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ABSTRACT

Most modern stochastic optimization methods assume that the data samples are
independently identically distributed. However, this assumption is often violated
for reinforcement learning setup that deals with temporal-dependent data, com-
ing from a Markov decision process (MDP). Furthermore, to learn reinforcement
learning policies, the algorithms have to possess some knowledge about MDP’s
mixing time or its asymptotic behaviour. For MDPs with high-dimensional state
spaces or ones with sparse rewards, mixing time could not be exactly estimated
or even may be unknown, making most methods inapplicable. Fortunately, multi-
level Monte Carlo approach, taking into account the nature of Markov Chains and
letting control variance of the updates, have recently been popularised in the field.
The employment of these technique enables the design of reinforcement learn-
ing algorithms that are not reliant on oracle knowledge of the mixing time or any
assumptions regarding the rate of decay. In light of the aforementioned consid-
erations, we propose an algorithm called MAdam, extending classical Adam for
average-reward reinforcement learning. The method leverages non-convex opti-
mization and does not require knowledge of the mixing time. We also provide
the theoretical analysis of the optimization procedure and conduct experiments on
challenging environments, indicating the qualitative performance of our approach.

1 INTRODUCTION

Stochastic gradient methods have always been a key component to solve various optimization prob-
lems in deep reinforcement learning (RL) (Schulman et al., 2017; Sutton & Barto, 2018; Hessel
et al., 2018). However, most modern optimization methods expect data samples to be indepen-
dently and identically distributed (i.i.d.). In reinforcement learning problems, temporal dependence
of data, caused by Markov property, breaks the assumption which makes theoretical analysis of RL
algorithms much more challenging.

Under Markovian setting, there are convergence analyzes (for example, Qiu et al. (2021)) of itera-
tive methods for RL. Typically, consider the rate at which MDP’s transition dynamics converge to
its stationary distribution, implying the fixed optimal policy. One of the most important elements
of the theoretical analysis is mixing time of the MDP and restrictions that can be put on it. In the
literature, there are two main ways how to handle the restrictions: prior (oracle) knowledge about the
mixing time is employed to determine step size selection, or a hypothesis about exponential decay
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of the mixing time, such that the data is asymptotically i.i.d. Notably, estimation of mixing time for
arbitrary MDP can be computationally expensive (Wolfer, 2020). In most of practical RL applica-
tions, an environment posses non-linear transition dynamics and often has sparse reward function.
That highlights the exploration problem: the agent can explore long enough without getting the re-
ward signal — i.e. mixing time, usually unknown for the environment, decays much slower than
exponentially, violating the hypothesis of exponential mixing. Finally, if the environment suggests
a multiple reward scenarios or multitask learning, the environment can have non-linear mixing time
decay rate.

In the paper, we focus on the continual average-reward reinforcement learning objective. The lat-
ter (Mahadevan, 1996) has a lot of applications in robotics and transportation. From the analytical
perspective, this setting has explicit notion of the mixing time. There has been done plenty of re-
search on accelerated stochastic gradient methods, using gradient normalisation (Dorfman & Levy,
2022) or various variants of gradient descent for convex and non-convex optimization problems
(Vaswani et al., 2019; Beznosikov et al., 2024). Furthermore, there is a recent line of work inspired
by (Dorfman & Levy, 2022), leveraging the multi-level Monte-Carlo method (MLMC) to develop
a gradient estimator, aware of the Markovian nature of the incoming data, assuming that the under-
lying Markov chain is uniformly geometrically ergodic developing a method, converging as square
root or the mixing time. Furthermore, there were developed methods with improved convergence
rates (Beznosikov et al., 2024), utilisation randomisation of the batch size to improve convergence
guarantees (from the perspective of calls to the oracle) for convex and non-convex problems.

Another noteworthy approach that we employ to enhance the algorithmic performance is the Multi-
Level Monte Carlo . In reinforcement learning, data is usually represented as a roll-out (sequence of
samples from an environment), and during the optimization procedure, the gradients are computed
with respect to this roll-out . Consequently, different algorithms may require different number of
samples Nt from the MDP to perform the optimization step. For instance, methods that assume data
samples are i.i.d., use Nt = 1 samples per iteration. However, due to a high dimensionality of the
state space, or comprehensive transition dynamics, the cost of getting samples from the environment
and thus, getting individual gradients, increases as the distribution of the underlying Markov chain
progresses towards a stationary. In order to handle this problem, the MLMC (Giles, 2015) approach
was developed. Its main idea is to reduce the computational cost of getting samples by performing
most of the simulations at the low cost (in this case, without computing gradients) and getting high
cost simulations for very few data samples.

We aim to apply the accelerated gradient methods with extensions of MLMC and with a randomised
batch size (roll-out length of concurrent environment samples) for a problem of continual reinforce-
ment learning, targetting mirror policy optimization (Tomar et al., 2020) for convergence analysis.
We summarise our contribution as follows:

1. We extend state-of-the-art stochastic optimization method Adam (Kingma & Ba, 2014)
with multi-level Monte Carlo gradient estimation for lesser gradient variance and prove its
convergence rate. We call the new method Markovian Adam, or MAdam (see Algorithm
1).

2. We develop an average-reward reinforcement learning algorithm based on mirror descent
policy optimization (Tomar et al., 2020) and average-reward policy optimization (Ma et al.,
2021) to propose a reinforcement learning algorithm, leveraging convex optimization (see
Algorithm 2.

3. We show the practicality of our approach, applying one to a challenging navigation en-
vironment with discrete actions, high-dimensional vector observations and sparse reward
function.

2 BACKGROUND

In this section, we are going to introduce the basic reinforcement learning notation (Sutton & Barto,
1998) and connect it with the classical stochastic optimization problem.
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2.1 AVERAGE-REWARD REINFORCEMENT LEARNING

LetM = (S,A,P, r) be a Markov Decision Process (MDP), where S is a finite state space, A is a
finite action space, P(·|s, a) : S×A → ∆(S) is a transition function that maps the current state s ∈
S and action a ∈ A into the probability distribution of the next states, and r : S × A → [0, rmax]
is a reward function, where rmax is a certain positive scalar.

Subsequently, the behavioural dynamics of an agent within an MDP is represented by a policy
function, π ∈ (∆(A))S , where ∆(A) is a probability simplex over A. Denoting the current state
and action at the time t by st and at respectively, we define the value function associated with policy
π as follows:

V π(s) := Eat∼π(·|st),st+1∼P(·|st,at)

[ ∞∑
t=0

r(st, at)|π, s0 = s

]
.

Given the MDPM and letting V π(µ) := Es∼µ[V
π(s)], our goal is to find the optimal policy:

π∗ ∈ argmaxπ∈(∆(A))S V π(µ). (1)

Similarly to the value function, the action-value function associated with π is defined by:

Qπ(s, a) := Eat∼π(·|st),st+1∼P(·|st,at)

[ ∞∑
t=0

r(st, at)|π, s0 = s, a0 = a

]
.

We also define the difference between the value V and the action-value Q functions as the advantage
function Aπ(s, a) := Qπ(s, a)− V π(s).

2.2 STOCHASTIC OPTIMIZATION

The formulation of the optimization problem in the form (1) represents a specific instance of a more
general formulation of the stochastic optimization problem:

min
θ∈Rd

{f(θ) := EZ∼µ [f(θ, Z)]} , (2)

where µ is a usually unknown distribution. As mentioned earlier, the majority of modern optimiza-
tion theory techniques operate under the assumption that the sequence of random variables sampled
{Zn}∞n=1 is independent and identically distributed . In our case, however, the nature of randomness
is derived from the MDP. Consequently, the sequence of random variables {Zn}∞n=1 is considered
to be a realization of a Markov chain with a stationary distribution µ. The classical approach to
efficiently solve the problem (2), especially in the context of reinforcement learning, is based on
methods that utilize adaptive gradient normalization. For instance, RMSProp , AdaGrad and Adam
have been demonstrated to perform well when training Deep Q-Networks . Nevertheless, there is a
notable absence of literature examining the theoretical analysis of these methods in the context of
Markovian noise. In our work, we focus on one of the most popular out-of-box method for reinforce-
ment learning, Adam. In Section 3.1 we present the new algorithm Markovian Adam (Algorithm
1) that can be applied to solve the problem (1) in the case of Markovian noise. The convergence
analysis is presented in Theorem 1.

3 MAIN RESULTS

Our approach to solve the problem (1) can now be decomposed into the two key parts: mirror descent
policy optimization and policy improvement using Algorithm 1.

3.1 MARKOVIAN ADAM OPTIMIZATION ALGORITHM

Now, we present our algorithm Markovian Adam (Algorithm 1) that solves the problem (1) in
the Markovian nose setting using the MLMC approach.

In line 11 of Algorithm 1, the index N(T ) is distributed according to the rule

∀j ∈ N : j < T ↪→ P{N(T ) = j} ∝ 1− βT−j
1 . (3)
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Algorithm 1 Markovian Adam (MAdam)

1: Parameters: step sizes {αt}Tt=0 ⊂ R+, exponential decay rates for the momentum estimates
0 ≤ β1 < β2 < 1, number of iterations T , batch size B, limit M and noise ε.

2: Initialization: θ0 ∈ Rd, m0 = v0 = 0 ∈ Rd.
3: for t = 0, 1, 2, . . . , T do
4: Sample Jt ∼ Geom(1/2)

5: gt =

{
2Jt(gtJt

− gtJt−1), if 2Jt ≤M

gt0, otherwise
with gtj = 2−jB−1

∑2jB
i=1 ∇f(θt, Znt+i)

6: mt+1 = β1m
t + gt

7: vt+1 = β2v
t + gt ⊙ gt

8: θt+1 = θt − αtm
t+1/
√
vt+1 + ε

9: nt+1 = nt + 2JtB
10: end for
11: Output: θN(T ), where N(T ) is distributed according to (3).

If β1 = 0, then N(T ) distributed uniformly, if β1 ∈ (0; 1), then outcomes from the first iterations
of Algorithm 1 will be used with lower probability. We now provide several assumptions, required
for the convergence analysis of Algorithm 1.

Assumption 1. The function f(θ) is L-smooth on Rd, i.e., it is differentiable and there exists L > 0
such that for any θ, ϕ ∈ Rd the following inequality holds

∥∇f(θ)−∇f(ϕ)∥ ≤ L∥θ − ϕ∥.

Assumption 2. The gradient estimator ∇f(θ, Z) is uniformly almost surely bounded, i.e, there
exists R ≥

√
ε such that for any θ ∈ Rd

∥∇f(θ, Z)∥ ≤ R−
√
ε.

Assumption 3. {Zt}∞t=0 is a stationary Markov chain on (Z,Z) with unique invariant distribution
µ. Moreover, {Zt}∞t=0 is uniformly geometrically ergodic with mixing time τmix, i.e. for all t > 0,
z0, z ∈ Z the following inequality holds

|P {Zt = z|Z0 = z0} − µz| ≲ (1/2)t/τmix .

Assumptions 2 and 3 are classical in the literature considering Markovian noise (Creswell et al.,
2018; Dorfman & Levy, 2022; Beznosikov et al., 2024). Whereas in the case of i.i.d. noise the
gradient norm can be bounded in expectation, i.e., EZ∼µ

[
∥∇f(θ, Z)∥2

]
≤ R2, Assumption 2

bounds the gradient norm uniformly. This complication is associated with the nature of Markovian
noise, and, to the best of our knowledge, no existing literature has proposed an alternative approach
(Doan et al., 2020; Even, 2023; Solodkin et al., 2024). The

√
ε term in Assumption 2 helps to

simplify the final bounds.

We now ready to provide the convergence rate of MAdam (Algorithm 1).

Theorem 1 (Convergence of MAdam (Algorithm 1).). Let Assumptions 1, 2, 3 be satisfied. Given

the iterates defined by system (11), 0 ≤ β1 < β2 < 1, αt = α(1 − β1)
√

1−βt
2

1−β2
and N(T ) defined

by (3). Then for any T such that T > max{ β1

1−β1
; τmix} it holds that

E
[∥∥∥∇f(θN(T ))

∥∥∥ 4
3

] 3
2

= O

(
Rg

f(θ0)− f∗

αT̃
+

∆

T̃

[
ln

(
1 +

R2
g

ε(1− β2)

)
− T log(β2)

]

+
dRgµg

T̃

[
T − τmix +

(
β1

β2

)−τmix

∆τmix

]
1− β1

(1− β1/β2)
√
1− β2

)
,
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where R2
g := (1 +B−1τmix logM)R2, µ2

g := B−1τmixM
−1R2, T̃ := T − β1/(1− β1) and

∆ :=
αdRgL(1− β1)

(1− β1/β2)(1− β2)
+

2α2dL2β1

(1− β1/β2)(1− β2)3/2
+

12dR2
g

√
1− β1

(1− β1/β2)3/2
√
1− β2

,

∆τmix :=

τmix∑
t=1

∥∇f(θt)∥√
Et

[
∥gt∥2

]
+ ε

.

Discussion. The convergence rate in Theorem 1 is similar to the i.i.d. case (Défossez et al., 2020),
however we obtain terms of the form ∆τmix , which are connected to the Markovian nature of the

noise in the problem (1). We also obtain the convergence rate in terms of E
[∥∥∇f(θN(T ))

∥∥4/3]3/2
but not in E

[∥∥∇f(θN(T ))
∥∥2] as in the i.i.d case. This is due to the fact that we need to use the

Hölder inequality (see B.1) to use results from Lemma 2. We also obtain terms of the form Rg and
µg because in line 5 of Algorithm 1 we use MLMC gradient estimator gt. From Lemma 2 it can
be shown that the expected number of oracle calls at each iteration of MLMC estimator is equal to
O(B logM), and µ2

g ∝ (BM)−1 and R2
g ∝ B−1 logM .

We now provide the corollary of Theorem 1 where we choose specific parameters of the Algorithm
1.
Corollary 1 (Parameters tuning for Algorithm 1). Under the conditions of Theorem 1 choosing
parameters of the MAdam algorithm (Algorithm 1) as

αt = O

√1−
(
1− 1

T

)t
 ; β1 = 0 ; β2 = 1− 1

T
;

T ≫ max

{
β1

1− β1
; τmix

}
; M = O(T 2) ; B = O(1).

Then convergence rate of the algorithm could be re-written in the form of

E
[∥∥∥∇f(θN(T ))

∥∥∥ 4
3

] 3
2

= Õ
(√

τmixR(f(θ0)− f∗)√
T

+
d√
T

(
τmixR

2 +
√
τmixRL

))
.

3.2 MIRROR DESCENT POLICY OPTIMIZATION

Our method is based on Mirror Descent Policy Optimization (MDPO, Tomar et al. (2020)), that
could be formally described as

θt+1 = argmax
θ

Es∼µθt (·)

[
Ea∼πθ(·|s)[A

πθt (s, a)]−
(
1− t

T

)−1

KL(π, πθt)

]
, (4)

Despite the fact that this update differs from the one in (1) by a KL-divergence regularisation term,
it has been shown in (Huang et al., 2021; Alfano et al., 2024), that the procedure (4) converges to
the neighbourhood of the solution π∗ of the problem (1). During each step, the method approaches a
constrained over policy parameters θ optimization problem. In light of the fact that a single gradient
step does not enforce the trust region constraint: ∇θKL(π, πθt)|π=πθt

= 0, the method should
take m > 1 optimization steps per an update. The problem setting generalises over state-of-the-
art methods like TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017). Nonetheless,
instead of exactly solving the problem, MDPO approximates the solution, taking multiple steps in
the direction of the gradient of its objective function. The update rule is consistent with mirror
descent (Beck & Teboulle, 2003) update rule in convex optimization.

Let us briefly describe the method, following the multi-level actor-critic framework (Patel et al.).
Pseudocode for the algorithm is listed in Algorithm 2. The method appears as a classical actor-
critic, adapted for the average-reward objective (1). As we consider discrete distributions over the
probability simplex, for actor the objective can be defined using policy gradient theorem (Sutton
et al., 1999). In the literature (Patel et al.; Ganesh & Aggarwal, 2024; Suttle et al., 2023), the actor
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Algorithm 2 Average-reward mirror descent optimization, following (Suttle et al., 2023; Ma et al.,
2021; Tomar et al., 2020)

1: Parameters: actor step size αt, critic step size βt, average reward tracker step size γt, maximum
trajectory length Tmax, number of iterations T

2: Initialization: actor parameters θ0, critic parameters φ0, initial environment state s
(0)
1 ∼ ρ

3: for t = 0, . . . , T − 1 do
4: Initialise an empty trajectory Tt
5: for i = 1, . . . ,H do ▷ Environment data collection
6: Take an action ait ∼ πθt(·|sit)
7: Transition to next env. state si+1

t ∼ P(·|sit, ait)
8: Receive reward rit = r(sit, a

i
t) from the env.

9: Append the sample {sit, ait, rit, si+1
t } to the trajectory Tt

10: end for
11: Calculate advantage Aωt(s, a) from (6)
12: Calculate value and gradients of the actor objective (5)
13: Calculate value and gradients of the critic objective (8)
14: Get MLMC estimations of gradients and parameters updates according to Algorithm 1
15: Update policy parameters θt with (7)
16: Update critic parameters ωt with (10)
17: Update reward ηπ and value trackers b according to (9)
18: end for

requires certain conditions to be satisfied. However, as we allow arbitrary policy parametrisations,
we don’t make any specific assumptions on the policy other than being differentiable. These con-
ditions are sufficient, when utilising neural networks with general parametrisation and continuous
activation function. The gradient of the objective function is defined in the following way:

∇θJπθ
= Es∼µ(·), a∼πθ(·|s)[A

πθ (s, a) log πθ(a|s)] (5)

For advantage Aπθk (s, a) estimation, we use generalised advantage estimation (GAE, Schulman
et al. (2015b)) :

Aπθk (st, at) =

∞∑
l=0

λlδt+1 =

∞∑
l=0

λl
(
rt+l − ηπθk

+ V πθ (st+l+1)− V πθ (st+l)
)

(6)

Reasoning of using this notion for advantage is its flexibility. In particular, we consider two cases:

1. λ = 0 implies that Aπθk (st, at) = rt − ηπθk
+ V (st+1)− V (st) — TD(0)-learning

2. λ = 1 implies that Aπθk (st, at) =
∑∞

l=0(rt+l − ηπθk
) − V (st) — TD(∞)-learning, or

Monte Carlo estimations,

and 0 < λ < 1 establishes balance between bias and variance of the estimations.

Actor’s parameters are updated in the following manner with a learning rate α:

θ = θ + α∇θJπθ
(7)

For critic, there is a popular assumption in the literature to consider a linear critic with a weight
vector ω and feature map φ(s) : ||φ(s)|| ≤ 1 ∀s ∈ S, such that V ω(s) = ⟨φ(s), ω⟩. Critic’s
objective could be denoted as follows:

min
ω∈Ω

Es∼µ(·) [V
πθ (s)− V ω(s)] ,

s.t. Es∼µ(·)[V
ω(s)] = 0

(8)

Notably, it can be noticed that with this critic approximation there can be “value drift” effect (Ma
et al., 2021) — i.e. accumulation of value function error during training. To mitigate the issue, the
authors propose to regularise the objective, centring the value function around zero. The problem is
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equivalent to minimisation of the unconstrained objective with V̂ ω(s) = V ω(s)− νb, where b is the
average value.

Average value b and reward ηπ are updated as follows with learning rate γ:

ηπ ← (1− γ)ηπ + γ
1

N

N∑
t=1

r(st, at)

b← (1− γ)b+ γ
1

N

N∑
t=1

V (st)

(9)

Critic updates are done in the way with a learning rate β:

ω ← ΠΩ

[
ω − β

∞∑
l=0

λl (rt+l − ηπθ
+ ⟨ω, st+l+1⟩ − ⟨ω, st+l⟩)φ(st+l)

]
(10)

where ΠΩ projection (i.e. softmax) projection operator to the critic’s parameter space Ω.

4 EXPERIMENTS

We conduct experiments, utilising a set of challenging maps from grid-based navigation suite Pig-
natelli et al. (2024) to investigate, how the method behaves in case of non-linear mixing time depen-
dence caused by necessity of the environment exploration. All the experiments were reported as an
average of five random seeds, as well as the 95 % confidence interval. Our goal is not to demonstrate
the state-of-the-art performance of the optimisation method but provide a proof of concept that us-
ing MAdam with its MLMC gradient estimator can help build efficient algorithms, outperforming a
baseline, utilising Adam as out-of-shelf widely known approach. Thus, we don’t specifically tune
any hyperparameters of the algorithm.

MAdam experimental setup. We take a basic Adam (Kingma & Ba, 2014) optimiser from optax1

library with hyperparameters specified by the corollary 1 and exponential learning rate schedule and
equip it with the MLMC gradient estimator (Algorithm 2, line 5). It was noticed (Dorfman & Levy,
2022) that using standard geometric distribution is not viable due to the presence of high-variant
gradients, slowing down the training process, so we draw J from truncated geometric distribution
P (J = j) ∼ 2−j , j ∈ {1, . . . ,K}, where K = 5 is a fixed parameter. As large values of J are low
probable, we didn’t tune K. Furthermore, we set batch size bound parameter B to overall generated
environment roll-out length and batch size limit M = 32 as a maximum J that can be drawn from
the truncated geometric distribution. Overall, we compare our method with popular optimisers like
the vanilla Adam, AdamW and stochastic gradient descent with momentum (Nesterov, 1983).

Reinforcement algorithm setup. As the algorithm has the randomised batch size bound, or ran-
domised roll-out length parameter B, it does make sense to set the computational budget not in
a number of training iterations but in a total number of observed environment samples during the
training. We set this number to T = 106 as the budget, necessary to reach the MDP’s stationary
distribution and stabilise the average reward ηπ . As for the advantage estimation (6), we limit our
research to a specific case of the advantage estimation (Ma et al. (2021), λ = 0.95) and leave the
general setting for the future work. When constructing a batch of environment trajectories of 128,
we use vectorisation of the environments to keep large batches of 4 and not making the trajectories
too long. For the experiments, we use the same learning rate equal to 2.5·10−4 for all the actor-critic
components.

Figure 1: Navigation environment,
used in the paper: empty goal reach-
ing environment (left) and an en-
vironment with an additional “key-
door” subgoal (right).

We chose two simple environments2, targetting different ob-
jects of exploration and non-linear mixing time dependency
(Figure 1):

1https://optax.readthedocs.io/en/latest/
2https://github.com/epignatelli/navix
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1. Empty 5× 5 goal reaching task, where an agent has
to move from the upper left corner of the grid to
the lower right, being rewarded only upon reaching
the goal — with difficulty of exploration it could be
sophisticated to establish the stationary distribution.

2. 5 × 5 goal reaching task with a door, where there
is an additional subgoal to reach before the original
environment goal.
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Figure 2: Results of the experiments with the empty 5 × 5 room environment (left) and 5 × 5
“key with door” environment (right). The method, using MAdam, outperforms the baselines on both
environments.

For the empty room environment depicted in the left part of figure 2, RL algorithm, using MLMC
reaches the perfect mean episode return of 1.0, whereas the baseline method succeeds in twice
fewer cases. In the environment with the subgoal (figure 2, right), both methods struggle because of
necessity of exploration and existence of more complicated memory structure than a scalar average
reward tracker, however, due to gradient estimation with longer roll-outs, the method, employing
MAdam reaches higher mean episode returns than the baseline.

Additionally, we conduct experiments on a robotic navigation environment3 with high-dimensional
observations, simulating a LiDAR sensor’s signals from a 360◦ arc centred on the robot’s forward
axis. The environment implements the goal reaching task, with goals randomly sampled on the map.
For a scheme of the environment and results, see Figure 3.
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Figure 3: The graphical description of the environment from (Rutherford et al., 2024) (left), we use
a single-agent version and experimental results (right). The method, using MAdam, outperforms the
baselines on both environments despite initial slump caused by the exploration.

3https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/
jaxnav
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5 CONCLUSION

In this paper, we studied how an out-of-shelf optimization approach for average-reward reinforce-
ment learning could be improved with multi-level Monte Carlo gradient estimates, one we called
MAdam. We proved a key theoretical result about the method convergence (Theorem 1) and choice
of the optimiser’s hyperparameters (Corollary 1). Furthermore, we developed an average-reward
policy optimisation method based on mirror descent policy optimisation to maintain convexity of
the problem. We demonstrated the practicality of the method on several navigation environments,
having mixing time dependence different from exponential, and showed that the approach with
multi-level gradient estimation outperforms the baselines. We hope to continue our work in a di-
rection of setting convergence guarantees for average-reward reinforcement learning methods with
general parametrisation.

9



Published as a conference paper at ICOMP 2024

REFERENCES

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
general parameterization and linear convergence. Advances in Neural Information Processing
Systems, 36, 2024.

Qinbo Bai, Washim Uddin Mondal, and Vaneet Aggarwal. Regret analysis of policy gradient algo-
rithm for infinite horizon average reward markov decision processes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 10980–10988, 2024.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey Nau-
mov, and Eric Moulines. First order methods with markovian noise: from acceleration to varia-
tional inequalities. Advances in Neural Information Processing Systems, 36, 2024.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine, 35
(1):53–65, 2018.
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Supplementary Material
A RELATED WORK

Stochastic optimisation with Markovian noise. A lot of recent work in optimisation is still fo-
cused on i.i.d. setting because of its numerous practical applications in supervised learning, only
some works sparsely tackle the problem. With diversity of the optimisation algorithms, many of
them can be equipped with Markovian gradient estimators. For instance, RASGD (Beznosikov
et al., 2024) considers stochastic gradient descent with different sort of momentum, targetting faster
convergence in terms of taking less oracle calls as well as MLMC with randomised batch size; for
adaptive gradient methods, MAG (Dorfman & Levy, 2022) has to be highlighted that uses MLMC
coupled with adaptive gradient optimisation. Both methods showed convergence guarantees for con-
vex, non-convex problems and variational inequalities. Moreover, both methods have potential to be
applied to reinforcement learning, to one-step TD(0) learning. We aim to show that the same group
of methods could be relevant to Adam optimiser.

Multi-level Monte-Carlo methods for RL. MLMC has been initially applied to TD-learning
(Dorfman & Levy, 2022), however, it has found many more applications in the actor-critic domain
for average-reward reinforcement learning. Nonetheless, the first algorithms were computationally
intractable and were developed only for linear parametrisations, PPGAE(Bai et al., 2024) was one
of the first algorithms that had been designed to work with general parametrisations. Unfortunately,
one requires explicit knowledge of the mixing time to compose samples in a set of independent or
rather non-overlapping trajectories, that limits its applicability due to computational complexity. To
alleviate dependency of the mixing time, there was a developed MAC (Suttle et al., 2023), an TD(0)
AC with multi-level Monte-Carlo estimation for actor, critic, and average reward tracker ηπ . The
algorithm does not require any assumptions on the mixing or hitting time and moreover, has proven
global optimality with the square root mixing time dependence and fast convergence (Patel et al.).
Furthermore, for general actor-parametrisations there was developed an optimal algorithm (Ganesh
& Aggarwal, 2024), employing average-reward reinforcement learning paired with RASGD opti-
miser. However, the most reasonable and widely used modern reinforcement methods are based on
trust region methods, like PPO (Schulman et al., 2017; Ma et al., 2021), so our goal is to demonstrate
the applicability of the out-of-box method, minimally adapted to the problem statement.

B AUXILIARY LEMMAS AND FACTS

B.1 HÖLDER INEQUALITY

For the probability space (Ω,F ,P) let E [·] denote the expectation operator. For real- or complex-
valued random variables X , Y on Ω and for all p, q ≥ 0 such that p−1 + q−1 = 1 it holds that

E [|XY |] ≤ (E [|X|p])1/p (E [|Y |q])1/q .

B.2 FENCHEL-YOUNG INEQUALITY

For all x, y ∈ Rd and κ > 0 it holds that

2 ⟨x, y⟩ ≤ κ−1∥x∥2 + κ∥y∥2∗.

C PROOF OF THE CONVERGENCE RATE OF THE MARKOVIAN ADAM

In this paper, we build on the proof from the Défossez et al. (2020).

12
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C.1 NOTATIONS

In the rest of this section, we take an iteration t ∈ N, and when needed, i ∈ [d] refers to a specific
coordinate. Given x0 ∈ Rd our starting point, m0 = 0, and v0 = 0, we define

mt
i = β1m

t−1
i + gti ,

vti = β2v
t−1
i + (gti)

2
,

xt
i = xt−1

i − αtm
t
i/
√
ε+ vti .

(11)

For Adam, the step size is given by

αt = α(1− β1)

√
1− βt

2

1− β2
. (12)

Therefore, this step size is monotonic, i.e. αt ≥ αt−1. Throughout the proof we note Et [·] the
conditional expectation with respect to x0, . . . , xt−1. In particular, mt−1, vt−1 is deterministic
knowing x0, . . . , xt−1. We introduce

Gt = ∇f(xt−1) (13)

We introduce the update ut ∈ Rd and U t ∈ Rd as

ut
i =

mt
i√

vti + ε
and U t

i =
gti√
vti + ε

. (14)

For any t ∈ N with t < T , we define ṽt,k ∈ Rd by

ṽt,ki = βk
2 v

t−k
i + Et−k−1

 t∑
j=n−k+1

βt−j
2 (gji )

2

 , (15)

C.2 TECHNICAL LEMMAS

Lemma 1. Let Assumptions 2, 3 be satisfied. Then for any x ∈ Rd and B ≥ τmix it holds that

E∥B−1
∑B

i=1
∇f(x, Zi)−∇f(x)∥2 ≲

τmix

n
(R−

√
ε)2

Proof. The proof is to apply Lemma 1 from Solodkin et al. (2024) with ξt =

∥B−1
∑B

i=1∇f(x, Zi)−∇f(x)∥2, σ = 2(R−
√
ε), N = B and V̂ (0, x) = 1

2∥x∥2.

Lemma 2. Let Assumptions 2, 3 be satisfied. Then for the gradient estimates defined in line 5 of
Algorithm 1, it holds that Et[g

t] = Et[g
t
⌊logM⌋]. Moreover,

Et∥gt∥2 ≤ 2(1 + 176B−1τmix log2 M)(R−
√
ε)2 =: R2

g,

∥∇f(x)− Et[g
t]∥2 ≤ 88B−1τmixM

−1(R−
√
ε)2 := µ2

g.

Proof. We first proof that Et[g
t] = Et[g

t
⌊log2 M⌋]. Let us enroll the conditional expectation w.r.t. Jt:

Et[g
t] = Ek

[
EJt

[gt]
]
= Et[g

k
0 ] +

⌊log2 M⌋∑
i=1

P{Jt = i} · 2iEt[g
t
i − gti−1]

= Et[g
t
0] +

⌊log2 M⌋∑
i=1

Et[g
t
i − gti−1] = Et[g

t
⌊log2 M⌋] .

13
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To proof the first inequality of Lemma 2, we again take the conditional expectation for Jt:

Et[∥∇f(x)− gt∥2] ≤ 2Et[∥∇f(x)− gt0∥2] + 2Et[∥gt − gt0∥2]
= 2Et[∥∇f(x)− gt0∥2]

+ 2
∑⌊log2 M⌋

i=1
P{Jt = i} · 4iEt[∥gti − gti−1∥2]

= 2Et[∥∇f(x)− gt0∥2] + 2
∑⌊log2 M⌋

i=1
2iEt[∥gti − gti−1∥2]

≤ 2Et[∥∇f(x)− gt0∥2]

+ 4
∑⌊log2 M⌋

i=1
2i
(
Et[∥∇f(x)− gti−1∥2 + Et[∥gti −∇f(x)∥2]

)
.

To bound Et[∥∇f(x) − gt0∥2], Et[∥∇f(x) − gti−1∥2, Et[∥gti − ∇f(x)∥2], we apply Lemma 1 and
get

Et[∥∇f(x)− gt∥2] ≤ 88B−1τmix(R−
√
ε)2 + 4

∑⌊log2 M⌋

i=1
2i · 22τmix

2iB
τmix(R−

√
ε)2

≤ 176τmixB
−1 log2 M(R−

√
ε)2.

Now, using Cauchy-Schwarz inequality and Assumption 2 one can obtain

Et∥gt∥2 = Et∥gt +∇f(x)−∇f(x)∥2 ≤ 2Et∥∇f(x)∥2 + 2Et∥∇f(x)− gt∥2

≤ 2(1 + 176B−1τmix log2 M)(R−
√
ε)2

To show the second part of the statement, we use Et[g
t] = Et[g

t
⌊log2 M⌋] and get

∥∇f(xt
g)− Et[g

t]∥2 = ∥∇f(xt)− Ek[g
t
⌊log2 M⌋]∥

2 .

With Lemma 1 and 2⌊log2 M⌋ ≥M/2, we finish the proof.

Lemma 3. Let Assumptions 1, 2 and 3 be satisfied. Then for iterates defined in (11), 0 ≤ β1 <
β2 ≤ 1 and (αt)t∈N defined in (12), it holds that

E

∑
i∈[d]

Gt
i

mt
i√

vti + ε

 ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

 (Gt−k
i )2√

ṽt,k+1
i + ε


− 3Rg√

1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1E

[∥∥U t−k
∥∥2])

− α2
tL

2

4Rg

√
1− β1

(
t−1∑
l=1

∥∥ut−l
∥∥2 t−1∑

k=l

βk
1

√
k

)

−
∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k

E

 |Gt−k
i |√

Et−k

[
(gt−k

i )2
]
+ ε

∣∣Et−k−1

[
gt−k
i

]
−Gt−k

i

∣∣
(16)

Proof. Let us take an iteration t ∈ N for the duration of the proof. We have

∑
i∈[d]

Gt
i

mt
i√

vti + ε
=
∑
i∈[d]

t−1∑
k=0

βk
1G

t
i

gt−k
i√
vti + ε

=
∑
i∈[d]

t−1∑
k=0

βk
1G

t−k
i

gt−k
i√
vti + ε︸ ︷︷ ︸

A

+
∑
i∈[d]

t−1∑
k=0

βk
1

(
Gt

i −Gt−k
i

) gt−k
i√
vti + ε︸ ︷︷ ︸

B

, (17)
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Let us first consider B. Let k be an index such that 0 ≤ k ≤ t− 1. Using B.2 with

κ =

√
1− β1

2Rg

√
k + 1

, x =
∣∣Gt

i −Gt−k
i

∣∣ , y =

∣∣gt−k
i

∣∣√
vti + ε

,

where Rg comes from Lemma 2, we have

|B| ≤
∑
i∈[d]

t−1∑
k=0

βk
1

( √
1− β1

4Rg

√
k + 1

(
Gt

i −Gt−k
i

)2
+

Rg

√
k + 1√

1− β1

(gt−k
i )2

ε+ vti

)
. (18)

For any i ∈ [d] it holds that

ε+ vti ≥ ε+ βk
2 v

t−k
i ≥ βk

2 (ε+ vn−k
i ).

Therefore

(gt−k
i )2

ε+ vti
≤ 1

βk
2

(U t−k
i )2. (19)

Using the L-smoothness of f given by 1 and the convexity of ∥ · ∥, we obtain

∥∥Gt −Gt−k
∥∥2 ≤ L2

∥∥xt−1 − xt−k−1
∥∥2 = L2

∥∥∥∥∥
k∑

l=1

αn−lu
t−l

∥∥∥∥∥
2

≤ α2
tL

2k

k∑
l=1

∥ut−l∥2 , (20)

Injecting (19) and (20) into (18), we obtain

|B| ≤

(
t−1∑
k=0

α2
tL

2

4Rg

√
1− β1β

k
1

√
k

k∑
l=1

∥∥ut−l
∥∥2)

+

(
t−1∑
k=0

Rg√
1− β1

(
β1

β2

)k√
k + 1

∥∥U t−k
∥∥2) (21)

=
√
1− β1

α2
tL

2

4Rg

(
t−1∑
l=1

∥∥ut−l
∥∥2 t−1∑

k=l

βk
1

√
k

)
(22)

+
Rg√
1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1

∥∥U t−k
∥∥2) . (23)

Now going back to the A term from (17). We will further drop indices for some part of the proof,
noting

G := Gt−k
i , g := gt−k

i , ṽ := ṽt,k+1
i and v := vti .

Finally, let us make an auxiliary notation

δ2 :=

t∑
j=t−k

βt−j
2 (gji )

2 and r2 := Et−k−1

[
δ2
]
. (24)
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In particular, we have ṽ − v = r2 − δ2. With our new notations, we obtain that:

E
[
G

g√
v + ε

]
= E

[
G

g√
ṽ + ε

+Gg

(
1√
v + ε

− 1√
ṽ + ε

)]
= E

[
Et−k−1

[
G

g√
ṽ + ε

]
+Gg

r2 − δ2
√
v + ε

√
ṽ + ε(

√
v + ε+

√
ṽ + ε)

]
= E

[
G2

√
ṽ + ε

]
+ E

[
G(Et−k−1 [g]−G)√

ṽ + ε

]
︸ ︷︷ ︸

C

+ E

Gg
r2 − δ2

√
v + ε

√
ṽ + ε(

√
v + ε+

√
ṽ + ε)︸ ︷︷ ︸

D

 . (25)

Consider C. Since ṽ ≥ βk
2Et−k

[
g2
]

we obtain:

E

[(
G(Et−k−1 [g]−G)√

ṽ + ε

)2
]
≤ 1

β2k
2

E
[

G2

ε+ Et−k [g2]
(Et−k−1 [g]−G)2

]
.

Consider D.

|C| ≤ |Gg| r2√
v + ε(ε+ ṽ)︸ ︷︷ ︸

①

+ |Gg| δ2

(ε+ v)
√
ṽ + ε︸ ︷︷ ︸

②

,

due to the fact that (a1−a2)/(a3+a4) ≤ a1/a3+a2/a4 for all a1,2,3,4 ≥ 0. Consider ①. Applying
B.2 with

κ =

√
1− β1

√
ṽ + ε

2
, x =

|G|√
ṽ + ε

, y =
|g| r2√

ṽ + ε
√
v + ε

,

we obtain

① ≤ G2

4
√
ṽ + ε

+
1√

1− β1

g2r4

(ε+ ṽ)3/2(ε+ v)
.

Given that ε+ ṽ ≥ r2 and taking the conditional expectation, we can simplify as

Et−k−1 [①] ≤ G2

4
√
ṽ + ε

+
1√

1− β1

r2√
ṽ + ε

En−k−1

[
g2

ε+ v

]
. (26)

Now consider ②. Using B.2 with

κ =

√
1− β1

√
ṽ + ε

2r2
, x =

|Gδ|√
ṽ + ε

, y =
|δg|
ε+ v

,

we obtain

② ≤ G2

4
√
ṽ + ε

δ2

r2
+

1√
1− β1

r2√
ṽ + ε

g2δ2

(ε+ v)2
. (27)

Given that ε+v ≥ δ2, and En−k−1

[
δ2/r2

]
= 1, we obtain after taking the conditional expectation,

Et−k−1 [②] ≤ G2

4
√
ṽ + ε

+
1√

1− β1

r2√
ṽ + ε

En−k−1

[
g2

ε+ v

]
. (28)

Summing (26) and (28), we get

Et−k−1 [|D|] ≤
G2

2
√
ṽ + ε

+
2√

1− β1

r2√
ṽ + ε

En−k−1

[
g2

ε+ v

]
. (29)

16



Published as a conference paper at ICOMP 2024

Given that r ≤
√
ṽ + ε by definition of ṽ, and that using Lemma 2, r ≤

√
k + 1Rg , we have,

reintroducing the indices we had dropped

Et−k−1 [|D|] ≤
(Gt−k

i )2

2
√
ṽt,k+1
i + ε

+
2Rg√
1− β1

√
k + 1Et−k−1

[
(gt−k

i )2

ε+ vti

]
. (30)

Taking the complete expectation and using that by definition ε+ vti ≥ ε+ βk
2 v

t−k
i ≥ βk

2 (ε+ vt−k
i )

we get

E [|D|] ≤ 1

2
E

 (Gt−k
i )2√

ṽt,k+1
i + ε

+
2Rg√

1− β1βk
2

√
k + 1E

[
(gt−k

i )2

ε+ vt−k
i

]
. (31)

Injecting (31) into (25) and using B.2 gives us

E [A] ≥
∑
i∈[d]

t−1∑
k=0

βk
1

{
E

 (Gt−k
i )2√

ṽt,k+1
i + ε


− 1

βk
2

E

 |Gt−k
i |√

Et−k

[
(gt−k

i )2
]
+ ε

∣∣Et−k−1

[
gt−k
i

]
−Gt−k

i

∣∣
−

1

2
E

 (Gt−k
i )2√

ṽt,k+1
i + ε

+
2Rg√

1− β1βk
2

√
k + 1E

[
(gt−k

i )2

ε+ vt−k
i

]}

=
1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

 (Gt−k
i )2√

ṽt,k+1
i + ε

− 2Rg√
1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1E

[∥∥U t−k
∥∥2])

−
∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k

E

 |Gt−k
i |√

Et−k

[
(gt−k

i )2
]
+ ε

∣∣Et−k−1

[
gt−k
i

]
−Gt−k

i

∣∣ . (32)

Injecting (32) and (23) into (17) finishes the proof.

C.3 PROOF OF THE MAIN THEOREM

Theorem 2 (Theorem 1). Let Assumptions 1, 2, 3 be satisfied. Given the iterates defined by system

(11), 0 ≤ β1 < β2 < 1, αt = α(1 − β1)
√

1−βt
2

1−β2
and N(T ) defined by (3), for any T such that

T > max{ β1

1−β1
; τmix} it holds that

E
[∥∥∥∇f(xN(T ))

∥∥∥2] = O(Rg
f(x0)− f∗

αT̃
+

∆

T̃

[
ln

(
1 +

R2
g

ε(1− β2)

)
− T log(β2)

]

+
dRgµg

T̃

[
T − τmix +

(
β1

β2

)−τmix/2

∆τmix

]
1− β1

(1− β1/β2)
√
1− β2

)
,

where R2
g := (1 + B−1τmix logM)R2, µ2

g := B−1τmixM
−1R2 come from Lemma 2, T̃ := T −

β1/(1− β1) and

∆ :=
αdRgL(1− β1)

(1− β1/β2)(1− β2)
+

2α2dL2β1

(1− β1/β2)(1− β2)3/2
+

12dR2
g

√
1− β1

(1− β1/β2)3/2
√
1− β2

,

∆τmix :=

τmix∑
t=1

∥∇f(xt)∥√
Et

[
∥gt∥2

]
+ ε

.

17



Published as a conference paper at ICOMP 2024

Proof. Let us a take an iteration t ∈ N. Using the smoothness of f defined in Assumption 1, we
have

f(xt) ≤ f(xt−1)− αt

〈
Gt, ut

〉
+

α2
tL

2

∥∥ut
∥∥2 .

Taking the full expectation and using Lemma 3,

E
[
f(xt)

]
≤ E

[
f(xt−1)

]
− αt

2

∑
i∈[d]

t−1∑
k=0

βk
1E

 (Gt−k
i )2√

ε+ ṽt+1
i

+
α2
tL

2
E
[∥∥ut

∥∥2
2

]

+
α3
tL

2

4Rg

√
1− β1

(
t−1∑
l=1

∥∥ut−l
∥∥2
2

t−1∑
k=l

βk
1

√
k

)

+
3αtRg√
1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1

∥∥U t−k
∥∥2)

+ αt

∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k

E

 |Gt−k
i |√

Et−k

[
(gt−k

i )2
]
+ ε

∣∣Et−k−1

[
gt−k
i

]
−Gt−k

i

∣∣ (33)

We now consider term of the form
∑

i∈[d] β
k
1E
[

(Gt−k
i )2√

ε+ṽt+1
i

]
. Introducing notation Ṽt,k+1 :=∑

i∈[d] ṽ
t,k+1
i we obtain that

∑
i∈[d]

βk
1E

 (Gt−k
i )2√

ε+ ṽt+1
i

 ≥ βk
1E

 (Gt−k
i )2√

ε+ Ṽt,k+1

 .

Taking X :=

(
∥Gn−k∥2√
ε+Ṽt,k+1

) 2
3

, Y :=

(√
ε+ Ṽt,k+1

) 2
3

, we can apply Hölder inquality B.1 as

E
[
|X|

3
2

]
≥

 E [|XY |]

E
[
|Y |3

] 1
3


3
2

, (34)

which gives us

E

 ∥∥Gt−k
∥∥2√

ϵ+ Ṽn,k+1

 ≥ E
[∥∥Gt−k

∥∥ 4
3

] 3
2√

E
[
ϵ+ Ṽn,k+1

] ≥ E
[∥∥Gt−k

∥∥ 4
3

] 3
2

ΩtRg
, (35)

with Ωt :=
√∑t−1

j=0 β
j
2 , and using the fact that E

[
ε+

∑
i∈[d] ṽ

t,k+1
i

]
≤ R2

gΩ
2
t .
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Now sum (33) over all iterations t ∈ [T ] and using (35) we can obtain that

1

2Rg

T∑
t=1

αt

Ωt

n−1∑
k=0

βk
1E
[∥∥Gt−k

∥∥ 4
3

] 3
2

︸ ︷︷ ︸
A

≤ f(x0)− f∗ +
α2
TL

2

T∑
t=1

E
[∥∥ut

∥∥2]
︸ ︷︷ ︸

B

+
α3
TL

2

4Rg

√
1− β1

T∑
t=1

n−1∑
l=1

E
[∥∥ut−l

∥∥2] n−1∑
k=l

βk
1

√
k︸ ︷︷ ︸

C

+
3αTRg√
1− β1

T∑
t=1

t−1∑
k=0

(
β1

β2

)k√
k + 1E

[∥∥U t−k
∥∥2]

︸ ︷︷ ︸
D

+

T∑
t=1

αt

∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k

E

 |Gt−k
i |√

Et−k

[
(gt−k

i )2
]
+ ε

∣∣Et−k−1

[
gt−k
i

]
−Gt−k

i

∣∣
︸ ︷︷ ︸

E

. (36)

Since our estimates A,B,C,D coincide with corresponding estimates from Défossez et al. (2020)
we utilize the following result

A ≥ αT̃

2Rg
E
[∥∥∥∇f(xN(T ))

∥∥∥4/3]3/2 , (37)

B ≤ dα2
TL

2(1− β1)(1− β1/β2)

(
ln

(
1 +

R2
g

ε(1− β2)

)
− T log(β2)

)
, (38)

C ≤ dα3
TL

2β1

Rg(1− β1)3(1− β1/β2)

(
ln

(
1 +

R2
g

ε(1− β2)

)
− T log(β2)

)
, (39)

D ≤ 6dαTRg√
1− β1(1− β1/β2)3/2

(
ln

(
1 +

Rg

ε(1− β2)

)
− T ln(β2)

)
, (40)

where N(T ) sampled from (3), αT , α come from (12) and

T̃ := T − β1

1− β1
.

For (37) see equation (A.46), for (38) see (A.38), for (39) see (A.40), for (40) see (A.42) from
Défossez et al. (2020).

Now consider E. By definition of f we obtain that

(Gt−k
i )2

Et−k

[
(gt−k

i )2
]
+ ε

=

(
EZ∼µ

[
∇f(xt−k−1, Z)i

])2
Et−k

[
(gt−k

i )2
]
+ ε

,

where µ is a stationary distribution of the Markov chain {Zt}∞t=0. Now assuming that gt−k(Z) is
the same as gt−k in line 5 of Algorithm 1, but Z ∼ µ is used instead of ZTk . Now we again drop
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indexes and using Assumption 3 we obtain

(EZ∼µ [∇f(x, Z)])
2

Et−k [g2] + ε
=

(EZ∼µ [g(Z)])
2

Et−k [g2] + ε
≤

EZ∼µ

[
g(Z)2

]
Et−k [g2] + ε

≤
∑

z∈Z g(z)2µz∑
z∈Z g(z)2P {Zt−k = z}+ ε

=

∑
z∈Z g(z)2P {Zt−k = z}+

∑
z∈Z g(z)2(µz − P {Zt−k = z})∑

z∈Z g(z)2P {Zt−k = z}+ ε

≤
Et−k

[
g(Z)2

]
+
∑

z∈Z g(z)2|µz − P {Zt−k = z} |
Et−k [g(Z)2] + ε

≤
Et−k

[
g(Z)2

]
+R2

g/µmin · (1/2)(t−k)/τmix

Et−k [g(Z)2] + ε
,

where µmin := minz∈Z{µz}. Consider t− k ≥ log(R2
g/(µminε))τmix ≳ τmix, then we obtain result

of the form

(EZ∼µ [∇f(x, Z)])
2

Et−k [g2] + ε
≤ 1.

For t− k ≲ τmix, then we just define the notation of the form

∆τmix :=

τmix∑
t=1

∥∇f(xt)∥√
Et

[
∥gt∥2

]
+ ε

.

Then we obtain that

E ≤ αT

√
d

T∑
t=τmix

t−τmix∑
k=0

(
β1

β2

)k

µg︸ ︷︷ ︸
①

+ αT d

T∑
t=0

t−1∑
k=max{0;t−τmix}

(
β1

β2

)k
∥∥∇f(xt−k)

∥∥√
Et

[
∥gt−k∥2

]
+ ε

µg

︸ ︷︷ ︸
②

,

where µg comes from Lemma 2. Consider ①:

① ≤ µg(T − τmix)

1− β1/β2
.

Consider ②. Changing indexes as l = t− k and q = t+ k we obtain

② =

2T∑
q=0

τmix∑
l=0

(
β1

β2

)(q−l)/2
∥∥∇f(xl)

∥∥√
Et

[
∥gl∥2

]
+ ε

µg

≤ µg

(
β1

β2

)−τmix/2
(

2T∑
q=0

(
β1

β2

)q/2
)
·

 τmix∑
l=0

∥∥∇f(xl)
∥∥√

Et

[
∥gl∥2

]
+ ε


≤ µg

(
β1

β2

)−τmix/2 ∆τmix

1− β1/β2
.

Therefore we can estimate E:

E ≤ dαT

(
T − τmix +

(
β1

β2

)−τmix/2

∆τmix

)
µg

1− β1/β2
.
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Combining all estimates on A,B,C,D,E we obtain:

E
[∥∥∥∇f(xN(T ))

∥∥∥4/3]3/2 = O

(
Rg

f(x0)− f∗

αT̃
+

∆

T̃

[
ln

(
1 +

R2
g

ε(1− β2)

)
− T log(β2)

]

+
dRgµg

T̃

[
T − τmix +

(
β1

β2

)−τmix/2

∆τmix

]
1− β1

(1− β1/β2)
√
1− β2

)
,

where

∆ :=
αdRgL(1− β1)

(1− β1/β2)(1− β2)
+

2α2dL2β1

(1− β1/β2)(1− β2)3/2
+

12dR2
g

√
1− β1

(1− β1/β2)3/2
√
1− β2

.

This finishes the proof.
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