the optimal solution to the dual objective
(as defined in 18) is bounded by

1+298
(1-7)2

S/VA

+2|1— 77)\|( )

Proof. The objective function P is strongly-convex and has a unique solution. We set the derivative with respect to h to
zero and get the following system of equations.

h(s) | A-— Q’YZPSQS +72ZP5as)2

b(l

+Zh(s’) _72 (s',a,s) + P(s,a,s")) +'yQZPsas)P('§,a,s)

s'#s s,a

= Z ((1 =nN)d(s,a) +nr(s,a) -5 ZP s’y a,8) (1 —nN\)d(s,a) +nr(s,a))

Let us now define matrix B € R%* and a vector b € R® with the following entries.

B(s,s') = { A—=2y3, P(s,a,8) +7% > 5, P(5,a,5) ifs =s
’ > (P(s,a,8) + P(s,a,8")) + 2 Z;(LP(:SV,CL,S/)P(:SV,CL,S) 0.W.
b(s) = Z (T =nN)d(s,a) +nr(s,a) —- ZP s a,8) (1 —nA\)d(s,a) +nr(s,a))

a

Then the optimal solution is the solution to the system of equations Bx = b. We now provide a bound on the Lo-norm of
such a solution. For each action a, we define a matrix M, € R%* with entries M, (s, s’) = P(s,a,s’). Then the matrix B
can be expressed as follows.

B=A-Td—7Y (My+ M)+ M, M, > A1 —~)’1d

The last inequality uses lemma 5. This also implies that for v < 1 the matrix B is invertible.
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We now bound the norm of the vector b. We will use the fact that for any state . d(s,a) = 1/(1 — ).

Iblly < 1B, < 11— nA S d(s,a) + 0> r(s.a)+ 3 pls)

+y[1=nAl- Y P(sa,8)d(s,a) + 7 > P(s',a,9) [r(s, a)l

[1=nAl n/\I
< g+ SA+A+'y|1—n/\|Z ;Ps .a,s) Sz;d(s,a)2+msA
1 —nA|
< uSA+ Aty L= nAl]dl, Z ;Ps ,a,s) +nySA
1—nA A
< | l—ny | +nSA+A+~v]1 —nA|C+nvSA<A(1+2nS)+21 —n>\|\ﬁfy
The optimal solution to the dual objective is bounded by
bl| 1+ 218 S/VA
Alb_”2§ +2[1 —nA
4780 < Sy < T P T
O
B.3. Formal Statement and Proof of Convergence with Finite Samples (Theorem 3)
. . 245%/2(2¢,+55€,) . .
Theorem 6. Suppose assumption 1 holds with A > oy and assumption 2 holds with parameter B. For a

given §, and error probability p, if we repeatedly solve the optimization problem 10 with number of samples

64A(B +VA)? t 45(B +VA)
e = 3464(2¢, + 5Se,)? (ln (p) i (M»

then we have
2
lde —dsll, <6Vt >(1— p) " tn <5(1)) with probability at least 1 — p
-7

245%/2(2¢,4585¢
where u = —(1(_7)4 2)

Proof. We will write (/}\D(dt) to denote the occupancy measure d; 1.

(GD(dy), hyt1) = arg max argmin £(d, h; M,)
d h

Let us also write @(ds) to denote the primal solution corresponding to the stable solution dg i.e.

(@(ds),fzs) = arg max arg min ﬁ(d, h; Mg)
d h

Let us also recall the definition of the operator GD(-). Given occupancy measure d¢, GD(d;) is the optimal solution to the
optimization problem 5 when we use the exact model M;. Because of strong-duality this implies there exists h;41 so that

(GD(dt), hy1) = argmax argmin £(d, h; M)
d h

Since GD(dg) = dg there also exists hg so that

(ds, hs) = argmax argmin L(d, h; Mg)
d h
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Because of lemma 4 we can assume the Ly-norms of the dual solutions hy4 1, ils, and izg are bounded by %

exists a saddle point with bounded norm, we can just consider the restricted set H = {h Ry < %}8 Moreover, by

Since there

assumption 2 we know that GD(d;)(s,a)/d;(s,a) < B for any (s, a). Therefore, we can apply lemma 10 with §; = p/2t?
and H = 35/(1 — ~)? to get the following bound,

R _ 185M%(B + VA)e

£(d s My) = £(dsbi My)| < =755 (22)

as long as

4A
my > ?2(111(75/19) +1In(S/(1 = )e)) 23)
h € H and max, 4 d(s,a)/d;(s,a) < B. Since the event (22) holds at time ¢ with probability at least 1 — 525, by a union
bound over all time steps, this event holds with probability at least 1 — p.

Note that the objective L(-, hyy1; My) is A-strongly concave. Therefore, we have

— A _ 2
L(GD(d:), hes Mi) = £(GD(dy), e M) < =5 HGD(dt) — GD(a)|

Rearranging and using lemma 12 we get the following bound.

2 (E(GD(dt)a hiy1; My) — ﬁ(@(dt)7 hita; Mf))
A

64/S1-%(B + \/Z)CL

ST

| D) - GD()||, <

The proof of theorem 1 establishes that the operator GD(+) is a contraction. In particular, it shows that

125%/2(2¢, + 5e,)
AL =7)*

This gives us the following recurrence relation on the iterates of the algorithm.

|GD(d;) — dsll, < Bllde — dsll, for 8= and A > 125%/2(1 — 4)™*(2¢, + 5S¢,)

Idi41 = dsll, = |[GD(d:) — ds | < ||GD(d,) - GD(e)

61/S13(B +VA)e 1
< + Bllde — dslly

, + IGD () — dsll

R
We choose \ = 245%/2(1 — v)~%(2¢, + 5S¢,) which ensures 3 < 1/2 and gives the following recurrence.

(B +vA)e
_— — < _
2, 1 55, + Bllde — dslly < 6+ Bllde — dsll, (24)

[des1 —dsll, <2¢/1 =7
The last line requires the following bound on e.

B3262(2¢, + 55¢,)
T 4(1-9)(B+VA4)

Substituting the bound on € in equation (23) the required number of samples at time-step ¢ is given as follows.

64A<B+m>22 (m (;) +ln< 48(B + V/A) >>

(25)

" = 3151(2¢, + 5Se,) B53(26, + 55€,)

8See lemma 3 of (Zhan et al., 2022) for a proof of this statement.
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In order to analyze the recurrence relation (24) we consider two cases. First, if ||d; — dg||, > ¢ we have
i1 — dslly <26 ||d — ds],

Since < 1/2 this is a contraction, and after In(||dy — ds||5)/ In(1/20) iterations we are guaranteed that ||d; — dgl|, < 9.
Since ||dp — ds||, < 1% the required number of iterations for this event to occur is given by the following upper bound.

In(|do — ds|l,) » 2
m2g)  S21-2)7 (6(1 - 7))

On the other hand, if ||d; — dg]|| < 4, equation (24) gives us
ldey1 —dslly <266 <6 [Since § < 1/2]
Therefore, once ||d; — dsl|, < ¢ we are guaranteed that ||dy — dgl|, < 6 for any t’ > . O

Lemma 10. Suppose m > % (Aln(2/61) +In(4H/€) + 2AIn(In(SABH /€)/€)). Then for any occupancy measure d
satisfying max; o d(s,a)/di(s,a) < B and any h with ||h|, < H the following bound holds with probability at least
1— 01

- 6H\/S(B+VA)e

= 1—~

|£(d, hi My) = £(d, 1 My)

Proof. Note that the expected value of the objective above equals £(d, h; M).

B 601500 = 5 1415 + 3 ho)ote) + - SO [ £ (s,0) = (o) +90(60)|
=5 I+ Y n(s) + () << @)~ h(s) +7 3 Pl a)h(s’>)

- E(dv h; Mt)
By the overlap assumption 2 and the assumption || 2||, < H the following bound holds for each i,

1 d(si,ai) ’ 2BH
T 7. N iy Qg —h i h i < —.
T (o ay (ot ) = h(s0) 9h(s) < T

Therefore we can apply the Chernoff-Hoeffding inequality and obtain the following inequality.

T 1l—-y m

P <]f3(d, h; My) — L(d, h; My)| > 2BH ln(2/51)> <5

We now extend this bound to any occupancy measure d € D and h in the set X = {h : ||h||, < H}. By lemma 5.2 of

(Vershynin, 2010) we can choose an e-net, H, of the set H of size at most (1 + %)S and for any point h € H we are
guaranteed to find 2’ € H, so that ||h — h'[],.

However, such an additive error bound is not sufficient for the set of occupancy measures because of the overlap
assumption 2. So instead we choose a multiplicative e-net as follows. For any (s,a) we consider the grid points
di(s,a), (1 + €)di(s,a),...,(1 + €)Pdi(s,a) for p = log(B/d:(s,a))/log(l + €). Although d;(s,a) can be arbitrar-
ily small, without loss of generality we can assume that d;(s,a) > jgxpg- This is because from the expression of
L(d, h; My) (9), it is clear that ignoring such small terms introduces an error of at most €/4. Therefore we can choose
p = 2log(SABH /¢€)/log(1+ €). Taking a Cartesian product over the set of all state, action pairs we see that we can choose
an e-net D, so that |D | < (%)&4 < (w)w‘
there exists a d’ € D, such that d(s,a)/d'(s,a) < 1+e.

. Notice that we are guaranteed that for any d € D
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By a union bound over the elements in . and D, the following bound holds for any d € D, and h € . with probability at
least 1 — 6.

£(d, h; M) — £(d,h;Mt)’ <

m

2BH\ISAIH( )-l—Sln( A+ 2SAIn(In(SABH/e)/e)
-

=T

We now extend the bound above for any d € D and h € H using lemma 11. There exists d € D, so that
max, o d(s,a)/d(s,a) < e. Similarly there exists h. € H. so that Hh—ﬁ”2 < e Let £9(d, h; My) = L(d, h; M) +

3 ldll3 = 3=, h(s)p(s).

|£(d. hs My) = £(d, b 2)

< |£°(a, s My) = £9(d T M)

| £(@ s i) = £(d, B My) | + | £°(d s M) — £°(d, b M)

<2BHT 6v/S He+4BH\/§e
B e 1—7 1—7

Therefore, if m > % (AIn(2/61) + In(4H /€) + 2AIn(In(SABH /€)/¢)) then T,,, < V/Se and we have the following
bound.

6H\/S(B +A)e

1—7

£(d, b My) = £(d, b My) | <
O
= EH2 < H. Let £°(d, h; My) =
L(d, h; My) + 5 ||d||3 — 3, h(s)p(s) and define LO(d, h; M;) analogously. Then the following inequalities hold.

Lemma 11. Suppose we are guaranteed that % <l4eand Hh - EH <eand|h|,,
2

~ vVSAH
“CO(CL h; Mt) - £0<d7 h; My)| < %76 and
ABH+/Se

|£0(d, b My) — £0(d s My) | <

1—7

2 - 2
Proof. First note that Hd - CiH =2 sa (d<3>a) —d(s, a)) <D eadls, a)?e? < (1527)2.

‘L‘Otht) ,cotht‘ Z‘dsa )‘

sta

(s,a) z Pi(s,a,s)h(s') — d(s,a) Z P,(s,a, s )h(s")

::Tl ::T2

‘We now bound the terms 73 and T5.

T, = Zd(s,a) (h(s) —%(s)) + h(s) (d(s,a) - c?(s,a))‘

2
< Hh - %Hl S d(s,a) + Z(%(s))zd 3 <Z(d(s, a) — J(s,a)>
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saZPtsas ZPtsas s')
= Z ‘d s,a) (s,a)‘ Z,Pt(s,a, s") |h(s")| + Zd(s,a) Z/Pt(s,a,s’) ‘h(s’) —h

< il 4 =], + =], o)

VSAHe +/Se
< +
I e’ 1—v

T, =

Substituting the bounds on 77 and T5 we get the following bound on ‘,C(d, h; My) — E(J, h; My)|.

VSAHe
L=y

‘EO Jhy M) — ﬁo(tht)‘<\/ e+1(€+2

We now consider bounding the difference ‘ﬁo(d, h; My) — £9(d, h; My)|.

|20, s M) = £°(d B My)| <

d(3i7 a’i)
dt(siv ai)

m

1
+m(1—7)2

1=

d(siv a"i)
dt(sia ai)

(r(si,a:) — h(si) + vh(s})) —

(r(si,ai) — h(si) + vﬁ(SQ))‘

:=T35

‘We now bound the term 73.

T i 2| () = i)+ (50 = 25 (r (s 00) = (o) + 90 >>’
ZB(\ D= his)))
+ iy [ _>) [r(50,0) = B(si) +7R(s0)

eB
—||p-A] + = a2
_VH s (2l

Bv/Se 3BH\/Se
< +
T 1—x 1—7v

O
Lemma 12. Let (d*,h*) € argmax, argmin, £(d,h; M) and (d,h) € argmax, argmin, £(d, h; J/\/l\) Moreover,
suppose |L(d, h; M) — L(d, h; J\/Z) < e forall d and h with ||h||, < 3S/(1 — ). Then we have
L(d*,h*) — L(d, h*) < 2¢
Proof. We will drop the dependence on the underlying model and write £(d, h; M) as £(d, h) and L(d, h; M )as £(d, h).

L(d* %) — L(d, h*) = L(d*, h*) — L(d*, h(d*) + L(d*, h(d*)) — L(d*, h(d*))
=T =T
+ L(d*, h(d*)) — L(d, h) + L(d, h) — L(d, h*) + L(d, h*) — L(d, h*)

=T} =Ty =T5
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Here we write A(d) = argmin,, £(d, ) i.e. the dual solution that minimizes the objective £(d, ). Since h* minimizes
L(d*,), by lemma 4 we have ||h*||, < 35/(1 — ~)?. By a similar argument Hsz < 35/(1 — ~)?. Therefore, both T and
2

Tr are at most €.

Given d*, h* minimizes £(d*, -). Therefore, the term 77 is at most zero. By a similar argument the term T is at most zero.
Now for the term T3, notice that h = h(d) and it also minimizes the objective £(d, h(d)). Therefore, the term T3 is also at
most zero. O

B.4. Proof of Proposition 1
Proof. Let D be the following set D = {d e R4 d(s,a) > 0Vs,aand Y, d(s,a) = 5 17} We define a set-valued
function ¢ : D — 27 as follows.

¢(d) = arg max 25(57 a)rq(s,a)

>0 sa

s.t. Z d(s,a) = p(s) + - Z d(s',a)Py(s', a, s) Vs

s’ a

(26)

Any fixed point of ¢(-) corresponds to a stable point. First, note that ¢(d) is non-empty as one can always choose d to be the
occupancy measure associated with any arbitrary policy 7 in an MDP with probability transition function Py;. Now suppose
dy,dy € S(d). Then for any p € [0, 1] it is easy to show that pd; + (1 — p)da € ¢(d). This is because all the constraints are
linear, so pd; + (1 — p)da is feasible. Moreover, the objective is linear, so pd; + (1 — p)ds also attains the same objective
value.

We now show that the function ¢ is upper hemicontinuous. Let L be the Lagrangian of the optimization problem (26).

L(d, h; My) = stardsa —l—Zh ZJ(&(L)—p(s)—7~Zg(s’,a)Pd(s',a,s)

s',a

Note that the Lagrangian is continuous (in fact linear) in d, and continuous in d (from the assumption of (e, €,)-sensitivity).
Finally, observe the alternative definition of the function ¢.

¢(d) = arg max min L(J, h; My)
deD
Since the minimum of continuous functions is also continuous, and the set D is compact, we can apply Berge’s maxi-

mum theorem to conclude that the function ¢(-) is upper hemicontinuous. Now an application of Kakutani fixed point
theorem (Glicksberg, 1952) shows that ¢ has a fixed point.

O

B.5. Assumptions Regarding Quadratic Regularizer

Throughout we performed repeated optimization with quadratic regularization. Our proof techniques can be easily
generalized if we consider a strongly convex regularizer R(d). Suppose, at time ¢ we solve the following optimization
problem.

max Zd s,a)r(s,a) — R(d)

>0 ‘T

s.t. Z d(s,a) = p(s) + - Z d(s',a)P.(s', a, s) Vs

s',a

27)

Since R is strongly convex, (R’)~! exists and we can use this result to show that the dual of the (27) is strongly convex.
In fact, as in the proof of theorem 1 we can write down the lagrangian £(d, h) and at an optimal solution we must have

34



Performative Reinforcement Learning

Va£L(d, h) = 0. This gives the following expression.

d(s,a) = (R")™! ((S a) — (5)+7'Zh(§)Pt(8,a@> (28)

We can use the result above to show that the dual is strongly convex and the optimal dual solutions form a contraction. Then
we can translate this guarantee back to the primal using (28).

B.6. Omitted Proofs from Subsection 3.3

We will write dj\go to write the performatively optimal solution when using the regularization parameter A i.e.

dpo € arg max Zd $,a)rpo(s,a) — Hd||§
d>0

. (29)
s.t. Zd(s,a) =p(s)+- Zd (s',a)Ppo(s’,a,8) Vs

s’ ,a

Here we write 75, = R(dpp) and PP, = P(d}) to denote the reward function and probability transition function in
response to the optimal occupancy measure dj\go. We will also write dg to denote the performatively stable solution and rg
(resp. Pg‘) to denote the corresponding reward (resp. probability transition) function. The next lemma bounds the distance
between dy and dp,.

B.6.1. PROOF OF THEOREM 4

Proof. Suppose repeatedly maximizing the regulanzed objective converges to a stable solution d? g le.

Zrdx s,a)da(s,a) — = Hd H; > dérclaii Zrdx s,a)d(s,a) — = Hd||§

Therefore,

A2
d > d —Z|d
;a ray(s,a)dg(s,a) = délé?é) 2 ray(s,a)d(s,a) > lldll5

> max ray(s,a)d(s,a) —

T dec(d) 2(1 —9)?

The last inequality uses [d]|3 = 3, , d(s, )2 = (1 —7)2 %, , (1 = 7)d(s,0))* < (1 —7)2 %, (1 = 7)d(s,a) =

) s,a

/
(1 —~)~2. Now we substitute A = % from theorem 1 and get the following bound.
65°/%(2¢, + 5S€,)
ro(s,a)ds(s,a) > max ro(s,a)d(s,a) — . P
Sy a)dbo,0) 2 mas. S s, 0) = S

s,a

B.6.2. FORMAL STATEMENT AND PROOF OF THEOREM 5

Theorem 7. Let dpo be the performatively optimal solution with respect to the original (unregularized) objective. Then
there exists a choice of regularization parameter (\) such that repeatedly optimizing objective (12) converges to a policy
(d 5) with the following guarantee

ZrdA s,a)dy(s,a) > Zrdpo s,a)dpo(s,a) — A

_ _sAvE ¥Se, P e epS
A-O(ma}({(l_,y)lo/3 ((1+7f)€r 1 —’7)2> (1 —7)2 + (1_7)4}>
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Proof. Let us write h} o to denote the dual optimal solution i.e.

hpo € argmin Ly(h; Mpo)
h

Moreover, let h’é\ be the dual optimal solution corresponding to the stable solution d’é\.

Zrdpo (s,a)dpo(s,a) — Zrdg(s,a)dg(s,a)

s,a

A
(Z’"dpo s,a)dpo(s,a) — 5 ||dP0||2> +3 ldpoll;
A
(Srateoien -3 e Hi) =2 a2
Ao
<z:7"dA 5,a)dpo(s, a) Hd 0H2> 5 ldpoll;
A
(Zw s,a)d}(s, a) Hd ||§> - Sl

A
<La(hpoi Mpo) — Lalhis; M3) + 5 |dpoll;

The first inequality uses the fact that d, is the performatively optimal solution with regularization parameter \. The second
inequality uses strong duality and expresses the objective in terms of optimal dual variables. We now bound the difference
Ed(h)f?@Mf;o) - ﬁd(hA' A)

La(hpo; Mpo) — La(hig; M)
= La(hpo; Mpo) — La(hs; Mpo) + La(hg; Mpo) — La(hg; M3)
< Ly(hd; Mpo) — La(hy; M) [Since hpp minimizes Lq(-; Mpg)]

h A
< W ((1+’V\F)er+’y 2\F+ Hh H ep) Hd>‘ df‘;o||2 [By inequality 32 ]
S%A 39
Sm ((1+7f)er+7(2f+( 7 )ep> [By lemma 13]

The term |[dpol5 can be bounded as Yealdbols,a) = (1 = )73, (dro(s,a)(1 = 7))* < (1 —
Y)Y adpo(s,a)(1 =) = (1 — )72 This gives us the following bound.

Erdposadposa Erdxsadssa)

S,a

S3A 38 2 A
< Iy <(1 Ve + (2\/§+ - 7)2> ) R TTRE

:;ui?”;l)<(1+7f)er+v(2f+( 357) >6p>2+)‘2(117)2

:=T1 ::Tz

Note that in order to apply lemma 13 we need A > Ay = 2 (2er +9¢,5(1 — 7)_2). So we consider two cases. First if
(2T1/T3)~/3 > Xo. In that case, we can use A = (27} /T5) '/ and get the following upper bound.

Zrdpo (s,a)dpo(s,a) ZTd)\ (s,a)d3(s,a) <O (T1/3T2/3)

- (ugiAw// (“”f)“”(”ﬁ*( T ))/>
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On the other hand, if (27} / Tg)’l/ 3 < )\ then we can substitute A\ = )\ and get the following bound.

Zrdpo (s,a)dpo(s,a) — Zrd* sadssa) /\2T1+)\0T2

1 1/3 2/3
:7(T11/3T2_1/3)2 + ATo =

=0 ([ 5p + a o)

+ ATo < 2X0T5

Lemma 13. Suppose \ > 2 (2@ + %

3 = dboll, < 0< ﬁ-fw <er (1+7\/§)+6p(1157)2>>

Proof. Let us write h, to denote the dual optimal solution i.e.

). Then we have

hpo € argmm[ﬂd(h Mpo)

Moreover, let hg be the dual optimal solution corresponding to the stable solution d)‘.

Since the dual £4(-; M PO) objective is strongly convex (lemma 2) and h} o 18 the corresponding optimal solution we have,

A(l—~)?
La(his; Mpo) = La(hpo; Mpo) > % 13 —boll; (30)
From lemma (1) we get the following bound.
2, + 3¢, || 3,/
(1‘ ;HSH2> a2~ aoll, < 2555 1 ~ wbol,

Substituting the above bound in eq. (30) and using lemma 4 we get the following inequality for any A > 2¢, +9¢,.5/(1—7)2.

1—~)2 26, + 3¢, || ’
£l Mpo) ~ Lalibor Mo) = ) (1— f” SH2> 8 = dboll; GD

We now upper bound Lq(h3; Mp,) — La(hy; M2). Using lemma 14 we get the following bound.

Lot bo) — £atiinrd) < LS (0 8y 1ot < ol VB + 81 172 - PRl

h|, VA
< 2 VA (14 VB, 4 a2V + 3])e) 43 - dboll ()

Note that the following sequence of inequalities hold.
La(hg; Mpo) > La(hpo; Mpo) > La(hg; M3)

The first inequality is true because k), minimizes Lq(; M3 ). The second inequality holds because the primal objective at
performative optimal solution (d? ‘>0) upper bound the primal objective at performatively stable solution (d ) and by strong
duality the primal objectives are equal to the corresponding dual objectives. Therefore we must have £(h3 3 1’;0)
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La(hd; M2) > La(hd; Mpo) — La(hdo; Mpy), and by using equations (32) and (31) we get the following bound on
45 — doll,-

AL VA 189 2¢, + 3¢, h -
23 = adoll, < P YA (VB B+ 3 iy (1 L3 S”?)
10852/ A\ 3vVS
< W (67«(1 —I—V\/E) —|—7\/§€p (2 + - 7)2> Ep>

The last line uses lemma 4 and X > 2(2¢, + 9¢,S/(1 — 7)?)

Lemma 14. |q(h; M) — La(h; M)| < P25 (14 97/8) = #ll, +4(2VS + [1hl1) [P~ P )

Proof. From the definition of the dual objective 12 we have,

‘.cth) gth’ _ #5,)
=T
+3 g;ah(s) (r(s @) P(s'a,5) = 7(s', ) (', 0, 9))
=T
+ } ;h(s) Zs;h(é) (P(s.a.5) - p(s,a@)‘

=T3

S,a 99

ZZhN)h < (s,a,8)P (s,a,@—ﬁ(s,a,s)ﬁ(sag))|

::T4

2
T < \/WJ > (Z(r(aa) f(s,a>>> < [Ihlly VA r = 7,

+ Z h(s)P(s',a) (P(s'7a,s) — P(s’,a,s))‘

’
s,s’,a

2
< D)2 > (ZP(S’,&,S) (r(s’,a)—f(s’,a)))
+ /Z h(s)? Z (Z (P(s’,a,s) - P(s’,a,s)))

<l VA, (573 P9 () = ()" + il VEA, [7 57 (P(+,0.8) = Pl

s s'a s s',a

T; <

Z h(s)P(s',a,s) (r(s',a) —

’
s,s’,a

< lnlly VSA|Ir = #l, + Ihll, VSA| P~ 2|
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S

Ty < by | Y (Z h) (Plsa,3) - ﬁ(s,a,@))

< |1kl an@g(i (P(s,a@—ﬁ<s7a,§>)> < ||nll; VAP - P

a

Ty < |32 3 h(3)h(3)P(s,a.5) (P(s, a,3) — D(s, a,gj)

s,a 3,8

s,a 3,8

< 2|All,

>3 hG)|Ps,a.3) — Pls,a.3)

[By Zh(é)P(s,aﬁ) < |l , /Z P(s,a,3) = ||hl|,]

2
<2 ||nl3 J > (Z |P(s,a,5) - ﬁ(sva,a\)
<2l VS|P - P

Substituting the upper bounds on T3, T5, T3, and Ty into the upper bound on L;(h; M) — L4(h; M ) gives the desired
bound. O
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